JP2019098297A - Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product - Google Patents

Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product Download PDF

Info

Publication number
JP2019098297A
JP2019098297A JP2017235257A JP2017235257A JP2019098297A JP 2019098297 A JP2019098297 A JP 2019098297A JP 2017235257 A JP2017235257 A JP 2017235257A JP 2017235257 A JP2017235257 A JP 2017235257A JP 2019098297 A JP2019098297 A JP 2019098297A
Authority
JP
Japan
Prior art keywords
photocatalyst
particle
metal
oxide
antibacterial metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017235257A
Other languages
Japanese (ja)
Inventor
雄 印南
Takeshi Inami
雄 印南
高野橋 寛朗
Hiroaki Takanohashi
寛朗 高野橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017235257A priority Critical patent/JP2019098297A/en
Publication of JP2019098297A publication Critical patent/JP2019098297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a photocatalyst capable of being synthesized by a simple method, high in transparency, and having extremely low colorability, a photocatalyst composition containing an antibacterial metal carrying photocatalyst, excellent in weather resistance or photocatalyst performance, excellent in growth suppression of microorganisms such as mold by an antibacterial metal compound, a photocatalyst coated film, and a photocatalyst coating product.SOLUTION: In the antibacterial metal carrying photocatalyst particle AB, an antibacterial metal particle B is carried on a surface of a photocatalyst particle A having a photocatalyst activity of which a surface is modified by metal oxide having no photocatalyst activity, and average particle diameter of the antibacterial metal particle B is in a range of 0.1 to 20 nm.SELECTED DRAWING: None

Description

本発明は、抗菌性金属担持光触媒、光触媒組成物、光触媒塗膜、及び光触媒塗装製品に関する。   The present invention relates to an antimicrobial metal-loaded photocatalyst, a photocatalyst composition, a photocatalyst coating film, and a photocatalyst-coated product.

二酸化チタンを代表とする光触媒は、光(紫外光)が当たることによる超親水性の発現及び/又は活性酸素種の生成により、汚れ分解機能及び窒素酸化物除去機能等の重要な機能(光触媒活性)を発現する。   The photocatalyst represented by titanium dioxide is an important function, such as the function of decomposing soil and removing nitrogen oxides, by the development of super-hydrophilicity and / or the generation of reactive oxygen species by exposure to light (ultraviolet light) ).

光触媒を配合した塗料又はコーティング膜は、上記機能を有するため、防汚塗料、環境浄化塗料、又はコーティング製品等として実用化されている。近年では、消費者に健康を害する有害な物質及び微生物、特に、細菌やカビなどの微生物を除去する機能への需要が高まっており、光触媒には、上記有害物質及び/又は微生物の除去性能が期待されている。   Since the paint or coating film which mix | blended the photocatalyst has the said function, it is utilized as an antifouling paint, an environmental purification paint, or a coating product etc. In recent years, there has been an increasing demand for the function of removing harmful substances and microbes which harm the health of consumers, in particular, microbes such as bacteria and molds, and photocatalysts have the ability to remove the above harmful substances and / or microbes. It is expected.

しかしながら、一般的な二酸化チタンは、紫外光という特定波長の光でのみ触媒効果を発揮するのが典型的であるため、室内や日光の当たりにくい環境下では、ほとんどその触媒効果を発揮しない。そこで、近年、紫外光が少ない環境下でも光触媒活性を示す可視光応答性光触媒、特に、抗菌性金属を光触媒表面に担持させた形態の可視光応答性光触媒等が提案されている(例えば、特許文献1及び2を参照されたい)。   However, since it is typical that general titanium dioxide exhibits a catalytic effect only with light of a specific wavelength of ultraviolet light, it hardly exhibits such a catalytic effect in a room or under an environment in which sunlight is difficult to hit. Therefore, in recent years, visible light responsive photocatalysts that exhibit photocatalytic activity even in an environment where there is little ultraviolet light, in particular, visible light responsive photocatalysts in a form in which an antimicrobial metal is supported on the photocatalyst surface, etc. have been proposed. See documents 1 and 2).

また、抗菌性金属を担持した光触媒及び樹脂等を配合し、この配合物を基材へコーティングする技術も提案されている(例えば、特許文献3参照を参照されたい)。   In addition, a technology has also been proposed in which a photocatalyst, a resin or the like supporting an antibacterial metal is blended, and the blend is coated on a substrate (see, for example, Patent Document 3).

特許第5129897号公報Patent No. 5129897 gazette 特開2016−113417号公報JP, 2016-113417, A 特許第4395886号公報Patent No. 4395886

しかし、特許文献1及び2等の抗菌性金属を担持させる製法においては、反応液中で生成した抗菌性金属化合物を光触媒粒子へ担持させるために、乾燥工程が必要である。そのため、乾燥工程で光触媒粒子同士が凝集し、光触媒粒子を配合した塗膜の透明性が低下することや、粒子の比表面積の低下により、光触媒活性が低下することなど、得られた光触媒粒子の適した用途が限定される可能性がある。   However, in the method of supporting the antibacterial metal as described in Patent Documents 1 and 2, a drying step is necessary in order to support the antibacterial metal compound generated in the reaction solution on the photocatalyst particles. Therefore, the photocatalyst particles are aggregated in the drying step, the transparency of the coating film containing the photocatalyst particles is reduced, and the specific surface area of the particles is reduced, and the photocatalytic activity is reduced. Suitable applications may be limited.

また、特許文献3のように、紫外光照射によって、光触媒粒子表面で生じる光触媒反応である還元反応を利用し、選択的にその表面に金属を析出させる方法も例示されているが、特許文献3の製法で用いることができる光触媒粒子は、その表面を他の化合物で修飾していないものに限られ、そのため、粒子の分散性及び/又は塗膜の耐候性向上といった効果が発現しない可能性があるだけでなく、反応時間で長時間を要すること及び一部未反応物が残ること等の生産性の低下の可能性もある。   In addition, as in Patent Document 3, a method of selectively depositing a metal on the surface of a photocatalyst particle using a reduction reaction which is a photocatalytic reaction generated on the surface of the photocatalyst particle is also exemplified by ultraviolet light irradiation. The photocatalyst particles that can be used in the production method of the present invention are limited to those whose surface is not modified with other compounds, and hence there is a possibility that the effect of improving the particle dispersibility and / or the coating film weatherability may not be exhibited. Not only there is a possibility that the reaction time may take a long time, and the productivity may be reduced such that some unreacted material remains.

本発明は、簡便な手法で合成でき、透明性が高くかつ着色性が非常に低い、抗菌性金属担持光触媒、特に、クリアコートに適した抗菌性金属担持光触媒を提供すること、並びに、耐候性能及び光触媒性能に優れ、抗菌性金属化合物によりカビ等の微生物の生育抑制に優れた、抗菌性金属担持光触媒を含む光触媒組成物、光触媒塗膜、及び光触媒塗装製品を提供することを目的とする。   The present invention provides an antimicrobial metal-supporting photocatalyst which can be synthesized by a simple method, has high transparency and very low coloring properties, in particular, an antimicrobial metal-supporting photocatalyst suitable for clear coat, and weather resistance performance. An object of the present invention is to provide a photocatalyst composition, a photocatalyst coating film, and a photocatalyst-coated product including an antibacterial metal-supporting photocatalyst which is excellent in photocatalytic performance and excellent in growth inhibition of microorganisms such as mold by antibacterial metal compounds.

本発明者らは上記課題を解決すべく鋭意検討した結果、光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの表面に、特定の条件をもつ抗菌性金属粒子Bを担持してなる抗菌性金属担持光触媒を提供できることを見出し、当該抗菌性金属担持光触媒を含む、特定の塗料組成により得られた塗膜が、良好な塗膜外観、耐候性、及び光触媒活性を示し、かつカビ及び/又は藻等の繁殖による汚染(生物汚染)に対しても効果を発揮し得ることも見出した。   As a result of intensive studies to solve the above problems, the present inventors found that antimicrobial metal particles B having specific conditions on the surface of photocatalytic particles A having photocatalytic activity of which the surface is modified with metal oxides having no photocatalytic activity. It has been found that an antimicrobial metal-supporting photocatalyst can be provided which is loaded with a metal, and a coating film obtained by a specific paint composition containing the antibacterial metal-supporting photocatalyst exhibits good coating film appearance, weatherability and photocatalytic activity. It has also been found that it can be effective against contamination due to reproduction such as mold and / or algae (biological contamination).

すなわち、本発明は以下のとおりである。
〈1〉
光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの表面に抗菌性金属粒子Bを担持してなり、上記抗菌性金属粒子Bの平均粒子径が0.1〜20nmの範囲にある、抗菌性金属担持光触媒粒子AB。
〈2〉
上記光触媒活性を有しない金属酸化物が二酸化ケイ素、酸化アルミニウム、酸化ジルコニウムからなる群から選択される少なくとも1種からなり、
上記光触媒活性を有する光触媒粒子Aを形成する化合物が二酸化チタン、酸化亜鉛、チタン酸ストロンチウム、リン化ガリウム、リン化インジウム、ヒ化ガリウム、チタン酸バリウム、ニオブ酸カリウム、五酸化ニオブ、酸化鉄、五酸化タンタル、K3Ta3Si23、酸化タングステン、酸化スズ、酸化ビスマス、バナジン酸ビスマス、酸化ニッケル、酸化銅、炭化ケイ素、硫化モリブデン、インジウム鉛、酸化ルテニウム、及び酸化セリウムからなる群から選択される少なくとも1種からなる、
〈1〉項に記載の抗菌性金属担持光触媒粒子AB。
〈3〉
上記光触媒活性を有しない金属酸化物が二酸化ケイ素であり、
上記光触媒活性を有する光触媒粒子Aを形成する化合物が二酸化チタンである、
〈2〉項に記載の抗菌性金属担持光触媒粒子AB。
〈4〉
上記抗菌性金属担持光触媒粒子ABの平均粒子径が1〜400nmである、〈1〉〜〈3〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。
〈5〉
上記抗菌性金属粒子Bが、金、銀、銅、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上である、〈1〉〜〈4〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。
〈6〉
上記抗菌性金属粒子Bの質量が、上記光触媒粒子Aの質量に対し、0.1〜10%の範囲にある、〈1〉〜〈5〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。
〈7〉
抗菌性金属担持光触媒粒子AB中に、光触媒粒子Aの表面に担持されていない抗菌性金属粒子Cを含有し、その含有量が抗菌性金属担持光触媒粒子ABの全固形分に対して10〜3000ppmの範囲にある、〈1〉〜〈6〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。
〈8〉
上記抗菌性金属粒子Cが、金、銀、銅、金イオン、銀イオン、銅イオン、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上である、〈7〉項に記載の抗菌性金属担持光触媒粒子AB。
〈9〉
〈1〉〜〈8〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子ABと、水と、コロイダルシリカとを含む組成物であって、組成物中に上記抗菌性金属担持光触媒粒子ABの固形分濃度が全固形分中の1〜30質量%であり、コロイダルシリカの固形分濃度が全固形分中の50〜99質量%である、光触媒組成物。
〈10〉
さらに重合体エマルジョン粒子Dを上記組成物中に、その全固形分の0〜30質量%の濃度で含む、〈9〉項に記載の光触媒組成物。
〈11〉
〈9〉又は〈10〉項に記載の光触媒組成物から形成される光触媒塗膜。
〈12〉
〈11〉項に記載の光触媒塗膜と、上記光触媒塗膜を形成する組成物とは異なる組成物から得られる塗膜とを積層してなる光触媒塗膜。
〈13〉
〈11〉又は〈12〉項に記載の光触媒塗膜を備える光触媒塗装製品。
〈14〉
光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの水分散体と、金属イオンを含む水溶性金属化合物とを混合すること、及び
水溶性還元剤を添加して上記金属イオンを還元することで、抗菌性金属粒子Bを生成させて上記光触媒粒子Aに担持させること
を含む、〈1〉〜〈8〉項のいずれか一項に記載の抗菌性金属担持光触媒粒子ABの製造方法。
That is, the present invention is as follows.
<1>
An antimicrobial metal particle B is supported on the surface of photocatalyst particle A having photocatalytic activity, the surface of which is modified with a metal oxide having no photocatalytic activity, and the average particle diameter of the antimicrobial metal particle B is 0.1 to 20 nm. In the range of, antimicrobial metal-loaded photocatalyst particles AB.
<2>
The metal oxide not having photocatalytic activity comprises at least one selected from the group consisting of silicon dioxide, aluminum oxide and zirconium oxide,
Compounds forming the photocatalyst particle A having the photocatalytic activity are titanium dioxide, zinc oxide, strontium titanate, gallium phosphide, indium phosphide, gallium arsenide, barium titanate, potassium niobate, niobium pentoxide, iron oxide, A group consisting of tantalum pentoxide, K 3 Ta 3 Si 2 O 3 , tungsten oxide, tin oxide, bismuth oxide, bismuth vanadate, nickel oxide, copper oxide, copper oxide, silicon carbide, molybdenum sulfide, indium lead, ruthenium oxide, and cerium oxide Consisting of at least one selected from
The antimicrobial metal-supported photocatalyst particle AB according to <1>.
<3>
The metal oxide not having photocatalytic activity is silicon dioxide,
The compound forming the photocatalyst particle A having the photocatalytic activity is titanium dioxide,
The antimicrobial metal-supported photocatalyst particle AB described in the item <2>.
<4>
The antibacterial metal-supported photocatalyst particles AB according to any one of <1> to <3>, wherein the average particle diameter of the antibacterial metal-supported photocatalyst particles AB is 1 to 400 nm.
<5>
The antimicrobial metal particle B described in any one of <1> to <4>, which is at least one selected from the group consisting of gold, silver, copper, a gold compound, a silver compound and a copper compound. Antibacterial metal-loaded photocatalyst particles AB.
<6>
The antibacterial metal support according to any one of <1> to <5>, wherein the mass of the antibacterial metal particle B is in the range of 0.1 to 10% with respect to the mass of the photocatalyst particle A. Photocatalytic particles AB.
<7>
The antibacterial metal-supporting photocatalyst particle AB contains the antibacterial metal particle C not supported on the surface of the photocatalyst particle A, and the content thereof is 10 to 3000 ppm with respect to the total solid content of the antibacterial metal-supporting photocatalyst particle AB The antimicrobial metal-loaded photocatalyst particle AB according to any one of <1> to <6>, which is in the range of
<8>
The antimicrobial metal particle C is one or more selected from the group consisting of gold, silver, copper, gold ion, silver ion, copper ion, gold compound, silver compound and copper compound, described in <7>. Antibacterial metal-loaded photocatalyst particles AB.
<9>
The antimicrobial metal-supporting photocatalyst particle AB according to any one of <1> to <8>, water, and colloidal silica, wherein the antimicrobial metal-supporting photocatalyst particle is contained in the composition. The photocatalyst composition whose solid content concentration of AB is 1-30 mass% in total solid content, and whose solid content concentration of colloidal silica is 50-99 mass% in total solid content.
<10>
The photocatalyst composition according to <9>, further comprising polymer emulsion particles D in the composition at a concentration of 0 to 30% by mass of the total solid content.
<11>
The photocatalyst coating film formed from the photocatalyst composition of the <9> or <10> term.
<12>
The photocatalyst coating film formed by laminating | stacking the photocatalyst coating film as described in a <11> term, and the coating film obtained from a composition different from the composition which forms the said photocatalyst coating film.
<13>
The photocatalyst coating products provided with the photocatalyst coating film as described in a <11> or <12> term.
<14>
Mixing an aqueous dispersion of photocatalytic particles A having photocatalytic activity, the surface of which is modified with a metal oxide having no photocatalytic activity, with a water-soluble metal compound containing metal ions, and adding a water-soluble reducing agent The antibacterial metal-supported photocatalyst particle according to any one of <1> to <8>, which comprises forming an antibacterial metal particle B and supporting the same on the photocatalyst particle A by reducing metal ions. AB production method.

本発明によれば、透明性が高く、かつ着色性が非常に低い抗菌性金属担持光触媒を提供することができる。また、本発明の抗菌性金属担持光触媒を採用することにより、光触媒塗料を塗装する下地層の意匠を損ねることなく、光触媒活性を発揮し、また、耐候性に優れるだけでなく、生物汚染の抑制効果を長期的に発揮する光触媒塗膜を提供することができる。   According to the present invention, an antibacterial metal-supporting photocatalyst having high transparency and very low colorability can be provided. In addition, by employing the antibacterial metal-supporting photocatalyst of the present invention, the photocatalytic activity is exhibited without impairing the design of the undercoat layer to which the photocatalyst paint is applied, and not only the weather resistance is excellent but also biological contamination is suppressed. It is possible to provide a photocatalytic coating film that exerts its effect in the long run.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。   Hereinafter, modes for carrying out the present invention (hereinafter, simply referred to as "the present embodiment") will be described in detail. The following present embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist of the present invention.

[抗菌性金属担持光触媒粒子AB]
本実施形態の抗菌性金属担持光触媒ABは、光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの表面に抗菌性金属粒子Bが担持されている、抗菌性金属担持光触媒粒子ABである。
また、本実施形態の抗菌性金属担持光触媒粒子ABは、抗菌性金属粒子Bの平均粒子径が0.1〜20nmの範囲にあることを、特徴とする。
[Antibacterial metal-loaded photocatalyst particles AB]
The antibacterial metal-supported photocatalyst AB of the present embodiment is an antibacterial metal-supported photocatalyst in which the antibacterial metal particles B are supported on the surface of photocatalytic particles A having photocatalytic activity of which the surface is modified with a metal oxide having no photocatalytic activity. It is photocatalyst particle AB.
The antibacterial metal-supporting photocatalyst particle AB of the present embodiment is characterized in that the average particle diameter of the antibacterial metal particle B is in the range of 0.1 to 20 nm.

本実施形態の抗菌性金属担持光触媒粒子ABは、水等を含む組成物に含有されてよい。したがって、本実施形態の抗菌性金属担持光触媒粒子ABの形態は、これが水等の溶媒に、溶解、懸濁、又は分散した液体状の形態を含み、すなわち、光触媒水系組成物の態様が含まれる。また、本実施形態の抗菌性金属担持光触媒粒子ABは、上記光触媒水系組成物から水の除去及び/又は乾燥等の操作を行うことによって、紛体等として得ることもでき、これは、固体状であってもよい。   The antibacterial metal-supported photocatalyst particles AB of the present embodiment may be contained in a composition containing water and the like. Therefore, the form of the antibacterial metal-supporting photocatalyst particle AB of the present embodiment includes a liquid form in which it is dissolved, suspended or dispersed in a solvent such as water, that is, the aspect of the photocatalyst aqueous composition is included. . The antibacterial metal-supporting photocatalyst particle AB of the present embodiment can also be obtained as a powder or the like by performing operations such as removal of water and / or drying from the above-described photocatalyst water system composition, and it is solid It may be.

上記光触媒水系組成物中の抗菌性金属担持光触媒粒子ABは、であれば特に制限されないが、該光触媒水系組成物の全量に基づいて、0.1質量%以上、1.0質量%以上、1.5質量%以上、3.0質量%以上、5.0質量%以上、7.5質量%以上、8.0質量%以上、又は9.0質量%以上でよく、99.9質量%以下、90.0質量%以下、85.0質量%以下、80.0質量%以下、70.0質量%以下、60.0質量%以下、50.0質量%以下、40.0質量%以下、30.0質量%以下、20.0質量%以下、又は10.0質量%以下でよい。また、この値は、0.1〜99.9質量%、好ましくは0.5〜50質量%、より好ましくは1.0〜30質量%、さらに好ましくは1.5〜10質量%でよい。   The antibacterial metal-supporting photocatalyst particle AB in the photocatalyst aqueous composition is not particularly limited as long as it is 0.1% by mass or more, 1.0% by mass or more, based on the total amount of the photocatalyst aqueous composition. .5 mass% or more, 3.0 mass% or more, 5.0 mass% or more, 7.5 mass% or more, 8.0 mass% or more, or 9.0 mass% or more, and 99.9 mass% or less 90.0% by mass or less, 85.0% by mass or less, 80.0% by mass or less, 70.0% by mass or less, 60.0% by mass or less, 50.0% by mass or less, 40.0% by mass or less, 30.0 mass% or less, 20.0 mass% or less, or 10.0 mass% or less may be sufficient. In addition, this value may be 0.1 to 99.9% by mass, preferably 0.5 to 50% by mass, more preferably 1.0 to 30% by mass, and still more preferably 1.5 to 10% by mass.

本実施形態の抗菌性金属担持光触媒における抗菌性金属粒子Bは、光触媒活性を有しない金属酸化物で表面を修飾した、光触媒活性を有する光触媒粒子Aの表面に担持されている。本実施形態における担持とは、光触媒活性を有しない金属酸化物を介して光触媒活性を有する光触媒粒子Aに付着している状態を意味し、又は光触媒活性を有しない金属酸化物が覆われていない部分の、光触媒活性を有する光触媒粒子Aの表面に直接付着している状態を意味する。   The antimicrobial metal particles B in the antimicrobial metal-supporting photocatalyst of the present embodiment are supported on the surface of the photocatalytic particles A having photocatalytic activity, the surface of which is modified with a metal oxide having no photocatalytic activity. The support in the present embodiment means a state of being attached to the photocatalytic particle A having photocatalytic activity via the metal oxide having no photocatalytic activity, or the metal oxide having no photocatalytic activity is not covered It means that the part is directly attached to the surface of the photocatalytic particle A having photocatalytic activity.

上記光触媒粒子Aに担持されている抗菌性金属粒子Bの平均粒子径は、0.1〜20nmの範囲にある。この平均粒子径が0.1nm未満である場合には、塗膜中で他の粒子などに埋もれてしまい、効果を発揮しにくくなる。この平均粒子径が20nmを超える場合には、可視光の吸収が増加することにより金属化合物特有の着色が顕著になるだけでなく、抗菌性金属粒子Bの比表面積が減少するためカビ及び藻等の生育を抑制する効果が低下する。なお、この平均粒子径は、光触媒合成時の温度の調節、原料濃度の調節、及び所定の比表面積を有する酸化チタンの採用によって、調整することができる。   The average particle diameter of the antimicrobial metal particles B supported on the photocatalyst particles A is in the range of 0.1 to 20 nm. If this average particle size is less than 0.1 nm, it will be buried in other particles in the coating film, making it difficult to exert the effect. When the average particle size exceeds 20 nm, the absorption of visible light is increased and not only the coloring peculiar to the metal compound becomes remarkable, but also the specific surface area of the antibacterial metal particle B decreases, so that mold, algae etc. The effect of suppressing the growth of In addition, this average particle diameter can be adjusted by adjustment of the temperature at the time of photocatalyst synthesis, adjustment of the raw material concentration, and adoption of titanium oxide having a predetermined specific surface area.

したがって、抗菌性金属粒子Bの平均粒子径は0.1〜20nmの範囲にあり、0.5〜15nmの範囲がより好ましく、1.0〜15nmの範囲にあることが更に好ましい。抗菌性金属粒子Bの平均粒子径は、抗菌性金属担持光触媒粒子ABを電子顕微鏡で観察し、確認される任意の抗菌性金属粒子Bの粒子50個の円相当径(Heywood径)の数平均粒子径から求められる。具体的には、後述の実施例に記載の方法により抗菌性金属粒子Bの平均粒子径を測定することができる。   Accordingly, the average particle size of the antibacterial metal particles B is in the range of 0.1 to 20 nm, more preferably in the range of 0.5 to 15 nm, and still more preferably in the range of 1.0 to 15 nm. The average particle size of the antibacterial metal particle B is obtained by observing the antibacterial metal-supporting photocatalyst particle AB with an electron microscope, and the number-average equivalent circular diameter (Heywood diameter) of 50 particles of any antibacterial metal particle B confirmed. It is determined from the particle size. Specifically, the average particle size of the antibacterial metal particles B can be measured by the method described in the examples below.

本実施形態の抗菌性金属担持光触媒粒子ABは、光触媒粒子Aの表面に担持されていない抗菌性金属粒子Cを含むことができる。その他にも本発明の効果から逸脱しない範囲において、抗菌性金属担持光触媒粒子ABは、分散剤、防腐剤、並びに、任意のpHに調整するための酸及び/又は塩基性化合物等を含むこともできる。 The antibacterial metal-supporting photocatalyst particle AB of the present embodiment can include an antibacterial metal particle C which is not supported on the surface of the photocatalyst particle A. In addition, the antibacterial metal-supporting photocatalyst particle AB may also contain a dispersant, a preservative, and an acid and / or a basic compound for adjusting to any pH without departing from the effects of the present invention. it can.

本実施形態の抗菌性金属担持光触媒粒子ABの平均粒子径は、溶媒又は分散媒中において、平均(相加平均)で1〜400nmの範囲にあることが好ましい。この平均粒子径が1nm以上であることにより、光を吸収しやすくなり、ひいては光触媒活性が効果的に発現するだけでなく、塗料中及び塗膜中での光触媒粒子の分散性にも優れる。また、この平均粒子径が400nm以下であることにより、塗料中での沈降が抑制されて貯蔵安定性が向上する点、塗膜に配合した際に光散乱が抑えられて塗膜の透明性が向上する点、更には光触媒粒子の比表面積が増大するため光触媒活性にも優れる点で、好ましい。 The average particle size of the antibacterial metal-supporting photocatalyst particle AB of this embodiment is preferably in the range of 1 to 400 nm in average (arithmetic mean) in a solvent or a dispersion medium. When the average particle diameter is 1 nm or more, it is easy to absorb light, and as a result, not only the photocatalytic activity is effectively expressed, but also the dispersibility of the photocatalyst particles in the paint and in the coating film is excellent. In addition, when the average particle diameter is 400 nm or less, sedimentation in the coating is suppressed and storage stability is improved, and when it is blended in the coating, light scattering is suppressed and the transparency of the coating is It is preferable from the point of the improvement and the point that the specific surface area of the photocatalyst particles is increased and the photocatalytic activity is also excellent.

したがって、抗菌性金属担持光触媒ABの平均粒子径は、特に限定されないが、1nm以上、3nm以上、5nm以上、又は10nm以上でよい。また、この平均粒子径は、400nm以下、300nm以下、200nm以下、又は100nm以下でよい。   Therefore, the average particle size of the antibacterial metal-supported photocatalyst AB is not particularly limited, but may be 1 nm or more, 3 nm or more, 5 nm or more, or 10 nm or more. The average particle size may be 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.

また、抗菌性金属担持光触媒粒子ABこの平均粒子径は、特に限定されないが、1〜400nmの範囲にあることが好ましく、より好ましくは5〜200nmの範囲、更に好ましくは10〜100nmの範囲でよい。また、抗菌性金属担持光触媒粒子ABの平均粒子径が小さいほど(光触媒粒子Aの平均粒子径が一定ならば抗菌性金属粒子Bの平均粒子径が小さいほど)、得られる塗膜の着色性が低い。   The average particle diameter of the antibacterial metal-supporting photocatalyst particle AB is not particularly limited, but is preferably in the range of 1 to 400 nm, more preferably in the range of 5 to 200 nm, and still more preferably in the range of 10 to 100 nm. . In addition, the smaller the average particle diameter of the antibacterial metal-supporting photocatalyst particles AB (the smaller the average particle diameter of the antibacterial metal particles B if the average particle diameter of the photocatalyst particles A is constant), the colorability of the obtained coating film is Low.

なお、光触媒用無機化合物ABの粒子形状がロッド形状等の長径と短径とを有する場合、その長径及び短径の相加平均が上記範囲内であることが好ましい。
抗菌性金属担持光触媒粒子ABの平均粒子径は、後述される方法によって測定される。なお、「抗菌性金属担持光触媒ABの平均粒子径」とは、粒子塗料中の粒子の状態での二次粒子径を指す。
In addition, when the particle shape of inorganic compound AB for photocatalysts has the major axis and minor axis of rod shape etc., it is preferable that the arithmetic mean of the major axis and minor axis is in the said range.
The average particle size of the antibacterial metal-supported photocatalyst particles AB is measured by the method described later. In addition, "the average particle diameter of antibacterial metal carrying | support photocatalyst AB" points out the secondary particle diameter in the state of the particle | grains in particle | grain paint.

(光触媒粒子A)
本実施形態の抗菌性金属担持光触媒粒子ABにおける光触媒粒子Aは、光触媒活性を有し、かつ光触媒活性を有しない金属酸化物でその表面を修飾されている。光触媒活性を有しない金属酸化物で光触媒活性のある粒子表面を修飾することで、粒子の分散安定性及び塗膜の耐候性に優れる。
(Photocatalyst particles A)
The photocatalyst particle A in the antibacterial metal-supporting photocatalyst particle AB of the present embodiment has its surface modified with a metal oxide having photocatalytic activity and no photocatalytic activity. By modifying the surface of the particles having photocatalytic activity with a metal oxide having no photocatalytic activity, the dispersion stability of the particles and the weather resistance of the coating film are excellent.

光触媒活性を有しない金属酸化物としては、例えば、二酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等が挙げられ、これらを単独でも2種以上組み合わせた組成でもよい。その中でも、pHが中性領域の分散媒では、粒子の優れた分散安定性を達成できること、及び、粒子が、これが配合された塗膜の親水性も向上させることから、光触媒活性を有しない金属酸化物は、二酸化ケイ素単独であることが好ましい。   Examples of metal oxides not having photocatalytic activity include silicon dioxide, aluminum oxide, zirconium oxide and the like, and these may be used alone or in combination of two or more. Among them, the dispersion medium having a pH in the neutral region can achieve excellent dispersion stability of the particles, and the particles also improve the hydrophilicity of the coating film into which the particles are incorporated, so that the metal does not have photocatalytic activity. The oxide is preferably silicon dioxide alone.

本実施形態の抗菌性金属担持光触媒ABにおいて、光触媒活性を有しない金属酸化物が光触媒粒子Aの表面を修飾している。この光触媒活性を有しない金属酸化物の量は、光触媒粒子Aの質量に基づいて、1%以上、3%以上、5%以上、7%以上、又は10%以上でよく、30%以下、25%以下、20%以下、又は15%以下でよい。この光触媒活性を有しない金属酸化物の量は、1%〜30%が好ましく、1%以上では粒子の分散性及び耐候性の向上効果があり、30%以下では、光触媒活性が著しく向上する。光触媒粒子Aの表面を修飾している、光触媒活性を有しない金属酸化物の量としては、光触媒粒子Aの質量に基づいて、1%〜30%が好ましく、より好ましくは5%〜25%、更に好ましくは10%〜20%の範囲でよい。   In the antibacterial metal-supported photocatalyst AB of the present embodiment, the metal oxide having no photocatalytic activity modifies the surface of the photocatalyst particle A. The amount of the metal oxide not having photocatalytic activity may be 1% or more, 3% or more, 5% or more, 7% or more, or 10% or more, 30% or less, 25% or more based on the mass of the photocatalyst particle A. % Or less, 20% or less, or 15% or less. The amount of the metal oxide not having photocatalytic activity is preferably 1% to 30%. If the amount is 1% or more, the dispersibility of the particles and the weatherability are improved, and if 30% or less, the photocatalytic activity is significantly improved. The amount of metal oxide having no photocatalytic activity that modifies the surface of the photocatalyst particle A is preferably 1% to 30%, more preferably 5% to 25%, based on the mass of the photocatalyst particle A. More preferably, it may be in the range of 10% to 20%.

光触媒活性を有する光触媒粒子Aとしては、例えば、二酸化チタン(TiO2)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO3)、リン化ガリウム(GaP)、リン化インジウム(InP)、ヒ化ガリウム(GaAs)、チタン酸バリウム(例えば、BaTiO3、BaTiO4、又はBaTi49等)、ニオブ酸カリウム(K2NbO3)、五酸化ニオブ(Nb25)、酸化鉄(例えば、Fe23)、五酸化タンタル(Ta25)、K3Ta3Si23、酸化タングステン(例えば、WO3)、酸化スズ(例えば、SnO2)、酸化ビスマス(例えば、Bi23)、バナジン酸ビスマス(BiVO4)、酸化ニッケル(例えば、NiO)、酸化銅(例えば、Cu2O)、炭化ケイ素(SiC)、硫化モリブデン(例えば、MoS2)、インジウム鉛(InPb)、酸化ルテニウム(例えば、RuO2)、及び酸化セリウム(例えば、CeO2)等が挙げられる。 Examples of the photocatalyst particle A having photocatalytic activity include titanium dioxide (TiO 2 ), zinc oxide (ZnO), strontium titanate (SrTiO 3 ), gallium phosphide (GaP), indium phosphide (InP), gallium arsenide (GaAs), barium titanate (eg, BaTiO 3 , BaTiO 4 , or BaTi 4 O 9 ), potassium niobate (K 2 NbO 3 ), niobium pentoxide (Nb 2 O 5 ), iron oxide (eg, Fe) 2 O 3), tantalum pentoxide (Ta 2 O 5), K 3 Ta 3 Si 2 O 3, tungsten oxide (e.g., WO 3), tin oxide (e.g., SnO 2), bismuth oxide (e.g., Bi 2 O 3), bismuth vanadate (BiVO 4), nickel oxide (e.g., NiO), copper oxide (e.g., Cu 2 O), silicon carbide (SiC), sulfide molybdenum (E.g., MoS 2), indium lead (InPb), ruthenium oxide (e.g., RuO 2), and cerium oxide (e.g., CeO 2), and the like.

この中でも。光触媒活性を有する光触媒粒子A(単に「光触媒粒子A」とも記す。)としては、安全性及びコストの観点から、TiO2(二酸化チタン)が好ましい。TiO2の結晶構造には、例えば、アナターゼ型、ルチル型、又はブルッカイト型等の結晶構造のものがあるが、いずれを使用してもよい。 Among these. From the viewpoint of safety and cost, TiO 2 (titanium dioxide) is preferable as the photocatalyst particle A (also simply referred to as “photocatalyst particle A”) having photocatalytic activity. The crystal structure of TiO 2 includes, for example, crystal structures such as anatase type, rutile type, or brookite type, and any may be used.

光触媒活性を有しない金属酸化物で表面を修飾した光触媒粒子Aは、例えば、二酸化チタン粒子を水に懸濁させ、ゾル―ゲル反応により二酸化ケイ素等を、その粒子の表面に形成させる方法などにより、公知の方法で製造できる。また、当該粒子Aの市販品としては、例えば、石原産業社製MPT−429、昭和電工社製F−4S05、テイカ社製MT−100SA、及び堺化学社製STR−100Aなどが挙げられる。   The photocatalyst particle A whose surface is modified with a metal oxide not having photocatalytic activity is, for example, a method of suspending titanium dioxide particles in water and forming silicon dioxide etc. on the surface of the particles by sol-gel reaction etc. And can be produced by known methods. Moreover, as a commercial item of the said particle | grains A, for example, Ishihara Sangyo Co., Ltd. MPT-429, Showa Denko Co., Ltd. F-4 S05, Tayca Corporation MT-100 SA, and Fuso Chemical Co. STR-100A etc. are mentioned.

光触媒活性を有しない金属酸化物の割合は、具体的には、実施例の3.表面修飾物の定量に記載の方法にしたがって、算出することができる。   Specifically, the proportion of the metal oxide having no photocatalytic activity is 3.3. It can be calculated according to the method described in the quantification of surface modified substances.

(抗菌性金属粒子B)
本実施形態で用いる抗菌性金属粒子Bは、例えば、大腸菌細胞に対する金属イオンの最小発育阻止濃度(MIC)が20mM以下の金属を指す。最小発育阻止濃度(MIC)とは菌の増殖を阻止するために必要な薬剤(ここでは金属イオンを指す)の最小濃度のことである。
(Antibacterial metal particles B)
The antibacterial metal particle B used in the present embodiment refers to, for example, a metal having a minimum inhibitory concentration (MIC) of metal ions to E. coli cells of 20 mM or less. The minimum inhibitory concentration (MIC) is the minimum concentration of an agent (herein referred to metal ion) necessary to inhibit bacterial growth.

本実施形態の抗菌性金属粒子Bとしては、例えば、銀、金、パラジウム、白金、コバルト、ニッケル、銅、亜鉛、鉛、マンガン等の重金属が挙げられる。抗菌性金属粒子Bとしては、これらの中でも、安全性及び実用性の観点から、好ましくは、金、銀、銅、白金、及び亜鉛を挙げることができ、より好ましくは、金、銀、及び銅を挙げることができる。これらの重金属は、1種であってもよく、2種以上を組み合わせてもよい。 Examples of the antimicrobial metal particles B of the present embodiment include heavy metals such as silver, gold, palladium, platinum, cobalt, nickel, copper, zinc, lead, manganese and the like. Among these, from the viewpoint of safety and practicability, preferred examples of the antimicrobial metal particles B include gold, silver, copper, platinum and zinc, and more preferred are gold, silver and copper. Can be mentioned. These heavy metals may be used alone or in combination of two or more.

抗菌性金属粒子Bの存在形態としては、上記金属単体の形態、金属化合物の形態、イオン状態の形態、又は他の化合物と錯体化している状態の形態等を用いることができるが、その中でも金属単体の形態、特に水に難溶性の金属単体又は金属化合物の形態が好ましい。これは、金属単体又は金属化合物が水に難溶性であることにより、金属の溶解により生じた金属イオン自身が、光を吸収したり、又は近接する光触媒粒子の光触媒反応によって還元され、結果として、塗膜の色が経時で変化する可能性を低減できるからである。また、金属単体又は金属化合物が水に難溶性である場合には、屋外環境下において、これらが雨等の水分で流出することを抑制し、これによって、本願発明の効果を持続させることができる。   As the existence form of the antibacterial metal particle B, the form of the above metal simple substance, the form of the metal compound, the form of the ionic state, or the form in the state of being complexed with other compounds can be used. The form of a simple substance, in particular, a form of a metal simple substance or a metal compound which is poorly soluble in water is preferred. This is because the metal simple substance or the metal compound is poorly soluble in water, and the metal ion itself generated by the dissolution of the metal is reduced by absorption of light or photocatalytic reaction of adjacent photocatalyst particles, as a result, This is because the possibility that the color of the coating changes with time can be reduced. In addition, in the case where the single metal or the metal compound is poorly soluble in water, it is possible to suppress the runoff by moisture such as rain in an outdoor environment, thereby maintaining the effect of the present invention. .

抗菌性金属粒子Bの成分は、金、銀、銅、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上であることが好ましい。抗菌性金属粒子Bの成分の具体的な例としては、金の場合には、例えば、金単体等、銀の場合には、銀単体及びその化合物、例えば、酸化銀及び塩化銀等、銅の場合には、銅単体及びその化合物、例えば、酸化銅及び水酸化銅等が挙げられる。   The component of the antibacterial metal particle B is preferably at least one selected from the group consisting of gold, silver, copper, a gold compound, a silver compound and a copper compound. Specific examples of the components of the antimicrobial metal particle B include, in the case of gold, for example, gold alone, in the case of silver, silver alone and compounds thereof, for example, silver oxide and silver chloride, copper In the case, a copper simple substance and its compound, for example, copper oxide and copper hydroxide etc. are mentioned.

本実施形態の抗菌性金属粒子Bの質量としては、上記光触媒粒子Aの質量に基づいて、0.1〜10%の範囲であることが好ましい。抗菌性金属の質量の範囲が、0.1%以上では、防藻・防カビ性の効果を十分に奏することが可能であり、この範囲が20%以下では、抗菌性金属担持光触媒粒子ABを塗膜に配合した際に、金属由来の着色を抑制できるだけでなく、担持されない抗菌性金属粒子Cの量が低減され、更には抗菌性金属粒子Bによる酸化チタンの光吸収の抑制を低減し、結果として、光触媒活性の維持又は向上を達成することができるため、好ましい。抗菌性金属粒子Bの質量は、上記光触媒粒子Aの質量に基づいて、0.1〜10%の範囲であることが好ましく、より好ましくは0.5〜8.0%であり、更に好ましくは0.5〜4.0%の範囲である。抗菌性金属粒子Bの質量の割合が小さいほど、得られる塗膜の着色性が低くなり、換言すれば、下地塗膜の意匠性を損ね難い。   The mass of the antibacterial metal particles B according to the present embodiment is preferably in the range of 0.1 to 10% based on the mass of the photocatalyst particles A. When the mass range of the antibacterial metal is 0.1% or more, the anti-algal and antifungal effect can be sufficiently exhibited. When the range is 20% or less, the antibacterial metal-supported photocatalyst particles AB can be obtained. When incorporated in the coating film, not only can the metal-derived coloration be suppressed, but also the amount of the unsupported antibacterial metal particles C is reduced, and furthermore, the suppression of light absorption of titanium oxide by the antibacterial metal particles B is reduced. As a result, it is preferable because maintenance or improvement of photocatalytic activity can be achieved. The mass of the antimicrobial metal particles B is preferably in the range of 0.1 to 10%, more preferably 0.5 to 8.0%, further preferably, based on the mass of the photocatalyst particles A. It is a range of 0.5 to 4.0%. The smaller the proportion of the mass of the antibacterial metal particles B, the lower the colorability of the obtained coating film, in other words, the less the design of the undercoat film is impaired.

(抗菌性金属粒子C)
本実施形態に用いる抗菌性金属粒子Cは、後述する抗菌性金属粒子Bを担持させる製造における原料の未反応物、もしくは担持されていない粒子であってもよく、意図的に抗菌性金属化合物や粒子を添加してもよい。そのため、抗菌性金属粒子Cと抗菌性金属粒子Bとの金属種が同一でも異なってもよい。
(Antibacterial metal particle C)
The antibacterial metal particle C used in the present embodiment may be a non-reacted material of the raw material in the production of supporting the antibacterial metal particle B described later, or may be a non-supported particle. Particles may be added. Therefore, the metal species of the antimicrobial metal particles C and the antimicrobial metal particles B may be the same or different.

本実施形態に用いる抗菌性金属粒子Cの存在形態としては金属単体、金属イオン及びイオンを含有する錯体や金属塩など、いかなる形態であってもよい。   The form of the presence of the antimicrobial metal particle C used in the present embodiment may be any form such as a simple metal, a complex containing metal ions and ions, or a metal salt.

また、抗菌性金属粒子Cの種類としては前述の抗菌性金属粒子Bと同様、種々の抗菌性金属の中でも金、銀、銅のいずれかより選択される金属種であることが好ましい。抗菌性金属粒子Cは、金、銀、銅、金イオン、銀イオン、銅イオン、金化合物、銀化合物、及び銅化合物からなる群より選択される1種以上であることがより好ましい。   Moreover, as a kind of antibacterial metal particle C, it is preferable like the above-mentioned antibacterial metal particle B that it is a metal kind selected from any of gold, silver and copper among various antibacterial metals. The antimicrobial metal particle C is more preferably at least one selected from the group consisting of gold, silver, copper, gold ions, silver ions, copper ions, gold compounds, silver compounds, and copper compounds.

本実施形態で用いる抗菌性金属粒子Cの質量は抗菌性金属担持光触媒粒子ABの全固形分に基づいて、10〜3000ppmであることが好ましい。10ppm以上であることで、抗菌性金属粒子Bに加えて微生物に対して作用する金属成分が増量され、より効果を発揮するため好ましい。3000ppm以下であることで、塗膜の外観において、金属由来の着色性が低減され、ひいては、下地塗膜の意匠性を損ね難くなるだけでなく、経時での金属成分の化学変化により塗膜の色の変化を生じ難いなど、向上した塗膜の外観を示すことができる。さらには、金属単体及び/又は難溶性化合物が塗膜中でクラック及び欠落等の起点となりやすいため、塗膜の物理的強度を低下させるだけでなく、表面やクラック等から抗菌性金属粒子Cが脱離することで効果の長期持続性が見込めないため好ましくない。クラックや欠落の起点となる理由は定かではないが、金属単体や難溶性化合物が塗膜中の他成分と相互作用が弱く、含まれる箇所の物理的強度を低下させているためと推測している。
抗菌性金属粒子Cの質量は抗菌性金属担持光触媒粒子ABの全固形分に基づいて、10〜3000ppmであることが好ましく、より好ましくは20〜2500ppm、更に好ましくは50〜2000ppmである。
The mass of the antibacterial metal particles C used in the present embodiment is preferably 10 to 3000 ppm based on the total solid content of the antibacterial metal-supporting photocatalyst particles AB. By being 10 ppm or more, in addition to the antibacterial metal particle B, the metal component which acts with respect to microorganisms is increased, and since it exerts an effect more, it is preferable. When it is 3000 ppm or less, in the appearance of the coating film, the coloring property derived from the metal is reduced, and it becomes difficult to damage the design of the undercoat film, and the coating film is It is possible to show an improved appearance of the coating, such as being less likely to cause color change. Furthermore, since a single metal and / or a poorly soluble compound is likely to be a starting point such as a crack and a drop in the coating film, not only the physical strength of the coating film is reduced, but the antibacterial metal particle C is It is not preferable because long-term sustainability of the effect can not be expected by detachment. The reason for the origin of the crack or chipping is not clear, but it is presumed that the metal single substance or the poorly soluble compound has weak interaction with other components in the coating film and reduces the physical strength of the contained part There is.
The mass of the antibacterial metal particles C is preferably 10 to 3000 ppm, more preferably 20 to 2500 ppm, and still more preferably 50 to 2000 ppm, based on the total solid content of the antibacterial metal-supported photocatalyst particles AB.

[抗菌性金属担持光触媒粒子ABの製造方法]
本実施形態の抗菌性金属担持光触媒粒子ABの製造方法は、
光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの水分散体及び金属イオンを含む水溶性金属化合物(抗菌性金属粒子Bの前駆体)を混合すること、及び
さらに水溶性還元剤を添加して金属イオンを還元することで、抗菌性金属粒子Bを生成させて光触媒粒子Aに担持させること、
を含む。
[Method of producing antibacterial metal-loaded photocatalyst particles AB]
The method for producing the antibacterial metal-supported photocatalyst particle AB of the present embodiment is as follows:
Mixing an aqueous dispersion of photocatalytic particles A having photocatalytic activity whose surface is modified with a metal oxide having no photocatalytic activity and a water-soluble metal compound (precursor of antibacterial metal particles B) containing metal ions, and further The antibacterial metal particles B are generated and supported on the photocatalyst particles A by reducing metal ions by adding a water-soluble reducing agent.
including.

抗菌性金属粒子Bの生成方法としては種々の化学反応を用いることができるが、中でも前駆体として金属イオンを含む水溶性の金属化合物を水に溶解させて金属イオンが存在する条件下で、水溶性還元剤を添加して還元反応によって抗菌性金属粒子Bを生成させる方法は、高収率を達成可能であり、かつ反応時間を短くすることができるため好ましい。   Various chemical reactions can be used as a method of producing the antimicrobial metal particles B, and among them, a water-soluble metal compound containing metal ions as a precursor is dissolved in water to allow water to be dissolved under conditions where metal ions are present. It is preferable to add an active reducing agent to form antimicrobial metal particles B by a reduction reaction, because a high yield can be achieved and the reaction time can be shortened.

本実施形態で用いる抗菌性金属粒子Bの担持方法としては、担持されない粒子の生成を最小限にすべく、分散剤などが含まれない、又は可能な限り含有量が少ない条件下で上記還元反応を行うことが好ましい。含有される分散剤が可能な限り少量であることで、還元反応で生成した抗菌性金属粒子Bが溶媒中で不安定化し、結果として、光触媒粒子Aへの担持量を向上することができる。   As a method for supporting the antimicrobial metal particles B used in the present embodiment, in order to minimize the formation of non-supported particles, the above-mentioned reduction reaction is carried out under the condition that the dispersing agent etc. is not contained or the content is as low as possible. It is preferable to When the amount of the dispersant contained is as small as possible, the antibacterial metal particles B generated by the reduction reaction become destabilized in the solvent, and as a result, the amount supported on the photocatalyst particles A can be improved.

さらに、光触媒活性を有しない金属酸化物で表面を修飾した光触媒粒子Aを用いることにより、分散安定性が向上し、結果として、分散剤を添加することなく合成反応を行うことができる。このため、上記光触媒粒子Aの表面に担持される抗菌性金属粒子Bの割合を、向上することが可能となる。   Furthermore, by using the photocatalyst particle A whose surface is modified with a metal oxide having no photocatalytic activity, the dispersion stability is improved, and as a result, the synthesis reaction can be performed without adding a dispersant. For this reason, it becomes possible to improve the ratio of the antimicrobial metal particle B supported on the surface of the photocatalyst particle A.

抗菌性金属粒子Bの前駆体としては、上記抗菌性金属粒子Bの例として列挙した化合物の塩、例えば、硫酸及び硝酸等の酸との塩である化合物が好ましい。抗菌性金属粒子Bの前駆体の具体例としては、例えば、四塩化金酸、硝酸銀、硫酸銅及び硝酸銅等、並びにこれらの組み合わせが挙げられる。   As a precursor of the antibacterial metal particle B, a salt of a compound listed as an example of the antibacterial metal particle B, for example, a compound which is a salt with an acid such as sulfuric acid and nitric acid is preferable. Specific examples of the precursor of the antimicrobial metal particle B include, for example, tetrachloroauric acid, silver nitrate, copper sulfate, copper nitrate and the like, and combinations thereof.

抗菌性金属粒子Bの前駆体としては、1気圧、20℃における水100mLへの溶解度が、1g以上、5g以上、又は10g以上となるような化合物でよく、300g以下、200g以下、又は100g以下となるような化合物でよい。この中でも、この前駆体としては、溶解作業の時間を短縮でき、かつ前駆体の未溶解物による反応収率低下を防ぐ観点から、1気圧、20℃における水100mLへの溶解度が、10g/100mL以上である化合物が好ましい。   The precursor of the antibacterial metal particle B may be a compound having a solubility of 1 g or more, 5 g or more, or 10 g or more at 1 atm and 20 ° C., and 300 g or less, 200 g or less, or 100 g or less It may be a compound that Among these, as this precursor, the solubility in 100 mL of water at 1 atm and 20 ° C. is 10 g / 100 mL from the viewpoint of shortening the time of dissolution operation and preventing the reaction yield decrease due to undissolved matter of the precursor. Compounds having the above are preferred.

水溶性還元剤としては、例えば、クエン酸、アスコルビン酸、タンニン酸、水素化ホウ素塩、及びヒドラジン等からなる群より選択される1種以上が好適に挙げられる。中でも安全性が高く、安価であることからクエン酸、アスコルビン酸、タンニン酸、及びそれらの塩から選択される1種以上が好ましい。   As a water-soluble reducing agent, 1 or more types selected from the group which consists of a citric acid, ascorbic acid, tannic acid, a borohydride salt, a hydrazine etc. are mentioned suitably, for example. Among them, one or more selected from citric acid, ascorbic acid, tannic acid, and salts thereof are preferable because they are highly safe and inexpensive.

水溶性還元剤を添加し、還元反応を行う際の温度は常温でも製造可能であるが、40℃〜79℃の範囲に加熱することが好ましい。
40℃以上の温度では、反応速度が速いため、生産性が向上するだけでなく、夏場等の高温条件において、温度を維持するための冷却用チラー等が不必要など、温度調整が容易であるため好ましい。また、80℃以下では、反応速度が適度に速いことで光触媒粒子Aの分散安定性が向上するだけでなく、抗菌性金属粒子B同士の分散も促進し、結果として抗菌性金属粒子Bの平均粒子径が小さくなり、担持量が向上するため好ましい。
水溶性還元剤を添加する温度は40℃〜79℃が好ましく、より好ましくは45℃〜75℃、更に好ましくは50℃〜70℃の範囲である。
Although the temperature at the time of adding a water-soluble reducing agent and performing a reduction reaction can be manufactured also at normal temperature, it is preferable to heat in the range of 40 degreeC-79 degreeC.
At a temperature of 40 ° C. or higher, the reaction rate is fast, so that not only productivity is improved, but also in a high temperature condition such as summer, temperature adjustment is easy, such as a cooling chiller for maintaining the temperature being unnecessary. Because it is preferable. Further, at 80 ° C. or less, the reaction speed is appropriately fast, and not only the dispersion stability of the photocatalyst particles A is improved, but also the dispersion of the antibacterial metal particles B is promoted, and as a result, the average of the antibacterial metal particles B is obtained. It is preferable because the particle diameter is reduced and the loading amount is improved.
The temperature at which the water-soluble reducing agent is added is preferably 40 ° C to 79 ° C, more preferably 45 ° C to 75 ° C, still more preferably 50 ° C to 70 ° C.

[光触媒組成物]
本実施形態の抗菌性金属担持光触媒粒子ABを、水及びコロイダルシリカと配合し、これによって、光触媒組成物とすることができる。すなわち、本実施形態の一つは、本実施形態の抗菌性金属担持光触媒粒子ABと、水と、コロイダルシリカとを含む、光触媒組成物である。
本実施形態の光触媒組成物では、塗膜外観の観点から、抗菌性金属担持光触媒粒子ABの固形分濃度が、光触媒組成物の全固形分中の1〜30質量%であることが好ましい。抗菌性金属担持光触媒粒子ABの固形分濃度がこの範囲であることにより、光触媒性能及び塗膜透明性を兼ね備えた光触媒組成物を実現することができる。また、抗菌性金属担持光触媒粒子ABの固形分濃度は、光触媒組成物の全固形分に基づいて、より好ましくは5〜27質量%であり、さらに好ましくは10〜25質量%である。
[Photocatalyst composition]
The antimicrobial metal-supported photocatalyst particle AB of the present embodiment can be blended with water and colloidal silica to make a photocatalyst composition. That is, one of the present embodiments is a photocatalyst composition including the antibacterial metal-supported photocatalyst particle AB of the present embodiment, water, and colloidal silica.
In the photocatalyst composition of the present embodiment, the solid content concentration of the antibacterial metal-supported photocatalyst particles AB is preferably 1 to 30% by mass in the total solid content of the photocatalyst composition, from the viewpoint of the coating film appearance. When the solid content concentration of the antibacterial metal-supporting photocatalyst particle AB is in this range, a photocatalyst composition having both photocatalytic performance and coating film transparency can be realized. The solid content concentration of the antibacterial metal-supporting photocatalyst particle AB is more preferably 5 to 27% by mass, and still more preferably 10 to 25% by mass, based on the total solid content of the photocatalyst composition.

(コロイダルシリカ)
コロイダルシリカとしては、例えば、ゾル−ゲル法により調製したものを使用することもでき、市販品を利用することもできる。これをゾル−ゲル法で調製する場合には、Werner Stober etal;J.Colloid and Interface Sci.,26,62−69(1968)、Rickey D.Badley et al;Lang muir 6,792−801(1990)、色材協会誌,61[9]488−493(1988)等を参照することができる。
(Colloidal silica)
As colloidal silica, for example, one prepared by a sol-gel method can also be used, and a commercially available product can also be used. When this is prepared by the sol-gel method, Werner Stober et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D .; See, for example, Badley et al; Lang muir 6, 792-801 (1990), Colorant Society Journal, 61 [9] 488-493 (1988), and the like.

コロイダルシリカとしては、例えば、水を分散媒体とする、酸性のコロイダルシリカ、及び塩基性のコロイダルシリカ、並びに、水溶性溶媒を分散媒体とするコロイダルシリカ等が挙げられる。   Examples of colloidal silica include acidic colloidal silica and basic colloidal silica in which water is a dispersion medium, and colloidal silica in which a water-soluble solvent is a dispersion medium.

酸性のコロイダルシリカとしては、例えば、市販品として日産化学工業社製スノーテックス(登録商標)−O、スノーテックス−OS、旭電化工業社製アデライト(登録商標)AT−20Q、クラリアントジャパン社製クレボゾール(登録商標)20H12、クレボゾール30CAL25等を挙げることができる。   As acidic colloidal silica, for example, Snowtex (registered trademark) -O manufactured by Nissan Chemical Industries, Ltd., Snowtex-OS, Adeleite (registered trademark) AT-20Q manufactured by Asahi Denka Kogyo Co., Ltd., Crevosol manufactured by Clariant Japan Ltd. as commercial products (Registered trademark) 20H12, clevozole 30 CAL 25 and the like can be mentioned.

塩基性のコロイダルシリカとしては、例えば、アルカリ金属イオン、アンモニウムイオン、アミン等の添加により安定化したシリカ等が挙げられ、具体的には、日産化学工業社製スノーテックス−NS、スノーテックス−20、スノーテックス−30、スノーテックス−C、スノーテックス−C30、スノーテックス−CM40、スノーテックス−N、スノーテックス−N30、スノーテックス−K、スノーテックス−XL、スノーテックス−YL、スノーテックス−ZL、スノーテックスPS−M、スノーテックスPS−L等;旭電化工業社製アデライトAT−20、アデライトAT−30、アデライトAT−20N、アデライトAT−30N、アデライトAT−20A、アデライトAT−30A、アデライトAT−40、アデライトAT−50等;クラリアントジャパン社製クレボゾール30R9、クレボゾール30R50、クレボゾール50R50等;デュポン社製ルドックス(商標)HS−40、ルドックスHS−30、ルドックスLS、ルドックスSM−30等;を挙げることができる。   Examples of basic colloidal silica include silica stabilized by the addition of alkali metal ions, ammonium ions, amines, etc. Specifically, Snowtex-NS, Snowtex-20, manufactured by Nissan Chemical Industries, Ltd. , Snowtex-30, Snowtex-C, Snowtex-C 30, Snowtex-CM 40, Snowtex-N, Snowtex-N 30, Snowtex-K, Snowtex-XL, Snowtex-YL, Snowtex-ZL , Snowtex PS-M, Snowtex PS-L, etc .; Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT-30A, Adelite manufactured by Asahi Denka Kogyo Co., Ltd. AT-40, Adérite AT 50 and the like; manufactured by Clariant Japan Kurebozoru 30R9, Kurebozoru 30R50, Kurebozoru 50R50 like; DuPont Ludox (TM) HS-40, Ludox HS-30, Ludox LS, Ludox SM-30 and the like; and the like.

水溶性溶媒を分散媒体とするコロイダルシリカとしては、例えば、日産化学工業社製MA−ST−M(粒子径が20〜25nmのメタノール分散タイプ)、IPAST(粒子径が10〜15nmのイソプロピルアルコール分散タイプ)、EG−ST(粒子径が10〜15nmのエチレングリコール分散タイプ)、EG−ST−ZL(粒子径が70〜100nmのエチレングリコール分散タイプ)、NPC−ST(粒子径が10〜15nmのエチレングリコールモノプロピルエーテール分散タイプ)等を挙げることができる。   As colloidal silica using a water-soluble solvent as a dispersion medium, for example, MA-ST-M (methanol dispersion type with particle size of 20 to 25 nm) manufactured by Nissan Chemical Industries, Ltd., IPAST (isopropyl alcohol dispersion with particle size of 10 to 15 nm) Types), EG-ST (ethylene glycol dispersed type with particle size of 10 to 15 nm), EG-ST-ZL (ethylene glycol dispersed type with particle size of 70 to 100 nm), NPC-ST (particle size of 10 to 15 nm) Ethylene glycol monopropyl ether dispersion type) etc. can be mentioned.

コロイダルシリカとしては、これらの中の1種、又は2種類以上を組み合わせたものを用いてもよい。   As colloidal silica, you may use what combined 1 type, or 2 or more types in these.

コロイダルシリカは、少量成分として、アルミナ、アルミン酸ナトリウム等を含んでいてもよい。また、コロイダルシリカは、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等)や有機塩基(テトラメチルアンモニウム等)を含んでいてもよい。   Colloidal silica may contain alumina, sodium aluminate or the like as a minor component. The colloidal silica may contain an inorganic base (sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia or the like) or an organic base (tetramethylammonium or the like) as a stabilizer.

コロイダルシリカの平均粒子径は、好ましくは100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは30nm以下である。また、粒子径が平均で10nm以下の粒子は、得られる光触媒塗膜の透明性が非常に高くなる観点から、よりさらに好ましい。   The average particle size of the colloidal silica is preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 30 nm or less. In addition, particles having an average particle diameter of 10 nm or less are more preferable from the viewpoint that the transparency of the obtained photocatalyst coating film becomes very high.

コロイダルシリカの平均粒子径(数平均粒子径)は、下記実施例に記載の方法に準拠して測定することができる。   The average particle diameter (number average particle diameter) of colloidal silica can be measured based on the method described in the following examples.

本実施形態の光触媒組成物では、塗膜の親水性及び耐候性の観点から、光触媒活性を有しないコロイダルシリカの固形分濃度は、光触媒組成物の全固形分に基づいて、好ましくは50〜99質量%であり、より好ましくは55〜95質量%であり、さらに好ましくは60〜90質量%である。   In the photocatalyst composition of the present embodiment, the solid content concentration of colloidal silica having no photocatalytic activity is preferably 50 to 99 based on the total solid content of the photocatalyst composition, from the viewpoint of the hydrophilicity and weatherability of the coating film. It is mass%, More preferably, it is 55-95 mass%, More preferably, it is 60-90 mass%.

(重合体エマルジョン粒子D)
本実施形態の光触媒組成物は、重合体エマルジョン粒子Dをさらに含むこともできる。本実施形態の光触媒組成物に含まれる重合体エマルジョン粒子Dとしては、当業者に公知の全ての合成樹脂が使用可能である。溶媒中で乳化重合や懸濁重合で合成した粒子の他、溶媒に溶解した樹脂や粉体樹脂を界面活性剤や懸濁剤を用いて、エマルジョンとした粒子を用いることもできる。
(Polymer emulsion particle D)
The photocatalyst composition of the present embodiment can further include polymer emulsion particles D. As the polymer emulsion particles D contained in the photocatalyst composition of the present embodiment, all synthetic resins known to those skilled in the art can be used. In addition to particles synthesized by emulsion polymerization or suspension polymerization in a solvent, particles obtained by forming a resin or powder resin dissolved in a solvent into an emulsion using a surfactant or a suspending agent can also be used.

合成樹脂の例としては、例えば、溶剤系合成樹脂塗料(アクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、フッ素樹脂系、シリコーン−アクリル樹脂系、アルキド樹脂系、アミノアルキド樹脂系、ビニル樹脂系、不飽和ポリエステル樹脂系、塩化ゴム系等)、水系合成樹脂塗料(エマルジョン系、水性樹脂系等)、無機質塗料を挙げることができる。
これらの合成樹脂の中で、光触媒に対し難分解性であるシリコーン系樹脂やフッ素系樹脂、さらにはシリコーン系樹脂とフッ素系樹脂の併用系の合成樹脂が好ましく用いられる。
Examples of the synthetic resin include, for example, solvent-based synthetic resin paint (acrylic resin, epoxy resin, urethane resin, fluorocarbon resin, silicone-acrylic resin, alkyd resin, amino alkyd resin, vinyl resin, Examples thereof include unsaturated polyester resin systems, chlorinated rubber systems, etc., water-based synthetic resin coatings (emulsion systems, aqueous resin systems, etc.), and inorganic coatings.
Among these synthetic resins, silicone resins and fluorine resins which are hardly degradable with respect to the photocatalyst, and further, synthetic resins of a combination of silicone resin and fluorine resin are preferably used.

このようなシリコーン系樹脂としては、例えばアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカ、さらにはシリコーン含有量1〜80質量%のアクリル−シリコーン樹脂、エポキシ−シリコーン樹脂、ウレタン−シリコーン樹脂やアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカを1〜80質量%含有する樹脂等が挙げられる。これらのシリコーン系樹脂は、溶剤に溶けたタイプ、分散タイプ、粉体タイプのいずれであってもよく、また架橋剤、触媒等の添加剤が含まれていてもよい。   Such silicone resins include, for example, alkoxysilanes and / or organoalkoxysilanes, their hydrolysis products (polysiloxanes) and / or colloidal silicas, and furthermore acrylic silicone resins having a silicone content of 1 to 80% by mass. Epoxy-silicone resins, urethane-silicone resins, alkoxysilanes and / or organoalkoxysilanes, and their hydrolysis products (polysiloxanes) and / or resins containing 1 to 80% by mass of colloidal silica, and the like. These silicone resins may be of any of the type dissolved in a solvent, dispersion type, and powder type, and may contain additives such as a crosslinking agent and a catalyst.

本実施形態の光触媒組成物では、耐候性の観点から、重合体エマルジョン粒子Dの割合が、光触媒組成物の全固形分に基づいて、好ましくは0〜30質量%であり、より好ましくは0〜25質量%であり、さらに好ましくは0〜20質量%でよい。   In the photocatalyst composition of the present embodiment, the ratio of the polymer emulsion particles D is preferably 0 to 30% by mass, and more preferably 0 to 30% by mass, based on the total solid content of the photocatalyst composition, from the viewpoint of weatherability. It may be 25% by mass, more preferably 0 to 20% by mass.

本実施形態の光触媒組成物は、発明の効果を損なわない範囲で界面活性剤及び退色性色素等を含むこともできる。   The photocatalyst composition of the present embodiment can also contain a surfactant, a bleaching dye, and the like as long as the effects of the invention are not impaired.

(界面活性剤)
本実施形態の光触媒組成物中に含むことのできる界面活性剤は、特に限定されないが、例えば、炭化水素系界面活性剤及びフルオロカーボン界面活性剤等が挙げられる。これにより、本実施形態の光触媒組成物及び/又はこれを含む水系塗料の濡れ性が向上し、これらを用いて有機機材等へ塗装する際に、はじき等の外観上のトラブルを一層抑制することができる。特にフルオロカーボン界面活性剤は、少量で界面活性能に優れるため好ましく、さらには、塗膜の均一性も一層向上させることができる。これらの理由としては定かではないが、当該光触媒組成物が、フルオロカーボン界面活性剤を含有することにより、光触媒組成物の表面張力を低下させることができると推測される(但し、本実施形態の作用はこれらに限定されない。)。
(Surfactant)
The surfactant that can be included in the photocatalyst composition of the present embodiment is not particularly limited, and examples thereof include hydrocarbon surfactants and fluorocarbon surfactants. Thereby, the wettability of the photocatalyst composition of the present embodiment and / or the water-based paint containing the same is improved, and when coating on organic equipment and the like using these, it is possible to further suppress appearance problems such as repelling. Can. In particular, a fluorocarbon surfactant is preferable because it is excellent in surfactant ability in a small amount, and furthermore, the uniformity of the coating film can be further improved. Although it is not clear as these reasons, it is presumed that the photocatalytic composition can reduce the surface tension of the photocatalytic composition by containing a fluorocarbon surfactant (however, the function of the present embodiment). Is not limited to these).

フルオロカーボン界面活性剤の成分としては、特に限定されないが、非イオン性界面活性剤、又は両性界面活性剤が好ましい。両性界面活性剤としては、例えば、陰イオン性両性界面活性剤、陽イオン性両性界面活性剤等が挙げられる。好ましい具体例としては、例えば、炭素数3〜20のパーフルオロアルキル基を有する非イオン性界面活性剤及び両性界面活性剤が挙げられる。   The component of the fluorocarbon surfactant is not particularly limited, but preferred is a nonionic surfactant or an amphoteric surfactant. Examples of amphoteric surfactants include anionic amphoteric surfactants and cationic amphoteric surfactants. Preferred specific examples include, for example, nonionic surfactants and amphoteric surfactants having a C 3-20 perfluoroalkyl group.

炭素数3〜20のパーフルオロアルキル基を有する非イオン性界面活性剤、又は両性界面活性剤の具体例としては、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルアミンオキシド、パーフルオロアルキルエチレンオキシド付加物、陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物等が挙げられる。これらの中でも、塗料の表面張力の低下の観点から、パーフルオロアルキルエチレンオキシド付加物、陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物が好ましい。   Specific examples of nonionic surfactants having a C 3 to C 20 perfluoroalkyl group, or amphoteric surfactants include perfluoroalkyl sulfonates, perfluoroalkyl carboxylates, perfluoroalkylamine oxides, Perfluoroalkyl ethylene oxide adducts, perfluoroalkyl compounds having an anionic group and a cationic group, and the like can be mentioned. Among these, perfluoroalkyl ethylene oxide adducts and perfluoroalkyl compounds having an anionic group and a cationic group are preferable from the viewpoint of lowering the surface tension of the paint.

パーフルオロアルキルカルボン酸塩としては、例えば、市販品を用いることもできる。パーフルオロアルキルカルボン酸塩の市販品としては、AGCセイミケミカル社製の「サーフロンS−211」等が挙げられる。
パーフルオロアルキルアミンオキシドとしては、例えば、市販品を用いることもできる。パーフルオロアルキルアミンオキシドの市販品としては、AGCセイミケミカル社製の「サーフロンS−241」等が挙げられる。
パーフルオロアルキルエチレンオキシド付加物としては、例えば、市販品を用いることもできる。パーフルオロアルキルエチレンオキシド付加物のような市販品としては、例えば、DIC社製の「メガファックF−444」、AGCセイミケミカル社製の「サーフロンS−242」等が挙げられる。
陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物としては、例えば、市販品を用いることもできる。陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物のような市販品としては、AGCセイミケミカル社製の「サーフロンS−231」、「サーフロンS−232」、「サーフロンS−233」等が挙げられる。
これらパーフルオロアルキル基を有する両性界面活性剤は、1種単独で用いてもよいし、2種以上を併用して用いてもよい。
As the perfluoroalkyl carboxylate, for example, a commercially available product can also be used. Examples of commercially available products of perfluoroalkyl carboxylates include "Surflon S-211" manufactured by AGC Seimi Chemical Co., Ltd.
As perfluoroalkylamine oxide, for example, commercially available products can also be used. As a commercial item of perfluoroalkyl amine oxide, "Surflon S-241" by AGC Seimi Chemical Co., Ltd., etc. may be mentioned.
For example, commercially available products can be used as the perfluoroalkyl ethylene oxide adduct. Examples of commercially available products such as perfluoroalkyl ethylene oxide adducts include "Megafuck F-444" manufactured by DIC, "Surflon S-242" manufactured by AGC Seimi Chemical, and the like.
As a perfluoroalkyl compound which has an anionic group and a cationic group, a commercial item can also be used, for example. As commercially available products such as perfluoroalkyl compounds having an anionic group and a cationic group, "Surflon S-231", "Surflon S-232", "Surflon S-233" manufactured by AGC Seimi Chemical Co., Ltd. Etc.
These amphoteric surfactants having a perfluoroalkyl group may be used alone or in combination of two or more.

光触媒組成物中のフルオロカーボン界面活性剤の含有量は、特に限定されないが、好ましくは、水を含めた、光触媒組成物の全質量に基づいて0.0001〜1.0質量%であり、より好ましくは0.01〜0.50質量%でよい。フルオロカーボン界面活性剤の含有量を上記下限値以上とすることで、得られる塗膜の均一性が一層向上する。フルオロカーボン界面活性剤の含有量を上記上限値以下とすることで、得られる塗膜の耐候性が一層向上する。   The content of the fluorocarbon surfactant in the photocatalyst composition is not particularly limited, but is preferably 0.0001 to 1.0% by mass based on the total mass of the photocatalyst composition including water, and more preferably It may be 0.01 to 0.50 mass%. By making content of a fluorocarbon surfactant more than the said lower limit, the uniformity of the coating film obtained will improve further. By making content of a fluorocarbon surfactant below the said upper limit, the weather resistance of the coating film obtained further improves.

本実施形態の光触媒組成物は、退色性色素を含むことができる。これにより、塗装忘れ、重複塗装、塗装むら等のトラブルを防ぐことができる。
退色性色素成分としては、太陽光の照射により失色し、下地の意匠性を損ねないものが好ましい。失色までの時間は季節や照射方角等により異なるが、典型的には目視で失色が確認されるまでの期間が、好ましくは20日以下であり、より好ましくは10日以下であり、さらに好ましくは3日以下でよい。
The photocatalyst composition of the present embodiment can contain a bleaching dye. In this way, it is possible to prevent troubles such as paint failure, repeated paint, uneven paint and the like.
As the bleaching dye component, those which do not lose color by irradiation of sunlight and do not impair the design of the base are preferable. Although the time until color loss varies depending on the season, irradiation direction, etc., typically, the period until color loss is visually confirmed is preferably 20 days or less, more preferably 10 days or less, and still more preferably 3 days or less may be sufficient.

退色性色素の成分としては、太陽光の照射で失色する性質を有するものであれば特に限定されないが、好適例としては、メチレンブルー、クリスタルバイオレット、マラカイトグリーン、ブリリアントブルーFCF、エリスロシン、ニューコクシン、フロキシン、ローズベンガル、アシッドレッド、及びファーストグリーンFCF等からなる群より選ばれる1種以上が挙げられる。退色性色素の成分としては、これらの中でも、発色性が良く、失色速度も早い観点から、メチレンブルーがより好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。   The component of the bleaching dye is not particularly limited as long as it has the property of decoloring by irradiation with sunlight, but preferred examples include methylene blue, crystal violet, malachite green, brilliant blue FCF, erythrosine, neukoccin, One or more selected from the group consisting of phloxine, rose bengal, acid red, fast green FCF and the like. Among these, methylene blue is more preferable as the component of the color-fading dye, from the viewpoint of good color developability and fast color loss speed. These may be used singly or in combination of two or more.

光触媒組成物中の退色性色素の成分の含有量は、特に限定されないが、水を含むた、光触媒組成物の全質量に基づいて好ましくは0.0002〜0.05質量%であり、より好ましくは0.001〜0.02質量%である。水系コーティング剤組成物中の退色性色素の成分の含有量を上記範囲とすることで、塗膜の発色性及び/又は退色性が一層向上する。ここでいう発色性とは、塗装面と未塗装面が色の違いから目視で区別される程度まで発色する性質をいい、退色性とは、基材の意匠性を損ねない色の程度まで退色する性質をいう。   The content of the component of the discolorable dye in the photocatalyst composition is not particularly limited, but is preferably 0.0002 to 0.05% by mass based on the total mass of the photocatalyst composition containing water, more preferably Is 0.001 to 0.02 mass%. By setting the content of the component of the color-fading dye in the water-based coating agent composition to the above-mentioned range, the coloring property and / or the color-fading property of the coating film is further improved. The color development referred to herein means the property that the coated surface and the unpainted surface are colored to the extent that they are visually distinguished from differences in color, and the color fading is color fading to the extent of the color that does not impair the design of the substrate. Say the nature of

光触媒組成物から得られる塗膜中の退色性色素の成分の含有量は、特に限定されないが、好ましくは0.01〜1.0質量%であり、より好ましくは0.05〜0.80質量%であり、更に好ましくは0.1〜0.70質量%である。退色性色素の成分の含有量を上記下限値以上とすることで、塗膜の発色性が一層向上し、上記上限値以下とすることで、塗膜の退色性が一層向上する。   The content of the component of the color-fading dye in the coating film obtained from the photocatalyst composition is not particularly limited, but is preferably 0.01 to 1.0% by mass, more preferably 0.05 to 0.80 mass. %, More preferably 0.1 to 0.70% by mass. By setting the content of the component of the color-fading dye to the above lower limit value or more, the coloring property of the coating film is further improved, and by setting the content to the above upper limit value, the color fading property of the coating film is further improved.

[光触媒塗膜]
本実施形態の光触媒組成物は、光触媒塗膜を形成することができる。すなわち、本実施形態の一つは、本実施形態の光触媒組成物から形成された、光触媒塗膜である。
本実施形態の光触媒塗膜の膜厚は特に限定されないが、0.05〜50μmであることが好ましく、0.1〜10μmであることがより好ましく、0.2〜2.0μmであることが更に好ましい。この厚さが50μm以下であることにより、良好な透明性を確保することができ、0.05μm以上であることにより、防汚性、光触媒活性等の機能をより有効に発現することができる。
[Photocatalyst coating]
The photocatalyst composition of the present embodiment can form a photocatalyst coating film. That is, one of the present embodiments is a photocatalyst coating film formed from the photocatalyst composition of the present embodiment.
Although the film thickness of the photocatalyst coating film of this embodiment is not particularly limited, it is preferably 0.05 to 50 μm, more preferably 0.1 to 10 μm, and 0.2 to 2.0 μm. More preferable. When the thickness is 50 μm or less, good transparency can be secured, and when the thickness is 0.05 μm or more, functions such as antifouling property and photocatalytic activity can be more effectively exhibited.

本実施形態の光触媒塗膜には、そこに含まれる各粒子の分散安定性の観点から、分散安定剤が含まれていてもよい。分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群から選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、アクリル樹脂に代表される合成高分子物質、及びアクリル樹脂に代表される天然の各種の高分子物質等が挙げられる。分散安定剤は、1種を単独で、又は2種以上を混合して用いてよい。   A dispersion stabilizer may be contained in the photocatalyst coating film of the present embodiment from the viewpoint of the dispersion stability of each particle contained therein. Examples of dispersion stabilizers include various water-soluble oligomers selected from the group consisting of polycarboxylic acids and sulfonates, polyvinyl alcohol, hydroxyethyl cellulose, starch, maleated polybutadiene, maleated alkyd resin, polyacrylic acid (salts And synthetic high molecular substances represented by acrylic resin, and various natural high molecular substances represented by acrylic resin. The dispersion stabilizers may be used alone or in combination of two or more.

また、本実施形態の光触媒塗膜には、その用途及び使用方法などに応じて、通常の塗料や成型用樹脂に添加配合される成分、例えば、溶剤、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤、帯電調製剤等、又はこれらの組み合わせが含まれていてもよい。   In addition, the photocatalyst coating film of the present embodiment is a component to be added and blended to a general paint or molding resin according to the use and usage method thereof, for example, a solvent, a thickener, a leveling agent, and a thixotropic agent Antifoaming agent, freeze stabilizer, matting agent, crosslinking reaction catalyst, pigment, curing catalyst, crosslinking agent, filler, anti-skinning agent, dispersing agent, wetting agent, light stabilizer, antioxidant, UV absorber , Rheology control agent, antifoaming agent, film forming aid, rust inhibitor, dye, plasticizer, lubricant, reducing agent, preservative, fungicide, deodorant, anti-yellowing agent, antistatic agent, A charge control agent or the like, or a combination thereof may be included.

本実施形態の光触媒塗膜はそれ自身の膜のみでも効果を奏するが、更に他の物体との密着性、保護性、及び意匠性等の機能性を高めるため、上述の光触媒組成物とは異なる組成物から構成される塗膜とを積層して得られる複層塗膜とすることが好ましい。   The photocatalytic coating film of the present embodiment is effective even with its own film alone, but is different from the photocatalytic composition described above in order to further improve the adhesiveness such as adhesion to other objects, protection, and functionality such as design. It is preferable to set it as the multilayer coating film obtained by laminating | stacking the coating film comprised from a composition.

上述の光触媒組成物とは異なる組成物としては、例えば、アクリル樹脂、アクリルシリコーン樹脂、エポキシ樹脂、ウレタン樹脂などを含む組成物の他、シリカや過酸化チタンなどを含む無機組成物を挙げることができる。   As a composition different from the above-mentioned photocatalyst composition, for example, in addition to a composition containing an acrylic resin, an acrylic silicone resin, an epoxy resin, a urethane resin and the like, an inorganic composition containing silica, titanium peroxide and the like may be mentioned. it can.

本実施形態の光触媒塗膜は、光触媒組成物を基材又は基材を被覆する塗膜の表面に塗布して乾燥することにより得ることができる。光触媒組成物を塗布する基材材料としては、例えば、合成樹脂、天然樹脂、繊維に代表される有機基材、金属、セラミックス、ガラス、石、セメント、コンクリートに代表される無機基材、及びそれらの組み合わせが挙げられる。   The photocatalytic coating film of the present embodiment can be obtained by applying the photocatalytic composition to the substrate or the surface of the coating film covering the substrate and drying. Examples of base materials to which the photocatalyst composition is applied include synthetic resins, natural resins, organic bases represented by fibers, metals, ceramics, glass, stones, cement, inorganic bases represented by concrete, and those A combination of

上記の基材を被覆する合成樹脂としては、例えば、熱可塑性樹脂及び硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)が挙げられる。その具体例としては、例えば、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂等、及びこれらの複合化樹脂が挙げられる。また、上記天然樹脂としては、例えば、セルロース系樹脂、天然ゴムに代表されるイソプレン系樹脂、及びカゼインに代表されるタンパク質系樹脂等が挙げられる。   As a synthetic resin which covers said base material, a thermoplastic resin and curable resin (a thermosetting resin, a photocurable resin, moisture curable resin etc.) are mentioned, for example. Specific examples thereof include, for example, silicone resin, acrylic resin, methacrylic resin, fluorine resin, alkyd resin, amino alkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, Polycarbonate resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfone resin polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin , Silicone-acrylic resins, etc., and composite resins thereof. Moreover, as said natural resin, cellulose resin, isoprene resin represented by natural rubber, protein resin represented by casein, etc. are mentioned, for example.

基材が樹脂板や繊維である場合には、その表面には、コロナ放電処理、フレーム処理、又はプラズマ処理等の処理が施されていてもよいが、これらの表面処理は必須ではない。   When the substrate is a resin plate or fiber, the surface thereof may be treated with a corona discharge treatment, a flame treatment, a plasma treatment or the like, but the surface treatment of these is not essential.

本実施形態の光触媒塗膜は、光触媒組成物をその用途等に応じて、任意の方法で塗布され得られる。塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、及びフレキソ印刷法が挙げられる。   The photocatalyst coating film of the present embodiment can be obtained by applying the photocatalyst composition by any method depending on the use and the like. Examples of the coating method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, screen printing, casting, gravure printing, and flexo printing.

本実施形態の光触媒塗膜は、光触媒組成物を塗布した後、乾燥して揮発分を除去することにより得られる。この際、例えば、5〜80℃の温度で乾燥した後に、所望により、好ましくは20℃〜500℃又はより好ましくは40℃〜250℃の熱処理を行ってもよく、紫外線照射等を行ってもよい。   The photocatalyst coating film of the present embodiment is obtained by applying a photocatalyst composition and then drying to remove volatile components. At this time, for example, after drying at a temperature of 5 to 80 ° C., a heat treatment of preferably 20 ° C. to 500 ° C. or more preferably 40 ° C. to 250 ° C. may be performed if desired. Good.

[光触媒塗装製品]
本実施形態の光触媒塗装製品は、本実施形態の光触媒塗膜を備える製品であり、基材と、その基材上に形成された上記光触媒塗膜とを備える。この光触媒塗装製品は、本実施形態の光触媒塗膜を備える他は公知の態様と同様であればよい。本実施形態の光触媒塗装製品の具体例としては、例えば、建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、住宅等建築設備、車両用照明灯のカバー、窓ガラス、機械装置又は物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用、鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等の外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装が挙げられる。この光触媒塗装製品は、基材の表面に光触媒組成物を塗布し乾燥し、基材上に光触媒塗膜を形成することによって得てもよいが、その製造方法はこれに限定されない。例えば、基材と光触媒塗膜とを同時に成形してもよく、より具体的には一体成形してもよい。
[Photocatalyst coating products]
The photocatalyst coated product of the present embodiment is a product provided with the photocatalyst coated film of the present embodiment, and is provided with a substrate and the above-described photocatalyst coated film formed on the substrate. This photocatalyst coated product may be the same as known aspects except that the photocatalyst coating film of the present embodiment is provided. Specific examples of the photocatalyst coated product of the present embodiment include, for example, building materials, building exteriors, building interiors, window frames, window glasses, structural members, building equipment such as houses, covers for vehicle lighting, window glasses, mechanical devices or Exteriors of articles, dustproof covers and coatings, display devices, their covers, traffic signs, various display devices, display objects such as advertising towers, sound barriers for roads, railways, etc., bridges, guardrail exteriors and coatings, tunnel interiors and coatings The exterior parts of electronic devices and electrical devices used outside such as insulators, solar cell covers, solar water heat collection covers, etc., particularly transparent members, exteriors such as plastic houses, greenhouses, etc. may be mentioned. The photocatalytic coated product may be obtained by applying a photocatalytic composition to the surface of a substrate and drying it to form a photocatalytic film on the substrate, but the production method is not limited thereto. For example, the substrate and the photocatalytic coating may be formed simultaneously, or more specifically, integrally formed.

また、本実施形態の光触媒塗膜をある基材上に成形した後、その基材から剥離させた当該光触媒塗膜、又はその基材と密着させた当該光触媒塗膜を、別の基材に接着、融着等により密着させてもよい。   In addition, after the photocatalyst coating film of the present embodiment is formed on a certain substrate, the photocatalyst coating film peeled off from the substrate or the photocatalyst coating film adhered to the substrate is used as another substrate. It may be adhered by adhesion, fusion or the like.

以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限定されるものではない。本発明では、その要旨を逸脱しない範囲で様々な変形が可能である   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said this embodiment. In the present invention, various modifications are possible without departing from the scope of the invention.

以下の、製造例、実施例、及び比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。各種の物性は以下に示す方法で測定した。   The present invention is specifically described by the following production examples, examples, and comparative examples, but these do not limit the scope of the present invention. Various physical properties were measured by the methods shown below.

1.光触媒活性を有しない表面修飾物の定量
蛍光X線分析装置を用いて、理論と基礎定数Fundamental Parameter(FP)により定量分析を行なうFP法にて定量を行った。
1. Determination of Surface Modifications Having No Photocatalytic Activity Determination was carried out by the FP method in which quantitative analysis is performed using theoretical and fundamental constant Fundamental Parameter (FP) using a fluorescent X-ray analyzer.

2.粒子径の測定
(抗菌性金属担持光触媒粒子AB、コロイダルシリカ及び重合体エマルジョン粒子Dの平均粒子径)
抗菌性金属担持光触媒粒子AB、コロイダルシリカ及び重合体エマルジョン粒子Dの平均粒子径は、試料中の固形分含有量が0.1〜20質量%となるように、試料に適宜溶媒を加えて希釈し、湿式粒度分析計(マイクロトラック・ベル社製の湿式粒度分布計、商品名「NanotracWave−EX150」)を用いて測定した。
(抗菌性金属粒子Bの平均粒子径)
光触媒粒子Aに担持された抗菌性金属粒子Bの平均粒子径は、以下のように測定した。抗菌性金属担持光触媒粒子ABを、水で、固形分濃度が0.5質量%となるように希釈し、この希釈液をコロジオン膜上へ滴下した。その後、このコロジオン膜を、真空条件下で1時間乾燥させ、走査透過電子顕微鏡によりその表面を観察し、観察された抗菌性金属粒子Bの粒子を任意で50個選択し、それらの円相当径(Heywood径)を測定し、かつそれらの数平均粒子径を算出した。
2. Measurement of particle size (average particle size of antibacterial metal-supported photocatalyst particles AB, colloidal silica and polymer emulsion particles D)
The average particle diameter of the antibacterial metal-supported photocatalyst particles AB, colloidal silica and polymer emulsion particles D is appropriately diluted by adding a solvent to the sample such that the solid content in the sample is 0.1 to 20 mass% , And was measured using a wet particle size analyzer (wet particle size distribution analyzer manufactured by Microtrac Bell, trade name "Nanotrac Wave-EX 150").
(Average particle size of antibacterial metal particles B)
The average particle size of the antibacterial metal particles B supported on the photocatalyst particles A was measured as follows. The antibacterial metal-supporting photocatalyst particle AB was diluted with water so that the solid content concentration was 0.5% by mass, and the diluted solution was dropped onto the collodion film. Thereafter, this collodion film is dried under vacuum conditions for 1 hour, the surface is observed by a scanning transmission electron microscope, and 50 particles of the observed antimicrobial metal particles B are optionally selected, and their circle equivalent diameters are selected. The (Heywood diameter) was measured, and their number average particle diameter was calculated.

3.抗菌性金属粒子Bの質量の測定
抗菌性金属粒子Bの質量は、以下の方法で求めた。
合成した抗菌性金属担持光触媒粒子ABの水分散体(固形分濃度:2質量%)を希釈せずに10g取り、1000回転/分の速度で、10分間にわたって遠心分離処理した。遠心分離処理後に、その上澄部をパスツールで採取し、誘導結合プラズマ質量分析計(ICP−MS)にて、この上澄部の各金属の質量を測定した。
3. Measurement of Mass of Antibacterial Metal Particle B The mass of the antibacterial metal particle B was determined by the following method.
10 g of the aqueous dispersion (solid content concentration: 2% by mass) of the antibacterial metal-supporting photocatalyst particle AB synthesized was taken without dilution and centrifuged at a speed of 1000 rotations / minute for 10 minutes. After centrifugation, the supernatant was collected with a Pasteur, and the mass of each metal in the supernatant was measured with an inductively coupled plasma mass spectrometer (ICP-MS).

4.抗菌性金属粒子Cの含有量測定
抗菌性金属粒子Cの含有量は、任意で配合した成分の濃度と、以下の(i)及び(ii)の方法で求めた値の合計値とした。
(i)未反応金属イオンの定量
合成した抗菌性金属担持光触媒粒子ABの水分散体(固形分濃度:2質量%)を希釈せずに10g取り、20000回転/分の速度で1時間にわたって、遠心分離処理を実施した。その後、上澄部をパスツールで採取し、誘導結合プラズマ質量分析計(ICP−MS)にて、この上澄部の残存する金属イオン濃度を測定し、抗菌性金属担持光触媒粒子AB中に含まれる金属成分濃度を求めた。
(ii)非担持金属成分の定量
合成した抗菌性金属担持光触媒粒子ABの水分散体(固形分濃度:2質量%)を希釈せずに10g取り、1000回転/分の速度で10分間にわたって、遠心分離処理を実施した。その後、上澄部をパスツールで除去し沈降物を採取した。この沈降物を誘導結合プラズマ質量分析計(ICP−MS)にて金属成分量を測定し、抗菌性金属担持光触媒粒子AB中に含まれる金属成分濃度を求めた。
4. Measurement of Content of Antibacterial Metal Particles C The content of the antibacterial metal particles C was a total value of the concentration of the components arbitrarily blended and the values obtained by the following methods (i) and (ii).
(I) Determination of unreacted metal ion 10 g of the aqueous dispersion (solid content concentration: 2% by mass) of the antibacterial metal-supporting photocatalyst particle AB synthesized is taken without dilution, at a speed of 20000 rpm for 1 hour. Centrifugation was performed. Thereafter, the supernatant is collected with a Pasteur, and the concentration of remaining metal ions in the supernatant is measured with an inductively coupled plasma mass spectrometer (ICP-MS), and contained in the antibacterial metal-supported photocatalyst particles AB. The concentration of metal components was determined.
(Ii) Determination of non-supported metal component 10 g of the aqueous dispersion (solid content concentration: 2% by mass) of the antibacterial metal-supported photocatalyst particle AB synthesized is taken without dilution, at a speed of 1000 rpm for 10 minutes. Centrifugation was performed. Thereafter, the supernatant was removed with a Pasteur and the sediment was collected. The amount of the metal component of the precipitate was measured with an inductively coupled plasma mass spectrometer (ICP-MS) to determine the concentration of the metal component contained in the antibacterial metal-supported photocatalyst particle AB.

5.塗膜の膜厚
塗膜の膜厚を、ハロゲン光源装置(MORITEX社製、商品名「MHF−D100LR」)を装着した膜厚測定装置(SPECTRA・COOP社製、商品名「HandyLambda II THICKNESS」)を用いて測定した。
5. Film thickness of the coating film thickness of the coating film, a film thickness measuring device equipped with a halogen light source (trade name "MHF-D100LR" manufactured by MORITEX Co., Ltd.) (trade name "HandyLambda II THICKNESS" manufactured by SPECTRA · COOP) It measured using.

6.光触媒活性(色素分解活性)
光触媒活性を、JIS R1703−2に準拠して求めた。試験片浄化を、照度1mW/cm2の紫外光を24時間にわたってこれに照射することによって行い、メチレンブルー吸着を、メチレンブルー濃度0.02mMの吸着液に試験片を24時間にわたって浸漬することによって行い、メチレンブルーの分解測定を、照度1mW/cm2の紫外光を試験片上の試験液(濃度0.01mM、注入量35mL)に照射し、照射後に採取した試験液の吸光スペクトルを分光光度計で測定することによって行い、これらの測定値を用いて分解活性指数(nM/min)を算出した。吸光度測定波長は、664nmであった。
[評価基準]
○ :分解活性指数が5nM/min以上であった。
△ :分解活性指数が3nM/min以上、5nM/min未満であった。
× :分解活性指数が3nM/min未満であった。
6. Photocatalytic activity (pigment decomposition activity)
The photocatalytic activity was determined in accordance with JIS R1703-2. Specimen cleaning is performed by irradiating it with ultraviolet light with an illuminance of 1 mW / cm 2 for 24 hours, and methylene blue adsorption is performed by immersing the specimen in an adsorption solution with a methylene blue concentration of 0.02 mM for 24 hours, The decomposition measurement of methylene blue is performed by irradiating the test solution (concentration 0.01 mM, injection amount 35 mL) with ultraviolet light with an illuminance of 1 mW / cm 2 and measuring the absorption spectrum of the test solution collected after irradiation with a spectrophotometer The degradation activity index (nM / min) was calculated using these measured values. The absorbance measurement wavelength was 664 nm.
[Evaluation criteria]
○: The degradation activity index was 5 nM / min or more.
Δ: The degradation activity index was at least 3 nM / min and less than 5 nM / min.
X: The degradation activity index was less than 3 nM / min.

7.防藻性・防カビ性(短期)
防藻性に関しては、藻類が存在するシャーレー中に試験体を入れ、このシャーレーを一定の温度及び湿度に保った恒温槽中に入れることにより、試験を実施した。防藻性の判定は、試験開始後4週間目で行った。防カビ性に関しては、JIS Z2911:2010に準拠してカビ抵抗性試験を実施した。防カビ性の判定は、試験開始後2週間目で行った。
[評価基準]
○ :藻及びカビの生育が見られなかった。
△ :わずかな藻及びカビの生育が見られるが全体的には問題ないと判断された。
× :藻及びカビの生育が明らかに見られた。
7. Anti-algal, anti-fungal (short-term)
As to the algicidal properties, the test was carried out by placing the test body in a Petri dish in which algae is present, and placing the Petri dish in a thermostatic bath kept at a constant temperature and humidity. The determination of algal properties was made four weeks after the start of the test. With regard to mold resistance, a mold resistance test was carried out in accordance with JIS Z 2911: 2010. The mold resistance was determined two weeks after the start of the test.
[Evaluation criteria]
○: Growth of algae and mold was not observed.
Δ: Slight growth of algae and mold was observed, but it was judged that there was no problem as a whole.
X: Growth of algae and mold was clearly observed.

8.防藻性・防カビ性(長期)
白色のアクリル板(70mm*150mm*2mm)に、ディップコーター(アイデン社製 DC4200、昇降速度:下降時 10mm/秒、上昇時 10mm/秒)にて光触媒塗料組成物を塗布し、これを塗布後2日間乾燥させた。その後、千葉県銚子市の近隣に森林があり、芝生の生えている土地に試験体を北面90°にて屋外曝露試験を実施した。判定は曝露後2年で判定した。
[評価基準]
○ :目視観察で藻、カビの生育は見られなかった。
△ :目視観察で藻、カビの生育はみられないが、拡大倍率7倍のルーペ観察では生育が見られた。
× :目視観察で藻、カビの生育が見られた。
8. Anti-algal, anti-fungal (long-term)
A photocatalyst paint composition is applied to a white acrylic plate (70 mm * 150 mm * 2 mm) with a dip coater (DC4200 manufactured by IDEN, lifting speed: 10 mm / sec at descent, 10 mm / sec at rising), and after coating Dried for 2 days. After that, an outdoor exposure test was conducted on a site with a forest near the Kashiwa city, Chiba Prefecture, and on a land where the lawn is growing, with the north face at 90 °. The judgment was made at 2 years after exposure.
[Evaluation criteria]
○: Growth of algae and mold was not observed by visual observation.
Δ: Growth of algae and mold was not observed by visual observation, but growth was observed by loupe observation at a magnification of 7 times.
X: Growth of algae and mold was observed by visual observation.

9.塗膜の透明性(塗膜の白濁度)
ガラス板(テストピース社製 並板ガラス;60mm*60mm*2mm)の下に黒紙を敷いた状態での色差を測定した。その後、ディップコーター(アイデン社製 DC4200、昇降速度:下降時 10mm/秒、上昇時 10mm/秒)にて光触媒塗料組成物を塗布し、塗布後2日間乾燥。その後、照度5000Lxに調整した蛍光灯下で10日間放置し着色剤を脱色させた試験体の色彩色差を測定した。塗布前後での色差(明度差ΔL)を評価した。なお、色差は、カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。色差ΔLが低いほど、透明性が高く、外観性に優れることを意味する。
[評価基準]
○ :色差ΔLが1.6未満であった。
△ :色差ΔLが1.6〜3.0未満であった。
× :色差ΔLが3.0以上であった。
9. Transparency of coating film (white turbidity of coating film)
The color difference was measured with the black paper laid under a glass plate (a flat plate glass manufactured by Test Piece Co .; 60 mm * 60 mm * 2 mm). After that, the photocatalytic coating composition is applied by a dip coater (DC4200 manufactured by Eiden, lifting speed: 10 mm / sec at descent, 10 mm / sec at rising) and dried for 2 days after application. Then, it was left for 10 days under a fluorescent lamp adjusted to an illumination intensity of 5000 Lx, and the color difference of the test body from which the coloring agent was decolorized was measured. The color difference (brightness difference ΔL) before and after the application was evaluated. The color difference was determined from the standard plate using a color guide (manufactured by BYK Gardner). The lower the color difference ΔL, the higher the transparency and the better the appearance.
[Evaluation criteria]
○: The color difference ΔL was less than 1.6.
Δ: The color difference ΔL was less than 1.6 to 3.0.
X: The color difference ΔL was 3.0 or more.

10.塗膜の着色性
硫酸アルマイト基材(テストピース社製 JIS H 4000(A1100P);50mm*50mm*1mm)上に、外壁用白色エナメル仕上げ材(エスケー化研社製、水性セラミシリコン シロ)を乾燥後膜厚100μmとなるよう塗布した。その後、ディップコーター(アイデン社製 DC4200、昇降速度:下降時 10mm/秒、上昇時 10mm/秒)にて光触媒組成物を塗布し、塗布後2日間乾燥。その後、照度5000Lxに調整した蛍光灯下で10日間放置し着色剤を脱色させた試験体の色彩色差を測定した。塗布前後での色差(ΔE)を評価した。色差ΔEが低いほど、塗膜の着色性が低く、外観性に優れることを意味する。
[評価基準]
◎ :色差ΔEが1.6未満であった。
○ :色差ΔEが1.6〜3.0未満であった。
△ :色差ΔEが3.0〜5.0であった。
× :色差ΔEが5.0以上であった。
10. Colorability of coating film A white enamel finish material for outer wall (water-based ceramic silicon Shiro) for outer wall is dried on sulfuric acid alumite base material (JIS H 4000 (A1100P; 50 mm * 50 mm * 1 mm) manufactured by Testpiece Co., Ltd.). It applied so that it might become 100 micrometers of post film thickness. Thereafter, the photocatalytic composition is applied by a dip coater (DC4200 manufactured by IDEN, raising and lowering speed: 10 mm / sec at falling, 10 mm / sec at rising) and dried for 2 days after application. Then, it was left for 10 days under a fluorescent lamp adjusted to an illumination intensity of 5000 Lx, and the color difference of the test body from which the coloring agent was decolorized was measured. The color difference (ΔE) before and after application was evaluated. The lower the color difference ΔE, the lower the colorability of the coating film, and the better the appearance.
[Evaluation criteria]
◎: The color difference ΔE was less than 1.6.
O: Color difference ΔE was less than 1.6 to 3.0.
Δ: The color difference ΔE was 3.0 to 5.0.
X: The color difference ΔE was 5.0 or more.

11.耐候性(SWOM5000時間曝露後の色差)
上記10の方法にて光触媒塗膜が塗装された試験体を作成し、スガ試験機社製のサンシャインウエザーメーター(SWOM)を用いて曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行った。曝露前と曝露開始5000時間後との間での色差を上記10の方法で測定し、曝露前の色差を標準とし、曝露前後の状態変化をΔEとして評価した。色差ΔEが低いほど、外観変化が少ない、すなわち耐候性に優れることを意味する。
[評価基準]
○ :ΔEが3未満であった。
△ :ΔEが3以上、5未満であった。
× :ΔEが5以上であった。
11. Weatherability (color difference after exposure to SWOM 5000 hours)
A test body coated with a photocatalytic coating film is prepared by the above method 10, and an exposure test (black panel temperature 63 ° C., rainfall 18 minutes / 2 hours) using a Suga Test Instruments Co., Ltd. Sunshine Weather Meter (SWOM) Did. The color difference between before exposure and 5000 hours after the start of exposure was measured by the method of the above 10, the color difference before exposure was taken as a standard, and the change in state before and after exposure was evaluated as ΔE. The lower the color difference ΔE, the smaller the change in appearance, that is, the better the weather resistance.
[Evaluation criteria]
○: ΔE was less than 3.
Δ: ΔE was 3 or more and less than 5.
X: ΔE was 5 or more.

12.光触媒粒子Aの合成(シリカ修飾ルチル型二酸化チタン)
後述の製造例で使用する光触媒粒子Aは以下のようにして合成した。
TiO2として200g/Lの濃度の四塩化チタン水溶液700mLと、Na2Oとして100g/Lの濃度の水酸化ナトリウム水溶液を、系のpHを5〜9に維持するように水中に並行添加した。その後、系のpHを7に調整した後、濾過し、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度28.3質量%の酸化チタン湿ケーキ1を得た。この酸化チタン湿ケーキ1は、ルチル型構造を有し、その平均粒径は8nmであった。
得られたルチル型酸化チタン湿ケーキ1を純水で希釈して、1モル/Lのスラリーを調製した。このスラリー1Lを3Lのフラスコに仕込み、さらに、酸化チタンと硝酸とのモル比(酸化チタン/硝酸)が1となるよう、1規定の硝酸を1L添加し、95℃の温度に加熱し、この温度で2時間保持して、酸加熱処理を行った。次いで、酸加熱処理後のスラリーを室温まで冷却し、28%アンモニア水を用いて中和(pH=6.7)して、濾過した後、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度25質量%の酸化チタン湿ケーキ2を得た。
得られた酸化チタン湿ケーキ2に、10質量%の水酸化ナトリウム水溶液を添加し、リパルプし、その後、超音波洗浄機で3時間分散させ、pH=10.5、固形分濃度10質量%のアルカリ性酸化チタンゾルを得た。このアルカリ性酸化チタンゾル2Lを3Lのフラスコに仕込み、70℃の温度に昇温し、SiO2として432g/Lの濃度のケイ酸ナトリウム水溶液69.4mlを添加し、その後90℃に昇温して、1時間熟成した後、10%の硫酸を添加してpHを6に調整して、酸化チタンの表面をケイ素の含水酸化物で表面処理した。
得られた酸化チタンゾルを室温まで冷却し、5.4Lの純水を添加し、脱塩濃縮装置を用いて、不純物の除去、及び濃縮を行ない、pH=7.3、固形分濃度29質量%の中性ルチル型酸化チタンゾルを得た。TiO2に対してSiO2基準で15質量%のケイ素の含水酸化物を含有していた。このゾル中の酸化チタンの平均粒径は50nmであった。
12. Synthesis of photocatalyst particle A (silica modified rutile titanium dioxide)
The photocatalyst particles A used in the following production examples were synthesized as follows.
700 mL of a titanium tetrachloride aqueous solution having a concentration of 200 g / L as TiO 2 and a sodium hydroxide aqueous solution having a concentration of 100 g / L as Na 2 O were simultaneously added to water so as to maintain the pH of the system at 5-9. Thereafter, the pH of the system was adjusted to 7, followed by filtration and washing until the conductivity of the filtrate was 100 μS / cm, to obtain a wet titanium oxide cake 1 with a solid content concentration of 28.3 mass%. This titanium oxide wet cake 1 had a rutile type structure, and its average particle size was 8 nm.
The obtained rutile type titanium oxide wet cake 1 was diluted with pure water to prepare a 1 mol / L slurry. 1 L of this slurry is charged in a 3 L flask, and 1 L of nitric acid in 1 N is added so that the molar ratio of titanium oxide to nitric acid (titanium oxide / nitric acid) is 1, and the mixture is heated to a temperature of 95 ° C. An acid heat treatment was performed while maintaining the temperature for 2 hours. Then, the slurry after the acid heat treatment was cooled to room temperature, neutralized (pH = 6.7) using 28% aqueous ammonia, filtered, and washed until the conductivity of the filtrate reached 100 μS / cm. The titanium oxide wet cake 2 having a solid concentration of 25% by mass was obtained.
A 10% by mass aqueous solution of sodium hydroxide is added to the obtained titanium oxide wet cake 2 and repulped, and then dispersed for 3 hours with an ultrasonic cleaner, pH = 10.5, solid content concentration 10% by mass An alkaline titanium oxide sol was obtained. 2 L of this alkaline titanium oxide sol is charged in a 3 L flask and heated to a temperature of 70 ° C., 69.4 ml of an aqueous sodium silicate solution having a concentration of 432 g / L as SiO 2 is added, and then heated to 90 ° C. After aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, and the surface of titanium oxide was surface-treated with a hydrous oxide of silicon.
The obtained titanium oxide sol is cooled to room temperature, 5.4 L of pure water is added, impurities are removed and concentrated using a desalting and concentration apparatus, pH = 7.3, solid content concentration 29 mass% The neutral rutile titanium oxide sol of It contained 15 wt% of silicon oxide hydroxide with SiO 2 basis relative to TiO 2. The average particle size of titanium oxide in this sol was 50 nm.

13.重合体エマルジョン粒子D水分散体の合成
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水830g、10質量%のドデシルベンゼンスルホン酸水溶液40.0gを投入した後、撹拌下で反応器中の温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン90.7g、メチルトリメトキシシラン83.5gからなる混合液と水10gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。その際、ジメチルジメトキシシランとメチルトリメトキシシランからなる混合液を滴下後1時間経過した時点で10質量%のドデシルベンゼンスルホン酸水溶液2gを投入した。ジメチルジメトキシシランとメチルトリメトキシシランからなる混合液を全量滴下後、反応器中の温度を80℃に維持して約30分撹拌を続けた後、10質量%のドデシルベンゼンスルホン酸水溶液14.8gを投入し、反応器中の温度を80℃に維持して2.5時間撹拌を続けた。
次に、過硫酸アンモニウムの0.5質量%水溶液26.4gを投入し、アクリル酸n−ブチル0.1g、フェニルトリメトキシシラン36.7g、テトラエトキシシラン27.8g、及び3−メタクリロキシプロピルトリメトキシシラン1.1gからなる混合液にさらに水10gを添加したものと、ジエチルアクリルアミド0.1g、アクリル酸0.9g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化社製、固形分25%水溶液)4.5g、反応性乳化剤(商品名「アクアロンKH−1025」、第一工業製薬社製、固形分25%水溶液)2.3g、過硫酸アンモニウムの0.5質量%水溶液120g、及びイオン交換水256.4gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却し、100メッシュの金網で濾過した。イオン交換水で固形分を8.5質量%に調整し、重合体粒子として、数平均粒子径20nmの重合体エマルジョン粒子Dの水分散体を得た。
13. Synthesis of polymer emulsion particle D water dispersion After charging 830 g of ion-exchanged water and 40.0 g of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid in a reactor having a reflux condenser, a dropping tank, a thermometer and a stirrer, The temperature in the reactor was heated to 80 ° C. under stirring. Into this reactor, a mixed solution consisting of 90.7 g of dimethyldimethoxysilane and 83.5 g of methyltrimethoxysilane and 10 g of water were simultaneously added dropwise over about 2 hours while maintaining the temperature in the reactor at 80 ° C. did. At that time, 2 g of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid was added at 1 hour after the mixture liquid consisting of dimethyldimethoxysilane and methyltrimethoxysilane was dropped. After the entire mixture of dimethyldimethoxysilane and methyltrimethoxysilane is dropped, the temperature in the reactor is maintained at 80 ° C. and stirring is continued for about 30 minutes, and then 14.8 g of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid And the temperature in the reactor was maintained at 80.degree. C. and stirring was continued for 2.5 hours.
Next, 26.4 g of a 0.5% by mass aqueous solution of ammonium persulfate is charged, 0.1 g of n-butyl acrylate, 36.7 g of phenyltrimethoxysilane, 27.8 g of tetraethoxysilane, and 3-methacryloxypropyltritriol. A mixture prepared by adding 10 g of water to a mixed solution consisting of 1.1 g of methoxysilane, 0.1 g of diethyl acrylamide, 0.9 g of acrylic acid, a reactive emulsifier (trade name "ADEKAREASOAP SR-1025", manufactured by Asahi Denka Co., Ltd. , 25 g of solid content 25% aqueous solution, 2.3 g of reactive emulsifier (trade name "Aqualon KH-1025" manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 25% solid content aqueous solution), 0.5 mass% aqueous solution of ammonium persulfate A mixed solution of 120 g and 256.4 g of ion-exchanged water was simultaneously treated for about 2 hours while maintaining the temperature in the reactor at 80 ° C. The dropped. Further, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 2 hours, then cooled to room temperature and filtered through a 100 mesh wire mesh. The solid content was adjusted to 8.5% by mass with ion exchange water, and an aqueous dispersion of polymer emulsion particles D having a number average particle diameter of 20 nm was obtained as polymer particles.

[製造例1]金担持酸化チタン(A−1)
上記12に記載した方法で合成した光触媒粒子Aの水分散体(固形分:2質量%)400gを、500mLフラスコに仕込み、65℃に加温した。65℃に達したとき、四塩化金酸四水和物水溶液(濃度:1質量%)を、3.83g添加し、10分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)を0.79g添加した。添加後65℃で維持したまま1時間撹拌し、撹拌後室温まで冷却して金担持酸化チタン(A−1)を得た。得られた合成物中の抗菌性金属担持光触媒粒子の平均粒子径は69nmであり、光触媒粒子Aに担持されている金の平均粒子径と質量はそれぞれ3nmと1.0%であり、光触媒粒子Aに担持されていない金化合物の含有量は100ppmであった。
Preparation Example 1 Gold-Supported Titanium Oxide (A-1)
A 500 mL flask was charged with 400 g of an aqueous dispersion (solid content: 2% by mass) of the photocatalyst particle A synthesized by the method described in 12 above, and heated to 65 ° C. When 65 ° C. was reached, 3.83 g of tetrachloroaurate tetrahydrate aqueous solution (concentration: 1% by mass) was added and stirred for 10 minutes. Thereafter, 0.79 g of an aqueous tannic acid solution (concentration: 1% by mass) was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 65 ° C., stirred and cooled to room temperature to obtain gold-supported titanium oxide (A-1). The average particle diameter of the antibacterial metal-supporting photocatalyst particles in the obtained composite is 69 nm, and the average particle diameter and mass of gold supported on the photocatalyst particles A are 3 nm and 1.0%, respectively. The content of the gold compound not supported on A was 100 ppm.

[製造例2]銀担持酸化チタン(A−2)
[製造例1]で用いた四塩化金酸四水和物水溶液(濃度:1質量%)を硝酸銀水溶液(濃度:5質量%)1.26gとし、タンニン酸水溶液(濃度:1質量%)の添加量を3.50gとした以外は同じ方法にて合成し、銀担持酸化チタン(A−2)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は60nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ4nmと0.5%であり、光触媒粒子Aに担持されていない銀化合物の含有量は550ppmであった。
Production Example 2 Silver-Supported Titanium Oxide (A-2)
An aqueous solution of tannic acid (concentration: 1% by mass) was prepared by changing the aqueous solution of tetrachloroaurate tetrahydrate (concentration: 1% by mass) used in Preparation Example 1 to 1.26 g of an aqueous solution of silver nitrate (concentration: 5% by mass). It synthesize | combined by the same method except the addition amount having been 3.50 g, and the silver carrying | support titanium oxide (A-2) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 60 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 4 nm and 0.5%, respectively. The content of the silver compound not supported on the mixture was 550 ppm.

[製造例3]銀担持酸化チタン(A−3)
[製造例2]の硝酸銀水溶液(濃度:5質量%)の添加量を5.04gとし、タンニン酸水溶液(濃度:1質量%)の添加量を13.99gとした以外は同じ方法にて合成し、銀担持酸化チタン(A−3)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は66nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ7nmと1.9%であり、光触媒粒子Aに担持されていない銀化合物の含有量は1200ppmであった。
Production Example 3 Silver-Supported Titanium Oxide (A-3)
The same procedure was followed, except that the addition amount of the aqueous silver nitrate solution (concentration: 5% by mass) of [Production Example 2] was 5.04 g, and the addition amount of tannic acid aqueous solution (concentration: 1% by mass) was 13.99 g. Thus, silver-supported titanium oxide (A-3) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 66 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 7 nm and 1.9%, respectively. The content of the silver compound not supported by was 1200 ppm.

[製造例4]銀担持酸化チタン(A−4)
[製造例2]の硝酸銀水溶液(濃度:5質量%)の添加量を10.07gとし、タンニン酸水溶液(濃度:1質量%)の添加量を27.97gとした以外は同じ方法にて合成し、銀担持酸化チタン(A−4)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は74nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ16nmと3.8%であり、光触媒粒子Aに担持されていない銀化合物の含有量は1900ppmであった。
Production Example 4 Silver-Supported Titanium Oxide (A-4)
[Production example 2] The same procedure was followed except that the addition amount of silver nitrate aqueous solution (concentration: 5 mass%) was 10.07 g and that of tannic acid aqueous solution (concentration: 1 mass%) was 27.97 g. Thus, silver-supported titanium oxide (A-4) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the obtained composite is 74 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 16 nm and 3.8%, respectively. The content of the silver compound not supported on was 1900 ppm.

[製造例5]銀担持酸化チタン(A−5)
[製造例2]の硝酸銀水溶液(濃度:5質量%)の添加量を12.59gとし、タンニン酸水溶液(濃度:1質量%)の添加量を34.97gとした以外は同じ方法にて合成し、銀担持酸化チタン(A−5)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は81nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ18nmと4.7%であり、光触媒粒子Aに担持されていない銀化合物の含有量は2800ppmであった。
Production Example 5 Silver-Supported Titanium Oxide (A-5)
Synthesis Example 2 was carried out in the same manner except that the addition amount of the silver nitrate aqueous solution (concentration: 5% by mass) was 12.59 g and the addition amount of the tannic acid aqueous solution (concentration: 1% by mass) was 34.97 g. Thus, silver-supported titanium oxide (A-5) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 81 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 18 nm and 4.7%, respectively. The content of the silver compound not supported on was 2800 ppm.

[製造例6]酸化銅担持酸化チタン(A−6)
[製造例2]の硝酸銀水溶液(濃度:5質量%)を硫酸銅五水和物(濃度:5質量%)3.12g、タンニン酸水溶液(濃度:1質量%)の添加量を5.30gとした以外は同じ方法にて合成し、酸化銅担持酸化チタン(A−6)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は57nmであり、光触媒粒子Aに担持されている酸化銅の平均粒子径と質量はそれぞれ4nmと0.5%であり、光触媒粒子Aに担持されていない酸化銅の含有量は800ppmであった。
Preparation Example 6 Copper Oxide-Supported Titanium Oxide (A-6)
[Preparation Example 2] 3.12 g of copper sulfate pentahydrate (concentration: 5 mass%) and the addition amount of tannic acid aqueous solution (concentration: 1 mass%) 5.30 g of silver nitrate aqueous solution (concentration: 5 mass%) The copper oxide-supporting titanium oxide (A-6) was obtained by the same method except using the above. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 57 nm, and the average particle size and mass of copper oxide supported on the photocatalyst particle A are 4 nm and 0.5%, respectively. The content of copper oxide not supported on A was 800 ppm.

[製造例7]酸化銅担持酸化チタン(A−7)
[製造例6]で用いた硫酸銅五水和物(濃度:5質量%)を9.36g、タンニン酸水溶液(濃度:1質量%)の添加量を15.90gとした以外は同じ方法にて合成し、酸化銅担持酸化チタン(A−7)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は71nmであり、光触媒粒子Aに担持されている酸化銅の平均粒子径と質量はそれぞれ5nmと1.4%であり、光触媒粒子Aに担持されていない酸化銅の含有量は1100ppmであった。
Production Example 7 Copper Oxide-Supported Titanium Oxide (A-7)
The same method is employed except that 9.36 g of copper sulfate pentahydrate (concentration: 5% by mass) used in [Preparation example 6] and 15.90 g of an aqueous tannic acid solution (concentration: 1% by mass) are used. The copper oxide was supported to obtain copper oxide-supporting titanium oxide (A-7). The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 71 nm, and the average particle size and mass of copper oxide supported on the photocatalyst particle A are 5 nm and 1.4%, respectively. The content of copper oxide not supported on A was 1100 ppm.

[製造例8]銀及び酸化銅担持酸化チタン(A−8)
上記12に記載した方法で合成した光触媒粒子Aの水分散体(固形分:2質量%)400gを、500mLフラスコに仕込み、65℃に加温した。65℃に達したとき、硫酸銅五水和物(濃度:5質量%)を3.12g添加し、更に硝酸銀水溶液(濃度:5質量%)を2.52g添加し、10分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)を12.29g添加した。添加後65℃で維持したまま1時間撹拌し、撹拌後室温まで冷却して銀及び酸化銅担持酸化チタン(A−8)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は56nmであり、光触媒粒子Aに担持されている銀と酸化銅を合わせた平均粒子径と質量はそれぞれ8nmと1.4%であり、光触媒粒子Aに担持されていない銀と酸化銅の含有量は合計1900ppmであった。
Preparation Example 8 Silver and Copper Oxide Supported Titanium Oxide (A-8)
A 500 mL flask was charged with 400 g of an aqueous dispersion (solid content: 2% by mass) of the photocatalyst particle A synthesized by the method described in 12 above, and heated to 65 ° C. When the temperature reached 65 ° C., 3.12 g of copper sulfate pentahydrate (concentration: 5% by mass) was added, 2.52 g of an aqueous silver nitrate solution (concentration: 5% by mass) was further added, and the mixture was stirred for 10 minutes. Thereafter, 12.29 g of an aqueous tannic acid solution (concentration: 1% by mass) was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 65 ° C., stirred and cooled to room temperature to obtain silver oxide and copper oxide-supported titanium oxide (A-8). The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 56 nm, and the average particle size and mass of the silver and copper oxide supported on the photocatalyst particle A are 8 nm and 1.4%, respectively. The total content of silver and copper oxide not supported on the photocatalyst particle A was 1900 ppm.

[製造例9]酸化銅担持酸化チタン(A−9)
500mLフラスコに水392gと、表面をシリカで修飾したルチル型酸化チタン(テイカ社製 MT−100WP)8gを加えて15分間撹拌した。次いで65℃に加温し、65℃に達したとき、硫酸銅五水和物(濃度:5質量%)3.12g添加し10分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)を13.99g添加した。添加後65℃で維持したまま1時間撹拌し、撹拌後室温まで冷却して酸化銅担持酸化チタン(A−9)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は311nmであり、酸化チタン表面に担持されている酸化銅の平均粒子径と質量はそれぞれ11nmと0.3%であり、酸化チタン表面に担持されていない酸化銅の含有量は2000ppmであった。
Production Example 9 Copper Oxide-Supported Titanium Oxide (A-9)
392 g of water and 8 g of rutile-type titanium oxide (MT-100WP manufactured by Tayca Corporation) whose surface was modified with silica were added to a 500 mL flask and stirred for 15 minutes. Then, the temperature was raised to 65 ° C., and when it reached 65 ° C., 3.12 g of copper sulfate pentahydrate (concentration: 5% by mass) was added and stirred for 10 minutes. Thereafter, 13.99 g of an aqueous tannic acid solution (concentration: 1% by mass) was added. It stirred for 1 hour, maintaining at 65 degreeC after addition, and it cooled to room temperature after stirring, and copper oxide carrying | support titanium oxide (A-9) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 311 nm, and the average particle size and mass of copper oxide supported on the surface of titanium oxide are 11 nm and 0.3%, respectively. The content of copper oxide not supported on the surface was 2000 ppm.

[製造比較例1]酸化銅担持酸化チタン(A−10)
3000mLフラスコに水1800gと、表面を修飾していないルチル型酸化チタン(テイカ社製 JR)200gを加えて15分間撹拌した。次いで、10質量%の水酸化ナトリウム水溶液を添加し、リパルプし、その後、超音波洗浄機で3時間分散させ、pH=10.5、固形分濃度10質量%のアルカリ性酸化チタンゾルを得た。このアルカリ性酸化チタンゾル2Lを3Lのフラスコに仕込み、70℃の温度に昇温し、SiO2として432g/Lの濃度のケイ酸ナトリウム水溶液69.4mlを添加し、その後90℃に昇温して、1時間熟成した後、10%の硫酸を添加してpHを6に調整して、酸化チタンの表面をケイ素の含水酸化物で表面処理した。 得られた酸化チタンゾルを室温まで冷却し、5.4Lの純水を添加し、脱塩濃縮装置を用いて、不純物の除去、及び濃縮を行ない、pH=7.3、固形分濃度29質量%の中性ルチル型酸化チタンゾルを得た。TiO2に対してSiO2基準で15質量%のケイ素の含水酸化物を含有していた。
この酸化チタンゾルを2%にまで希釈して500mLフラスコに400g仕込み、次いで65℃に加温し、65℃に達したとき、硫酸銅五水和物(濃度:5質量%)15.6g添加し10分間撹拌した。その後、タンニン酸水溶液(濃度:1質量%)を69.95g添加した。添加後65℃で維持したまま1時間撹拌し、撹拌後室温まで冷却して酸化銅担持酸化チタン(A−10)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は503nmであり、酸化チタン表面に担持されている酸化銅の平均粒子径と質量はそれぞれ26nmと0.5%であり、酸化チタン表面に担持されていない酸化銅の含有量は10000ppmであった。
[Manufacturing Comparative Example 1] Copper oxide-supported titanium oxide (A-10)
In a 3000 mL flask, 1800 g of water and 200 g of rutile-type titanium oxide (JR manufactured by Tayca Co., Ltd.) whose surface was not modified were added and stirred for 15 minutes. Next, a 10% by mass aqueous solution of sodium hydroxide was added, repulping was performed, and then dispersed for 3 hours with an ultrasonic cleaner to obtain an alkaline titanium oxide sol having a pH of 10.5 and a solid content concentration of 10% by mass. 2 L of this alkaline titanium oxide sol is charged in a 3 L flask and heated to a temperature of 70 ° C., 69.4 ml of an aqueous sodium silicate solution having a concentration of 432 g / L as SiO 2 is added, and then heated to 90 ° C. After aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, and the surface of titanium oxide was surface-treated with a hydrous oxide of silicon. The obtained titanium oxide sol is cooled to room temperature, 5.4 L of pure water is added, impurities are removed and concentrated using a desalting and concentration apparatus, pH = 7.3, solid content concentration 29 mass% The neutral rutile titanium oxide sol of It contained 15 wt% of silicon oxide hydroxide with SiO 2 basis relative to TiO 2.
This titanium oxide sol is diluted to 2% and charged in a 500 mL flask with 400 g, then heated to 65 ° C., and when it reaches 65 ° C., 15.6 g of copper sulfate pentahydrate (concentration: 5 mass%) is added Stir for 10 minutes. Thereafter, 69.95 g of an aqueous tannic acid solution (concentration: 1% by mass) was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature at 65 ° C., stirred and cooled to room temperature to obtain copper oxide-supported titanium oxide (A-10). The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 503 nm, and the average particle size and mass of copper oxide supported on the titanium oxide surface are 26 nm and 0.5%, respectively, and titanium oxide is The content of copper oxide not supported on the surface was 10000 ppm.

[製造比較例2]銀担持酸化チタン(A−11)
[製造例2]の硝酸銀水溶液(濃度:5質量%)の添加量を30.24gとし、タンニン酸水溶液(濃度:1質量%)の添加量を83.94gとした以外は同じ方法にて合成し、銀担持酸化チタン(A−11)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は110nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ33nmと11.0%であり、光触媒粒子Aに担持されていない銀化合物の含有量は9900ppmであった。
[Manufacturing Comparative Example 2] Silver-supported titanium oxide (A-11)
The same procedure was followed except that the addition amount of the aqueous silver nitrate solution (concentration: 5% by mass) was 30.24 g and that of the aqueous tannic acid solution (concentration: 1% by mass) was 83.94 g. Thus, silver-supported titanium oxide (A-11) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 110 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 33 nm and 11.0%, respectively. The content of the silver compound not supported on was 9900 ppm.

[製造比較例3]酸化銅担持酸化チタン(A−12)
上記12に記載した方法で合成した光触媒粒子Aの水分散体(固形分:2質量%)400gを500mLフラスコに仕込み、そこへ酸化銅分散体(CIKナノテック社製 CUAP15WT%−G180)を2.12g添加し、室温にて1時間撹拌することで酸化銅担持酸化チタン(A−12)を得た。得られた水分散体中の抗菌性金属担持光触媒の平均粒子径は80nmであり、光触媒粒子Aに担持されている酸化銅の平均粒子径と質量はそれぞれ50nmと0.5%であり、光触媒粒子Aに担持されていない酸化銅の含有量は15000ppmであった。
Production Comparative Example 3 Copper Oxide-Supported Titanium Oxide (A-12)
A 500 mL flask is charged with 400 g of an aqueous dispersion (solid content: 2% by mass) of the photocatalyst particle A synthesized by the method described in 12 above, and a copper oxide dispersion (CUAP15WT% -G180 manufactured by CIK Nanotech Co., Ltd.) is added thereto. The copper oxide carrying | support titanium oxide (A-12) was obtained by adding 12 g and stirring at room temperature for 1 hour. The average particle diameter of the antibacterial metal-supporting photocatalyst in the obtained aqueous dispersion is 80 nm, and the average particle diameter and mass of copper oxide supported on the photocatalyst particle A are 50 nm and 0.5%, respectively. The content of copper oxide not supported on the particles A was 15000 ppm.

[製造比較例4]銀担持酸化チタン(A−13)
[製造例3]の製造条件のうち、温度を90℃とした以外は同様の方法で製造し、銀担持酸化チタン(A−13)を得た。得られた合成物中の抗菌性金属担持光触媒の平均粒子径は74nmであり、光触媒粒子Aに担持されている銀の平均粒子径と質量はそれぞれ25nmと1.8%であり、光触媒粒子A担持されていない銀化合物の含有量は2400ppmであった。
Production Comparative Example 4 Silver-Supported Titanium Oxide (A-13)
It manufactured by the same method except temperature having been 90 degreeC among the manufacturing conditions of [manufacture example 3], and silver carrying | support titanium oxide (A-13) was obtained. The average particle size of the antibacterial metal-supporting photocatalyst in the resulting composite is 74 nm, and the average particle size and mass of silver supported on the photocatalyst particle A are 25 nm and 1.8%, respectively. The content of the unsupported silver compound was 2400 ppm.

[実施例1]
製造例1で作成した金担持酸化チタン(A−1)137.1gと、塩基性のコロイダルシリカである、数平均粒子径8nmの水分散コロイダルシリカ(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)123.4gと、パーフルオロアルキルエチレンオキシド付加物である、フルオロカーボン界面活性剤(DIC社製、「メガファックF−444」)1.5gと、イオン交換水により固形分量を0.1質量%に調整した退色性色素(キシダ化学社製、「メチレンブルー」)140gとを配合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
Example 1
137.1 g of gold-supported titanium oxide (A-1) prepared in Production Example 1 and water-dispersible colloidal silica having a number average particle diameter of 8 nm, which is basic colloidal silica (trade name “Snowtex NS”, Nissan Chemical Industries, Ltd. 123.4 g of solid content of 20% by mass, 1.5 g of a fluorocarbon surfactant ("Megaface F-444" manufactured by DIC Corporation) which is a perfluoroalkyl ethylene oxide adduct, and ion exchange water The photocatalytic composition is formulated by adding 140 g of a color-fading dye ("Methylene Blue", manufactured by Kishida Chemical Co., Ltd.) whose solid content has been adjusted to 0.1 mass%, and adding ion-exchanged water to a total amount of 1000 g. The object was made. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例2]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例2で作成した銀担持酸化チタン(A−2)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
Example 2
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-2) prepared in Production Example 2. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例3]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例3で作成した銀担持酸化チタン(A−3)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 3]
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-3) prepared in Production Example 3. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例4]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例4で作成した銀担持酸化チタン(A−4)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
Example 4
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-4) prepared in Production Example 4. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例5]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例5で作成した銀担持酸化チタン(A−5)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 5]
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-5) prepared in Production Example 5. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例6]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例6で作成した酸化銅担持酸化チタン(A−6)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 6]
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-6) prepared in Production Example 6. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例7]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例7で作成した酸化銅担持酸化チタン(A−7)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 7]
A photocatalyst composition was prepared in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-7) prepared in Production Example 7. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例8]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例8で作成した銀及び酸化銅担持酸化チタン(A−8)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 8]
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver and copper oxide-supporting titanium oxide (A-8) prepared in Production Example 8. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例9]
実施例1において抗菌性金属担持光触媒粒子ABを、製造例9で作成した酸化銅担持酸化チタン(A−9)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表3に示す。
[Example 9]
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-9) prepared in Production Example 9. A photocatalyst coating film was prepared according to each of the above-mentioned methods for this photocatalyst composition, and various evaluation results are shown in Table 3.

[実施例10]
製造例1で作成した金担持酸化チタン(A−1)273.7gと、数平均粒子径8nmの水分散コロイダルシリカ(商品名「スノーテックスNS」、日産化学工業(株)製、固形分:20質量%)82.1gと、上記13に記載の方法で製造した重合体エマルジョン粒子D水分散体(固形分:8.5質量%)64.4gと、フルオロカーボン界面活性剤(AGCセイミケミカル社製「サーフロンS−232」)10.33gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(キシダ化学社製、「メチレンブルー」)140gを混合し、全量が1000gとなるようイオン交換水と加えて撹拌することにより、光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 10]
273.7 g of gold-supported titanium oxide (A-1) prepared in Production Example 1 and water-dispersed colloidal silica having a number average particle diameter of 8 nm (trade name “Snowtex NS” manufactured by Nissan Chemical Industries, Ltd., solid content: 20 mass%) 82.1 g, 64.4 g of a polymer emulsion particle D water dispersion (solid content: 8.5 mass%) produced by the method described in 13 above, fluorocarbon surfactant (AGC Seimi Chemical Co., Ltd.) 10.33 g of "Surflon S-232" manufactured by the present invention and 140 g of a dye having a solid content adjusted to 1.0% by mass with ion-exchanged water (manufactured by Kishida Chemical Co., Ltd., "methylene blue"), and the total amount is 1000 g The photocatalyst composition was produced by adding and stirring ion exchange water so that it might become. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例11]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例2で作成した銀担持酸化チタン(A−2)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 11]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-2) prepared in Production Example 2. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例12]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例3で作成した銀担持酸化チタン(A−3)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 12]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-3) prepared in Production Example 3. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例13]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例4で作成した銀担持酸化チタン(A−4)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 13]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-4) prepared in Production Example 4. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例14]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例5で作成した銀担持酸化チタン(A−5)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
Example 14
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-5) prepared in Production Example 5. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例15]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例6で作成した酸化銅担持酸化チタン(A−6)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 15]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-6) prepared in Production Example 6. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例16]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例7で作成した酸化銅担持酸化チタン(A−7)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 16]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-7) prepared in Production Example 7. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例17]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例8で作成した銀及び酸化銅担持酸化チタン(A−8)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 17]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver and copper oxide-supporting titanium oxide (A-8) prepared in Production Example 8. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[実施例18]
実施例10において抗菌性金属担持光触媒粒子ABを、製造例9で作成した酸化銅担持酸化チタン(A−9)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
[Example 18]
A photocatalyst composition was produced in the same manner as in Example 10 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-9) prepared in Production Example 9. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[比較例1]
実施例1において抗菌性金属担持光触媒粒子ABを、製造比較例1で作成した酸化銅担持酸化チタン(A−10)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
Comparative Example 1
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-10) prepared in Production Comparative Example 1. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[比較例2]
実施例1において抗菌性金属担持光触媒粒子ABを、製造比較例2で作成した銀担持酸化チタン(A−11)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
Comparative Example 2
A photocatalyst composition was prepared in the same manner as Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-11) prepared in Production Comparative Example 2. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[比較例3]
実施例1において抗菌性金属担持光触媒粒子ABを、製造比較例3で作成した酸化銅担持酸化チタン(A−12)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
Comparative Example 3
A photocatalyst composition was produced in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the copper oxide-supporting titanium oxide (A-12) prepared in Production Comparative Example 3. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

[比較例4]
実施例1において抗菌性金属担持光触媒粒子ABを、製造比較例4で作成した銀担持酸化チタン(A−13)とした以外は、同様にして光触媒組成物を作製した。この光触媒組成物を上記の各方法に従って光触媒塗膜を作成し、各種評価結果を表4に示す。
Comparative Example 4
A photocatalyst composition was prepared in the same manner as in Example 1 except that the antibacterial metal-supporting photocatalyst particle AB was changed to the silver-supporting titanium oxide (A-13) prepared in Production Comparative Example 4. A photocatalyst coating film was prepared according to each method described above for this photocatalyst composition, and various evaluation results are shown in Table 4.

本発明の抗菌性金属担持光触媒粒子ABを使用すれば、高い透明性と低着色性の光触媒塗膜が得られ、被塗装体の意匠を損ねることなく光触媒性能を発揮する。また、耐候性に優れるだけでなく、長期的に防藻性及び防カビ性の効果が持続する光触媒塗膜を提供できる。本発明の光触媒塗膜は、セルフクリーニング性に優れ、建築外装、内装材、外装表示用途、自動車、ディスプレイ等の分野において産業上の利用可能性を有する。   By using the antibacterial metal-supporting photocatalyst particle AB of the present invention, a photocatalyst coating film having high transparency and low colorability can be obtained, and the photocatalyst performance can be exhibited without damaging the design of the object to be coated. Moreover, it is not only excellent in weather resistance, but can provide the photocatalyst coating film in which the anti-algal and anti-fungal effects last for a long time. The photocatalytic coating film of the present invention is excellent in self-cleaning property, and has industrial applicability in the fields of building exteriors, interior materials, exterior display applications, automobiles, displays and the like.

Claims (14)

光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの表面に抗菌性金属粒子Bを担持してなり、前記抗菌性金属粒子Bの平均粒子径が0.1〜20nmの範囲にある、抗菌性金属担持光触媒粒子AB。   An antimicrobial metal particle B is supported on the surface of a photocatalyst particle A having photocatalytic activity with the surface modified with a metal oxide having no photocatalytic activity, and the average particle diameter of the antimicrobial metal particle B is 0.1 to 20 nm In the range of, antimicrobial metal-loaded photocatalyst particles AB. 前記光触媒活性を有しない金属酸化物が二酸化ケイ素、酸化アルミニウム、酸化ジルコニウムからなる群から選択される少なくとも1種からなり、
前記光触媒活性を有する光触媒粒子Aを形成する化合物が二酸化チタン、酸化亜鉛、チタン酸ストロンチウム、リン化ガリウム、リン化インジウム、ヒ化ガリウム、チタン酸バリウム、ニオブ酸カリウム、五酸化ニオブ、酸化鉄、五酸化タンタル、K3Ta3Si23、酸化タングステン、酸化スズ、酸化ビスマス、バナジン酸ビスマス、酸化ニッケル、酸化銅、炭化ケイ素、硫化モリブデン、インジウム鉛、酸化ルテニウム、及び酸化セリウムからなる群から選択される少なくとも1種からなる、
請求項1に記載の抗菌性金属担持光触媒粒子AB。
The metal oxide not having photocatalytic activity is at least one selected from the group consisting of silicon dioxide, aluminum oxide and zirconium oxide,
The compound forming the photocatalyst particle A having the photocatalytic activity is titanium dioxide, zinc oxide, strontium titanate, gallium phosphide, indium phosphide, gallium arsenide, barium titanate, potassium niobate, niobium pentoxide, iron oxide, A group consisting of tantalum pentoxide, K 3 Ta 3 Si 2 O 3 , tungsten oxide, tin oxide, bismuth oxide, bismuth vanadate, nickel oxide, copper oxide, copper oxide, silicon carbide, molybdenum sulfide, indium lead, ruthenium oxide, and cerium oxide Consisting of at least one selected from
The antibacterial metal-supported photocatalyst particle AB according to claim 1.
前記光触媒活性を有しない金属酸化物が二酸化ケイ素であり、
前記光触媒活性を有する光触媒粒子Aを形成する化合物が二酸化チタンである、
請求項2に記載の抗菌性金属担持光触媒粒子AB。
The metal oxide not having photocatalytic activity is silicon dioxide,
The compound forming the photocatalyst particle A having the photocatalytic activity is titanium dioxide,
The antibacterial metal-supported photocatalyst particle AB according to claim 2.
前記抗菌性金属担持光触媒粒子ABの平均粒子径が1〜400nmである、請求項1〜3のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。   The antibacterial metal-loaded photocatalyst particles AB according to any one of claims 1 to 3, wherein the average particle diameter of the antibacterial metal-loaded photocatalyst particles AB is 1 to 400 nm. 前記抗菌性金属粒子Bが、金、銀、銅、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上である、請求項1〜4のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。   The antibacterial property according to any one of claims 1 to 4, wherein the antibacterial metal particle B is at least one selected from the group consisting of gold, silver, copper, a gold compound, a silver compound and a copper compound. Metal-supported photocatalyst particles AB. 前記抗菌性金属粒子Bの質量が、前記光触媒粒子Aの質量に対し、0.1〜10%の範囲にある、請求項1〜5のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。   The antibacterial metal-supported photocatalyst particle AB according to any one of claims 1 to 5, wherein the mass of the antibacterial metal particle B is in the range of 0.1 to 10% with respect to the mass of the photocatalyst particle A. . 抗菌性金属担持光触媒粒子AB中に、光触媒粒子Aの表面に担持されていない抗菌性金属粒子Cを含有し、その含有量が抗菌性金属担持光触媒粒子ABの全固形分に対して10〜3000ppmの範囲にある、請求項1〜6のいずれか一項に記載の抗菌性金属担持光触媒粒子AB。   The antibacterial metal-supporting photocatalyst particle AB contains the antibacterial metal particle C not supported on the surface of the photocatalyst particle A, and the content thereof is 10 to 3000 ppm with respect to the total solid content of the antibacterial metal-supporting photocatalyst particle AB The antimicrobial metal-loaded photocatalyst particle AB according to any one of claims 1 to 6, which is in the range of 前記抗菌性金属粒子Cが、金、銀、銅、金イオン、銀イオン、銅イオン、金化合物、銀化合物及び銅化合物からなる群より選択される1種以上である、請求項7に記載の抗菌性金属担持光触媒粒子AB。   The antibacterial metal particle C is one or more selected from the group consisting of gold, silver, copper, gold ion, silver ion, copper ion, gold compound, silver compound and copper compound. Antibacterial metal-loaded photocatalyst particles AB. 請求項1〜8のいずれか一項に記載の抗菌性金属担持光触媒粒子ABと、水と、コロイダルシリカとを含む組成物であって、組成物中に前記抗菌性金属担持光触媒粒子ABの固形分濃度が全固形分中の1〜30質量%であり、コロイダルシリカの固形分濃度が全固形分中の50〜99質量%である、光触媒組成物。   A composition comprising the antimicrobial metal-supporting photocatalyst particle AB according to any one of claims 1 to 8, water, and colloidal silica, wherein the solid content of the antimicrobial metal-supporting photocatalyst particle AB is in the composition. The photocatalyst composition whose fractional concentration is 1 to 30% by mass in the total solid content, and the solid content concentration of colloidal silica is 50 to 99% by mass in the total solid content. さらに重合体エマルジョン粒子Dを前記組成物中に、その全固形分の0〜30質量%の濃度で含む、請求項9に記載の光触媒組成物。   The photocatalyst composition according to claim 9, further comprising a polymer emulsion particle D in the composition at a concentration of 0 to 30% by mass of the total solid content. 請求項9又は10に記載の光触媒組成物から形成される光触媒塗膜。   A photocatalytic coating film formed from the photocatalytic composition according to claim 9 or 10. 請求項11に記載の光触媒塗膜と、前記光触媒塗膜を形成する組成物とは異なる組成物から得られる塗膜とを積層してなる光触媒塗膜。   The photocatalyst coating film formed by laminating | stacking the photocatalyst coating film of Claim 11, and the coating film obtained from the composition different from the composition which forms the said photocatalyst coating film. 請求項11又は12に記載の光触媒塗膜を備える光触媒塗装製品。   A photocatalyst-coated product comprising the photocatalyst coating film according to claim 11 or 12. 光触媒活性を有しない金属酸化物で表面を修飾した光触媒活性を有する光触媒粒子Aの水分散体と、金属イオンを含む水溶性金属化合物とを混合すること、及び
水溶性還元剤を添加して前記金属イオンを還元することで、抗菌性金属粒子Bを生成させて前記光触媒粒子Aに担持させること
を含む、請求項1〜8のいずれか一項に記載の抗菌性金属担持光触媒粒子ABの製造方法。
Mixing an aqueous dispersion of photocatalytic particles A having photocatalytic activity, the surface of which is modified with a metal oxide having no photocatalytic activity, and a water-soluble metal compound containing metal ions, and adding a water-soluble reducing agent The production of the antibacterial metal-supporting photocatalyst particle AB according to any one of claims 1 to 8, which comprises forming the antibacterial metal particle B and supporting the same on the photocatalyst particle A by reducing metal ions. Method.
JP2017235257A 2017-12-07 2017-12-07 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product Pending JP2019098297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235257A JP2019098297A (en) 2017-12-07 2017-12-07 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235257A JP2019098297A (en) 2017-12-07 2017-12-07 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product

Publications (1)

Publication Number Publication Date
JP2019098297A true JP2019098297A (en) 2019-06-24

Family

ID=66975010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235257A Pending JP2019098297A (en) 2017-12-07 2017-12-07 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product

Country Status (1)

Country Link
JP (1) JP2019098297A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332978A (en) * 2020-03-03 2021-09-03 夏普株式会社 Photocatalyst coating agent and spray product
WO2022070934A1 (en) * 2020-10-01 2022-04-07 Dic株式会社 Coating composition
CN114318856A (en) * 2020-10-09 2022-04-12 天津大学 Antibacterial fiber, preparation method and application
CN114534740A (en) * 2022-01-17 2022-05-27 广州广钢气体能源股份有限公司 Copper-manganese composite catalyst with three-dimensional porous structure and preparation method and application thereof
CN116462410A (en) * 2023-04-20 2023-07-21 清远市简一陶瓷有限公司 Negative ion antibacterial glaze, marble tile and preparation method thereof
CN117843277A (en) * 2024-03-04 2024-04-09 四川蜀道建筑科技有限公司 Anti-corrosion slump-retaining polycarboxylate superplasticizer, concrete and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192290A (en) * 1998-01-06 1999-07-21 Sekisui Chem Co Ltd Antibacterial material
JP2003327869A (en) * 2002-05-13 2003-11-19 Yoshiyuki Nagae Coating, paint and method for producing coating
JP2004346201A (en) * 2003-05-22 2004-12-09 Toto Ltd Aqueous coating composition, antibacterial member and method for forming coating film
KR20050103602A (en) * 2004-04-26 2005-11-01 (주) 엔피씨 Photocatalyst coating agent for indoor and preparation method thereof
JP2009161708A (en) * 2008-01-10 2009-07-23 Sasano Densen Kk Coating composition
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same
JP2016113417A (en) * 2014-12-16 2016-06-23 昭和電工株式会社 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192290A (en) * 1998-01-06 1999-07-21 Sekisui Chem Co Ltd Antibacterial material
JP2003327869A (en) * 2002-05-13 2003-11-19 Yoshiyuki Nagae Coating, paint and method for producing coating
JP2004346201A (en) * 2003-05-22 2004-12-09 Toto Ltd Aqueous coating composition, antibacterial member and method for forming coating film
KR20050103602A (en) * 2004-04-26 2005-11-01 (주) 엔피씨 Photocatalyst coating agent for indoor and preparation method thereof
JP2009161708A (en) * 2008-01-10 2009-07-23 Sasano Densen Kk Coating composition
WO2013002151A1 (en) * 2011-06-27 2013-01-03 昭和電工株式会社 Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same
JP2016113417A (en) * 2014-12-16 2016-06-23 昭和電工株式会社 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOVINDHAN, P. ET AL., JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS, vol. 27, JPN6021039895, 14 May 2016 (2016-05-14), pages 8778 - 8785, ISSN: 0004614642 *
LIU, C. ET AL., ACS APPLIED MATERIALS & INTERFACES, vol. 5, JPN6021039897, 3 April 2013 (2013-04-03), pages 3824 - 3832, ISSN: 0004614643 *
WANG, W. -N. ET AL., CATALYSIS SCIENCE & TECHNOLOGY, vol. 1, JPN6021039898, 2011, pages 593 - 600, ISSN: 0004614644 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332978A (en) * 2020-03-03 2021-09-03 夏普株式会社 Photocatalyst coating agent and spray product
US20210277253A1 (en) * 2020-03-03 2021-09-09 Sharp Kabushiki Kaisha Photocatalytic coating material and sprayer product
WO2022070934A1 (en) * 2020-10-01 2022-04-07 Dic株式会社 Coating composition
JPWO2022070934A1 (en) * 2020-10-01 2022-04-07
CN116322988A (en) * 2020-10-01 2023-06-23 Dic株式会社 Coating composition
CN114318856A (en) * 2020-10-09 2022-04-12 天津大学 Antibacterial fiber, preparation method and application
CN114318856B (en) * 2020-10-09 2024-05-03 天津大学 Antibacterial fiber, preparation method and application
CN114534740A (en) * 2022-01-17 2022-05-27 广州广钢气体能源股份有限公司 Copper-manganese composite catalyst with three-dimensional porous structure and preparation method and application thereof
CN114534740B (en) * 2022-01-17 2023-01-31 广州广钢气体能源股份有限公司 Copper-manganese composite catalyst with three-dimensional porous structure and preparation method and application thereof
CN116462410A (en) * 2023-04-20 2023-07-21 清远市简一陶瓷有限公司 Negative ion antibacterial glaze, marble tile and preparation method thereof
CN117843277A (en) * 2024-03-04 2024-04-09 四川蜀道建筑科技有限公司 Anti-corrosion slump-retaining polycarboxylate superplasticizer, concrete and preparation method thereof
CN117843277B (en) * 2024-03-04 2024-06-11 四川蜀道建筑科技有限公司 Anti-corrosion slump-retaining polycarboxylate superplasticizer, concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2019098297A (en) Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
JP6663375B2 (en) Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products
CN101384680B (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
KR102445099B1 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile type titanium oxide fine particle and use thereof
JP6866596B2 (en) Photocatalyst coating
JP2006083363A (en) Coating material and use of the same
JP4823045B2 (en) Water-based photocatalytic composition
JP3867382B2 (en) Photocatalyst-supported tent place canvas and structure using photocatalyst-supported tent place canvas
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
JP7023689B2 (en) Photocatalyst coating body and photocatalyst coating composition
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
JP4693949B2 (en) Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
JP2008307526A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP5252876B2 (en) Photocatalytic hydrosol and aqueous photocatalytic coating agent
JP6646603B2 (en) Multilayer coating, coating agent set, and painted body
JP7074556B2 (en) Coating film and water-based composition
JP2012233051A (en) Coating composition
WO2009123135A1 (en) Photocatalyst coating composition
JP2009101287A (en) Modified photocatalyst sol and its manufacturing method
JP2013220397A (en) Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2003073585A (en) Liquid for forming titania film, method for forming titania film, titania film and photocatalytic material
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220401