JP2013220397A - Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product - Google Patents

Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product Download PDF

Info

Publication number
JP2013220397A
JP2013220397A JP2012094477A JP2012094477A JP2013220397A JP 2013220397 A JP2013220397 A JP 2013220397A JP 2012094477 A JP2012094477 A JP 2012094477A JP 2012094477 A JP2012094477 A JP 2012094477A JP 2013220397 A JP2013220397 A JP 2013220397A
Authority
JP
Japan
Prior art keywords
photocatalyst
metal compound
coating film
resin
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012094477A
Other languages
Japanese (ja)
Inventor
Junichi Oguma
淳一 小熊
Kazuya Ota
一也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012094477A priority Critical patent/JP2013220397A/en
Publication of JP2013220397A publication Critical patent/JP2013220397A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalytic metal compound which exerts necessary photocatalytic activity without damaging a primer coating film.SOLUTION: A photocatalytic metal compound is used for a photocatalyst in which the value of [HO] generated when ultraviolet rays having a wavelength of 365 nm and a strength of 5 mW/cmare radiated to a predetermined suspension containing the metal compound for 60 seconds is not more than 80 μM, and the number of holes defined by low temperature ESR measurement is 1.5×10or more.

Description

本発明は、光触媒用金属化合物、光触媒組成物、光触媒塗膜及び光触媒塗装製品に関するものである。   The present invention relates to a metal compound for photocatalyst, a photocatalyst composition, a photocatalyst coating film, and a photocatalyst coating product.

近年、住宅及びビルなどの建築外壁に防汚性能を付与するために、光触媒塗料が実用化され、その光触媒塗料を建築外壁に塗布して光触媒塗膜を形成している。この光触媒塗料には、光触媒活性を発揮すべく光触媒活性を有する金属化合物材料が配合されている。そのような化合物のうち最も良く使われるのは二酸化チタン(TiO2)である。この二酸化チタンに光(紫外線)が当たると、励起電子と正孔を生成し、その生成した励起電子と正孔により、触媒表面での酸素と水分の存在下で、・O2 -及び・OH(「・」は不対電子を示し、これを付した化学種がラジカル種であることを意味する。)等の活性酸素種を生成する。正孔や生成した活性酸素種が、汚れ分解機能及び窒素酸化物除去機能等の重要な光触媒活性を発現している。しかし、活性酸素種は、光触媒塗料が塗られる基材の塗膜(以下、「下地塗膜」と記述する。)に対してもダメージを与える。そこで、下地塗膜と光触媒塗膜との間に、シリコーン樹脂に代表される保護層を設ける2層コートタイプの光触媒塗料が提案されている(特許文献1参照)。 In recent years, in order to impart antifouling performance to architectural outer walls such as houses and buildings, a photocatalytic coating has been put into practical use, and the photocatalytic coating is applied to the architectural outer wall to form a photocatalytic coating film. This photocatalyst coating material is mixed with a metal compound material having photocatalytic activity so as to exhibit photocatalytic activity. The most commonly used of these compounds is titanium dioxide (TiO 2 ). When light (UV) strikes the titanium dioxide to generate excited electrons and holes by the generated excited electrons and holes, in the presence of oxygen and water at the catalyst surface, · O 2 - and · OH (“·” Indicates an unpaired electron, meaning that the chemical species to which it is attached is a radical species). Holes and generated active oxygen species exhibit important photocatalytic activities such as a soil decomposition function and a nitrogen oxide removal function. However, the active oxygen species also damages the coating film (hereinafter referred to as “undercoat film”) of the base material to which the photocatalytic coating is applied. Therefore, a two-layer coat type photocatalyst coating in which a protective layer typified by a silicone resin is provided between the base coating and the photocatalytic coating has been proposed (see Patent Document 1).

特開2003−73610号公報JP 2003-73610 A

2層コートタイプの光触媒塗料の保護層として用いられるシリコーン樹脂などの膜は硬くて脆いため、その膜における微小な貫通クラックの発生を完全に防ぐことは不可能である。その結果、前述の活性酸素種がその貫通クラックを経由して下地塗膜にダメージを与えることを防ぐことはできなかった。また、2層コートタイプの光触媒塗料は、現場施工性に難がある。これらのことを改善するために、下地塗膜へのダメージを防止でき、かつ保護層が不要である1層コートタイプの光触媒塗料が待望されている。   Since a film such as a silicone resin used as a protective layer of a two-layer coat type photocatalyst paint is hard and brittle, it is impossible to completely prevent the occurrence of minute through cracks in the film. As a result, it was not possible to prevent the aforementioned active oxygen species from damaging the base coating film through the through cracks. Also, the two-layer coat type photocatalyst paint has difficulty in on-site workability. In order to improve these problems, a one-layer coat type photocatalyst paint that can prevent damage to the base coating film and does not require a protective layer is desired.

本発明は、上記のような1層コートタイプの光触媒塗料を実現するため、下地塗膜を損
傷することなく、かつ、必要な光触媒活性を発揮する光触媒用金属化合物、その金属化合物を含む光触媒組成物、光触媒塗膜、及び光触媒塗装製品を提供することを目的とする。
The present invention realizes such a one-layer coat type photocatalyst coating material as described above, and does not damage the base coating film, and exhibits a necessary photocatalytic activity, and a photocatalyst composition containing the metal compound. An object is to provide a product, a photocatalyst coating film, and a photocatalyst coating product.

本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。   As a result of intensive studies aimed at solving the above problems, the present inventors have reached the present invention.

すなわち、本発明は以下の通りである。
[1]光触媒として用いる金属化合物であって、前記金属化合物を含む所定の懸濁液に波長365nm、強度5mW/cm2の紫外光を60秒間照射した際に発生する〔H22〕の値が80μM以下であり、かつ、低温ESR測定によって定義される正孔量が1.5×1013個以上である光触媒用金属化合物。
[2]光触媒として用いる金属化合物であって、前記金属化合物を含む所定の懸濁液に波長365nm、強度5mW/cm2の紫外光を60秒間照射した際に発生する〔・OH〕の値が0.2μM以下であり、かつ、低温ESR測定によって定義される正孔量が1.5×1013個以上である光触媒用金属化合物。
[3]粒子表面を修飾処理した金属酸化物であることを特徴とした[1]又は[2]の光触媒用金属化合物。
[4]シリカで粒子表面を修飾処理した金属酸化物であることを特徴とした[1]又は[2]の光触媒用金属化合物。
[5][1]〜[4]のいずれか1つの光触媒用金属化合物と、樹脂と、を含む光触媒組成物。
[6]前記樹脂が、重合体粒子と、前記光触媒用金属化合物以外の金属酸化物の粒子と、を含む、[5]の光触媒組成物。
[7][5]又は[6]の光触媒組成物から形成された光触媒塗膜。
[8][7]の光触媒塗膜を備える光触媒塗装製品。
That is, the present invention is as follows.
[1] A metal compound used as a photocatalyst, which is generated when a predetermined suspension containing the metal compound is irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds [H 2 O 2 ] A metal compound for photocatalyst having a value of 80 μM or less and a hole amount defined by low temperature ESR measurement of 1.5 × 10 13 or more.
[2] A metal compound used as a photocatalyst, and a value of [.OH] generated when a predetermined suspension containing the metal compound is irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds. A metal compound for photocatalyst that is 0.2 μM or less and has an amount of holes defined by low-temperature ESR measurement of 1.5 × 10 13 or more.
[3] The metal compound for photocatalysts according to [1] or [2], which is a metal oxide having a modified particle surface.
[4] The metal compound for photocatalysts according to [1] or [2], which is a metal oxide whose particle surface is modified with silica.
[5] A photocatalytic composition comprising the photocatalyst metal compound according to any one of [1] to [4] and a resin.
[6] The photocatalyst composition according to [5], wherein the resin includes polymer particles and particles of a metal oxide other than the metal compound for photocatalyst.
[7] A photocatalyst coating film formed from the photocatalyst composition of [5] or [6].
[8] A photocatalyst-coated product comprising the photocatalyst coating film of [7].

本発明の光触媒用金属化合物を使用すれば、下地塗膜を損傷することなく、その上に保
護層が不要のまま必要な光触媒活性を発揮する光触媒層を設けることができ、現場施工性
に優れる1層コートタイプの光触媒塗料を提供することができる。
If the metal compound for photocatalysts of the present invention is used, a photocatalyst layer that exhibits the necessary photocatalytic activity can be provided on the base coating film without damaging the base coating film, and excellent on-site workability. A single-layer coating type photocatalytic coating can be provided.

光触媒用金属化合物のESRスペクトル例(暗黒下と紫外線照射下)Example of ESR spectrum of metal compound for photocatalyst (under dark and under UV irradiation) Weak pitchのESRスペクトル(紫外線照射下)Weak pitch ESR spectrum (under UV irradiation)

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳
細に説明する。
Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.

本実施形態の光触媒用金属化合物は、光触媒として用いる金属化合物であって、その金属化合物を含む所定の懸濁液に波長365nm、強度5mW/cm2の紫外光(以下、「特定紫外光」という。)を60秒間照射した際に発生する〔H22〕の値が80μM以下である。
本明細書において、「所定の懸濁液」とは、石英セル(光路(長さ)1cm×幅1cm)に、3.5mLの0.01M NaOH水溶液を注入し、そこに更に15mgの金属化合物の粉末を投入し攪拌して得られる懸濁液を指す。
The metal compound for photocatalyst of this embodiment is a metal compound used as a photocatalyst, and ultraviolet light (hereinafter referred to as “specific ultraviolet light”) having a wavelength of 365 nm and an intensity of 5 mW / cm 2 is applied to a predetermined suspension containing the metal compound. The value of [H 2 O 2 ] generated upon irradiation for 60 seconds is 80 μM or less.
In the present specification, the “predetermined suspension” means that 3.5 mL of 0.01 M NaOH aqueous solution is injected into a quartz cell (optical path (length) 1 cm × width 1 cm), and further 15 mg of a metal compound is added thereto. Is a suspension obtained by adding and stirring the powder.

下地塗膜を傷めないために、特定紫外光を照射した際に発生する活性酸素種量のうち、〔H22〕、すなわちオキシドール(過酸化水素)の値が80μM以下であることが必要であり、20μM以下であることが好ましく、10μM以下であることがより好ましい。ここで、紫外光とは400nm以下の波長領域のことをいう。また、μMはマイクロモーラーを表し、1μM=10--6M=10-6mol/Lのことである。 Of the amount of active oxygen species generated when irradiated with specific ultraviolet light, the value of [H 2 O 2 ], that is, oxidol (hydrogen peroxide) must be 80 μM or less so as not to damage the underlying coating film. It is preferably 20 μM or less, and more preferably 10 μM or less. Here, the ultraviolet light means a wavelength region of 400 nm or less. Further, μM represents a micromolar, and 1 μM = 10 −6 M = 10 −6 mol / L.

活性酸素種のうち、H22は、・OHのようなラジカル種に比べて、安定な物質であり、ラジカル種の寿命(1秒以下)に比べて長寿命であり、遠距離まで移動して下地塗膜を傷めてしまう。そこで、〔H22〕は小さいことが好ましい。すなわち、〔H22〕の値が80μM以下ということは、H22の発生量が少なく、下地塗膜が痛まない光触媒用金属化合物であることを意味する。一方、〔H22〕の値が80μMより大きい光触媒用金属化合物は、H22の発生量が多く、下地塗膜を痛めてしまう。 Of the active oxygen species, H 2 O 2 is a stable substance compared to radical species such as .OH, and has a long life compared to the lifetime of radical species (less than 1 second), and moves to a long distance. This will damage the undercoat. Therefore, [H 2 O 2 ] is preferably small. That is, that the value of [H 2 O 2 ] is 80 μM or less means that the amount of H 2 O 2 generated is small and the metal compound for photocatalyst does not hurt the base coating film. On the other hand, a metal compound for photocatalyst having a value of [H 2 O 2 ] larger than 80 μM generates a large amount of H 2 O 2 and damages the underlying coating film.

本実施形態の光触媒用金属化合物は、光触媒として用いる金属化合物であって、低温ESR(Electron spin resonance電子スピン共鳴)測定によって定義される正孔量が1.5×1013個以上である。光触媒塗料として用いる場合、必要な分解活性を発現するのは主に正孔による直接酸化である。必要な分解活性を発現するには正孔量が1.5×1013個以上であり、4.5×1013個以上であることが更に好ましい。 The metal compound for photocatalyst of this embodiment is a metal compound used as a photocatalyst, and the amount of holes defined by low temperature ESR (Electron spin resonance electron spin resonance) measurement is 1.5 × 10 13 or more. When used as a photocatalytic coating, it is mainly direct oxidation by holes that exhibits the necessary decomposition activity. In order to express the necessary decomposition activity, the hole amount is 1.5 × 10 13 or more, and more preferably 4.5 × 10 13 or more.

本実施形態の光触媒用金属化合物は、下地塗膜を傷めないために、特定紫外光を60秒間照射した際に発生する上記活性酸素種量のうち、〔・OH〕、すなわちヒドロキシルラジカルの値が0.2μM未満であることが好ましく、0.1μM未満であることがより好ましく、0.05μM未満であることが更に好ましい。ここで、紫外光とは400nm以下の波長領域のことをいう。また、μMはマイクロモーラーを表し、1μM=10-6M=10--6mol/Lのことである。 The metal compound for photocatalyst of the present embodiment has [· OH], that is, the value of hydroxyl radical, among the above active oxygen species generated when irradiated with specific ultraviolet light for 60 seconds so as not to damage the underlying coating film. It is preferably less than 0.2 μM, more preferably less than 0.1 μM, and even more preferably less than 0.05 μM. Here, the ultraviolet light means a wavelength region of 400 nm or less. Further, μM represents a micromolar, and 1 μM = 10 −6 M = 10 −6 mol / L.

活性酸素種のうち、・OHは、塗膜を痛める作用があるラジカル種である。すなわち、〔・OH〕の値が0.2μM未満ということは、・OHの発生量が少なく、下地塗膜が痛まない光触媒用金属化合物であることを意味する。一方、〔・OH〕の値が0.2μMより大きい光触媒用金属化合物は、・OHの発生量が多く、下地塗膜を痛めてしまう。   Of the active oxygen species, .OH is a radical species that acts to damage the coating film. That is, a value of [.OH] of less than 0.2 μM means that the amount of .OH generated is small and the base coating film is a metal compound for photocatalysis that does not hurt. On the other hand, a metal compound for photocatalyst having a value of [.OH] of more than 0.2 μM generates a large amount of .OH and damages the undercoat.

本実施形態の光触媒用金属化合物は、本発明による効果をより有効かつ確実に奏する観点から、上記2種の活性酸素種のうち少なくとも1種が上述の活性酸素種量の条件を満足することが好ましく、2種全てが上述の活性酸素種量の条件を満足することがより好ましい。   The metal compound for photocatalyst of the present embodiment may satisfy at least one of the above-mentioned two types of active oxygen species satisfies the above-mentioned condition of the amount of active oxygen species from the viewpoint of more effectively and surely achieving the effect of the present invention. Preferably, it is more preferable that all of the two types satisfy the above-mentioned conditions for the amount of active oxygen species.

上述の各活性酸素種量を上記範囲内に調整する方法としては、例えば、後述する、金属、金属錯体あるいは金属酸化物を粒子表面に修飾処理を施したりして、活性酸素種量を少なくする方法が挙げられる。メカニズムは完全には解明されていないが、表面修飾した物質により活性種が失活したり、トラップされていると考えられる。ただし、各活性酸素種量の調整方法はこれらに限定されない。   As a method of adjusting the amount of each active oxygen species within the above range, for example, a metal, metal complex or metal oxide, which will be described later, is modified on the particle surface to reduce the amount of active oxygen species. A method is mentioned. Although the mechanism is not completely elucidated, it is considered that the active species are inactivated or trapped by the surface-modified substance. However, the method for adjusting the amount of each active oxygen species is not limited to these.

22の定量は、ルシゲニン化学発光法を用いて行うことができる。暗箱内のマグネティックスターラ上に設置した石英セル(光路(長さ)1cm×幅1cm)に、3.5mLの0.01M NaOH水溶液を入れpH9に調整し、そこに更に15mgの金属化合物(光触媒)粉末(例えば、ゾルを乾燥して得られたもの。以下同様。)を投入し懸濁して懸濁液を得る。次いで、LED(Hamamatsu Photonics(浜松ホトニクス)社製、型番「LC−L2」、波長:365nm、強度5mW/cm2)を光源として、懸濁液が入った上記セルに60秒間の紫外光照射を行う。照射後、0.7mMのルシゲニン溶液を50μL添加し、H22によって生じた化学発光をバンドパスフィルターに通した後、電子冷却光電子増倍管で検出する。 H 2 O 2 can be quantified using the lucigenin chemiluminescence method. In a quartz cell (optical path (length) 1 cm x width 1 cm) placed on a magnetic stirrer in a dark box, 3.5 mL of 0.01 M NaOH aqueous solution is added to adjust pH 9 and further 15 mg of metal compound (photocatalyst) A powder (for example, obtained by drying a sol, the same applies hereinafter) is added and suspended to obtain a suspension. Next, using the LED (Hamamatsu Photonics), model number “LC-L2”, wavelength: 365 nm, intensity 5 mW / cm 2 ) as a light source, the cell containing the suspension was irradiated with ultraviolet light for 60 seconds. Do. After irradiation, 50 μL of a 0.7 mM lucigenin solution is added, and chemiluminescence generated by H 2 O 2 is passed through a bandpass filter, and then detected with an electron-cooled photomultiplier tube.

・OHの定量法は、クマリン蛍光プローブ法を用いて行うことができる。まず、0.1mMのクマリン水溶液を調製し、上記と同じ寸法の石英セル中に15mgのTiO2などの金属化合物(光触媒)粉末とクマリン水溶液35mLとを懸濁させて懸濁液を得る。この懸濁液に波長365nm、強度5mW/cm2のLED光を60秒照射する。次に、懸濁液からTiO2などの金属化合物(光触媒)粉末を分離するために、照射終了後の懸濁液にKClを0.5g添加し、24時間暗所に静置する。その後、上澄み液をとりサンプルとし、Fluorescence spectrophotometer(850型、HITACHI社製)で蛍光の測定をする(この時、KCl添加による蛍光測定時の光散乱は影響しないことを確認している。)。既知濃度のクマリンの蛍光強度を、上記サンプルの蛍光強度と比較することで・OHを定量する。 -The quantitative method of OH can be performed using the coumarin fluorescent probe method. First, a 0.1 mM aqueous solution of coumarin is prepared, and a suspension is obtained by suspending 15 mg of a metal compound (photocatalyst) powder such as TiO 2 and 35 mL of an aqueous solution of coumarin in a quartz cell having the same dimensions as described above. This suspension is irradiated with LED light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds. Next, in order to separate a metal compound (photocatalyst) powder such as TiO 2 from the suspension, 0.5 g of KCl is added to the suspension after the irradiation and left in a dark place for 24 hours. Thereafter, the supernatant is taken as a sample, and fluorescence is measured with a Fluorescence spectrophotometer (850 type, manufactured by HITACHI) (at this time, it has been confirmed that light scattering during the fluorescence measurement due to the addition of KCl has no effect). OH is quantified by comparing the fluorescence intensity of a known concentration of coumarin with the fluorescence intensity of the sample.

低温ESRの測定はBRUCKER社製ESP−30Eを用いて、真空中(0.1Torr)、77K、サンプル量20mg、暗黒下と紫外線照射下で行った。紫外線照射下のESRスペクトルから暗黒下のESRスペクトルを差し引いて差スペクトルから正孔積分値を算出した。Weak pitch(1013個)の積分値と比較することで正孔の個数を算出した。 The low temperature ESR was measured using ESP-30E manufactured by BRUCKER in a vacuum (0.1 Torr), 77K, a sample amount of 20 mg, under darkness and under ultraviolet irradiation. The hole integral value was calculated from the difference spectrum by subtracting the dark ESR spectrum from the ESR spectrum under ultraviolet irradiation. The number of holes was calculated by comparing with the integrated value of Weak pitch (10 13 pieces).

本実施形態の光触媒用金属化合物は、光触媒として用いる金属化合物であって、粒子表面を修飾処理した金属化合物であることが好ましい。修飾処理をしないとH22や・OH等の活性酸素種の発生量が多くなり、下地塗膜を傷めてしまう。修飾する物質としては、例えば、シリカ、アルミ、銅酸化物、鉄酸化物等が挙げられる。その中でも、シリカが特に好ましい。また、Fe、Cu、Al、Pt等の金属、または、塩化白金酸等の錯体で修飾しても同様の効果が得られる。 The metal compound for photocatalyst of this embodiment is a metal compound used as a photocatalyst, and is preferably a metal compound obtained by modifying the particle surface. If the modification treatment is not performed, the amount of active oxygen species such as H 2 O 2 and .OH increases, and the base coating film is damaged. Examples of the substance to be modified include silica, aluminum, copper oxide, and iron oxide. Among these, silica is particularly preferable. The same effect can be obtained by modification with a metal such as Fe, Cu, Al, Pt or a complex such as chloroplatinic acid.

シリカを修飾する方法としては、酸化チタンのスラリーにケイ素の化合物を添加し、中和等して含水酸化物を析出させる。ケイ素化合物としては、ケイ酸ナトリウム等の水溶性ケイ酸アルカリ金属塩を用いることができ、それらの中でも、ケイ酸ナトリウムは、無色であり、酸化チタンゾルが着色しないので好ましい。ケイ素の含水酸化物の処理量は、酸化チタンに対して酸化物基準で3 〜 2 5 質量% が好ましく、5 〜 20質量% がより好ましい。処理量が前記範囲より少ないと、活性酸素種量が多くなり下地塗膜を傷めてしまい好ましくない。また、処理量が前記範囲より多いと、逆に酸化チタンが凝集し、ゾルの粘度が上昇しやすく、分散性が悪化し、透明性に優れたものが得られ難いため好ましくない。   As a method for modifying silica, a silicon compound is added to a slurry of titanium oxide, and a hydrous oxide is precipitated by neutralization or the like. As the silicon compound, a water-soluble alkali metal silicate such as sodium silicate can be used. Among them, sodium silicate is preferable because it is colorless and the titanium oxide sol is not colored. The treatment amount of the hydrous oxide of silicon is preferably 3 to 25% by mass, more preferably 5 to 20% by mass based on the oxide based on titanium oxide. When the treatment amount is less than the above range, the amount of active oxygen species is increased, and the base coating film is damaged, which is not preferable. On the other hand, when the treatment amount is larger than the above range, titanium oxide is aggregated conversely, the viscosity of the sol tends to increase, the dispersibility is deteriorated, and it is difficult to obtain a product having excellent transparency, which is not preferable.

光触媒用金属化合物としては、例えば、TiO2、ZnO、SrTiO3、CdS、GaP、InP、GaAs、BaTiO3、BaTiO4、BaTi49、K2NbO3、Nb25、Fe23、Ta25、K3Ta3Si23、WO3、SnO2、Bi23、BiVO4、NiO、Cu2O、SiC、MoS2、InPb、RuO2、及びCeO2が挙げられる。これらの中では、光触媒活性がより良好である観点から、金属酸化物が好ましい。 Examples of the photocatalytic metal compound include TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , BaTiO 4 , BaTi 4 O 9 , K 2 NbO 3 , Nb 2 O 5 , Fe 2 O 3. , Ta 2 O 5, K 3 Ta 3 Si 2 O 3, WO 3, SnO 2, Bi 2 O 3, BiVO 4, NiO, Cu 2 O, SiC, MoS 2, InPb, RuO 2, and CeO 2 can be mentioned It is done. Among these, metal oxides are preferable from the viewpoint of better photocatalytic activity.

本実施形態の光触媒用金属化合物としては、安全性及びコストの観点から酸化チタンが好ましい。酸化チタンにはアナターゼ型、ルチル型、ブルッカイト型の結晶構造があるが、いずれも使用できる。   As a metal compound for photocatalysts of this embodiment, titanium oxide is preferable from the viewpoint of safety and cost. Titanium oxide has anatase, rutile and brookite crystal structures, any of which can be used.

本実施形態に係る光触媒用金属化合物は、光触媒としての性能を向上させる観点及び良好な分散性を示す観点から、その一次粒子径が平均(相加平均)で1〜400nmの範囲にあることが好ましく、1〜100nmの範囲にあることがより好ましく、5〜50nmの範囲であることが更に好ましい。なお、光触媒用金属化合物の粒子形状がロッド形状等の長径と短径とを有する場合、その長径及び短径の相加平均が上記範囲内にあると好ましい。光触媒用金属化合物の一次粒子径は、任意に選択された50個の粒子を電子顕微鏡観察により測定し、それらの相加平均として導出される。   The metal compound for photocatalyst according to the present embodiment may have an average (arithmetic average) primary particle diameter in the range of 1 to 400 nm from the viewpoint of improving the performance as a photocatalyst and exhibiting good dispersibility. Preferably, it is in the range of 1 to 100 nm, more preferably in the range of 5 to 50 nm. In addition, when the particle shape of the metal compound for photocatalysts has a major axis and a minor axis such as a rod shape, the arithmetic average of the major axis and minor axis is preferably within the above range. The primary particle diameter of the metal compound for photocatalyst is derived as an arithmetic average of 50 arbitrarily selected particles measured by electron microscope observation.

本発明の光触媒組成物に使用できる樹脂としては、全ての合成樹脂及び天然樹脂が使用可能である。また、その形態については、ペレットであっても溶媒に溶解あるいは分散した形態であっても良く、特に制限はないが、コーティング用としての樹脂塗料の形態が最も好ましい。  As the resin that can be used in the photocatalyst composition of the present invention, all synthetic resins and natural resins can be used. Further, the form may be a pellet or a form dissolved or dispersed in a solvent, and there is no particular limitation, but the form of a resin paint for coating is most preferable.

本実施形態に係る樹脂としては特に制限はなく、全ての合成樹脂及び天然樹脂が使用可能である。また、その形態については、ペレットであっても溶媒に溶解あるいは分散した形態であっても良く、特に制限はないが、コーティング用としての樹脂塗料の形態が最も好ましい。樹脂塗料の例としては、油性塗料、ラッカー、溶剤系合成樹脂塗料(アクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、フッ素樹脂系、シリコーン−アクリル樹脂系、アルキド樹脂系、アミノアルキド樹脂系、ビニル樹脂系、不飽和ポリエステル樹脂系、塩化ゴム系等)、水系合成樹脂塗料(エマルジョン系、水性樹脂系等)、無溶剤合成樹脂塗料(粉体塗料等)、無機質塗料、電気絶縁塗料等を挙げることができる。   The resin according to this embodiment is not particularly limited, and all synthetic resins and natural resins can be used. Further, the form may be a pellet or a form dissolved or dispersed in a solvent, and there is no particular limitation, but the form of a resin paint for coating is most preferable. Examples of resin paints include oil-based paints, lacquers, solvent-based synthetic resin paints (acrylic resins, epoxy resins, urethane resins, fluororesins, silicone-acrylic resins, alkyd resins, aminoalkyd resins, vinyl. Resin-based, unsaturated polyester resin-based, chlorinated rubber-based, etc.), water-based synthetic resin coatings (emulsion-based, water-based resin-based, etc.), solvent-free synthetic resin coatings (powder coatings, etc.), inorganic coatings, electrical insulation coatings, etc. be able to.

これらの樹脂塗料の中で、光触媒に対し難分解性であるシリコーン系樹脂やフッ素系樹脂、さらにはシリコーン系樹脂とフッ素系樹脂の併用系の樹脂塗料が好ましく用いられる。   Among these resin coatings, silicone resins and fluorine resins that are hardly decomposable with respect to the photocatalyst, and a combination resin coating of a silicone resin and a fluorine resin are preferably used.

このようなシリコーン系樹脂としては、例えばアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカ、さらにはシリコーン含有量1〜80質量%のアクリル−シリコーン樹脂、エポキシ−シリコーン樹脂、ウレタン−シリコーン樹脂やアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカを1〜80質量%含有する樹脂等が挙げられる。これらのシリコーン系樹脂は、溶剤に溶けたタイプ、分散タイプ、粉体タイプのいずれであっても良く、また架橋剤、触媒等の添加剤が含まれていても良い。   Examples of such silicone resins include alkoxysilanes and / or organoalkoxysilanes, their hydrolysis products (polysiloxanes) and / or colloidal silica, and acrylic-silicone resins having a silicone content of 1 to 80% by mass. , An epoxy-silicone resin, a urethane-silicone resin, an alkoxysilane and / or an organoalkoxysilane, a hydrolysis product thereof (polysiloxane) and / or a resin containing 1 to 80% by mass of colloidal silica. These silicone resins may be any of a solvent-soluble type, a dispersion type, and a powder type, and may contain additives such as a crosslinking agent and a catalyst.

本実施形態に係る上記光触媒用金属化合物以外の金属酸化物粒子としては、例えば、二酸化ケイ素(シリカ)粒子、酸化アルミニウム(アルミナ)粒子、珪酸カルシウム粒子、酸化マグネシウム粒子、酸化アンチモン粒子、酸化ジルコニウム粒子及びそれらの複合酸化物粒子が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。それらの中でも、表面水酸基が多く、金属酸化物粒子の表面積が大きくなり、金属酸化物粒子同士の結合、又は金属酸化物と重合体粒子との結合を強固にするという観点から、二酸化ケイ素粒子、酸化アルミニウム粒子、酸化アンチモン粒子及びそれらの複合酸化物粒子が好ましく、二酸化ケイ素を基本単位とするシリカの溶媒中の分散体であるコロイダルシリカ粒子がより好ましい。   Examples of the metal oxide particles other than the metal compound for photocatalyst according to the present embodiment include silicon dioxide (silica) particles, aluminum oxide (alumina) particles, calcium silicate particles, magnesium oxide particles, antimony oxide particles, and zirconium oxide particles. And composite oxide particles thereof. These are used singly or in combination of two or more. Among them, from the viewpoint of increasing the surface hydroxyl groups, increasing the surface area of the metal oxide particles, and strengthening the bond between the metal oxide particles or the bond between the metal oxide and the polymer particles, the silicon dioxide particles, Aluminum oxide particles, antimony oxide particles and composite oxide particles thereof are preferable, and colloidal silica particles which are a dispersion in a solvent of silica having silicon dioxide as a basic unit are more preferable.

コロイダルシリカは、ゾル−ゲル法で調製して使用することもでき、市販品を利用することもできる。ゾル−ゲル法で調製する場合には、Werner Stober etal;J.Colloid and Interface Sci.,26,62−69(1968)、Rickey D.Badley et al;Lang muir 6,792−801(1990)、色材協会誌,61[9]488−493(1988)などを参照することができる。水を分散媒体とする酸性のコロイダルシリカとしては、例えば、市販品として日産化学工業(株)製スノーテックス(商標)−O、スノーテックス−OS、旭電化工業(株)製アデライト(商標)AT−20Q、クラリアントジャパン(株)製クレボゾール(商標)20H12、クレボゾール30CAL25などが利用できる。   Colloidal silica can be prepared and used by a sol-gel method, and a commercially available product can also be used. For preparation by the sol-gel method, Werner Stober et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D .; Badley et al; Lang muir 6, 792-801 (1990), Color Material Association Journal, 61 [9] 488-493 (1988), and the like. Examples of the acidic colloidal silica using water as a dispersion medium include, as commercial products, Snowtex (trademark) -O manufactured by Nissan Chemical Industries, Ltd., Snowtex-OS, Adelite (trademark) AT manufactured by Asahi Denka Kogyo Co., Ltd. -20Q, Clariant Japan Co., Ltd. clebosol (trademark) 20H12, clebosol 30CAL25, etc. can be used.

塩基性のコロイダルシリカとしては、アルカリ金属イオン、アンモニウムイオン、アミンの添加で安定化したシリカがあり、例えば、日産化学工業(株)製スノーテックス−20、スノーテックス−30、スノーテックス−C、スノーテックス−C30、スノーテックス−CM40、スノーテックス−N、スノーテックス−N30、スノーテックス−K、スノーテックス−XL、スノーテックス−YL、スノーテックス−ZL、スノーテックスPS−M、スノーテックスPS−Lなど;旭電化工業(株)製アデライトAT−20、アデライトAT−30、アデライトAT−20N、アデライトAT−30N、アデライトAT−20A、アデライトAT−30A、アデライトAT−40、アデライトAT−50など;クラリアントジャパン(株)製クレボゾール30R9、クレボゾール30R50、クレボゾール50R50など、デュポン社製ルドックス(商標)HS−40、ルドックスHS−30、ルドックスLS、ルドックスSM−30を挙げることができる。   Examples of basic colloidal silica include silica stabilized by addition of alkali metal ions, ammonium ions, and amines, such as SNOWTEX-20, SNOWTEX-30, SNOWTEX-C, manufactured by Nissan Chemical Industries, Ltd. SNOWTEX-C30, SNOWTEX-CM40, SNOWTEX-N, SNOWTEX-N30, SNOWTEX-K, SNOWTEX-XL, SNOWTEX-YL, SNOWTEX-ZL, SNOWTEX PS-M, SNOWTEX PS- L, etc .; Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT-30A, Adelite AT-40, Adelite AT-50, etc. manufactured by Asahi Denka Kogyo Co., Ltd. ; Clariant Japan Co., Ltd. Ltd. Kurebozoru 30R9, Kurebozoru 30R50, such Kurebozoru 50R50, DuPont Ludox (TM) HS-40, Ludox HS-30, Ludox LS, mention may be made of Ludox SM-30.

また、水溶性溶媒を分散媒体とするコロイダルシリカとしては、例えば、日産化学工業(株)製MA−ST−M(粒子径が20〜25nmのメタノール分散タイプ)、IPA−ST(粒子径が10〜15nmのイソプロピルアルコール分散タイプ)、EG−ST(粒子径が10〜15nmのエチレングリコール分散タイプ)、EG−ST−ZL(粒子径が70〜100nmのエチレングリコール分散タイプ)、NPC−ST(粒子径が10〜15nmのエチレングリコールモノプロピルエーテール分散タイプ)を挙げることができる。   Further, as colloidal silica using a water-soluble solvent as a dispersion medium, for example, MA-ST-M (methanol dispersion type having a particle diameter of 20 to 25 nm), IPA-ST (particle diameter of 10) manufactured by Nissan Chemical Industries, Ltd. ˜15 nm isopropyl alcohol dispersion type), EG-ST (ethylene glycol dispersion type with particle diameter of 10 to 15 nm), EG-ST-ZL (ethylene glycol dispersion type with particle diameter of 70 to 100 nm), NPC-ST (particles) And ethylene glycol monopropyl ether dispersion type) having a diameter of 10 to 15 nm.

また、これらコロイダルシリカは1種又は2種類以上組み合わせてもよい。コロイダルシリカは、少量成分として、アルミナ、アルミン酸ナトリウムなどを含んでいてもよい。また、コロイダルシリカは、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や有機塩基(テトラメチルアンモニウムなど)を含んでいてもよい。金属酸化物粒子の粒子径は、平均で100nm以下であることが好ましい。さらに好ましくは、50nm以下であり、よりさらに好ましくは20nmである。粒子径が平均で10nm以下の金属酸化物粒子を用いると、得られる光触媒塗膜の透明性が非常に高く、最も好ましい。金属酸化物粒子の粒子径(数平均粒子径)は、下記実施例に記載の方法に準拠して測定される。   These colloidal silicas may be used alone or in combination of two or more. Colloidal silica may contain alumina, sodium aluminate or the like as a minor component. Colloidal silica may contain an inorganic base (such as sodium hydroxide, potassium hydroxide, lithium hydroxide, or ammonia) or an organic base (such as tetramethylammonium) as a stabilizer. The average particle diameter of the metal oxide particles is preferably 100 nm or less. More preferably, it is 50 nm or less, More preferably, it is 20 nm. When metal oxide particles having an average particle size of 10 nm or less are used, the resulting photocatalyst coating film has very high transparency and is most preferable. The particle diameter (number average particle diameter) of the metal oxide particles is measured according to the method described in the following examples.

本実施形態の光触媒塗膜の膜厚は特に限定されないが、0.05〜100μmであることが好ましく、0.1〜10μmであることがより好ましく、1.0〜2.5μmであることが更に好ましい。この厚さが100μm以下であることにより、良好な透明性を確保することができ、0.05μm以上であることにより、防汚性、光触媒活性等の機能をより有効に発現することができる。   Although the film thickness of the photocatalyst coating film of this embodiment is not specifically limited, It is preferable that it is 0.05-100 micrometers, It is more preferable that it is 0.1-10 micrometers, It is 1.0-2.5 micrometers. Further preferred. When the thickness is 100 μm or less, good transparency can be secured, and when the thickness is 0.05 μm or more, functions such as antifouling properties and photocatalytic activity can be more effectively expressed.

本実施形態の光触媒塗膜には、そこに含まれる各粒子の分散安定性の観点から、分散安定剤が含まれていてもよい。分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群から選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、アクリル樹脂に代表される合成若しくは天然の各種の高分子物質が挙げられる。分散安定剤は、1種を単独で又は2種以上を混合して用いられる。   The photocatalyst coating film of the present embodiment may contain a dispersion stabilizer from the viewpoint of dispersion stability of each particle contained therein. Examples of the dispersion stabilizer include various water-soluble oligomers selected from the group consisting of polycarboxylic acids and sulfonates, polyvinyl alcohol, hydroxyethyl cellulose, starch, maleated polybutadiene, maleated alkyd resin, polyacrylic acid (salt ), Various synthetic or natural polymer materials represented by polyacrylamide and acrylic resins. A dispersion stabilizer is used individually by 1 type or in mixture of 2 or more types.

また、本実施形態の光触媒塗膜には、その用途及び使用方法などに応じて、通常の塗料や成型用樹脂に添加配合される成分、例えば、溶剤、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調製剤等が含まれていてもよい。   In addition, the photocatalyst coating film of the present embodiment has components added to and blended with ordinary paints and molding resins, for example, a solvent, a thickener, a leveling agent, and a thixotropic agent, depending on the application and method of use. , Antifoaming agent, Freezing stabilizer, Matting agent, Crosslinking reaction catalyst, Pigment, Curing catalyst, Crosslinking agent, Filler, Anti-skinning agent, Dispersant, Wetting agent, Light stabilizer, Antioxidant, UV absorber , Rheology control agent, antifoaming agent, film forming aid, rust preventive agent, dye, plasticizer, lubricant, reducing agent, preservative, antifungal agent, deodorant, anti-yellowing agent, antistatic agent or A charge adjusting agent or the like may be contained.

本実施形態の光触媒塗膜は、光触媒組成物を基体又は基体を被覆するコーティングの表面に塗布して乾燥することにより得られる。光触媒組成物を塗布する基体材料としては、例えば合成樹脂、天然樹脂、繊維に代表される有機基材、金属、セラミックス、ガラス、石、セメント、コンクリートに代表される無機基材や、それらの組み合わせが挙げられる。   The photocatalyst coating film of this embodiment is obtained by applying the photocatalyst composition to the surface of a substrate or a coating covering the substrate and drying it. Examples of the base material on which the photocatalyst composition is applied include organic substrates represented by synthetic resins, natural resins, fibers, inorganic substrates represented by metals, ceramics, glass, stone, cement, concrete, and combinations thereof. Is mentioned.

上記合成樹脂としては、熱可塑性樹脂及び硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)が挙げられる。その具体例としては、例えばシリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂が挙げられる。また、上記天然樹脂としては、例えば、セルロース系樹脂、天然ゴムに代表されるイソプレン系樹脂、カゼインに代表されるタンパク質系樹脂が
挙げられる。
Examples of the synthetic resin include thermoplastic resins and curable resins (thermosetting resins, photocurable resins, moisture curable resins, and the like). Specific examples include silicone resin, acrylic resin, methacrylic resin, fluorine resin, alkyd resin, aminoalkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, polycarbonate. Resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfone resin polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin, A silicone-acrylic resin is mentioned. Examples of the natural resin include cellulose resins, isoprene resins typified by natural rubber, and protein resins typified by casein.

基体が樹脂板や繊維である場合、その表面は、コロナ放電処理やフレーム処理、プラズマ処理等の表面処理がされていてもよいが、これらの表面処理は必須ではない。   When the substrate is a resin plate or fiber, the surface thereof may be subjected to a surface treatment such as a corona discharge treatment, a flame treatment, or a plasma treatment, but these surface treatments are not essential.

本実施形態の光触媒塗膜は、光触媒組成物をその用途等に応じて、任意の方法で塗布され得られる。塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法が挙げられる。   The photocatalyst coating film of the present embodiment can be applied by any method according to the use of the photocatalyst composition. Examples of the application method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, screen printing, casting, gravure printing, and flexographic printing.

本実施形態の光触媒塗膜は、光触媒組成物を塗布した後、乾燥して揮発分を除去することにより得られる。この際、例えば、20℃〜80℃の低温で乾燥した後、所望により、好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理を行ってもよく、紫外線照射等を行ってもよい。   The photocatalyst coating film of this embodiment is obtained by applying a photocatalyst composition and then drying to remove volatile components. At this time, for example, after drying at a low temperature of 20 ° C. to 80 ° C., heat treatment at 20 ° C. to 500 ° C., more preferably 40 ° C. to 250 ° C. may be performed as desired, and ultraviolet irradiation or the like is performed. Also good.

本実施形態の光触媒製品は、基体と、その基体上に形成された上記光触媒塗膜とを備えるものである。この光触媒塗装製品は、本実施形態の光触媒塗膜を備える他は公知の態様と同様であればよい。本実施形態の光触媒塗装製品の具体例としては、例えば、建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、住宅等建築設備、車両用照明灯のカバー、窓ガラス、機械装置や物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用、鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等の外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装が挙げられる。この光触媒塗装製品は、基体の表面に光触媒組成物を塗布し乾燥し、基体上に光触媒塗膜を形成することによって得てもよいが、その製造方法はこれに限定されない。例えば、基体と光触媒塗膜とを同時に成形してもよく、より具体的には一体成形してもよい。   The photocatalyst product of the present embodiment includes a substrate and the photocatalyst coating film formed on the substrate. The photocatalyst-coated product may be the same as the known embodiment except that the photocatalyst coating film of the present embodiment is provided. Specific examples of the photocatalyst-coated product of the present embodiment include, for example, building materials, building exteriors, building interiors, window frames, window glass, structural members, building facilities such as houses, vehicle illumination lamp covers, window glass, mechanical devices, Exterior of goods, dustproof cover and painting, display equipment, its covers, traffic signs, various display devices, display objects such as advertising towers, sound insulation walls for roads and railways, bridges, exterior and painting of guardrails, tunnel interior and painting , Electronic parts used outside such as insulators, solar battery covers, solar water heater heat collection covers, etc., and exterior parts of electrical equipment, especially exteriors such as transparent members, greenhouses and greenhouses. This photocatalyst-coated product may be obtained by applying a photocatalyst composition on the surface of a substrate and drying it to form a photocatalyst coating film on the substrate, but the production method is not limited thereto. For example, the substrate and the photocatalyst coating film may be molded at the same time, and more specifically, may be integrally molded.

また、本実施形態の光触媒塗膜をある基体上に成形した後、その光触媒塗膜をその基体から剥離させた又はその基体と密着させた状態で、別の基体に接着、融着等により密着させてもよい。   In addition, after the photocatalyst coating film of the present embodiment is formed on a substrate, the photocatalyst coating film is adhered to another substrate by adhesion, fusion, or the like in a state where the photocatalyst coating film is peeled off or adhered to the substrate. You may let them.

本実施形態は、下地塗膜を損傷することなく、かつ、必要な光触媒活性を発揮する光触媒用金属化合物を選択する方法として、化学発光法と低温ESRを組み合わせるものである。化学発光法とは、前述したルシゲニン化学発光法、クマリン蛍光プローブ法など、生じた化学発光により、遠距離まで移動して下地塗膜を傷めてしまう活性酸素種を定量するものである。低温ESRとは、前述したとおり、光触媒塗料として必要な分解活性を発現する正孔を定量できる方法である。下地塗膜の損傷と光触媒塗料としての活性は、光触媒組成物を塗布して塗膜を評価する必要があった。しかし、化学発光法と低温ESRを組み合わせる本法によれば、手間の係る塗料化、塗膜作成、長期の耐候性試験の必要がなく、「下地塗膜を損傷することなく、かつ、必要な光触媒活性を発揮する」光触媒用金属化合物を容易に選択することができる。   In the present embodiment, a chemiluminescence method and a low temperature ESR are combined as a method for selecting a metal compound for photocatalyst that exhibits the necessary photocatalytic activity without damaging the underlying coating film. The chemiluminescence method quantifies reactive oxygen species that move to a long distance and damage the underlying coating film by the generated chemiluminescence, such as the aforementioned lucigenin chemiluminescence method and coumarin fluorescent probe method. As described above, the low temperature ESR is a method capable of quantifying holes that exhibit a decomposition activity necessary as a photocatalytic coating. The damage to the undercoat and the activity as a photocatalyst coating required that the photocatalyst composition be applied to evaluate the coat. However, according to this method, which combines chemiluminescence method and low temperature ESR, there is no need for troublesome paint preparation, coating film preparation, and long-term weather resistance test. A metal compound for photocatalyst that exhibits photocatalytic activity can be easily selected.

以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said this embodiment. The present invention can be variously modified without departing from the gist thereof.

以下の実施例、参考例及び比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。各種の物性は以下に示す方法で測定した。   The following examples, reference examples and comparative examples will specifically explain the present invention, but these do not limit the scope of the present invention. Various physical properties were measured by the following methods.

1.H22の定量
上記1と同様にして得られた懸濁液に、上記と同じ装置で同様に紫外光照射後、30分間、・O2 -の消失を待ち、その後、7mMのルミノール溶液を懸濁液に50μL添加した
。更に10分後、6.2μMのヘモグロビン溶液を懸濁液に50μL添加し、生じた化学
発光を検出し、〔H22〕の値を導出した。
1. Quantitative determination of H 2 O 2 The suspension obtained in the same manner as in 1 above was irradiated with ultraviolet light in the same manner as above, and after waiting for disappearance of O 2 for 30 minutes, a 7 mM luminol solution was then added. Was added to the suspension. Ten minutes later, 50 μL of a 6.2 μM hemoglobin solution was added to the suspension, and the resulting chemiluminescence was detected to derive the value of [H 2 O 2 ].

2.・OHの定量
0.1mMのクマリン水溶液を調製し、上記と同じ寸法の石英セル中に15mgの金属化合物(光触媒)粉末とクマリン水溶液35mLとを懸濁させて懸濁液を得た。この懸濁液に波長365nm、強度32mW/cm2のLED光を120秒照射した。次に、懸濁液から金属化合物(光触媒)粉末を分離するために、照射終了後の懸濁液にKClを0.5g添加し、24時間暗所に静置した。その後、上澄み液をとりサンプルとし、Fluorescence spectrophotometer(型番「RF−5300PC」、SHIMADZU社製)で蛍光の測定をした。この時、KCl添加による蛍光測定時の光散乱は影響しなかった。既知濃度のクマリンの蛍光強度を、上記サンプルの蛍光強度と比較することで・OHを定量し、〔・OH〕の値を導出した。
2. -Determination of OH A 0.1 mM coumarin aqueous solution was prepared, and 15 mg of a metal compound (photocatalyst) powder and 35 mL of a coumarin aqueous solution were suspended in a quartz cell having the same dimensions as described above to obtain a suspension. This suspension was irradiated with LED light having a wavelength of 365 nm and an intensity of 32 mW / cm 2 for 120 seconds. Next, in order to separate the metal compound (photocatalyst) powder from the suspension, 0.5 g of KCl was added to the suspension after the irradiation, and the mixture was allowed to stand in the dark for 24 hours. Thereafter, the supernatant was taken as a sample, and fluorescence was measured with a Fluorescence spectrophotometer (model number “RF-5300PC”, manufactured by SHIMADZU). At this time, light scattering at the time of fluorescence measurement by addition of KCl did not affect. By comparing the fluorescence intensity of a coumarin having a known concentration with the fluorescence intensity of the sample, .OH was quantified to derive a value of [.OH].

3.正孔の定量
BRUCKER社製ESP−30Eを用いて、真空中(0.1Torr)、77K、サンプル量20mg、暗黒下と紫外線照射下で行った。紫外線照射下のESRスペクトルから暗黒下のESRスペクトルを差し引いて差スペクトルから正孔積分値を算出した。Weak pitch(1013個)の積分値と比較することで正孔の個数を算出した。
3. Hole quantification
Using ESP-30E manufactured by BRUCKER, vacuum (0.1 Torr), 77K, sample amount 20 mg, darkness and ultraviolet irradiation were performed. The hole integral value was calculated from the difference spectrum by subtracting the dark ESR spectrum from the ESR spectrum under ultraviolet irradiation. The number of holes was calculated by comparing with the integrated value of Weak pitch (10 13 pieces).

4.表面修飾物の定量
蛍光X線分析装置を用いて、理論と基礎定数Fundamental Parameter(FP)により定量分析を行なうFP法にて定量を行った。
4). Quantification of surface modification products Quantification was performed by the FP method, which uses a fluorescent X-ray analyzer to perform quantitative analysis using the theory and fundamental parameters (FP).

5.数平均粒子径
試料中の固形分含有量が1〜20質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日本国日機装製マイクロトラックUPA−9230)を用いて測定した。
5. Number average particle diameter A sample was appropriately diluted by adding a solvent so that the solid content in the sample was 1 to 20% by mass, and measured using a wet particle size analyzer (Microtrac UPA-9230, manufactured by Nihon Koki Co., Ltd.).

6.塗膜膜厚
塗膜の膜厚を、ハロゲン光源装置(MORITEX社製、商品名「MHF−D100LR」)を装着した膜厚測定装置(SPECTRA・COOP社製、商品名「HandyLambda II THICKNESS」)を用いて測定した。
6). Film thickness The film thickness was measured using a film thickness measuring device (SPECTRA COOP, trade name “HandyLambda II THICKNESS”) equipped with a halogen light source device (MORITEX, trade name “MHF-D100LR”). And measured.

7.外観(色差)
カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。
7. Appearance (color difference)
The color difference from the standard plate was determined using a color guide (BYK Gardner).

8.耐候性(SWOM5000時間曝露後の色差)
スガ試験機社製のサンシャインウエザーメーターを用いて曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行い、曝露前と曝露開始5000時間後との間での色差を上記7の方法で測定し、曝露前の色差を標準とし、曝露前後の状態変化をΔEとして評価した。
○ :ΔE*が3未満
× :ΔE*が3以上。
8). Weather resistance (color difference after exposure to SWOM5000 hours)
Using the sunshine weather meter manufactured by Suga Test Instruments Co., Ltd., an exposure test (black panel temperature 63 ° C., rainfall 18 minutes / 2 hours) is performed, and the color difference between the exposure before and 5000 hours after the start of the exposure is calculated as described in 7 above. The color difference before exposure was used as a standard, and the state change before and after exposure was evaluated as ΔE.
○: ΔE * is less than 3 ×: ΔE * is 3 or more.

9. 下地塗膜劣化観察
試料をエポキシ樹脂(商品名、Quetol812)に包埋後、独国Reichert社製ULTRACUT−N型ミクロトーム(商品名)により50〜60nmの厚さの超薄切片を作成し、支持膜を張ったメッシュに積載した後、カーボン蒸着を行い、検鏡用試料とし、TEM(日立製HF2000型、加速電圧:125kV)により塗膜断面の観察を行い、下地塗膜の劣化状態を評価した。
○ :下地塗膜の劣化が観察されない。
○△:下地塗膜の劣化が極僅かに観察されるが、全体的には問題ないと判断される。
△ :下地塗膜の劣化が一部観察される。
× :下地塗膜の劣化が全体的に観察される。
9. Observation of underlying coating film deterioration After embedding the sample in an epoxy resin (trade name, Quetol 812), an ultrathin section having a thickness of 50 to 60 nm was prepared and supported by a ULTRACUT-N microtome (trade name) manufactured by Reichert, Germany. After loading on a mesh with a film attached, carbon deposition is carried out to make a sample for microscopy, and the cross-section of the coating film is observed with a TEM (HITACHI HF2000 type, acceleration voltage: 125 kV) to evaluate the deterioration state of the underlying coating film. did.
○: Deterioration of the base coating film is not observed.
◯: Deterioration of the base coating film is observed slightly, but it is judged that there is no problem as a whole.
Δ: Some deterioration of the base coating film is observed.
X: Deterioration of the base coating film is observed as a whole.

10.光触媒活性(色素分解活性)
JIS R1703-2に準拠して求めた.試験片浄化条件は照度1mW/cm2で24時間照射、メチレンブルー吸着条件は吸着液濃度0.02mMで吸着時間24時間、メチレンブルーの分解測定条件は照度1mW/cm2、試験液濃度0.01mM、注入量35mL、照射後に採取した試験液の吸光スペクトルを分光光度計で測定した。吸光度測定波長は664nmである。
◎ :分解活性指数が10nM/min以上。
○ :分解活性指数が5nM/min以上〜10nM/min未満。
× :分解活性指数が5nM/min未満。
10. Photocatalytic activity (pigment degradation activity)
Calculated according to JIS R1703-2. Specimen purification conditions were irradiation for 24 hours at an illuminance of 1 mW / cm2, methylene blue adsorption conditions were for an adsorption liquid concentration of 0.02 mM and an adsorption time of 24 hours. The absorption spectrum of the test solution collected after irradiation was measured with a spectrophotometer. The absorbance measurement wavelength is 664 nm.
A: Decomposition activity index is 10 nM / min or more.
○: Degradation activity index is 5 nM / min or more and less than 10 nM / min.
X: Degradation activity index is less than 5 nM / min.

[参考例1]シリカ修飾ルチル型酸化チタン
TiO2として200g/Lの濃度の四塩化チタン水溶液700mLと、Na2Oとして1 00g/Lの濃度の水酸化ナトリウム水溶液を、系のpH を5 〜9に維持するように水中に並行添加した。その後、系のpH を7 に調整した後、濾過し、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度28 .3質量% の酸化チタン湿ケーキ1を得た。この酸化チタン微粒子はルチル型構造を有し、その平均粒径は8nmであった。
[Reference Example 1] Silica-modified rutile-type titanium oxide 700 mL of a titanium tetrachloride aqueous solution having a concentration of 200 g / L as TiO 2 and a sodium hydroxide aqueous solution having a concentration of 100 g / L as Na 2 O, and the pH of the system being 5 to 5 9 was added in parallel to maintain water. Then, after adjusting the pH of the system to 7, it is filtered, washed until the conductivity of the filtrate becomes 100 μS / cm, and the solid content concentration is 28. 3% by mass of titanium oxide wet cake 1 was obtained. The titanium oxide fine particles had a rutile structure, and the average particle size was 8 nm.

得られたルチル型酸化チタン湿ケーキ1を純水で希釈して、1モル/Lのスラリーを調製した。このスラリー1Lを3Lのフラスコに仕込み、更に、1規定の硝酸を酸化チタン/硝酸のモル比が1/Lとなるよう1L添加し、95℃の温度に加熱し、この温度で2時間保持して、酸加熱処理を行った。次いで、酸加熱処理後のスラリーを室温まで冷却し、28%アンモニア水を用いて中和(pH= 6.7)して、濾過した後、濾液の導電率が1 00μS/cmとなるまで洗浄し、固形分濃度25質量%の酸化チタン湿ケーキ2を得た。   The obtained rutile-type titanium oxide wet cake 1 was diluted with pure water to prepare a 1 mol / L slurry. 1 L of this slurry is charged into a 3 L flask, and 1 L of 1N nitric acid is added so that the molar ratio of titanium oxide / nitric acid is 1 / L, heated to a temperature of 95 ° C., and maintained at this temperature for 2 hours. Then, acid heat treatment was performed. Next, the acid-heated slurry is cooled to room temperature, neutralized with 28% aqueous ammonia (pH = 6.7), filtered, and washed until the filtrate has a conductivity of 100 μS / cm. Thus, a titanium oxide wet cake 2 having a solid content concentration of 25% by mass was obtained.

得られた酸化チタン湿ケーキ2に、10%の濃度の水酸化ナトリウム水溶液を添加し、リパルプし、その後、超音波洗浄機で3時間分散して、pH =10.5 、固形分濃度10質量%のアルカリ性酸化チタンゾルを得た。このアルカリ性酸化チタンゾル2Lを3L のフラスコに仕込み、70℃の温度に昇温し、SiO2 として432g/Lの濃度のケイ酸ナトリウム水溶液6 9 .4mlを添加し、その後90 ℃ に昇温して1時間熟成した後、10%の硫酸を添加してpHを6に調整して、酸化チタンの表面をケイ素の含水酸化物で表面処理した。 A 10% strength aqueous sodium hydroxide solution was added to the obtained titanium oxide wet cake 2, repulped, and then dispersed for 3 hours with an ultrasonic cleaner, pH = 10.5, solid content concentration 10 mass. % Alkaline titanium oxide sol was obtained. This alkaline titanium oxide sol 2L was charged into a 3 L flask, heated to a temperature of 70 ° C., and an aqueous sodium silicate solution having a concentration of 432 g / L as SiO 2 6 9. After adding 4 ml and then raising the temperature to 90 ° C. and aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, and the surface of titanium oxide was surface-treated with a hydrous oxide of silicon.

得られた酸化チタンゾルを室温まで冷却し、5 .4Lの純水を添加し、脱塩濃縮装置を用いて、不純物の除去、及び濃縮を行ない、pH = 7 .3 、固形分濃度29質量% 、導電率1 .1 8mS /cmの中性ルチル型酸化チタンゾルを得た。TiO2 に対してSiO2基準で15質量% のケイ素の含水酸化物を含有していた。このゾル中の酸化チタンの平均粒径は9nmであった。 4. the obtained titanium oxide sol is cooled to room temperature; 4 L of pure water was added, impurities were removed and concentrated using a desalting and concentrating device, and pH = 7. 3, solid content concentration 29 mass%, conductivity 1. A neutral rutile-type titanium oxide sol of 18 mS / cm was obtained. It contained 15 wt% of silicon oxide hydroxide with SiO 2 basis relative to TiO 2. The average particle diameter of titanium oxide in this sol was 9 nm.

[参考例2]白金修飾酸化チタン
純水0 .5リットルに、ヘキサクロロ塩化白金酸6水和物0 .6 7 5 g ( T i O 2 に対しPt として0 .5 質量%相当)を添加、撹拌し、平均長軸径64nm 、平均短軸径13nm(軸比4 .9) 、比表面積160m2/gの異方性形状を有する紡錘状酸化チタン微粒子5 0 g を添加した後、次いで、次亜リン酸水溶液( 50 % 水溶液) を1.44 ミリリットル添加し、90 ℃で1 時間加熱処理を行った。加熱処理後、冷却してから濾過、洗浄し、110 ℃で1昼夜乾燥した後、ライカイ機にて粉砕し、白金修飾酸化チタンを得た。
[Reference Example 2] Platinum-modified titanium oxide Pure water 0. To 5 liters, hexachlorochloroplatinic acid hexahydrate 0. 6 75 g (corresponding to 0.5% by mass as Pt with respect to TiO 2) was added and stirred, the average major axis diameter 64 nm, the average minor axis diameter 13 nm (axial ratio 4.9), the specific surface area 160 m 2 / After adding 50 g of spindle-shaped titanium oxide fine particles having an anisotropic shape of g, 1.44 ml of a hypophosphorous acid aqueous solution (50% aqueous solution) was added, and heat treatment was performed at 90 ° C. for 1 hour. It was. After the heat treatment, it was cooled, filtered, washed, dried at 110 ° C. for one day and night, and then pulverized with a Reika machine to obtain platinum-modified titanium oxide.

[参考例3]シリカ修飾アナタース型酸化チタン
チタン鉱石を硫酸と反応させ、得られた硫酸チタン溶液を加熱加水分解して生成させた凝集メタチタン酸をTiO2換算30質量%の水性スラリーとし、このスラリーをアンモニア水でpH7に中和し、その後濾過洗浄して硫酸根を除去した。得られた脱水ケーキに硝酸を加えて解膠処理して、アナタース型結晶構造を含む酸化チタン微粒子(一次粒子径7 n m )からなるpH 1 .5の酸性酸化チタンゾルを得た。得られた酸性酸化チタンゾルを純水で希釈して、TiO2換算200 g/Lの酸化チタンゾル600mlとした後、70 ℃ に昇温し、次いで、SiO2 換算濃度432g/Lのケイ酸ナトリウム水溶液2 0 . 8 mlを20%硫酸と同時に添加し、その後、30分間熟成した。次いで、10% 水酸化ナトリウム水溶液でpH を8に調整した後、2%硫酸水溶液でpHを6に調整し、濾過・洗浄を行い、湿ケーキを得た。この湿ケーキを純水中にリパルプした後、超音波分散して、中性域で安定な酸化チタンゾル( 固形分濃度20質量% 。pH=7.5 )を得た。この試料には、酸化チタン微粒子の表面に凝集シリカが多孔質の状態で被着しており、その含有量は、TiO2 100 質量部に対してSiO2 換算で7質量部であった。
[Reference Example 3] Silica-modified anatase-type titanium oxide Titanium ore was reacted with sulfuric acid, and the resulting titanium sulfate solution was hydrolyzed with heating to form agglomerated metatitanic acid as an aqueous slurry of 30% by mass in terms of TiO 2. The slurry was neutralized with aqueous ammonia to pH 7 and then filtered and washed to remove sulfate radicals. Nitric acid was added to the obtained dehydrated cake and peptization treatment was carried out to adjust the pH of titanium oxide fine particles (primary particle diameter 7 nm) containing anatase type crystal structure. 5 acidic titanium oxide sol was obtained. The obtained acidic titanium oxide sol was diluted with pure water to make 600 g of titanium oxide sol 200 g / L in terms of TiO 2 , then heated to 70 ° C., and then a sodium silicate aqueous solution having a SiO 2 equivalent concentration of 432 g / L. 2 0. 8 ml was added simultaneously with 20% sulfuric acid and then aged for 30 minutes. Next, the pH was adjusted to 8 with a 10% aqueous sodium hydroxide solution, the pH was adjusted to 6 with a 2% aqueous sulfuric acid solution, filtered and washed to obtain a wet cake. This wet cake was repulped into pure water and then ultrasonically dispersed to obtain a titanium oxide sol (solid content concentration 20% by mass, pH = 7.5) stable in the neutral range. In this sample, the aggregated silica was deposited in a porous state on the surface of the titanium oxide fine particles, and the content thereof was 7 parts by mass in terms of SiO 2 with respect to 100 parts by mass of TiO 2 .

[参考例4]重合体エマルジョン粒子(B1)水分散体の合成
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水400g、10質量%のドデシルベンゼンスルホン酸水溶液4.0gを投入した後、撹拌下で反応器中の温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン54.5g、フェニルトリメトキシシラン34.4g、及びメチルトリメトキシシラン1.0gからなる混合液と、過硫酸アンモニウムの2質量%水溶液15.0gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。その後、反応器中の温度を80℃に維持して約1時間撹拌を続けた。次に、アクリル酸n−ブチル12.3g、フェニルトリメトキシシラン13.5g、テトラエトキシシラン31.4g、及び3−メタクリロキシプロピルトリメトキシシラン1.2gからなる混合液と、メタクリル酸メチル24.6g、アクリル酸1g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)1.2g、反応性乳化剤(商品名「アクアロンKH−1025」、第一工業製薬(株)製、固形分25%水溶液)0.7g、過硫酸アンモニウムの2質量%水溶液8.5g、及びイオン交換水255gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却し、100メッシュの金網で濾過した。イオン交換水で固形分を10.0質量%に調整し、重合体粒子として数平均粒子径120nmの重合体エマルジョン粒子(B1)の水分散体を得た。
Reference Example 4 Synthesis of Polymer Emulsion Particles (B1) Aqueous Dispersion A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was charged with 400 g of ion-exchanged water and a 10% by mass dodecylbenzenesulfonic acid aqueous solution 4 After charging 0.0 g, the temperature in the reactor was heated to 80 ° C. with stirring. In this reactor, 54.5 g of dimethyldimethoxysilane, 34.4 g of phenyltrimethoxysilane, and 1.0 g of methyltrimethoxysilane, and 15.0 g of a 2% by weight aqueous solution of ammonium persulfate were added to the reactor. It was dripped simultaneously over about 2 hours in the state which maintained the inside temperature at 80 degreeC. Thereafter, the temperature in the reactor was maintained at 80 ° C., and stirring was continued for about 1 hour. Next, a mixed liquid composed of 12.3 g of n-butyl acrylate, 13.5 g of phenyltrimethoxysilane, 31.4 g of tetraethoxysilane, and 1.2 g of 3-methacryloxypropyltrimethoxysilane, and methyl methacrylate 24. 6 g, acrylic acid 1 g, reactive emulsifier (trade name “Adekaria Soap SR-1025”, manufactured by Asahi Denka Co., Ltd., 25% solids aqueous solution), reactive emulsifier (trade name “AQUALON KH-1025”) , Daiichi Kogyo Seiyaku Co., Ltd., 25% solid content aqueous solution) 0.7 g, ammonium persulfate 2% by weight aqueous solution 8.5 g, and a mixture of ion-exchanged water 255 g. It was dripped simultaneously over about 2 hours in the state kept at ° C. Further, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 2 hours, and then the mixture was cooled to room temperature and filtered through a 100-mesh wire mesh. The solid content was adjusted to 10.0% by mass with ion-exchanged water to obtain an aqueous dispersion of polymer emulsion particles (B1) having a number average particle size of 120 nm as polymer particles.

[実施例1]
参考例1で作成したシリカ修飾酸化チタンの〔H2O2〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(TiO 2 に対してSiO2基準で15質量%、固形分29質量%)(A1)として34.5gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール387.2gと、水903.3gとを混合し攪拌することにより光触媒組成物(C−1)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−1)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−1)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−1)を得た。この試験板(D−1)の各種評価結果を表1に示す。
[Example 1]
Table 1 shows [H2O2], [.OH], and the amount of holes of the silica-modified titanium oxide prepared in Reference Example 1. 34.5 g of this titanium oxide as a metal oxide for photocatalyst (15% by mass with respect to TiO 2 based on SiO 2 and 29% by mass solid content) (A1), and polymer emulsion particles (B1) water shown in Reference Example 4 450 g of dispersion (solid content: 10.0% by mass) and water-dispersed colloidal silica having a number average particle size of 12 nm (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content: 20% by mass) (B2) 225 g, ethanol 387.2 g, and water 903.3 g were mixed and stirred to prepare a photocatalyst composition (C-1). A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The said photocatalyst composition (C-1) was apply | coated to the single side | surface (surface) of this glass plate by the bar-coat method. Then, the test plate (D-1) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-1) for 10 minutes at 70 degreeC. Various evaluation results of this test plate (D-1) are shown in Table 1.

[実施例2]
TiO 2 に対してSiO2基準で5質量% にした以外は参考例1と同じ条件でシリカ修飾酸化チタンを作成した。作成したシリカ修飾酸化チタンの〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A2)として34.5gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール387.2gと、水903.3gとを混合し攪拌することにより光触媒組成物(C−2)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−2)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−2)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−2)を得た。この試験板(D−2)の各種評価結果を表1に示す。
[Example 2]
Silica-modified titanium oxide was prepared under the same conditions as in Reference Example 1 except that the content was 5% by mass based on SiO2 with respect to TiO2. Table 1 shows [H 2 O 2 ], [• OH], and the amount of holes of the silica-modified titanium oxide prepared. 34.5 g of this titanium oxide as a metal oxide for photocatalyst (A2), 450 g of the polymer emulsion particle (B1) aqueous dispersion shown in Reference Example 4 (solid content 10.0% by mass), and a number average particle diameter of 12 nm 225 g of water-dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) (B2), 387.2 g of ethanol, and 903.3 g of water are mixed and stirred. Thus, a photocatalyst composition (C-2) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The said photocatalyst composition (C-2) was apply | coated to the single side | surface (surface) of this glass plate by the bar-coat method. Then, the test plate (D-2) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-2) at 70 degreeC for 10 minute (s). Various evaluation results of this test plate (D-2) are shown in Table 1.

[実施例3]
参考例2で作成した白金修飾酸化チタンの〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A3)として34.5gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール387.2gと、水903.3gとを混合し攪拌することにより光触媒組成物(C−3)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−3)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−3)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−3)を得た。この試験板(D−3)の各種評価結果を表1に示す。
[Example 3]
Table 1 shows the [H 2 O 2 ], [• OH], and hole amount of the platinum-modified titanium oxide prepared in Reference Example 2. 34.5 g of this titanium oxide as a metal oxide for photocatalyst (A3), 450 g of the polymer emulsion particle (B1) aqueous dispersion shown in Reference Example 4 (solid content 10.0% by mass), and a number average particle diameter of 12 nm 225 g of water-dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) (B2), 387.2 g of ethanol, and 903.3 g of water are mixed and stirred. Thus, a photocatalyst composition (C-3) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The said photocatalyst composition (C-3) was apply | coated to the single side | surface (surface) of this glass plate by the bar-coat method. Then, the test plate (D-3) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-3) for 10 minutes at 70 degreeC. Various evaluation results of this test plate (D-3) are shown in Table 1.

[実施例4]
参考例3で作成したシリカ修飾酸化チタンの〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A4)として50gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール383gと、水893gとを混合し攪拌することにより光触媒組成物(C−4)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−4)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−4)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−4)を得た。この試験板(D−4)の各種評価結果を表1に示す。
[Example 4]
Table 1 shows the [H 2 O 2 ], [• OH], and hole amount of the silica-modified titanium oxide prepared in Reference Example 3. 50 g of this titanium oxide as a metal oxide for photocatalyst (A4), 450 g of the polymer emulsion particle (B1) aqueous dispersion shown in Reference Example 4 (solid content 10.0% by mass), and water having a number average particle diameter of 12 nm Dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) (B2) 225 g, ethanol 383 g, and water 893 g were mixed and stirred to produce a photocatalytic composition ( C-4) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The said photocatalyst composition (C-4) was apply | coated to the single side | surface (surface) of this glass plate by the bar-coat method. Then, the test plate (D-4) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-4) at 70 degreeC for 10 minute (s). Various evaluation results of this test plate (D-4) are shown in Table 1.

[比較例1]
未修飾の石原産業(株)製アナターゼ型酸化チタンST−01を用いた。〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A5)として10gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール394gと、水920gとを混合し攪拌することにより光触媒組成物(C−5)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−5)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−5)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−5)を得た。この試験板(D−5)の各種評価結果を表1に示す。
[Comparative Example 1]
An unmodified Ishihara Sangyo Co., Ltd. anatase type titanium oxide ST-01 was used. Table 1 shows [H 2 O 2 ], [• OH], and the amount of holes. 10 g of this titanium oxide as a metal oxide for photocatalyst (A5), 450 g of the polymer emulsion particle (B1) aqueous dispersion shown in Reference Example 4 (solid content 10.0% by mass), and water having a number average particle diameter of 12 nm Dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) (B2) 225 g, ethanol 394 g, and water 920 g were mixed and stirred to produce a photocatalytic composition ( C-5) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The photocatalyst composition (C-5) was applied to one side (surface) of this glass plate by a bar coating method. Then, the test plate (D-5) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-5) for 10 minutes at 70 degreeC. Various evaluation results of this test plate (D-5) are shown in Table 1.

[比較例2]
未修飾のテイカ(株)製ルチル型酸化チタンMT150Aを用いた。〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A6)として10gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール394gと、水920gとを混合し攪拌することにより光触媒組成物(C−6)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−6)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−6)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−6)を得た。この試験板(D−6)の各種評価結果を表1に示す。
[Comparative Example 2]
Unmodified rutile titanium oxide MT150A manufactured by Teika Co., Ltd. was used. Table 1 shows [H 2 O 2 ], [• OH], and the amount of holes. 10 g of this titanium oxide as a metal oxide for photocatalyst (A6), 450 g of the polymer emulsion particle (B1) water dispersion shown in Reference Example 4 (solid content 10.0% by mass), and water having a number average particle diameter of 12 nm Dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) (B2) 225 g, ethanol 394 g, and water 920 g were mixed and stirred to produce a photocatalytic composition ( C-6) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The said photocatalyst composition (C-6) was apply | coated to the single side | surface (surface) of this glass plate by the bar-coat method. Then, the test plate (D-6) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-6) at 70 degreeC for 10 minute (s). Various evaluation results of this test plate (D-6) are shown in Table 1.

[比較例3]
未修飾の窒素ドープ型酸化チタン(エコデバイス(株)製)を用いた。〔H22〕、〔・OH〕、及び正孔量を表1に示す。この酸化チタンを光触媒用金属酸化物(A7)として10gと、参考例4に示す重合体エマルジョン粒子(B1)水分散体450g(固形分10.0質量%)と、数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20質量%)(B2)225gと、エタノール394gと、水920gとを混合し攪拌することにより光触媒組成物(C−7)を作成した。片面(裏面)に黒色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め1μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(C−7)をバーコート法にて塗布した。その後、塗布した光触媒組成物(C−7)を70℃で10分間乾燥することにより、光触媒塗膜が形成された試験板(D−7)を得た。この試験板(D−7)の各種評価結果を表1に示す。
[Comparative Example 3]
Unmodified nitrogen-doped titanium oxide (manufactured by Ecodevice Co., Ltd.) was used. Table 1 shows [H 2 O 2 ], [• OH], and the amount of holes. 10 g of this titanium oxide as a metal oxide for photocatalyst (A7), 450 g of polymer emulsion particles (B1) aqueous dispersion shown in Reference Example 4 (solid content 10.0% by mass), and water having a number average particle diameter of 12 nm Dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) (B2) 225 g, ethanol 394 g, and water 920 g were mixed and stirred to produce a photocatalytic composition ( C-7) was prepared. A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 1 μm on another surface (front surface) of a glass plate on which one side (back surface) was black-printed, was prepared. The photocatalyst composition (C-7) was applied to one side (surface) of this glass plate by a bar coating method. Then, the test plate (D-7) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (C-7) for 10 minutes at 70 degreeC. Various evaluation results of this test plate (D-7) are shown in Table 1.

本発明の光触媒用金属化合物を使用すれば、下地塗膜の上に、保護層が不要のまま必要な光触媒活性を発揮する光触媒層を設けることができ、現場施工性に優れる1層コートタイプの光触媒塗料を提供できる。本発明の光触媒塗膜は、セルフクリーニング性に優れ、建築外装、内装材、外装表示用途、自動車、ディスプレイ等に有用である。
If the metal compound for photocatalysts of this invention is used, the photocatalyst layer which exhibits a required photocatalytic activity can be provided on a base coating film without the need for a protective layer. A photocatalytic coating can be provided. The photocatalyst coating film of the present invention has excellent self-cleaning properties and is useful for architectural exteriors, interior materials, exterior display applications, automobiles, displays and the like.

Claims (8)

光触媒として用いる金属化合物であって、前記金属化合物を含む所定の懸濁液に波長365nm、強度5mW/cm2の紫外光を60秒間照射した際に発生する〔H22〕の値が80μM以下であり、かつ、低温ESR測定によって定義される正孔量が1.5×1013個以上である光触媒用金属化合物。 A metal compound used as a photocatalyst, and a value of [H 2 O 2 ] generated when a predetermined suspension containing the metal compound is irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds has a value of 80 μM The metal compound for photocatalysts which is below and the amount of holes defined by low-temperature ESR measurement is 1.5 × 10 13 or more. 光触媒として用いる金属化合物であって、前記金属化合物を含む所定の懸濁液に波長365nm、強度5mW/cm2の紫外光を60秒間照射した際に発生する〔・OH〕の値が0.2μM以下であり、かつ、低温ESR測定によって定義される正孔量が1.5×1013個 以上である光触媒用金属化合物。 A metal compound used as a photocatalyst, and a value of [.OH] generated when a predetermined suspension containing the metal compound is irradiated with ultraviolet light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds has a value of 0.2 μM The metal compound for photocatalysts which is below and the amount of holes defined by low-temperature ESR measurement is 1.5 × 10 13 or more. 粒子表面を修飾処理した金属酸化物であることを特徴とした請求項1又は2記載の光触媒用金属化合物。   3. The metal compound for photocatalyst according to claim 1, wherein the metal compound is a metal oxide having a modified particle surface. シリカで粒子表面を修飾処理した金属酸化物であることを特徴とした請求項1又は2記載の光触媒用金属化合物。   3. The metal compound for photocatalyst according to claim 1, which is a metal oxide whose particle surface is modified with silica. 請求項1〜4のいずれか一項に記載の光触媒用金属化合物と、樹脂と、を含む光触媒組成物。   The photocatalyst composition containing the metal compound for photocatalysts as described in any one of Claims 1-4, and resin. 前記樹脂が、重合体粒子と、前記光触媒用金属化合物以外の金属酸化物の粒子と、を含む、請求項5に記載の光触媒組成物。   The photocatalyst composition according to claim 5, wherein the resin includes polymer particles and particles of a metal oxide other than the metal compound for photocatalyst. 請求項5又は6に記載の光触媒組成物から形成された光触媒塗膜。   The photocatalyst coating film formed from the photocatalyst composition of Claim 5 or 6. 請求項7に記載の光触媒塗膜を備える光触媒塗装製品。   A photocatalyst-coated product comprising the photocatalyst coating film according to claim 7.
JP2012094477A 2012-04-18 2012-04-18 Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product Pending JP2013220397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094477A JP2013220397A (en) 2012-04-18 2012-04-18 Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094477A JP2013220397A (en) 2012-04-18 2012-04-18 Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product

Publications (1)

Publication Number Publication Date
JP2013220397A true JP2013220397A (en) 2013-10-28

Family

ID=49591770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094477A Pending JP2013220397A (en) 2012-04-18 2012-04-18 Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product

Country Status (1)

Country Link
JP (1) JP2013220397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144003A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP7284474B1 (en) * 2022-09-16 2023-05-31 国立大学法人東北大学 Method for producing organically modified oxide fine particles and organically modified oxide fine particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142655A (en) * 2006-12-12 2008-06-26 Asahi Kasei Chemicals Corp Water-based photocatalyst composition
JP2010005613A (en) * 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp Complex, functional structure and coating agent
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142655A (en) * 2006-12-12 2008-06-26 Asahi Kasei Chemicals Corp Water-based photocatalyst composition
JP2010005613A (en) * 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp Complex, functional structure and coating agent
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144003A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP7284474B1 (en) * 2022-09-16 2023-05-31 国立大学法人東北大学 Method for producing organically modified oxide fine particles and organically modified oxide fine particles
WO2024057772A1 (en) * 2022-09-16 2024-03-21 国立大学法人東北大学 Method for producing organically modified fine oxide particles, and organically modified fine oxide particles

Similar Documents

Publication Publication Date Title
US9228095B2 (en) Photocatalytically active polysiloxane coating compositions
JP6866596B2 (en) Photocatalyst coating
JP6663375B2 (en) Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
EP1743763A1 (en) Base protection method
JP6961931B2 (en) Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
JP4823045B2 (en) Water-based photocatalytic composition
WO2006030250A2 (en) Composition useful for providing nox removing coating on material surface
WO2011118780A1 (en) Photocatalyst-coated body and photocatalyst coating liquid
JP2018094495A (en) Titanium oxide particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP2018184321A (en) Metatitanic acid particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
JP2019098297A (en) Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
JP2013220397A (en) Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP5361513B2 (en) Photocatalyst paint
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP2011131211A (en) Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film
JP5552378B2 (en) Visible light responsive photocatalyst-containing interior coating composition and coating film containing the same
JP2012233051A (en) Coating composition
JP2009101287A (en) Modified photocatalyst sol and its manufacturing method
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP2003073585A (en) Liquid for forming titania film, method for forming titania film, titania film and photocatalytic material
JP6646603B2 (en) Multilayer coating, coating agent set, and painted body
JP2006136782A (en) Photocatalyst aluminum member
JP2005169160A (en) Liquid photocatalyst composition and photocatalytic body formed by using the same
JP2005246296A (en) Mixed solution of photocatalytic metal oxide and organic substance for direct coating of organic matter, metal oxide-containing composition, method for producing photocatalytic film, and obtained photocatalytic film and photocatalytic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719