JP2008142655A - Water-based photocatalyst composition - Google Patents

Water-based photocatalyst composition Download PDF

Info

Publication number
JP2008142655A
JP2008142655A JP2006334274A JP2006334274A JP2008142655A JP 2008142655 A JP2008142655 A JP 2008142655A JP 2006334274 A JP2006334274 A JP 2006334274A JP 2006334274 A JP2006334274 A JP 2006334274A JP 2008142655 A JP2008142655 A JP 2008142655A
Authority
JP
Japan
Prior art keywords
photocatalyst
modified
group
titanium oxide
modified photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334274A
Other languages
Japanese (ja)
Other versions
JP4823045B2 (en
Inventor
Asami Ohashi
亜沙美 大橋
Junichi Hirose
淳一 廣瀬
Teruaki Masako
輝明 真子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006334274A priority Critical patent/JP4823045B2/en
Publication of JP2008142655A publication Critical patent/JP2008142655A/en
Application granted granted Critical
Publication of JP4823045B2 publication Critical patent/JP4823045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Silicon Polymers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst composition and a coating material excellent in dispersion stability and efficiently retaining photocatalytic activity and/or hydrophilicity for a long period and a coated article. <P>SOLUTION: The photocatalyst is a modified photocatalyst obtained by modification treatment by (1) a modification agent compound having an organosilane unit and/or (2) at least one kind compound selected from a group consisting of oxides of silicon and/or aluminum, wherein the primary particle diameter of the photocatalyst is 1 to 100 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光エネルギーによって物質の分解作用や表面の親水化作用を示すことから、環境浄化や防汚、防曇等への分野へ応用が知られている酸化チタンに代表される光触媒の基材表面への固定化技術に関する。
具体的には、基材表面への固定化した光触媒に基づく有機物の分解活性(光触媒活性)及び/又は親水性を保持しつつ、基材及び光触媒組成物塗膜(以下、コーティングという。)の耐久性に優れる変性光触媒及び当該変性光触媒を含む変性光触媒組成物に関する。さらに、環境負荷が少ない水系光触媒組成物であってかつ穏和な条件で強固に固定可能な光触媒組成物及び当該光触媒組成物を塗装した塗装物に関する。
Since the present invention exhibits a substance decomposing action and a surface hydrophilizing action by light energy, it is based on a photocatalyst represented by titanium oxide, which is known to be applied in the fields of environmental purification, antifouling, antifogging and the like. It is related with the immobilization technology to the material surface.
Specifically, the substrate and the photocatalyst composition coating film (hereinafter referred to as coating) are maintained while maintaining the decomposition activity (photocatalytic activity) and / or hydrophilicity of the organic substance based on the photocatalyst immobilized on the substrate surface. The present invention relates to a modified photocatalyst excellent in durability and a modified photocatalyst composition containing the modified photocatalyst. Furthermore, the present invention relates to a water-based photocatalyst composition having a low environmental load and capable of being firmly fixed under mild conditions, and a coated product coated with the photocatalyst composition.

光触媒とは、光照射によって酸化、還元反応を起こす物質のことを言う。すなわち伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)の光(励起光)を照射したときに、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔を生成しうる物質であり、このとき、伝導帯に生成した電子の還元力および/または価電子帯に生成した正孔の酸化力を利用して、種々の化学反応を行うことができる。
また、光触媒活性とは、光照射によって酸化、還元反応を起こすことを言う。光触媒活性によって有機物質の分解作用や表面の親水化作用を示すことが知られている。
A photocatalyst is a substance that undergoes an oxidation or reduction reaction upon irradiation with light. That is, when light (excitation light) with an energy larger than the energy gap between the conduction band and the valence band (ie, a short wavelength) is irradiated, excitation (photoexcitation) of electrons in the valence band occurs, resulting in conduction. It is a substance that can generate electrons and holes. At this time, various chemical reactions are performed using the reducing power of electrons generated in the conduction band and / or the oxidizing power of holes generated in the valence band. Can do.
The photocatalytic activity means that an oxidation or reduction reaction is caused by light irradiation. It is known that the photocatalytic activity exhibits an organic substance decomposing action and a surface hydrophilizing action.

このような機能を示す光触媒は環境浄化や防汚、防曇等の分野へ応用されている。例えば、特許文献1では、光触媒粒子を含有する表層部を備え、降雨により自己清浄化(セルフクリーニング)される表面を有する屋外表示板、及びその清浄化方法が提案されている。光触媒を含有する表面層を備えることにより、光触媒の光励起に応じて、表層部の表面は親水性を呈するので、屋外表示板の表面が降雨にさらされた時に付着堆積物及び/又は汚染物が雨滴により洗い流されることが可能となる。
ところで、光触媒を環境浄化や防汚、防曇等の分野へ応用させる場合、光触媒の固定化技術が非常に重要な役割を担う。すなわち(ア)光触媒活性を損なわずに基材へ強固に固定化、するとともに(イ)光触媒作用で基材及びコーティング自体が劣化しない安定性、を示す必要がある。
Photocatalysts having such functions are applied to fields such as environmental purification, antifouling, and antifogging. For example, Patent Document 1 proposes an outdoor display panel that includes a surface layer portion containing photocatalyst particles and has a surface that is self-cleaned by rain (self-cleaning), and a cleaning method therefor. By providing a surface layer containing a photocatalyst, the surface of the surface layer portion exhibits hydrophilicity in response to photoexcitation of the photocatalyst, so that deposits and / or contaminants are deposited when the surface of the outdoor display panel is exposed to rainfall. It can be washed away by raindrops.
By the way, when a photocatalyst is applied to fields such as environmental purification, antifouling, and antifogging, the photocatalyst immobilization technology plays a very important role. That is, (a) it is necessary to firmly fix to a substrate without impairing the photocatalytic activity, and (b) stability that does not deteriorate the substrate and the coating itself by the photocatalytic action.

このような光触媒の固定化のために基材と光触媒含有表層部との間に保護層を介在させる方法が提案されているが、この方法では、塗装工程が増えるため作業性が悪いという欠点がある。例えば、特許文献2では、基材上に金属酸化物の蒸着層を設け、その上に光触媒層を設けた多層光触媒フィルムが提案されている。あるいは、特許文献3では高分子ポリマー層の表面近傍に光触媒層が形成されるように積層した光触媒担持体が提案されている。また、光触媒を樹脂塗料中に混合し、この樹脂塗料を基材へコーティングする方法も提案されている。しかし、これらの方法では十分な光触媒活性及び/又は親水性を示すためには樹脂塗料の使用を少なくする必要があり、この場合には基材の耐久性やコーティングの硬度、密着性が十分ではないという欠点がある。樹脂塗料の使用を多くすると光触媒活性及び/又は親水性が不十分となり、これらの物性バランスをとることは容易ではない。   In order to fix such a photocatalyst, a method in which a protective layer is interposed between the base material and the photocatalyst-containing surface layer portion has been proposed. However, this method has a drawback in that workability is poor due to an increase in the coating process. is there. For example, Patent Document 2 proposes a multilayer photocatalytic film in which a metal oxide vapor deposition layer is provided on a base material and a photocatalytic layer is provided thereon. Alternatively, Patent Document 3 proposes a photocatalyst carrier stacked so that a photocatalyst layer is formed in the vicinity of the surface of the polymer layer. A method of mixing a photocatalyst in a resin paint and coating the resin paint on a substrate has also been proposed. However, in these methods, in order to show sufficient photocatalytic activity and / or hydrophilicity, it is necessary to reduce the use of a resin paint. In this case, the durability of the substrate, the hardness of the coating, and the adhesion are not sufficient. There is a disadvantage of not. When the resin paint is used more frequently, the photocatalytic activity and / or hydrophilicity becomes insufficient, and it is not easy to balance these physical properties.

しかも、これらの塗料はそのほとんどで有機溶剤が使用されており、使用時に毒性あるいは環境汚染の問題や火災の危険性を有する有機溶剤を大気中に放出するという問題がある。さらに、耐溶剤性の観点から、樹脂基材や有機皮膜が形成された基材を用いることが困難であるという問題もある。
従って、有機物の分解活性(光触媒活性)及び/又は親水性を保持しつつ、基材及びコ
ーティングの耐久性に優れる光触媒を水系で達成するのは非常に困難であった。
In addition, most of these paints use an organic solvent, and there is a problem that an organic solvent having a problem of toxicity or environmental pollution and a risk of fire is released into the atmosphere at the time of use. Furthermore, from the viewpoint of solvent resistance, there is also a problem that it is difficult to use a substrate on which a resin substrate or an organic film is formed.
Therefore, it has been very difficult to achieve a photocatalyst excellent in durability of the substrate and the coating in an aqueous system while maintaining the decomposition activity (photocatalytic activity) and / or hydrophilicity of the organic substance.

特開平9−230810号公報Japanese Patent Laid-Open No. 9-230810 特開平11−348172号公報Japanese Patent Laid-Open No. 11-348172 特開2000−93809号公報JP 2000-93809 A

本発明の課題は、部材表面への固定化した光触媒に基づく有機物の分解活性(光触媒活性)及び/又は親水性を保持しつつ、基材及びコーティングの耐久性に優れる変性光触媒及び当該変性光触媒を含む変性光触媒組成物を提供することである。さらに、環境負荷が少ない水系光触媒組成物及び当該光触媒組成物を塗装した塗装物を提供することである。   An object of the present invention is to provide a modified photocatalyst excellent in durability of a substrate and a coating while maintaining the decomposition activity (photocatalytic activity) and / or hydrophilicity of an organic substance based on the photocatalyst immobilized on the surface of the member. It is to provide a modified photocatalyst composition comprising. Furthermore, it is providing the water-based photocatalyst composition with little environmental impact, and the coating material which coated the said photocatalyst composition.

本発明者らは上記課題を解決すべく鋭意検討した結果、本発明に到達した。すなわち、本発明は、
1)(I)下記式(1)で表されるトリオルガノシラン単位、下記式(2)で表されるモノオキシジオルガノシラン単位、下記式(3)で表されるジオキシオルガノシラン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる1種以上の変性剤化合物、及び/又は(II)ケイ素及び/又はアルミニウムの酸化物からなる変性剤化合物により変性処理されている変性光触媒であって,当該光触媒の一次粒子径が1から100nmであることを特徴とする変性光触媒、
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは上記式(1)で定義した通りである。)
As a result of intensive studies aimed at solving the above problems, the present inventors have reached the present invention. That is, the present invention
1) (I) From a triorganosilane unit represented by the following formula (1), a monooxydiorganosilane unit represented by the following formula (2), and a dioxyorganosilane unit represented by the following formula (3) Modified by one or more modifier compounds selected from the group consisting of compounds having at least one structural unit selected from the group consisting of: and (II) a modifier compound consisting of oxides of silicon and / or aluminum. A modified photocatalyst being treated, wherein the photocatalyst has a primary particle size of 1 to 100 nm,
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. (A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group.)
- (R 2 SiO) - ( 2)
(In the formula, R is as defined in the above formula (1).)

Figure 2008142655
(式中、Rは上記式(1)で定義した通りである。)
Figure 2008142655
(In the formula, R is as defined in the above formula (1).)

2)変性剤化合物中に直鎖状または分岐状のフルオロアルキル基の1種類以上を含むことを特徴とする1)に記載の変性光触媒、
3)光触媒の数平均分散粒子径が1から400nmであることを特徴とする1)又は2)に記載の変性光触媒、
4)変性光触媒粒子の粒子長(L)と粒子直径(D)の比(L/D)が1/1から20/1であることを特徴とする1)から3)のいずれかに記載の変性光触媒、
5)光触媒が酸化チタンであることを特徴とする1)から4)のいずれかに記載の変性光触媒、
2) The modified photocatalyst according to 1), wherein the modifier compound contains one or more linear or branched fluoroalkyl groups,
3) The modified photocatalyst according to 1) or 2), wherein the number average dispersed particle size of the photocatalyst is 1 to 400 nm,
4) The ratio (L / D) of the particle length (L) to the particle diameter (D) of the modified photocatalyst particles is from 1/1 to 20/1, according to any one of 1) to 3) Modified photocatalyst,
5) The modified photocatalyst according to any one of 1) to 4), wherein the photocatalyst is titanium oxide.

6)光触媒がアナターゼ型酸化チタンであることを特徴とする1)から4)のいずれかに記載の変性光触媒、
7)光触媒がルチル型酸化チタンであることを特徴とする1)から4)のいずれかに記載の変性光触媒、
8)1)から7)のいずれかに記載の変性光触媒と水系バインダーからなる変性光触媒組成物、
9)8)に記載の変性光触媒組成物を基材に塗装した光触媒塗装物、
10)変性光触媒の分布について異方性を有し、該変性光触媒の濃度が基材に接する面より他方の露出面の方が高いことを特徴とする9)に記載の光触媒塗装物、
の発明である。
6) The modified photocatalyst according to any one of 1) to 4), wherein the photocatalyst is anatase-type titanium oxide;
7) The modified photocatalyst according to any one of 1) to 4), wherein the photocatalyst is rutile titanium oxide,
8) A modified photocatalyst composition comprising the modified photocatalyst according to any one of 1) to 7) and an aqueous binder,
9) A photocatalyst-coated product obtained by coating the substrate with the modified photocatalyst composition described in 8),
10) The photocatalyst-coated product according to 9), which has anisotropy with respect to the distribution of the modified photocatalyst, and the concentration of the modified photocatalyst is higher on the other exposed surface than on the surface in contact with the substrate.
It is invention of this.

本発明は光触媒組成物中での分散安定性に優れ、光触媒活性及び/又は親水性を効果的に保持する変性光触媒を提供することができる。また、少ない環境負荷で硬化可能であって、基材及びコーティングの耐久性に優れる光触媒組成物を提供することができる。さらに当該組成物は耐候性、耐水性、透明性にも優れ、長期間にわたって汚れにくい塗装物を提供できる。   The present invention can provide a modified photocatalyst that is excellent in dispersion stability in a photocatalyst composition and that effectively retains photocatalytic activity and / or hydrophilicity. In addition, it is possible to provide a photocatalyst composition that can be cured with a small environmental load and is excellent in durability of a substrate and a coating. Furthermore, the composition is excellent in weather resistance, water resistance, and transparency, and can provide a coated product that is resistant to staining over a long period of time.

以下、本発明を詳細に説明する。
本発明において変性光触媒に使用できる光触媒とは、その結晶の伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)の光(励起光)を照射したときに、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔を生成しうる物質をいう。中でも、光照射による酸化、還元反応を起こす能力と正孔と電子を生成させるのに必要な光のエネルギーのバランスから、バンドギャップエネルギーが1.2〜5.0eVの半導体化合物が好ましく、1.5〜4.1eVの半導体化合物がさらに好ましい。
Hereinafter, the present invention will be described in detail.
The photocatalyst that can be used for the modified photocatalyst in the present invention is a valence electron when irradiated with light (excitation light) having an energy (ie, short wavelength) larger than the energy gap between the conduction band and the valence band of the crystal. A substance that can generate conduction electrons and holes due to excitation (photoexcitation) of electrons in the band. Among them, a semiconductor compound having a band gap energy of 1.2 to 5.0 eV is preferable in view of the balance between the ability to cause oxidation and reduction reaction by light irradiation and the energy of light necessary for generating holes and electrons. A semiconductor compound of 5 to 4.1 eV is more preferable.

光触媒としては例えばTiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、SiC、MoS、InPb、RuO、CeO2等、さらにはTi、Nb、Ta、Vから選ばれた少なくとも1種の元素を有する層状酸化物(特開昭62−74452号公報、特開平2−172535号公報、特開平7−24329号公報、特開平8−89799号公報、特開平8−89800号公報、特開平8−89804号公報、特開平8−198061号公報、特開平9−248465号公報、特開平10−99694号公報、特開平10−244165号公報等)を挙げることができる。また、これらの光触媒にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feなどの金属及び/又は金属の酸化物を添加あるいは固定化したものや、多孔質リン酸カルシウム等で被覆された光触媒(特開平11−267519号公報)等も使用することもできる。
また、本発明の光触媒として、可視光(例えば約400〜800nmの波長)の照射により光触媒活性及び/又は親水性を発現することが出来る可視光応答型光触媒を選択すると、本発明の光触媒組成物で処理された光触媒部材は、室内等の紫外線が十分に照射されない場所等における環境浄化効果や防汚効果が非常に大きなものとなるため好ましい。
Photocatalyst The example TiO 2, ZnO, SrTiO 3, CdS, GaP, InP, GaAs, BaTiO 3, BaTiO 4, BaTi 4 O 9, K 2 NbO 3, Nb 2 O 5, Fe 2 O 3, Ta 2 O 5 , K 3 Ta 3 Si 2 O 3 , WO 3 , SnO 2 , Bi 2 O 3 , BiVO 4 , NiO, Cu 2 O, SiC, MoS 2 , InPb, RuO 2 , CeO 2 , etc., and further Ti, Nb, Ta And layered oxides having at least one element selected from V (Japanese Patent Laid-Open Nos. 62-74452, 2-172535, 7-24329, and 8-89799) JP-A-8-89800, JP-A-8-89804, JP-A-8-198061, JP-A-9-248465, JP-A-1 No. 0-99694, JP-A-10-244165, etc.). In addition, a photocatalyst coated with a metal such as Pt, Rh, Ru, Nb, Cu, Sn, Ni, or Fe and / or a metal oxide added thereto or immobilized thereon, or a photocatalyst coated with porous calcium phosphate ( JP-A-11-267519) can also be used.
When a visible light responsive photocatalyst capable of developing photocatalytic activity and / or hydrophilicity by irradiation with visible light (for example, a wavelength of about 400 to 800 nm) is selected as the photocatalyst of the present invention, the photocatalyst composition of the present invention is selected. The photocatalyst member treated with is preferable because the environmental purification effect and the antifouling effect in a place where ultraviolet rays such as indoors are not sufficiently irradiated are very large.

上記可視光応答型光触媒は、可視光で光触媒活性及び/又は親水性を発現するものであれば全て使用することが出来るが、例えばTaON、LaTiON、CaNbON、LaTaON、CaTaON等のオキシナイトライド化合物(例えば特開2002−66333号公報参照)やSmTi等のオキシサルファイド化合物(例えば特開2002−233770号公報参照)、CaIn、SrIn、ZnGa
、NaSb等のd10電子状態の金属イオンを含む酸化物(例えば特開2002−59008号公報参照)、アンモニアや尿素等の窒素含有化合物存在下でチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)や高表面酸化チタンを焼成して得られる窒素ドープ酸化チタン(例えば特開2002−29750号公報、特開2002−87818号公報、特開2002−154823号公報、特開2001−207082号公報参照)、チオ尿素等の硫黄化合物存在下にチタン酸化物前駆体(オキシ硫酸チタン、塩化チタン、アルコキシチタン等)を焼成して得られる硫黄ドープ酸化チタン、酸化チタンを水素プラズマ処理したり真空下で加熱処理したりすることによって得られる酸素欠陥型の酸化チタン(例えば特開2001−98219号公報参照)、さらには光触媒粒子をハロゲン化白金化合物で処理したり(例えば特開2002−239353号公報参照)、タングステンアルコキシドで処理(特開2001−286755号公報参照)することによって得られる表面処理光触媒等を好適に挙げることができる。
光触媒にはその性能向上をさせるなどのために、光触媒粒子の表面に白金、金、銀、銅、パラジウム、ロジウム、ルテニウムなどの金属や該金属の酸化物を被着しておいてもよい。
Any visible light responsive photocatalyst can be used as long as it exhibits photocatalytic activity and / or hydrophilicity with visible light. For example, TaON, LaTiO 2 N, CaNbO 2 N, LaTaON 2 , and CaTaO 2 N can be used. Such as oxysulfide compounds such as Sm 2 Ti 2 S 2 O 7 (see, for example, JP 2002-233770 A), CaIn 2 O 4 , and SrIn 2. O 4 , ZnGa
Oxides containing metal ions in the d10 electronic state such as 2 O 4 and Na 2 Sb 2 O 6 (see, for example, JP 2002-59008 A), titanium oxide precursors in the presence of nitrogen-containing compounds such as ammonia and urea (Titanium oxysulfate, titanium chloride, alkoxytitanium, etc.) and nitrogen-doped titanium oxide obtained by firing high surface titanium oxide (for example, JP 2002-29750 A, JP 2002-87818 A, JP 2002-154823 A). And sulfur-doped titanium oxide obtained by calcining a titanium oxide precursor (titanium oxysulfate, titanium chloride, alkoxytitanium, etc.) in the presence of a sulfur compound such as thiourea, Oxygen defect type acid obtained by hydrogen plasma treatment of titanium oxide or heat treatment under vacuum Titanium (see, for example, JP-A-2001-98219), photocatalyst particles are treated with a halogenated platinum compound (see, for example, JP-A-2002-239353), or treatment with tungsten alkoxide (JP-A-2001-286755). The surface-treated photocatalyst obtained by (see) can be preferably mentioned.
In order to improve the performance of the photocatalyst, a metal such as platinum, gold, silver, copper, palladium, rhodium, and ruthenium or an oxide of the metal may be deposited on the surface of the photocatalyst particles.

本発明で用いる光触媒としては光触媒のとしての性能の観点及び分散性の観点から一次粒子径が1〜100nmの範囲にあることを要する。1〜50nmの範囲にあることがより好ましく、5〜50nmの範囲であることがさらに好ましい。光触媒の一次粒子径は透過型電子顕微鏡にて測定することができる。
本発明に用いる光触媒の形態としては粉体、分散液、ゾルのいずれでも用いることが出来る。
一般に微細な光触媒粒子粉体は、複数の粒子が強力に凝集した二次粒子を形成するため、無駄にする表面特性が多い上、一つ一つの一次粒子にまで分散させるのは非常に困難である。
これに対して、光触媒ゾルの場合、光触媒粒子は溶解せずに一次粒子に近い形で存在しているため表面特性を有効に利用でき、それから生成する変性光触媒は分散安定性、成膜性等に優れるばかりか、種々の機能を有効に発現するので好ましく使用することができる。ここで、光触媒ゾルとは、光触媒粒子が水及び/又は有機溶媒中に固形分0.01〜70重量%、好ましくは0.1〜50重量%で分散されたものである。
The photocatalyst used in the present invention is required to have a primary particle diameter in the range of 1 to 100 nm from the viewpoint of performance as a photocatalyst and from the viewpoint of dispersibility. It is more preferably in the range of 1 to 50 nm, and further preferably in the range of 5 to 50 nm. The primary particle diameter of the photocatalyst can be measured with a transmission electron microscope.
As the form of the photocatalyst used in the present invention, any of powder, dispersion and sol can be used.
In general, fine photocatalyst particle powder forms secondary particles in which a plurality of particles are strongly agglomerated, so there are many surface properties to be wasted, and it is very difficult to disperse into individual primary particles. is there.
In contrast, in the case of a photocatalyst sol, the photocatalyst particles do not dissolve and exist in a form close to primary particles, so that the surface characteristics can be used effectively, and the modified photocatalyst produced therefrom has dispersion stability, film formability, etc. It can be preferably used because it effectively exhibits various functions. Here, the photocatalyst sol is obtained by dispersing photocatalyst particles in water and / or an organic solvent at a solid content of 0.01 to 70% by weight, preferably 0.1 to 50% by weight.

本発明に使用される光触媒としては、一次粒子と二次粒子との混合物の数平均分散粒子径が400nm以下の光触媒が変性後の光触媒の表面特性を有効に利用できるために好ましい。特に数平均分散粒子径が100nm以下の光触媒を使用した場合、生成する変性光触媒からは透明性に優れた被膜を得ることができるため非常に好ましい。より好ましくは80nm以下3nm以上、さらに好ましくは50nm以下3nm以上の光触媒が好適に選択される。光触媒の数平均分散粒子径は湿式粒度分析計(例えば、日機装製マイクロトラックUPA−9230)で測定することができる。これらの光触媒は、光触媒のゾルまたは分散液であることが好ましい。さらには実質的に水を分散媒とした光触媒のヒドロゾルであることがより好ましい。(ここで、実質的に水を分散媒とするとは、分散媒中に水が80%程度以上含有されていることを意味する。)   As the photocatalyst used in the present invention, a photocatalyst having a number average dispersed particle size of a mixture of primary particles and secondary particles of 400 nm or less is preferable because the surface characteristics of the modified photocatalyst can be effectively used. In particular, when a photocatalyst having a number average dispersed particle size of 100 nm or less is used, it is very preferable because a film having excellent transparency can be obtained from the resulting modified photocatalyst. More preferably, a photocatalyst of 80 nm or less and 3 nm or more, and more preferably 50 nm or less and 3 nm or more is suitably selected. The number average dispersed particle size of the photocatalyst can be measured with a wet particle size analyzer (for example, Nikkiso Microtrac UPA-9230). These photocatalysts are preferably sols or dispersions of photocatalysts. Further, it is more preferably a photocatalyst hydrosol using water as a dispersion medium. (Here, substantially using water as a dispersion medium means that about 80% or more of water is contained in the dispersion medium.)

かかるゾルの調製は公知であり、容易に製造できる(特開昭63−17221号公報、特開平7−819号公報、特開平9−165218号公報、特開平11−43327号公報等)。例えば、硫酸チタンや四塩化チタンの水溶液を加熱加水分解して生成したメタチタン酸をアンモニア水で中和し、析出した含水酸化チタンを濾別、洗浄、脱水させると酸化チタン粒子の凝集物が得られる。この凝集物を、硝酸、塩酸、又はアンモニア等の作用の下に解膠させ水熱処理等を行うことにより酸化チタンヒドロゾルが得られる。また、酸化チタンヒドロゾルとしては、酸化チタン粒子を酸やアルカリの作用の下で解膠させたものや、酸やアルカリを使用せず必要に応じ分散安定剤を使用し、強力なせんだん力の下で
水中に分散させたゾルも用い得る。さらに、pHが中性付近の水溶液中においても分散安定性に優れる、粒子表面がペルオキソ基で修飾されたアナターゼ型酸化チタンゾルも特開平10−67516号公報で提案された方法によって容易に得ることができる。
The preparation of such sols is known and can be easily produced (JP-A 63-17221, JP-A 7-819, JP-A 9-165218, JP-A 11-43327, etc.). For example, metatitanic acid produced by heating and hydrolyzing an aqueous solution of titanium sulfate or titanium tetrachloride is neutralized with aqueous ammonia, and the precipitated hydrous titanium oxide is filtered, washed, and dehydrated to obtain aggregates of titanium oxide particles. It is done. Titanium oxide hydrosol can be obtained by peptizing the agglomerates under the action of nitric acid, hydrochloric acid, ammonia or the like and performing hydrothermal treatment. In addition, as titanium oxide hydrosols, titanium oxide particles are peptized under the action of acids and alkalis, and dispersion stabilizers are used as necessary without using acids or alkalis. A sol dispersed in water under water can also be used. Further, an anatase-type titanium oxide sol having excellent dispersion stability even in an aqueous solution having a pH near neutral and having a particle surface modified with a peroxo group can be easily obtained by the method proposed in JP-A-10-67516. it can.

上述した酸化チタンヒドロゾルはチタニアゾルとして市販されている。(例えば、商品名「STS−01」/石原産業(株)/日本、商品名「TKS203」/テイカ(株)/日本等)
上記酸化チタンヒドロゾル中の固形分は50重量%以下、好ましくは35重量%以下である。さらに好ましくは35重量%以下0.1重量%以上である。このようなヒドロゾルの粘度(20℃)は比較的低く、例えば、2000cps〜0.5cps程度の範囲にあればよい。好ましくは1000cps〜1cps、さらに好ましくは500cps〜1cpsである。
また、例えば酸化セリウムゾル(特開平8−59235号公報)やTi、Nb、Ta、Vから選ばれた少なくとも1種の元素を有する層状酸化物のゾル(特開平9−25123号公報、特開平9−67124号公報、特開平9−227122号公報、特開平9−227123号公報、特開平10−259023号公報等)等、様々な光触媒ゾルの製造方法についても酸化チタンゾルと同様に開示されている。
The titanium oxide hydrosol described above is commercially available as a titania sol. (For example, product name “STS-01” / Ishihara Sangyo Co., Ltd./Japan, product name “TKS203” / Taika Co., Ltd./Japan, etc.)
The solid content in the titanium oxide hydrosol is 50% by weight or less, preferably 35% by weight or less. More preferably, it is 35% by weight or less and 0.1% by weight or more. Such a hydrosol has a relatively low viscosity (20 ° C.) and may be, for example, in the range of about 2000 cps to 0.5 cps. Preferably it is 1000 cps-1 cps, More preferably, it is 500 cps-1 cps.
Further, for example, a cerium oxide sol (JP-A-8-59235) or a layered oxide sol having at least one element selected from Ti, Nb, Ta, and V (JP-A-9-25123, JP-A-9-9). -67124, JP-A-9-227122, JP-A-9-227123, JP-A-10-259023, etc.) are also disclosed in the same manner as titanium oxide sol. .

本発明の変性光触媒は、前述した光触媒を変性剤化合物で変性処理することによって得られる。当該化合物で変性処理をすることによって光触媒ゾルを濃縮/希釈したとき、あるいは水系バインダーと混合したときの分散安定性を保持することができる。また、変性処理をすることによって変性光触媒と水系バインダーからなる光触媒組成物中であるいは当該光触媒組成物を塗装した光触媒塗装物中で光触媒を分散させるのみならず、塗膜の内部から表面にかけて酸化チタンの分布に傾斜をかける効果を奏する点で有効である。   The modified photocatalyst of the present invention can be obtained by modifying the above-mentioned photocatalyst with a modifier compound. By carrying out the modification treatment with the compound, the dispersion stability when the photocatalyst sol is concentrated / diluted or mixed with an aqueous binder can be maintained. In addition, the photocatalyst is dispersed not only in the photocatalyst composition comprising the modified photocatalyst and the aqueous binder or in the photocatalyst-coated product coated with the photocatalyst composition by the modification treatment, but also from the inside to the surface of the coating film. This is effective in that it has the effect of inclining the distribution of.

変性剤化合物としては(I)下記式(1)で表されるトリオルガノシラン単位、下記式(2)で表されるモノオキシジオルガノシラン単位、下記式(3)で表されるジオキシオルガノシラン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類より選ばれる。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは上記式(1)で定義した通りである。)
Examples of the modifier compound include (I) a triorganosilane unit represented by the following formula (1), a monooxydiorganosilane unit represented by the following formula (2), and a dioxyorgano represented by the following formula (3). It is selected from compounds having at least one structural unit selected from the group consisting of silane units.
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. (A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group.)
- (R 2 SiO) - ( 2)
(In the formula, R is as defined in the above formula (1).)

Figure 2008142655
(式中、Rは上記式(1)で定義した通りである。)
Figure 2008142655
(In the formula, R is as defined in the above formula (1).)

当該変性剤化合物中でも上記式(2)または上記式(3)の構造を持つ変性剤化合物が、光触媒との反応性との観点及び光触媒ゾル中での分散性の観点から好ましい。
当該変性剤化合物による光触媒の変性処理は、光触媒のゾルと変性剤化合物を5℃から100℃のいずれかの温度で混合し、撹拌する方法により行うことができる。変性剤化合物は直接光触媒ゾルと混合することもできるし、溶剤に溶解させてから混合することもできる。また、変性処理は中性のpH域で行うこともできるし、酸性またはアルカリ性のpH域で行うこともできる。変性時間短縮の観点から変性は40℃から90℃のいずれかの温度に加熱しながら行うことが好ましい。
当該変性剤化合物による変性処理は光触媒/変性剤の重量比が100/0.5から100/50の範囲であることが好ましく100/1から100/30の範囲であることがより好ましい。当該範囲で変性を行うと、分散安定性の効果と光触媒の性能をより効果的に発現することができる。
Among the modifier compounds, a modifier compound having the structure of the above formula (2) or the above formula (3) is preferable from the viewpoint of reactivity with the photocatalyst and dispersibility in the photocatalyst sol.
The photocatalyst modification treatment with the modifier compound can be performed by mixing the photocatalyst sol and the modifier compound at any temperature from 5 ° C. to 100 ° C. and stirring them. The modifier compound can be directly mixed with the photocatalyst sol, or can be mixed after being dissolved in a solvent. In addition, the modification treatment can be performed in a neutral pH range, and can also be performed in an acidic or alkaline pH range. From the viewpoint of shortening the denaturation time, the denaturation is preferably performed while heating to any temperature between 40 ° C and 90 ° C.
In the modification treatment with the modifier compound, the weight ratio of photocatalyst / modifier is preferably in the range of 100 / 0.5 to 100/50, more preferably in the range of 100/1 to 100/30. When the modification is performed within the above range, the effect of dispersion stability and the performance of the photocatalyst can be expressed more effectively.

本発明の変性光触媒は中性域のpHでの分散安定性の観点から、さらに(II)ケイ素及び/又はアルミニウムの酸化物で変性処理をされていることが好ましい。ケイ素及び/又はアルミニウムの酸化物による変性処理は、例えば光触媒のゾルにケイ酸ナトリウム、アルミン酸ナトリウム等のアルカリ金属ケイ酸塩やアルカリ金属アルミン酸塩を添加して中和する方法により行うことができる(特開平10−158015号公報、特開2005−170687号公報)。ケイ素及び/又はアルミニウムの酸化物による変性処理は光触媒とケイ素及び/又はアルミニウムの酸化物の重量比が100/1から100/30の範囲であることが好ましく、100/1から100/20の範囲であることがより好ましい。当該範囲で変性を行うと分散安定性の効果と光触媒の性能を効果的に発現することができる。   The modified photocatalyst of the present invention is preferably further modified with (II) an oxide of silicon and / or aluminum from the viewpoint of dispersion stability at a neutral pH. The modification treatment with silicon and / or aluminum oxide can be carried out, for example, by a method of neutralizing a photocatalyst sol by adding an alkali metal silicate or alkali metal aluminate such as sodium silicate or sodium aluminate. (Japanese Patent Laid-Open Nos. 10-158015 and 2005-170687). In the modification treatment with the oxide of silicon and / or aluminum, the weight ratio of the photocatalyst to the oxide of silicon and / or aluminum is preferably in the range of 100/1 to 100/30, and in the range of 100/1 to 100/20. It is more preferable that When the modification is performed within the range, the effect of dispersion stability and the performance of the photocatalyst can be effectively expressed.

さらに、変性剤化合物としては当該化合物中に直鎖状または分岐状のフルオロアルキル基を1種類以上含む変性剤を用いることが好ましい。フルオロアルキル基を導入することで光触媒の分散安定性がさらに向上するとともに、水系バインダー中で変性光触媒と水系バインダーからなる光触媒組成物中であるいは当該塗装物を塗装した光触媒塗装物中で光触媒を表面に偏在させる効果を大きくする点で有効である。
フルオロアルキル基としては制限はなく、モノフルオロアルキル基、ジフルオロアルキル基、トリフルオロアルキル基のいずれであっても構わないが、変性剤中のフッ素量が多くなるトリフルオロアルキル基を導入することが最も効果的である。アルキル基とは直鎖状または分岐状の炭素数1〜30個のアルキル基を示す。
Furthermore, as the modifier compound, it is preferable to use a modifier containing one or more linear or branched fluoroalkyl groups in the compound. By introducing a fluoroalkyl group, the dispersion stability of the photocatalyst is further improved, and the photocatalyst is surfaced in a photocatalyst composition comprising a modified photocatalyst and an aqueous binder in an aqueous binder or in a photocatalyst-coated product coated with the paint. This is effective in increasing the effect of uneven distribution.
The fluoroalkyl group is not limited and may be any of a monofluoroalkyl group, a difluoroalkyl group, and a trifluoroalkyl group, but a trifluoroalkyl group that increases the amount of fluorine in the modifier may be introduced. Most effective. The alkyl group is a linear or branched alkyl group having 1 to 30 carbon atoms.

本発明における光触媒に対する変性処理は、(I)オルガノシラン単位を有する少なくとも1種類以上の変性剤化合物による変性処理と(II)ケイ素及び/又はアルミニウムの酸化物による変性処理のどちらか一方を先に行い、次いでもう一方を行うことも、あるいは両者による変性を同時に行うこともできる。
さらに、変性処理を3段階以上の多段階で実施することも可能である。光触媒と変性剤との反応性、変性剤同士の反応性の観点及び変性光触媒分散性の観点からケイ素及び/又はアルミニウムの酸化物による変性を先に行った後にオルガノシラン単位を有する少なくとも1種類以上の変性剤化合物による変性処理を行うことがより好ましい。
(II)ケイ素及び/又はアルミニウムの酸化物による変性は、ケイ素の酸化物であらかじめ変性されている市販の光触媒を使用することもできる。
The modification treatment for the photocatalyst in the present invention is either (I) a modification treatment with at least one modifier compound having an organosilane unit or (II) a modification treatment with an oxide of silicon and / or aluminum. And then the other can be performed, or the denaturation by both can be performed simultaneously.
Furthermore, it is possible to carry out the denaturation treatment in multiple stages of three or more stages. From the viewpoint of reactivity between the photocatalyst and the modifier, the reactivity between the modifiers and the dispersibility of the modified photocatalyst, at least one or more having an organosilane unit after first being modified with an oxide of silicon and / or aluminum It is more preferable to perform the modification treatment with the modifier compound.
(II) For the modification with silicon and / or aluminum oxide, a commercially available photocatalyst that has been modified in advance with an oxide of silicon can also be used.

本発明で用いる光触媒はその粒子の形状については光触媒粒子の比表面積の観点及び粒子の配向効果の観点から粒子長(L)と粒子直径(D)の比(L/D)が1/1から20/1の範囲にあることが好ましい。より好ましいL/Dは1/1から15/1の範囲であり、さらに好ましいL/Dは1/1から10/1の範囲である。
これらの本発明で用いる光触媒としては無害であり、化学的安定性にも優れるため、TiO(酸化チタン)が好ましい。また、アナターゼ、ルチル、ブルッカイトのいずれの結晶構造の酸化チタンも使用でき、複数の結晶構造の酸化チタンの混合物も使用できる。
酸化チタンとしてアナターゼ型酸化チタンを用いると光触媒活性及び/又は親水性がより強く発現する点で好ましい。また、酸化チタンとしてルチル型酸化チタンを用いると光触媒活性及び/又は親水性を発現しつつ耐候性に優れる点で好ましい。
酸化チタンの結晶構造はX線回折によって同定することができる。酸化チタンには、通常の酸化チタンのほかに含水酸化チタン、水和酸化チタン、オルトチタン酸、メタチタン酸、水酸化チタンと称されるものも含まれる。
The photocatalyst used in the present invention has a particle shape (L / D) ratio of 1/1 from the viewpoint of the specific surface area of the photocatalyst particles and the particle orientation effect from the viewpoint of the particle orientation effect. It is preferably in the range of 20/1. More preferable L / D is in the range of 1/1 to 15/1, and further preferable L / D is in the range of 1/1 to 10/1.
As these photocatalysts used in the present invention, TiO 2 (titanium oxide) is preferable because it is harmless and excellent in chemical stability. In addition, titanium oxide having any crystal structure of anatase, rutile, or brookite can be used, and a mixture of titanium oxides having a plurality of crystal structures can also be used.
Use of anatase-type titanium oxide as the titanium oxide is preferable in that the photocatalytic activity and / or hydrophilicity is more strongly expressed. In addition, it is preferable to use rutile type titanium oxide as the titanium oxide in terms of excellent weather resistance while exhibiting photocatalytic activity and / or hydrophilicity.
The crystal structure of titanium oxide can be identified by X-ray diffraction. In addition to normal titanium oxide, titanium oxide includes those called hydrous titanium oxide, hydrated titanium oxide, orthotitanic acid, metatitanic acid, and titanium hydroxide.

本発明に使用する水系バインダーとは、実質的に水を分散媒とするバインダー樹脂溶液あるいはバインダー樹脂の分散体のことを言う。例えば、ポリビニルアルコール、カチオン変成ポリビニルアルコール、シラノール変性ポリビニルアルコールなどのポリビニルアルコール誘導体、ポリビニルピロリドン、ポリアクリルアミド類、デンプン及びデンプン誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、カゼイン、ゼラチン、水性媒体中でのラジカル重合、アニオン重合、カチオン重合などによって得られる従来公知のポリ(メタ)アクリレート系、ポリビニルアセテート系、酢酸ビニル−アクリル系、エチレン酢酸ビニル系、シリコーン系、ポリブタジエン系、スチレンブタジエン系、NBR系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、塩化ビニリデン系、ポリスチレン−(メタ)アクリレート系、スチレン−無水マレイン酸系等の共重合体、シリコーン変性アクリル系、フッソ−アクリル系、アクリルシリコン、エポキシ−アクリル系等の変性共重合体の水分散体などを挙げることができる。
さらに、水系バインダーにはバインダー樹脂に含まれる官能基と反応する官能基を有する化合物を含むことができる。例えば、(ポリ)イソシアネート化合物、(ポリ)エポキシ化合物、アミノ化合物、(ポリ)カルボキシ化合物、(ポリ)ヒドロキシ化合物、グリコール化合物、シラノール化合物、シリル化合物、アルコキシ化合物、(メタ)アクリレート類などを挙げることができる。
The aqueous binder used in the present invention refers to a binder resin solution or a dispersion of a binder resin substantially using water as a dispersion medium. For example, polyvinyl alcohol, cation-modified polyvinyl alcohol, polyvinyl alcohol derivatives such as silanol-modified polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamides, starch and starch derivatives, cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl cellulose, casein, gelatin, in an aqueous medium Conventionally known poly (meth) acrylate type, polyvinyl acetate type, vinyl acetate-acrylic type, ethylene vinyl acetate type, silicone type, polybutadiene type, styrene butadiene type, NBR type obtained by radical polymerization, anionic polymerization, cationic polymerization, etc. , Polyvinyl chloride, chlorinated polypropylene, polyethylene, polystyrene, vinylidene chloride, polystyrene- (meth) acryl Over preparative system, a styrene - maleic anhydride copolymer-based or the like, silicone-modified acrylic-based, fluorine - acrylic, acrylic silicone, epoxy - and the like aqueous dispersion of the modified copolymer such as an acrylic.
Further, the aqueous binder can contain a compound having a functional group that reacts with a functional group contained in the binder resin. Examples include (poly) isocyanate compounds, (poly) epoxy compounds, amino compounds, (poly) carboxy compounds, (poly) hydroxy compounds, glycol compounds, silanol compounds, silyl compounds, alkoxy compounds, (meth) acrylates, and the like. Can do.

また、本発明における変性光触媒と水系バインダーからなる光触媒組成物には分散安定性の観点から乳化剤や分散安定剤を使用することもできる。当該乳化剤としては例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸等の酸性乳化剤、酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸等のアニオン性界面活性剤や、例えばアルキルトリメチルアンモニウムブロマイド、アルキルピリジニウムブロマイド、イミダゾリニウムラウレート等の四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテル等のノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤等を例示することができる。   Moreover, an emulsifier and a dispersion stabilizer can also be used from the viewpoint of dispersion stability in the photocatalyst composition comprising the modified photocatalyst and the aqueous binder in the present invention. Examples of the emulsifier include acidic emulsifiers such as alkylbenzenesulfonic acid, alkylsulfonic acid, alkylsulfosuccinic acid, polyoxyethylene alkylsulfuric acid, polyoxyethylene alkylarylsulfuric acid, polyoxyethylene distyrylphenyl ether sulfonic acid, and alkali metal of acidic emulsifier. (Li, Na, K, etc.) salts, ammonium salts of acidic emulsifiers, anionic surfactants such as fatty acid soaps, quaternary ammonium salts such as alkyltrimethylammonium bromide, alkylpyridinium bromide, imidazolinium laurate, pyridinium Salt, imidazolinium salt type cationic surfactant, polyoxyethylene alkyl aryl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethyleneoxypropylene Lock copolymers may be exemplified a reactive emulsifier or the like having a nonionic surface active agent and a radical polymerizable double bond, such as polyoxyethylene distyryl phenyl ether.

上記ラジカル重合性の二重結合を有する反応性乳化剤としては、例えばスルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体やそれらのアルカリ金属塩、アンモニウム塩、ポリオキシエチレン等のノニオン基を有するビニル単量体、4級アンモニウム塩を有するビニル単量体等を挙げることができる。
該分散安定剤としては例えば、ポリカルボン酸およびスルホン酸塩よりなる群から選ばれる各種の水溶性オリゴマー類や、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、水溶性あるいは水分散性アクリル樹脂などの合成あるいは天然の水溶性あるいは水分散性の各種の水溶性高分子物質が挙げることができる。これらの乳化剤や分散安定剤は1種または2種以上の混合物を使用することができる。
また、本発明の光触媒組成物には光触媒と水系バインダーとの相互作用を制御する目的
で、アルコール類などの有機溶剤を少量添加することもできる。
Examples of the reactive emulsifier having a radical polymerizable double bond include a vinyl monomer having a sulfonic acid group or a sulfonate group, a vinyl monomer having a sulfate ester group, an alkali metal salt thereof, an ammonium salt, Examples include vinyl monomers having a nonionic group such as oxyethylene, and vinyl monomers having a quaternary ammonium salt.
Examples of the dispersion stabilizer include various water-soluble oligomers selected from the group consisting of polycarboxylic acids and sulfonates, polyvinyl alcohol, hydroxyethyl cellulose, starch, maleated polybutadiene, maleated alkyd resin, polyacrylic acid ( Salt), polyacrylamide, synthetic or natural water-soluble or water-dispersible acrylic resins, and various water-soluble polymer substances that are water-soluble or water-dispersible. These emulsifiers and dispersion stabilizers can be used singly or as a mixture of two or more.
A small amount of an organic solvent such as alcohol can be added to the photocatalyst composition of the present invention for the purpose of controlling the interaction between the photocatalyst and the aqueous binder.

本発明の光触媒組成物を塗装する基材としては、例えば合成樹脂、天然樹脂、繊維等の有機基材や、金属、セラミックス、ガラス、石、セメント、コンクリート等の無機基材や、それらの組み合わせ等を挙げることができる。
上記合成樹脂としては、熱可塑性樹脂と硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)の使用が可能であり、例えばシリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルフォン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂等を挙げることができる。
また、上記天然樹脂としては、セルロース系樹脂、天然ゴム等のイソプレン系樹脂、カゼイン等のタンパク質系樹脂等を挙げることができる。
本発明において、樹脂板や繊維の表面は、コロナ放電処理やフレーム処理、プラズマ処理等の表面処理がされてあっても構わないが、これらの表面処理は必須ではない。
本発明に使用する基材の種類や膜厚は用途に応じて使い分けることができる。
Examples of the substrate on which the photocatalyst composition of the present invention is coated include organic substrates such as synthetic resins, natural resins, and fibers, inorganic substrates such as metals, ceramics, glass, stone, cement, and concrete, and combinations thereof. Etc.
As the synthetic resin, a thermoplastic resin and a curable resin (thermosetting resin, photocurable resin, moisture curable resin, etc.) can be used. For example, silicone resin, acrylic resin, methacrylic resin, fluororesin, Alkyd resin, amino alkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, polycarbonate resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, Examples thereof include polyphenylene sulfone resin, polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin, and silicone-acrylic resin.
Examples of the natural resin include cellulose resins, isoprene resins such as natural rubber, and protein resins such as casein.
In the present invention, the surface of the resin plate or fiber may be subjected to surface treatment such as corona discharge treatment, flame treatment, or plasma treatment, but these surface treatments are not essential.
The type and film thickness of the substrate used in the present invention can be properly used depending on the application.

また、本発明の光触媒組成物には、その用途ならびに使用方法などに応じて、通常、塗料や成型用樹脂に添加配合される成分、例えば、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤あるいは帯電調製剤等をそれぞれの目的に応じて選択、組み合わせて配合することができる。   In addition, the photocatalyst composition of the present invention is usually added to and blended with paints and molding resins, for example, thickeners, leveling agents, thixotropic agents, antifoaming agents, depending on the application and method of use. Agent, freezing stabilizer, matting agent, crosslinking reaction catalyst, pigment, curing catalyst, crosslinking agent, filler, anti-skinning agent, dispersant, wetting agent, light stabilizer, antioxidant, UV absorber, rheology control Agent, antifoaming agent, film-forming aid, rust preventive agent, dye, plasticizer, lubricant, reducing agent, antiseptic agent, antifungal agent, deodorant agent, anti-yellowing agent, antistatic agent or charge preparation agent Etc. can be selected and combined in accordance with each purpose.

本発明の光触媒組成物を含む塗装物は光触媒活性及び/又は親水性に優れるとともに耐候性、耐水性、光学特性に優れる。
光触媒活性は、例えば材料表面の光照射時における色素等の有機物の分解性を測定することにより判定することができる。光触媒活性を有する表面は、優れた汚染有機物質の分解活性や耐汚染性を発現する。
親水性は、材料表面の光照射時における接触角を測定することで判定することができる。親水性に優れた表面は低い接触角を示す。防汚性の観点から光照射時における接触角は60℃以下であることが好ましい。
ここで、光照射は光触媒のバンドギャップエネルギーよりも高いエネルギーの光の光源を用いて行う。光源としては、太陽光や室内照明灯等の一般住宅環境下で得られる光の他、ブラックライト、キセノンランプ、水銀灯、LED等の光が利用できる。
The coated article containing the photocatalyst composition of the present invention is excellent in photocatalytic activity and / or hydrophilicity and in weather resistance, water resistance and optical properties.
The photocatalytic activity can be determined, for example, by measuring the decomposability of an organic substance such as a dye during light irradiation on the material surface. A surface having photocatalytic activity exhibits excellent decomposition activity and contamination resistance of contaminating organic substances.
The hydrophilicity can be determined by measuring the contact angle at the time of light irradiation on the material surface. A surface with excellent hydrophilicity exhibits a low contact angle. From the viewpoint of antifouling properties, the contact angle during light irradiation is preferably 60 ° C. or less.
Here, the light irradiation is performed using a light source having a higher energy than the band gap energy of the photocatalyst. As a light source, light such as black light, xenon lamp, mercury lamp and LED can be used in addition to light obtained in a general residential environment such as sunlight and indoor lighting.

本発明の塗装物は、例えば上記光触媒組成物を基材に塗布し、20℃〜80℃の低温で乾燥した後、所望により好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理や紫外線照射等を行い、基材上に汚染防止層の塗膜を形成することにより得ることができる。上記塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法等が挙げられる。
本発明の水系汚染防止用組成物を基材上に塗膜として形成させる場合、該塗膜の厚みは0.05〜100μm、好ましくは0.1〜10μmである事が好ましい。透明性の面から100μm以下の厚みであることが好ましく、防汚性、光触媒活性等の機能を発現するためには0.05μm以上の厚みであることが好ましい。
The coated product of the present invention, for example, after applying the photocatalyst composition to a substrate and drying at a low temperature of 20 ° C. to 80 ° C., preferably 20 ° C. to 500 ° C., more preferably 40 ° C. to 250 ° C. It can be obtained by performing a heat treatment, ultraviolet irradiation, or the like to form a coating film of a contamination prevention layer on the substrate. Examples of the coating method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, screen printing, casting, gravure printing, flexographic printing, and the like.
When forming the composition for water pollution prevention of this invention as a coating film on a base material, it is preferable that the thickness of this coating film is 0.05-100 micrometers, Preferably it is 0.1-10 micrometers. The thickness is preferably 100 μm or less from the viewpoint of transparency, and in order to exhibit functions such as antifouling properties and photocatalytic activity, the thickness is preferably 0.05 μm or more.

なお、本明細書では、塗膜という表現を使用しているが、必ずしも連続膜である必要はなく、不連続膜、島状分散膜等の態様であっても構わない。
本発明の塗装物の製造方法は、基材上に本発明の光触媒組成物を形成する場合に限定されない。基材と本発明の水系汚染防止用組成物を同時に成形、たとえば、一体成形してもよい。また、本発明の光触媒組成物を成形後、基材の成形を行ってもよい。また、塗装物と基材を個別に成形後、接着、融着等により製造してもよい。
In this specification, the expression “coating film” is used, but it is not necessarily a continuous film, and may be a discontinuous film, an island-shaped dispersion film, or the like.
The manufacturing method of the coated material of this invention is not limited to the case where the photocatalyst composition of this invention is formed on a base material. The base material and the composition for preventing water pollution of the present invention may be molded at the same time, for example, integrally molded. Moreover, you may shape | mold a base material after shape | molding the photocatalyst composition of this invention. Alternatively, the coated product and the base material may be individually molded and then manufactured by adhesion, fusion, or the like.

以下の実施例、参考例及び比較例により本発明を具体的に説明する。本発明の骨子は以下の実施例に限定されるものではない。なお、以下の実施例、比較例において記載した測定、又は評価は、以下の方法により実施した。
1.平均一次粒子径
試料を電子顕微鏡用のメッシュ上に落とし、風乾した。メッシュ上の試料を超高分解能透過型電子顕微鏡(日立製H−9000UHR)で、加速電圧300kV、1000000倍で観察した。観察像から任意の粒子を100個抽出し、平均の一次粒子径を求めた。
The present invention will be specifically described by the following examples, reference examples and comparative examples. The gist of the present invention is not limited to the following examples. In addition, the measurement or evaluation described in the following Examples and Comparative Examples was performed by the following method.
1. Average primary particle size The sample was dropped on a mesh for an electron microscope and air-dried. The sample on the mesh was observed with an ultra high resolution transmission electron microscope (H-9000UHR manufactured by Hitachi) at an acceleration voltage of 300 kV and 1,000,000 times. 100 arbitrary particles were extracted from the observed image, and the average primary particle diameter was determined.

2.数平均粒子径
試料中の固形分含有量が0.5質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日機装製マイクロトラックUPA−9230)を用いて測定した。
3.粒子長(L)と粒子径(D)の比(L/D)
1.で観察した電子顕微鏡像で抽出した任意の100個の粒子を用いて粒子長(L)と粒子径(D)の比を求めた。
4.塗膜表面に対する水の接触角
塗膜の表面に脱イオン水の滴を乗せ、23℃で1分間放置した後、協和界面科学製CA−X150型接触角計を用いて測定した。
塗膜に対する水の接触角が小さいほど、塗膜表面は親水性が高い。
2. Number average particle size The sample was diluted with a suitable solvent so that the solid content in the sample was 0.5% by mass, and measured using a wet particle size analyzer (Microtrack UPA-9230 manufactured by Nikkiso).
3. Ratio of particle length (L) to particle diameter (D) (L / D)
1. The ratio of the particle length (L) to the particle diameter (D) was determined using arbitrary 100 particles extracted from the electron microscope image observed in (1).
4). Contact angle of water to the surface of the coating film A drop of deionized water was placed on the surface of the coating film, left at 23 ° C. for 1 minute, and then measured using a CA-X150 contact angle meter manufactured by Kyowa Interface Science.
The smaller the contact angle of water with the coating film, the higher the hydrophilicity of the coating film surface.

5.透明性
日本電色工業製濁度計NDH2000を用いて、JIS−K7105に準じてヘイズ値及び全光線透過率を測定した。
6.色差
BYK Gardner製カラーガイドを用いて標準板からの色差を求めた。
7.耐候性
スガ試験器製サンシャインウェザーメーターを使用して曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行った。曝露前と曝露500時間後に水の接触角を上記4.の方法で、透明性を上記5.の方法で評価し、曝露前後の変化を評価した。
5. Transparency Using a Nippon Denshoku Industries turbidimeter NDH2000, haze values and total light transmittance were measured according to JIS-K7105.
6). Color difference The color difference from the standard plate was determined using a color guide manufactured by BYK Gardner.
7). Weather resistance An exposure test (black panel temperature 63 ° C., rainfall 18 minutes / 2 hours) was conducted using a sunshine weather meter manufactured by Suga Test Instruments. The contact angle of water before exposure and after 500 hours of exposure is In the above method, the transparency is set to the above 5. The change before and after exposure was evaluated.

8.耐汚染性
試験板を一般道路(トラック通行量500〜1000台/日程度)に面したフェンスに6ケ月間張りつけた後、汚染の度合いを目視にて評価した。
◎:汚れなし、○:汚れがほとんどなし、△:やや雨スジ汚れ有り、×:著しく雨スジ汚れ有り
9.光触媒活性
試験板にブラックライトの光を3時間照射した。その後100mg/lのメチレンブルー水溶液0.1mlを分注し、その上に35ml×35mlの透明ポリエステルフィルムを被覆した。上記6.の方法で初期の色差を測定した後、ブラックライトの光を照射し、5分ごとに色差を測定した。初期の色差からの変化をΔEで求め、1時間後のΔEで光触媒活性を評価した。ΔEが大きいほど活性が高い。
なおこのとき、ブラックライトには東芝ライテック製FL20S BLB型ブラックラ
イトの光を用い、日本国トプコン製UVR−2型紫外線強度計{受光部として、日本国トプコン製UD−36型受光部(波長310〜400nmの光に対応)を使用}を用いて測定した紫外線強度が1mW/cmとなるよう調整した。
8). Contamination Resistance After the test plate was attached to a fence facing a general road (truck traffic of about 500 to 1000 vehicles / day) for 6 months, the degree of contamination was evaluated visually.
◎: No dirt, ○: Little dirt, △: Slightly rain streaks, x: Significant rain streaks Photocatalytic activity The test plate was irradiated with black light for 3 hours. Thereafter, 0.1 ml of a 100 mg / l methylene blue aqueous solution was dispensed, and a 35 ml × 35 ml transparent polyester film was coated thereon. Above 6. After the initial color difference was measured by this method, the light of black light was irradiated and the color difference was measured every 5 minutes. The change from the initial color difference was determined by ΔE, and photocatalytic activity was evaluated by ΔE after 1 hour. The greater the ΔE, the higher the activity.
At this time, the light of the FL20S BLB type black light manufactured by Toshiba Lighting & Technology is used as the black light, and the UVR-2 type UV intensity meter manufactured by Topcon, Japan {as the light receiving unit, the UD-36 type light receiving unit manufactured by Topcon, Japan (wavelength 310). Was used so that the ultraviolet intensity measured using 1) was adjusted to 1 mW / cm 2 .

[製造例1]
変性酸化チタンヒドロゾル(A−1)の合成
還流冷却器、温度計および撹拌装置を有する反応器に、LS−8600[1,3,5,7−テトラメチルシクロテトラシロキサンの商品名(信越化学工業製)]474g、LS−8620[オクタメチルシクロテトラシロキサンの商品名(信越化学工業製)]76.4g、LS−8490[1,3,5−トリメチル−1,3,5−トリフェニルシクロトリシロキサンの商品名(信越化学工業製)408g、LS−7130[ヘキサメチルジシロキサンの商品名(信越化学工業製)40.5g、及び硫酸化ジルコニア20gを仕込み、50℃で3時間攪拌した後、さらに80℃に加熱したまま5時間攪拌した。硫酸化ジルコニアをろ過したのち、130℃、真空下で低沸分を除去し、重量平均分子量6600、Si−H 基含量7.93mmol/gのメチルハイドロジェンシロキサン−メチルフェニルシロキサン−ジメチルシロキサンコポリマー(合成シリコーン化合物)780gを得た。
[Production Example 1]
Synthesis of Modified Titanium Oxide Hydrosol (A-1) LS-8600 [1,3,5,7-tetramethylcyclotetrasiloxane trade name (Shin-Etsu Chemical Co., Ltd.) was added to a reactor having a reflux condenser, a thermometer and a stirring device. 474 g, LS-8620 [trade name of octamethylcyclotetrasiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.)] 76.4 g, LS-8490 [1,3,5-trimethyl-1,3,5-triphenylcyclo After charging 408 g of trisiloxane trade name (manufactured by Shin-Etsu Chemical Co., Ltd.), LS-7130 [trade name of hexamethyldisiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.) 40.5 g, and 20 g of sulfated zirconia, and stirring at 50 ° C. for 3 hours The mixture was further stirred for 5 hours while being heated to 80 ° C. After filtering the sulfated zirconia, low-boiling components were removed under vacuum at 130 ° C., and a methylhydrogensiloxane-methylphenylsiloxane-dimethylsiloxane copolymer having a weight average molecular weight of 6600 and a Si—H group content of 7.93 mmol / g ( 780 g of a synthetic silicone compound) was obtained.

還流冷却器、温度計および撹拌装置を取りつけた反応器に上記合成シリコーン化合物40 g を入れ、撹拌下80℃に昇温した。これにユニオックスPKA−5118[ポリオキシエチレンアリルメチルエーテルの商品名(日本油脂社製)、重量平均分子量800]200gと脱水したメチルエチルケトン200g、および塩化白金酸6水和物5質量%、イソプロパノール溶液1.0gを混合した溶液を攪拌下で約1時間かけて添加し、さらに80℃にて5時間攪拌を続けた後室温にまで冷却することにより、Si−H基含有化合物溶液(1)を得た。
得られたSi−H基含有化合物溶液(1)4gに水100gを加えると、透明な水溶液となった。
また、得られたSi−H基含有化合物溶液(1)3.97gにブチルセロソルブ8gを添加・混合した後、1N水酸化ナトリウム水溶液8mlを添加すると、水素ガスが発生し、その体積は21℃ において21.0mlであった。この水素ガス生成量から求めた、Si−H基含有化合物溶液(1)1g当りのSi−H 基含量は0 .22mmol/g(合成シリコーン化合物1g当たりに換算したSi−H基含量は約2.37mmol/g)であった。
The synthetic silicone compound 40 g was put into a reactor equipped with a reflux condenser, a thermometer and a stirring device, and the temperature was raised to 80 ° C. with stirring. To this, UNIOX PKA-5118 [trade name of polyoxyethylene allyl methyl ether (manufactured by NOF Corporation), weight average molecular weight 800] 200 g and dehydrated methyl ethyl ketone 200 g, chloroplatinic acid hexahydrate 5 mass%, isopropanol solution A solution in which 1.0 g was mixed was added over about 1 hour under stirring, and the stirring was further continued at 80 ° C. for 5 hours, followed by cooling to room temperature, whereby the Si—H group-containing compound solution (1) was obtained. Obtained.
When 100 g of water was added to 4 g of the obtained Si—H group-containing compound solution (1), a transparent aqueous solution was obtained.
Further, 8 g of butyl cellosolve was added to and mixed with 3.97 g of the obtained Si—H group-containing compound solution (1), and then 8 ml of 1N aqueous sodium hydroxide solution was added to generate hydrogen gas. 21.0 ml. The Si—H group content per gram of the Si—H group-containing compound solution (1) determined from this hydrogen gas production amount was 0. The content was 22 mmol / g (the Si—H group content calculated per 1 g of the synthetic silicone compound was about 2.37 mmol / g).

還流冷却器、温度計および撹拌装置を取りつけた反応器に、TKS−203[アナターゼ型酸化チタンヒドロゾルの商品名(テイカ製)]78.1gと水221.9gを入れた後、これに合成したSi−H基含有化合物溶液(1)41.3gを40℃ にて攪拌下約30分かけて添加し、さらに40℃にて12時間撹拌を続けた後、減圧蒸留によりメチルエチルケトンを除去し、水を加えて5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(A−1)を得た。この時、Si−H基含有化合物溶液(1)の反応に伴い生成した水素ガス量は20℃において210mlであった。また、得られた変性酸化チタンヒドロゾル(A−1)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の消失が観測された。
また、得られた変性光触媒ヒドロゾル(A−1)の粒径分布は単一分散(数平均粒子径は55nm)であり、さらに変性処理前のTKS203の単一分散(数平均粒子径は12nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
尚、上記得られた変性光触媒ヒドロゾル(A−1)の数平均分子量は、その濃度を5質量%とした場合の測定数値であり、一方表1に記載のそれは、該濃度と0.5質量%とした場合の測定数値であり、該濃度がより大きいことにより前者の数値がより小さくなっている。(以下同じ。)
表1に変性光触媒ヒドロゾル(A−1)の特性を示す。
A reactor equipped with a reflux condenser, a thermometer, and a stirring device was charged with 78.1 g of TKS-203 [trade name of anatase-type titanium oxide hydrosol (manufactured by Teika)] and 221.9 g of water, and then synthesized. 41.3 g of the Si-H group-containing compound solution (1) was added with stirring at 40 ° C. over about 30 minutes, and stirring was further continued at 40 ° C. for 12 hours. Then, methyl ethyl ketone was removed by distillation under reduced pressure, Water was added to obtain a modified photocatalyst hydrosol (A-1) having a very good dispersibility of 5% by mass. At this time, the amount of hydrogen gas produced by the reaction of the Si—H group-containing compound solution (1) was 210 ml at 20 ° C. Further, when the obtained modified titanium oxide hydrosol (A-1) was coated on a KBr plate and the IR spectrum was measured, the disappearance of absorption of Ti—OH groups (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (A-1) is a single dispersion (number average particle diameter is 55 nm), and further, the single dispersion of TKS203 before the modification treatment (number average particle diameter is 12 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
In addition, the number average molecular weight of the modified photocatalyst hydrosol (A-1) obtained above is a measured numerical value when the concentration is 5% by mass, while that shown in Table 1 shows that the concentration and 0.5% by mass. % Is a measured numerical value, and the former value is smaller because the concentration is larger. (same as below.)
Table 1 shows the properties of the modified photocatalyst hydrosol (A-1).

[製造例2]
変性酸化チタンヒドロゾル(B−1)の合成
還流冷却器、温度計および撹拌装置を取りつけた反応器に、MPT−422[アナターゼ型酸化チタンヒドロゾルの商品名(石原産業製)、TiOに対して14重量%のSiOで表面変性されているもの]77.3gと水231.9gを入れた後、これに[製造例1]で合成したSi−H基含有化合物溶液(1)41.3gを40℃にて攪拌下約30分かけて添加し、さらに40℃にて12時間撹拌を続けた後、減圧蒸留によりメチルエチルケトンを除去し、水を加えて5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(B−1)を得た。この時、Si−H基含有化合物溶液(1)の反応に伴い生成した水素ガス量は20℃において210mlであった。また、得られた変性酸化チタンヒドロゾル(B−1)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の消失が観測された。
また、得られた変性光触媒ヒドロゾル(B−1)の粒径分布は単一分散(数平均粒子径は50nm)であり、さらに変性処理前のMPT422の単一分散(数平均粒子径は9nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
表1に変性光触媒ヒドロゾル(B−1)の特性を示す。
[Production Example 2]
Synthesis of Modified Titanium Oxide Hydrosol (B-1) In a reactor equipped with a reflux condenser, a thermometer and a stirring device, MPT-422 [trade name of anatase-type titanium oxide hydrosol (manufactured by Ishihara Sangyo), TiO 2 after putting 14 those are surface modified with weight% of SiO 2] 77.3 g of water 231.9g against which the production example 1 synthesized Si-H group-containing compound solution (1) 41 .3 g was added at 40 ° C. with stirring over about 30 minutes, and further stirring was continued at 40 ° C. for 12 hours. Then, methyl ethyl ketone was removed by distillation under reduced pressure, water was added, and 5% by mass was very dispersible. The modified photocatalyst hydrosol (B-1) having a good quality was obtained. At this time, the amount of hydrogen gas produced by the reaction of the Si—H group-containing compound solution (1) was 210 ml at 20 ° C. Further, when the obtained modified titanium oxide hydrosol (B-1) was coated on a KBr plate and the IR spectrum was measured, disappearance of Ti—OH group absorption (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (B-1) is monodisperse (number average particle size is 50 nm), and further monodisperse of MPT422 before modification (number average particle size is 9 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
Table 1 shows the characteristics of the modified photocatalyst hydrosol (B-1).

[製造例3]
変性酸化チタンヒドロゾル(C−1)の合成
還流冷却器、温度計および撹拌装置を取りつけた反応器に、TSK−5[ルチル型酸化チタンヒドロゾルの商品名(石原産業製)、TiOに対して14重量%のSiOで表面変性されているもの]51.5gと水257.5gを入れた後、これに[製造例1]で合成したSi−H基含有化合物溶液(1)41.3gを40℃にて攪拌下約30分かけて添加し、さらに40℃にて12時間撹拌を続けた後、減圧蒸留によりメチルエチルケトンを除去し、水を加えて5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(A−3)を得た。この時、Si−H基含有化合物溶液(1)の反応に伴い生成した水素ガス量は20℃において210mlであった。また、得られた変性酸化チタンヒドロゾル(C−1)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の消失が観測された。
また、得られた変性光触媒ヒドロゾル(C−1)の粒径分布は単一分散(数平均粒子径は50nm)であり、さらに変性処理前のMPT422の単一分散(数平均粒子径は9nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
表1に変性光触媒ヒドロゾル(C−1)の特性を示す。
[Production Example 3]
Synthesis of Modified Titanium Oxide Hydrosol (C-1) To a reactor equipped with a reflux condenser, a thermometer and a stirrer, TSK-5 [trade name of rutile titanium oxide hydrosol (made by Ishihara Sangyo), TiO 2 On the other hand, the surface is modified with 14 wt% SiO 2 ] After 51.5 g and 257.5 g of water were added, the Si—H group-containing compound solution (1) 41 synthesized in [Production Example 1] was added thereto. .3 g was added at 40 ° C. with stirring over about 30 minutes, and further stirring was continued at 40 ° C. for 12 hours. Then, methyl ethyl ketone was removed by distillation under reduced pressure, water was added, and 5% by mass was very dispersible. The modified photocatalyst hydrosol (A-3) with good quality was obtained. At this time, the amount of hydrogen gas produced by the reaction of the Si—H group-containing compound solution (1) was 210 ml at 20 ° C. Moreover, when the obtained modified titanium oxide hydrosol (C-1) was coated on a KBr plate and the IR spectrum was measured, the disappearance of absorption of Ti—OH groups (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (C-1) is a single dispersion (number average particle diameter is 50 nm), and further, the single dispersion of MPT422 before the modification treatment (number average particle diameter is 9 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
Table 1 shows the properties of the modified photocatalyst hydrosol (C-1).

[製造例4]
還流冷却器、温度計および撹拌装置を取りつけた反応器に、TKS−203[アナターゼ型酸化チタンヒドロゾルの商品名(テイカ製)]78.1gと水221.9gを入れた後、これにKBM7103[3,3,3−トリフルオロプロピルトリメトキシシランの商品名(信越化学工業製)]0.77gを80℃ にて攪拌下約30分かけて添加し、さらに80℃にて3時間撹拌を続けたところ5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(A−2)を得た。得られた変性酸化チタンヒドロゾル(A−2)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の減少が観測された。
また、得られた変性光触媒ヒドロゾル(A−2)の粒径分布は単一分散(数平均粒子径は53nm)であり、さらに変性処理前のTKS203の単一分散(数平均粒子径は12nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
表1に変性光触媒ヒドロゾル(A−2)の特性を示す。
[Production Example 4]
Into a reactor equipped with a reflux condenser, a thermometer and a stirring device, 78.1 g of TKS-203 [trade name of anatase-type titanium oxide hydrosol (manufactured by Teika)] and 221.9 g of water were added, and then KBM7103 [Product name of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)] 0.77 g was added at 80 ° C. with stirring over about 30 minutes, and further stirred at 80 ° C. for 3 hours. As a result, a modified photocatalyst hydrosol (A-2) having a very good dispersibility of 5% by mass was obtained. When the obtained modified titanium oxide hydrosol (A-2) was coated on a KBr plate and the IR spectrum was measured, a decrease in absorption of Ti—OH groups (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (A-2) is monodisperse (number average particle size is 53 nm), and further monodispersion of TKS203 before modification (number average particle size is 12 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
Table 1 shows the characteristics of the modified photocatalytic hydrosol (A-2).

[製造例5]
還流冷却器、温度計および撹拌装置を取りつけた反応器に、MPT−422[アナターゼ型酸化チタンヒドロゾルの商品名(石原産業製),TiOに対して14重量%のSiOで表面変性されているもの]77.3gと水231.9gを入れた後、これにKBM7103[3,3,3−トリフルオロプロピルトリメトキシシランの商品名(信越化学工業製)]0.77gを80℃ にて攪拌下約30分かけて添加し、さらに80℃にて3時間撹拌を続けたところ5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(B−2)を得た。得られた変性酸化チタンヒドロゾル(A−2)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の減少が観測された。
また、得られた変性光触媒ヒドロゾル(B−2)の粒径分布は単一分散(数平均粒子径は53nm)であり、さらに変性処理前のTKS203の単一分散(数平均粒子径は12nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
表1に変性光触媒ヒドロゾル(B−2)の特性を示す。
[Production Example 5]
Reflux condenser, into a reactor equipped with a thermometer and a stirrer, MPT-422 [anatase titanium oxide hydrosol trade name (manufactured by Ishihara Sangyo Kaisha), is surface-modified with respect to TiO 2 in 14 weight% of SiO 2 After adding 77.3 g and 231.9 g of water, 0.77 g of KBM7103 [trade name of 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)] was added to 80 ° C. The mixture was added over about 30 minutes with stirring, and the stirring was further continued at 80 ° C. for 3 hours to obtain 5% by mass of a modified photocatalyst hydrosol (B-2) having very good dispersibility. When the obtained modified titanium oxide hydrosol (A-2) was coated on a KBr plate and the IR spectrum was measured, a decrease in absorption of Ti—OH groups (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (B-2) is a single dispersion (number average particle diameter is 53 nm), and further, the single dispersion of TKS203 before the modification treatment (number average particle diameter is 12 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
Table 1 shows the characteristics of the modified photocatalytic hydrosol (B-2).

[製造例6]
還流冷却器、温度計および撹拌装置を取りつけた反応器に、TSK−5[ルチル型酸化チタンヒドロゾルの商品名(石原産業製)、TiOに対して14重量%のSiOで表面変性されているもの]51.5gと水257.5gを入れた後、これにKBM7103[3,3,3−トリフルオロプロピルトリメトキシシランの商品名(信越化学工業製)]0.77gを80℃ にて攪拌下約30分かけて添加し、さらに80℃にて3時間撹拌を続けたところ5質量%の非常に分散性の良好な変性光触媒ヒドロゾル(C−2)を得た。得られた変性酸化チタンヒドロゾル(C−2)をKBr板上にコーティングしIRスペクトルを測定したところ、Ti−OH基の吸収(3630〜3640cm−1)の減少が観測された。
また、得られた変性光触媒ヒドロゾル(C−2)の粒径分布は単一分散(数平均粒子径は53nm)であり、さらに変性処理前のTKS203の単一分散(数平均粒子径は12nm)の粒径分布が大きな粒径側に平行移動していることが確認できた。
表1に変性光触媒ヒドロゾル(C−2)の特性を示す。
[Production Example 6]
In a reactor equipped with a reflux condenser, a thermometer and a stirrer, TSK-5 [trade name of rutile titanium oxide hydrosol (manufactured by Ishihara Sangyo), surface-modified with 14 wt% SiO 2 with respect to TiO 2 After adding 51.5 g and 257.5 g of water, 0.77 g of KBM7103 [trade name of 3,3,3-trifluoropropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.)] was added to 80 ° C. The mixture was added over about 30 minutes with stirring, and further stirred at 80 ° C. for 3 hours to obtain 5% by mass of a modified photocatalyst hydrosol (C-2) with very good dispersibility. When the obtained modified titanium oxide hydrosol (C-2) was coated on a KBr plate and the IR spectrum was measured, a decrease in absorption of the Ti—OH group (3630 to 3640 cm −1 ) was observed.
Moreover, the particle size distribution of the obtained modified photocatalyst hydrosol (C-2) is a single dispersion (number average particle diameter is 53 nm), and further, the single dispersion of TKS203 before the modification treatment (number average particle diameter is 12 nm). It was confirmed that the particle size distribution of the particles moved parallel to the larger particle size side.
Table 1 shows the characteristics of the modified photocatalytic hydrosol (C-2).

[製造例7]
水系バインダーエマルジョン(a)の合成
還流冷却器、滴下槽、温度計および撹拌装置を有する反応器に、イオン交換水1600g、ドデシルベンゼンスルホン酸2gを投入した後、撹拌下で温度を80℃に加温した。これに、アクリル酸ブチル85g、フェニルトリメトキシシラン135g、3−メタクリロキシプロピルトリメトキシシラン1.3gの混合液とジエチルアクリルアミド100g、アクリル酸3g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)13g、過硫酸アンモニウムの2質量%水溶液40g、イオン交換水1500gの混合液を、反応容器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに反応容器中の温度が80℃の状態で約2時間撹拌を続行した後、室温まで冷却し、100メッシュの金網で濾過した後、イオン交換水で固形分を10.0質量%に調整し、数平均粒子径100nmの重合体エマルジョン粒子(a)水分散体を得た。
[Production Example 7]
Synthesis of aqueous binder emulsion (a) After charging 1600 g of ion-exchanged water and 2 g of dodecylbenzenesulfonic acid into a reactor having a reflux condenser, a dropping tank, a thermometer and a stirring device, the temperature was increased to 80 ° C. with stirring. Warm up. To this, a mixed solution of 85 g of butyl acrylate, 135 g of phenyltrimethoxysilane, 1.3 g of 3-methacryloxypropyltrimethoxysilane, 100 g of diethylacrylamide, 3 g of acrylic acid, a reactive emulsifier (trade name “ADEKA rear soap SR-1025 “Asahi Denka Co., Ltd., 25% solid content aqueous solution) 13 g, ammonium persulfate 2% by weight aqueous solution 40 g, and ion-exchanged water 1500 g of a mixed solution of about 2 with the temperature in the reaction vessel maintained at 80 ° C. It was dripped simultaneously over time. Further, stirring was continued for about 2 hours in a state where the temperature in the reaction vessel was 80 ° C., then cooled to room temperature, filtered through a 100-mesh wire mesh, and the solid content was adjusted to 10.0% by mass with ion-exchanged water. A polymer emulsion particle (a) aqueous dispersion having a number average particle diameter of 100 nm was obtained.

[製造例8]
水系バインダーエマルジョン(b)の合成
還流冷却器、滴下槽、温度計および撹拌装置を有する反応器に、イオン交換水1000gを投入した後、撹拌下で温度を80℃に加温した。これに、ジエチルアクリルアミド100g、アクリル酸3g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)13g、過硫酸アンモニウムの2質量%水溶液4
0g、イオン交換水500gの混合液とアクリル酸ブチル100gとを、反応容器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに反応容器中の温度が80℃の状態で約2時間撹拌を続行した後、室温まで冷却し、100メッシュの金網で濾過した後、イオン交換水で固形分を10.0質量%に調整し、数平均粒子径80nmの重合体エマルジョン粒子(b)水分散体を得た。
[Production Example 8]
Synthesis of Aqueous Binder Emulsion (b) 1000 g of ion-exchanged water was charged into a reactor having a reflux condenser, a dropping tank, a thermometer and a stirring device, and then the temperature was heated to 80 ° C. with stirring. To this, 100 g of diethylacrylamide, 3 g of acrylic acid, 13 g of reactive emulsifier (trade name “ADEKA rear soap SR-1025”, manufactured by Asahi Denka Co., Ltd., 25% solid content aqueous solution), 2% by weight aqueous solution of ammonium persulfate 4
A mixed solution of 0 g and 500 g of ion-exchanged water and 100 g of butyl acrylate were simultaneously added dropwise over about 2 hours while maintaining the temperature in the reaction vessel at 80 ° C. Further, stirring was continued for about 2 hours in a state where the temperature in the reaction vessel was 80 ° C., then cooled to room temperature, filtered through a 100-mesh wire mesh, and the solid content was adjusted to 10.0% by mass with ion-exchanged water. A polymer emulsion particle (b) aqueous dispersion having a number average particle diameter of 80 nm was obtained.

[製造例9]
水系バインダー(c)の合成
テトラエトキシシラン208部にメタノール356部を加え、さらに水18部および0.01Nの塩酸18部を混合し、ディスパーを用いてよく混合した。得られた液を60℃恒温槽中で2時間加熱してシリコーン樹脂を得た。次に、このシリコーン樹脂に、熱分解性材料としてγ−グリシドキシプロピルトリメトキシシラン(熱分解温度280℃)を、得ようとしている無機塗料の全固形分に対して10%添加し、固形分が13〜15%になるように希釈することにより、水系バインダー(c)を得た。
[Production Example 9]
Synthesis of water-based binder (c) 356 parts of methanol was added to 208 parts of tetraethoxysilane, 18 parts of water and 18 parts of 0.01N hydrochloric acid were mixed, and mixed well using a disper. The obtained liquid was heated in a 60 ° C. constant temperature bath for 2 hours to obtain a silicone resin. Next, to this silicone resin, 10% of γ-glycidoxypropyltrimethoxysilane (thermal decomposition temperature 280 ° C.) as a thermally decomposable material is added to the total solid content of the inorganic paint to be obtained. The aqueous binder (c) was obtained by diluting so that a content might become 13 to 15%.

[実施例1]
シリカ変性のアナターゼ型酸化チタンヒドロゾル(MPT−422、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(B)を調製した。当該酸化チタンヒドロゾル14g、製造例7で製造した水系バインダーエマルジョン100gと数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)60gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表2に示す。
[Example 1]
Water was added to silica-modified anatase-type titanium oxide hydrosol (MPT-422, manufactured by Ishihara Sangyo Co., Ltd.) to prepare 5% titanium oxide hydrosol (B). 14 g of the titanium oxide hydrosol, 100 g of the aqueous binder emulsion produced in Production Example 7 and water-dispersed colloidal silica having a number average particle size of 12 nm (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20%) 60 g was mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 2.

[実施例2]
シリカ変性のルチル型酸化チタンヒドロゾル(TSK−5、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(C)を調製した。当該酸化チタンヒドロゾル14g、製造例7で製造した水系バインダーエマルジョン100gと数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)60gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表2に示す。
[実施例3]〜[実施例8]
実施例1においてシリカ変性のアナターゼ型酸化チタンヒドロゾル(B)を用いるかわりに[製造例1]から[製造例6]で合成した変性酸化チタンヒドロゾルのいずれかを用いる以外は実施例1と同様に組成物を調製し、試験板の作成を行った。評価結果を表2に示す。
[Example 2]
Water was added to silica-modified rutile-type titanium oxide hydrosol (TSK-5, manufactured by Ishihara Sangyo) to prepare 5% titanium oxide hydrosol (C). 14 g of the titanium oxide hydrosol, 100 g of the aqueous binder emulsion produced in Production Example 7 and water-dispersed colloidal silica having a number average particle size of 12 nm (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20%) 60 g was mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 2.
[Example 3] to [Example 8]
Example 1 is different from Example 1 except that any one of the modified titanium oxide hydrosols synthesized in [Production Example 1] to [Production Example 6] is used in place of the silica-modified anatase-type titanium oxide hydrosol (B). Similarly, a composition was prepared and a test plate was prepared. The evaluation results are shown in Table 2.

[比較例1]
実施例1において酸化チタンを使用しない以外は実施例1と同様に組成物を調製し、試験板の作成を行った。
評価結果を表2に示す。
[比較例2]
実施例1において酸化チタンとして未変性の酸化チタンヒドロゾル(TKS−203)を使用する以外は実施例1と同様に組成物を調製し、試験板の作成を行った。
評価結果を表2に示す。
[Comparative Example 1]
A composition was prepared in the same manner as in Example 1 except that titanium oxide was not used in Example 1, and a test plate was prepared.
The evaluation results are shown in Table 2.
[Comparative Example 2]
A composition was prepared in the same manner as in Example 1 except that unmodified titanium oxide hydrosol (TKS-203) was used as titanium oxide in Example 1, and a test plate was prepared.
The evaluation results are shown in Table 2.

[実施例9]
シリカ変性のアナターゼ型酸化チタンヒドロゾル(MPT−422、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(B)を調製した。当該酸化チタンヒドロゾル14g、製造例8で製造した水系バインダーエマルジョン100gと数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)60gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表3に示す。
[Example 9]
Water was added to silica-modified anatase-type titanium oxide hydrosol (MPT-422, manufactured by Ishihara Sangyo Co., Ltd.) to prepare 5% titanium oxide hydrosol (B). 14 g of the titanium oxide hydrosol, 100 g of the aqueous binder emulsion produced in Production Example 8, and water-dispersed colloidal silica having a number average particle size of 12 nm (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20%) 60 g was mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 3.

[実施例10]
シリカ変性のルチル型酸化チタンヒドロゾル(TSK−5、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(C)を調製した。当該酸化チタンヒドロゾル14g、製造例8で製造した水系バインダーエマルジョン100gと数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)60gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表3に示す。
[実施例11]〜[実施例16]
実施例9においてシリカ変性のアナターゼ型酸化チタンヒドロゾル(B)を用いるかわりに[製造例1]から[製造例6]で合成した変性酸化チタンヒドロゾルのいずれかを用いる以外は実施例9と同様に組成物を調製し、試験板の作成を行った。評価結果を表3に示す。
[Example 10]
Water was added to silica-modified rutile-type titanium oxide hydrosol (TSK-5, manufactured by Ishihara Sangyo) to prepare 5% titanium oxide hydrosol (C). 14 g of the titanium oxide hydrosol, 100 g of the aqueous binder emulsion produced in Production Example 8, and water-dispersed colloidal silica having a number average particle size of 12 nm (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20%) 60 g was mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 3.
[Example 11] to [Example 16]
Example 9 is different from Example 9 except that any one of the modified titanium oxide hydrosols synthesized in [Production Example 1] to [Production Example 6] is used instead of using the silica-modified anatase-type titanium oxide hydrosol (B). Similarly, a composition was prepared and a test plate was prepared. The evaluation results are shown in Table 3.

[比較例3]
実施例9において酸化チタンを使用しない以外は実施例9と同様に組成物を調製し、試験板の作成を行った。
評価結果を表3に示す。
[比較例4]
実施例9において酸化チタンとして未変性の酸化チタンヒドロゾル(TKS−203)を使用する以外は実施例9と同様に組成物を調製し、試験板の作成を行った。
評価結果を表3に示す。
[Comparative Example 3]
A composition was prepared in the same manner as in Example 9 except that titanium oxide was not used in Example 9, and a test plate was prepared.
The evaluation results are shown in Table 3.
[Comparative Example 4]
A composition was prepared in the same manner as in Example 9 except that unmodified titanium oxide hydrosol (TKS-203) was used as titanium oxide in Example 9, and a test plate was prepared.
The evaluation results are shown in Table 3.

[実施例17]
実施例1において数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)を用いない以外は実施例1と同様に組成物を調製し、試験板の作成を行った。評価結果を表4に示す。
[実施例18]
実施例2において数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)を用いない以外は実施例2と同様に組成物を調製し、試験板の作成を行った。評価結果を表4に示す。
[実施例19]〜[実施例24]
実施例3から実施例8において数平均粒子径12nmの水分散コロイダルシリカ(商品名「スノーテックスO」、日産化学工業(株)製、固形分20%)を用いない以外は実施例3から実施例8と同様に組成物を調製し、試験板の作成を行った。評価結果を表4に示す。
[Example 17]
The composition was the same as in Example 1 except that water-dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., 20% solid content) was not used in Example 1. The test plate was prepared. The evaluation results are shown in Table 4.
[Example 18]
The composition was the same as in Example 2 except that water-dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., 20% solid content) was not used in Example 2. The test plate was prepared. The evaluation results are shown in Table 4.
[Example 19] to [Example 24]
Example 3 to Example 8 were carried out from Example 3 except that water-dispersed colloidal silica (trade name “Snowtex O”, manufactured by Nissan Chemical Industries, Ltd., solid content 20%) having a number average particle size of 12 nm was not used. A composition was prepared in the same manner as in Example 8, and a test plate was prepared. The evaluation results are shown in Table 4.

[比較例5]
実施例17において酸化チタンを使用しない以外は実施例17と同様に組成物を調製し、試験板の作成を行った。
評価結果を表4に示す。
[比較例6]
実施例17において酸化チタンとして未変性の酸化チタンヒドロゾル(TKS−203)を使用する以外は実施例9と同様に組成物を調製し、試験板の作成を行った。
評価結果を表4に示す。
[Comparative Example 5]
A composition was prepared in the same manner as in Example 17 except that titanium oxide was not used in Example 17, and a test plate was prepared.
The evaluation results are shown in Table 4.
[Comparative Example 6]
A composition was prepared in the same manner as in Example 9 except that unmodified titanium oxide hydrosol (TKS-203) was used as titanium oxide in Example 17, and a test plate was prepared.
The evaluation results are shown in Table 4.

[実施例25]
シリカ変性のアナターゼ型酸化チタンヒドロゾル(MPT−422、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(B)を調製した。当該酸化チタンヒドロゾル1g、製造例9で製造したバインダー100gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表5に示す。
[Example 25]
Water was added to silica-modified anatase-type titanium oxide hydrosol (MPT-422, manufactured by Ishihara Sangyo Co., Ltd.) to prepare 5% titanium oxide hydrosol (B). 1 g of the titanium oxide hydrosol and 100 g of the binder produced in Production Example 9 were mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 5.

[実施例26]
シリカ変性のルチル型酸化チタンヒドロゾル(TSK−5、石原産業製)に水を加えて5%の酸化チタンヒドロゾル(B)を調製した。当該酸化チタンヒドロゾル1g、製造例9で製造したバインダー100gを混合し、変性光触媒組成物を調製した。
10cm×10cmのPETフィルムに上記変性光触媒組成物を膜厚が2μmとなるようにバーコートした後、室温で1週間乾燥する事により、試験板を得た。
評価結果を表5に示す。
[実施例27]〜[実施例32]
実施例25においてシリカ変性のアナターゼ型酸化チタンヒドロゾル(B)を用いるかわりに[製造例1]から[製造例6]で合成した変性酸化チタンヒドロゾルのいずれかを用いる以外は実施例25と同様に組成物を調製し、試験板の作成を行った。評価結果を表5に示す。
[Example 26]
Water was added to silica-modified rutile type titanium oxide hydrosol (TSK-5, manufactured by Ishihara Sangyo) to prepare 5% titanium oxide hydrosol (B). 1 g of the titanium oxide hydrosol and 100 g of the binder produced in Production Example 9 were mixed to prepare a modified photocatalyst composition.
The modified photocatalyst composition was bar-coated on a 10 cm × 10 cm PET film so as to have a film thickness of 2 μm, and then dried at room temperature for 1 week to obtain a test plate.
The evaluation results are shown in Table 5.
[Example 27] to [Example 32]
Example 25 is different from Example 25 except that any one of the modified titanium oxide hydrosols synthesized in [Production Example 1] to [Production Example 6] is used instead of the silica-modified anatase-type titanium oxide hydrosol (B). Similarly, a composition was prepared and a test plate was prepared. The evaluation results are shown in Table 5.

[比較例7]
実施例25において酸化チタンを使用しない以外は実施例25と同様に組成物を調製し、試験板の作成を行った。
評価結果を表5に示す。
[比較例8]
実施例25において酸化チタンとして未変性の酸化チタンヒドロゾル(TKS−203)を使用する以外は実施例25と同様に組成物を調製し、試験板の作成を行った。
評価結果を表5に示す。
[Comparative Example 7]
A composition was prepared in the same manner as in Example 25 except that titanium oxide was not used in Example 25, and a test plate was prepared.
The evaluation results are shown in Table 5.
[Comparative Example 8]
A composition was prepared in the same manner as in Example 25 except that unmodified titanium oxide hydrosol (TKS-203) was used as titanium oxide in Example 25, and a test plate was prepared.
The evaluation results are shown in Table 5.

Figure 2008142655
Figure 2008142655

Figure 2008142655
Figure 2008142655

Figure 2008142655
Figure 2008142655

Figure 2008142655
Figure 2008142655

Figure 2008142655
Figure 2008142655

本発明によって提供される光触媒組成物は分散安定性に優れ、光触媒活性及び/又は親水性を効果的に保持する変性光触媒であって、少ない環境負荷で硬化可能であるため、建築外装、外装表示用途、自動車、ディスプレイ、レンズ等のコーティング剤として有用である。   The photocatalyst composition provided by the present invention is a modified photocatalyst that has excellent dispersion stability and effectively retains photocatalytic activity and / or hydrophilicity, and can be cured with a small environmental load. It is useful as a coating agent for uses, automobiles, displays, lenses and the like.

Claims (10)

(I)下記式(1)で表されるトリオルガノシラン単位、下記式(2)で表されるモノオキシジオルガノシラン単位、下記式(3)で表されるジオキシオルガノシラン単位よりなる群から選ばれる少なくとも1種の構造単位を有する化合物類よりなる群から選ばれる1種以上の変性剤化合物、及び/又は(II)ケイ素及び/又はアルミニウムの酸化物からなる変性剤化合物により変性処理されている変性光触媒であって,当該光触媒の一次粒子径が1から100nmであることを特徴とする変性光触媒。
Si− (1)
(式中、Rは各々独立に直鎖状または分岐状の炭素数1〜30個のアルキル基、炭素数5〜20のシクロアルキル基、直鎖状または分岐状の炭素数1〜30個のフルオロアルキル基、直鎖状または分岐状の炭素数2〜30個のアルケニル基、フェニル基、炭素数1〜20のアルコキシ基、又は水酸基を表す。)
−(RSiO)− (2)
(式中、Rは上記式(1)で定義した通りである。)
Figure 2008142655
(式中、Rは上記式(1)で定義した通りである。)
(I) A group consisting of a triorganosilane unit represented by the following formula (1), a monooxydiorganosilane unit represented by the following formula (2), and a dioxyorganosilane unit represented by the following formula (3). Modified with one or more modifier compounds selected from the group consisting of compounds having at least one structural unit selected from: and / or (II) a modifier compound consisting of oxides of silicon and / or aluminum. A modified photocatalyst having a primary particle size of 1 to 100 nm.
R 3 Si- (1)
(In the formula, each R is independently a linear or branched alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a linear or branched carbon group having 1 to 30 carbon atoms. (A fluoroalkyl group, a linear or branched alkenyl group having 2 to 30 carbon atoms, a phenyl group, an alkoxy group having 1 to 20 carbon atoms, or a hydroxyl group.)
- (R 2 SiO) - ( 2)
(In the formula, R is as defined in the above formula (1).)
Figure 2008142655
(In the formula, R is as defined in the above formula (1).)
変性剤化合物中に直鎖状または分岐状のフルオロアルキル基の1種類以上を含むことを特徴とする請求項1に記載の変性光触媒。   The modified photocatalyst according to claim 1, wherein the modifier compound contains one or more kinds of linear or branched fluoroalkyl groups. 光触媒の数平均分散粒子径が1から400nmであることを特徴とする請求項1又は2に記載の変性光触媒。   The modified photocatalyst according to claim 1 or 2, wherein the photocatalyst has a number average dispersed particle size of 1 to 400 nm. 変性光触媒粒子の粒子長(L)と粒子直径(D)の比(L/D)が1/1から20/1であることを特徴とする請求項1から3のいずれかに記載の変性光触媒。   The modified photocatalyst according to any one of claims 1 to 3, wherein the ratio (L / D) of the particle length (L) to the particle diameter (D) of the modified photocatalyst particles is 1/1 to 20/1. . 光触媒が酸化チタンであることを特徴とする請求項1から4のいずれかに記載の変性光触媒。   The modified photocatalyst according to any one of claims 1 to 4, wherein the photocatalyst is titanium oxide. 光触媒がアナターゼ型酸化チタンであることを特徴とする請求項1から4のいずれかに記載の変性光触媒。   The modified photocatalyst according to any one of claims 1 to 4, wherein the photocatalyst is anatase-type titanium oxide. 光触媒がルチル型酸化チタンであることを特徴とする請求項1から4のいずれかに記載の変性光触媒。 The modified photocatalyst according to any one of claims 1 to 4, wherein the photocatalyst is rutile titanium oxide. 請求項1から7のいずれかに記載の変性光触媒と水系バインダーからなる変性光触媒組成物。   A modified photocatalyst composition comprising the modified photocatalyst according to any one of claims 1 to 7 and an aqueous binder. 請求項8に記載の変性光触媒組成物を基材に塗装した光触媒塗装物。   A photocatalyst-coated product obtained by coating the substrate with the modified photocatalyst composition according to claim 8. 変性光触媒の分布について異方性を有し、該変性光触媒の濃度が基材に接する面より他
方の露出面の方が高いことを特徴とする請求項9に記載の光触媒塗装物。
The photocatalyst-coated product according to claim 9, wherein the modified photocatalyst has anisotropy, and the concentration of the modified photocatalyst is higher on the other exposed surface than on the surface in contact with the substrate.
JP2006334274A 2006-12-12 2006-12-12 Water-based photocatalytic composition Expired - Fee Related JP4823045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334274A JP4823045B2 (en) 2006-12-12 2006-12-12 Water-based photocatalytic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334274A JP4823045B2 (en) 2006-12-12 2006-12-12 Water-based photocatalytic composition

Publications (2)

Publication Number Publication Date
JP2008142655A true JP2008142655A (en) 2008-06-26
JP4823045B2 JP4823045B2 (en) 2011-11-24

Family

ID=39603423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334274A Expired - Fee Related JP4823045B2 (en) 2006-12-12 2006-12-12 Water-based photocatalytic composition

Country Status (1)

Country Link
JP (1) JP4823045B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163615A (en) * 2008-12-31 2010-07-29 Posco Self-cleaning member, cohydrolysis condensate included therein, and method for producing the condensate
JP2010261022A (en) * 2009-04-06 2010-11-18 Asahi Kasei Chemicals Corp Coating film and water based organic inorganic composite composition
JP2011005475A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP2011032308A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalytic coated product and photocatalytic coating liquid
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2013220397A (en) * 2012-04-18 2013-10-28 Asahi Kasei Chemicals Corp Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2017042683A (en) * 2014-03-03 2017-03-02 株式会社鯤コーポレーション Photocatalyst coating liquid, and photocatalyst film using the same
KR20180100330A (en) * 2015-12-10 2018-09-10 크리스탈 유에스에이 인코퍼레이션 Concentrated photoactive neutral titanium dioxide sol
CN110903313A (en) * 2018-09-14 2020-03-24 富士施乐株式会社 Plant protection agent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230810A (en) * 1995-12-22 1997-09-05 Toto Ltd Outdoor display board and its cleaning method
JPH11348172A (en) * 1998-06-09 1999-12-21 Dainippon Printing Co Ltd Photocatalytic film and its production
JP2000093809A (en) * 1998-09-21 2000-04-04 Yamaha Corp Photocatalyst carrying body and its production
JP2005111477A (en) * 1998-11-20 2005-04-28 Asahi Kasei Chemicals Corp Modified photocatalyst particle
JP2005137976A (en) * 2003-11-04 2005-06-02 Asahi Kasei Chemicals Corp Photocatalyst composition and photocatalyst body formed thereof
JP2006083029A (en) * 2004-09-17 2006-03-30 Kyoto Univ Nanocrystal of metal oxide, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230810A (en) * 1995-12-22 1997-09-05 Toto Ltd Outdoor display board and its cleaning method
JPH11348172A (en) * 1998-06-09 1999-12-21 Dainippon Printing Co Ltd Photocatalytic film and its production
JP2000093809A (en) * 1998-09-21 2000-04-04 Yamaha Corp Photocatalyst carrying body and its production
JP2005111477A (en) * 1998-11-20 2005-04-28 Asahi Kasei Chemicals Corp Modified photocatalyst particle
JP2005137976A (en) * 2003-11-04 2005-06-02 Asahi Kasei Chemicals Corp Photocatalyst composition and photocatalyst body formed thereof
JP2006083029A (en) * 2004-09-17 2006-03-30 Kyoto Univ Nanocrystal of metal oxide, and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163615A (en) * 2008-12-31 2010-07-29 Posco Self-cleaning member, cohydrolysis condensate included therein, and method for producing the condensate
JP2010261022A (en) * 2009-04-06 2010-11-18 Asahi Kasei Chemicals Corp Coating film and water based organic inorganic composite composition
JP2011005475A (en) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP2011032308A (en) * 2009-07-30 2011-02-17 Toto Ltd Photocatalytic coated product and photocatalytic coating liquid
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2013220397A (en) * 2012-04-18 2013-10-28 Asahi Kasei Chemicals Corp Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2017042683A (en) * 2014-03-03 2017-03-02 株式会社鯤コーポレーション Photocatalyst coating liquid, and photocatalyst film using the same
KR20180100330A (en) * 2015-12-10 2018-09-10 크리스탈 유에스에이 인코퍼레이션 Concentrated photoactive neutral titanium dioxide sol
JP2019501774A (en) * 2015-12-10 2019-01-24 クリスタル・ユー・エス・エー・インコーポレイテッド Concentrated photoactive neutral titanium dioxide sol
US10995012B2 (en) 2015-12-10 2021-05-04 Tronox Llc Concentrated photoactive, neutral titanium dioxide sol
KR102442882B1 (en) * 2015-12-10 2022-09-13 트로녹스 엘엘씨 Concentrated photoactive neutral titanium dioxide sol
CN110903313A (en) * 2018-09-14 2020-03-24 富士施乐株式会社 Plant protection agent

Also Published As

Publication number Publication date
JP4823045B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4823045B2 (en) Water-based photocatalytic composition
JP5137352B2 (en) Aqueous pollution control composition and painted product
EP1512728B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
KR100393925B1 (en) Modified photocatalyst sol
JP5241492B2 (en) Polymer-coated metal oxide fine particles and their applications
JP4785865B2 (en) Water-based organic / inorganic composite composition
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
WO2006001487A1 (en) Fine particles of tin-modified rutile-type titanium dioxide
JP2009019072A (en) Aqueous organic-inorganic composite composition
WO2021200135A9 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
JP5368720B2 (en) Photocatalyst coating film and photocatalyst composition
JP2018144004A (en) Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP4738367B2 (en) Water-based organic / inorganic composite composition
JP2018095498A (en) Metatitanic acid particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP2002273233A (en) Modified photocatalyst and photocatalytic composition using the same
JP5252876B2 (en) Photocatalytic hydrosol and aqueous photocatalytic coating agent
JP2009101287A (en) Modified photocatalyst sol and its manufacturing method
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
JP2004300423A (en) Antistatic coating composition
JP2019099736A (en) Photocatalyst coating body and photocatalyst coating composition
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
JP2013220397A (en) Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2006136782A (en) Photocatalyst aluminum member
JP2004209345A (en) Photocatalyst composition and photocatalyst body formed from the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4823045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees