JP6103127B1 - 燃料電池システム及びその運転方法 - Google Patents

燃料電池システム及びその運転方法 Download PDF

Info

Publication number
JP6103127B1
JP6103127B1 JP2016219550A JP2016219550A JP6103127B1 JP 6103127 B1 JP6103127 B1 JP 6103127B1 JP 2016219550 A JP2016219550 A JP 2016219550A JP 2016219550 A JP2016219550 A JP 2016219550A JP 6103127 B1 JP6103127 B1 JP 6103127B1
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant gas
heating
solid oxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016219550A
Other languages
English (en)
Other versions
JP2018078039A (ja
Inventor
延章 大栗
延章 大栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016219550A priority Critical patent/JP6103127B1/ja
Application granted granted Critical
Publication of JP6103127B1 publication Critical patent/JP6103127B1/ja
Publication of JP2018078039A publication Critical patent/JP2018078039A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】固体酸化物形燃料電池の劣化を防止して動作安定性を確保するとともに、加熱機構の小型化と起動時間の短縮化を両立させることができる燃料電池システム及びその運転方法を提供する。【解決手段】燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池(10)と、それを備えた燃料電池システム(1)において、第1、第2の加熱部(33、36)は、再生熱交換器(30)を通過後の酸化剤ガスを加熱する。加熱制御部(50)は、固体酸化物形燃料電池(10)の起動時に、固体酸化物形燃料電池(10)が所定の予熱温度閾値(T)に到達するまでは第1の加熱部(33)により酸化剤ガスを加熱し、固体酸化物形燃料電池(10)が所定の予熱温度閾値(T)に到達した後は第2の加熱部(36)により酸化剤ガスを加熱する。【選択図】図3

Description

本発明は、燃料電池システム及びその運転方法に関する。
近年、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)の開発が進められている。SOFCは、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。SOFCは、現在知られている燃料電池の形態の中では、発電の動作温度が最も高く(例えば900℃〜1000℃)、発電効率が最も高いという特性を持つ。
特許文献1には、缶体の内部に、燃料電池スタックと、この燃料電池スタックに向けて放熱する電気セラミックヒータとを配置した構成の固体酸化物形燃料電池が開示されている。
特許文献2には、缶体の内部に、固体酸化物形燃料電池と、金属製の起動用バーナとを配置した構成の固体酸化物形燃料電池モジュールが開示されている。起動用バーナによる燃焼排ガスを固体酸化物形燃料電池の空気極に導入することで、固体酸化物形燃料電池(モジュール)が昇温される。
特許文献3には、燃料電池スタックを挟んで対向する2つ(上下)の電気ヒータを設けて、燃料電池スタックの温度に基づいて2つの電気ヒータを別々に制御することが開示されている。
特開2011−119055号公報 特開2012−216371号公報 特開2015−22852号公報
しかしながら、特許文献1〜特許文献3は、次のような技術課題を有している。
特許文献1は、電気セラミックヒータの容量に燃料電池スタック(固体酸化物形燃料電池)の昇温速度が依存するため、小型のヒータを用いたときに起動時間が長くなりすぎてしまう一方、起動時間の短縮を図るためには大型のヒータが不可欠となってしまう。
特許文献2は、起動用バーナによる燃焼排ガスが直接的に固体酸化物形燃料電池の空気極に導入されるので、低温から起動する際に、空気極の触媒上で燃焼排ガス中の水が結露して、昇温時の突沸により空気極を破損する結果、固体酸化物形燃料電池(モジュール)が劣化してしまう。
特許文献3は、2つの電気ヒータによる加熱ムラが避けられず、燃料電池スタックの内部温度が不均一になって、動作安定性が阻害されてしまう。
本発明はかかる点に鑑みてなされたものであり、固体酸化物形燃料電池の劣化を防止して動作安定性を確保するとともに、加熱機構の小型化と起動時間の短縮化を両立させることができる燃料電池システム及びその運転方法を提供することを目的の1つとする。
本実施形態の燃料電池システムは、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池からの排出ガスの熱を前記酸化剤ガスに熱交換する再生熱交換器と、前記再生熱交換器を通過後の前記酸化剤ガスを加熱する第1、第2の加熱部と、前記固体酸化物形燃料電池の起動時に、前記固体酸化物形燃料電池が所定の予熱温度閾値に到達するまでは前記第1の加熱部により前記酸化剤ガスを加熱し、前記固体酸化物形燃料電池が前記所定の予熱温度閾値に到達した後は前記第2の加熱部により前記酸化剤ガスを加熱する加熱制御部と、を有することを特徴としている。
本実施形態の燃料電池システムの運転方法は、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池からの排出ガスの熱を前記酸化剤ガスに熱交換する再生熱交換器と、を有する燃料電池システムの運転方法であって、前記再生熱交換器を通過後の前記酸化剤ガスを加熱する第1、第2の加熱ステップと、前記固体酸化物形燃料電池の起動時に、前記固体酸化物形燃料電池が所定の予熱温度閾値に到達するまでは前記第1の加熱ステップにより前記酸化剤ガスを加熱し、前記固体酸化物形燃料電池が前記所定の予熱温度閾値に到達した後は前記第2の加熱ステップにより前記酸化剤ガスを加熱する加熱制御ステップと、を有することを特徴としている。
本発明によれば、固体酸化物形燃料電池の劣化を防止して動作安定性を確保するとともに、加熱機構の小型化と起動時間の短縮化を両立させることができる燃料電池システム及びその運転方法を提供することができる。
本実施形態による燃料電池システムを示すブロック図である。 本実施形態による燃料電池システムの制御系統を示す機能ブロック図である。 本実施形態による燃料電池システムの起動時の動作を示すフローチャートである。
図1〜図3を参照して、本実施形態の燃料電池システム1について詳細に説明する。
図1に示すように、燃料電池システム1は、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)10を有している。SOFC10は、複数のセルを積層または集合体として構成したセルスタックを有している。各セルは空気極と燃料極で電解質を挟んだ基本構成を有している。セルスタックの各セルは電気的に直列に接続されている。SOFC10は、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。
SOFC10は、酸化剤ガス流路(カソードガス流路)12と、燃料ガス流路(アノードガス流路)14とを有している。酸化剤ガス流路12の入口部12Aには、反応空気ブロア(酸化剤ガス供給器)20またはバーナ用ブロア37が取り込んだ酸化剤ガス(空気)及びその他のガスが供給され、酸化剤ガス流路12の出口部12Bからは、カソード側排出ガス(以下では単に「排出ガス」と呼ぶことがある)が排出される。燃料ガス流路14の入口部14Aには、燃料ガス供給器(図示略)からの燃料ガス(燃料)及びその他のガスが供給され、燃料ガス流路14の出口部14Bからは、アノード側排出ガス(以下では単に「排出ガス」と呼ぶことがある)が排出される。酸化剤ガス流路12に供給された酸化剤ガスと燃料ガス流路14に供給された燃料ガスが電気化学反応を起こすことにより、直流電流が発生する(発電する)。SOFC10には、当該SOFC10の温度を検出する温度検出部(図示略)が設けられている。
燃料電池システム1は、空気再生熱交換器(再生熱交換器)30を有している。この空気再生熱交換器30は、酸化剤ガス流路12の出口部12Bからのカソード側排出ガス(主に酸化剤ガス)と反応空気供給ライン31に流れる酸化剤ガスとを熱交換させ、SOFC10に導入する酸化剤ガス(反応空気)を加熱する。
空気再生熱交換器30は、酸化剤ガス流路12の入口部12Aへ繋がる反応空気供給ライン31と、この反応空気供給ライン31の一部であり且つ反応空気供給ライン31から分岐する反応空気バイパスライン32と、酸化剤ガス流路12の出口部12Bからのカソード側排出ガスを通す反応空気排気ライン38とに接続している。尚、酸化剤ガス流路12は、SOFC10内で直線(点線)で示したが、セルスタックの形状にあわせて流路を設定してよい。
反応空気バイパスライン32には、空気予熱ヒータ(第1の加熱部、加熱機構、電気ヒータ)33と、調整弁34とが設けられている。空気予熱ヒータ33は、空気再生熱交換器30により反応空気バイパスライン32を流れる反応空気を加熱する。反応空気バイパスライン32に空気予熱ヒータ33を設けることで、空気予熱ヒータ33の耐熱性を下げることができる(高スペックな耐熱性が不要となる)。調整弁34は、自身の開閉状態を切り換えることにより、反応空気バイパスライン32(空気予熱ヒータ33)に起動バーナ36から排出される燃焼ガスが流れるのを許容又は禁止する。
反応空気供給ライン31には、反応空気バイパスライン32の調整弁34と並列となる位置に、調整弁35が設けられている。調整弁35は、自身の開閉状態を切り換えることにより、反応空気供給ライン31に起動バーナ36から排出される燃焼ガスが流れるのを許容又は禁止する。
反応空気供給ライン31の反応空気バイパスライン32(空気予熱ヒータ33)より上流側には、起動バーナ(第2の加熱部、加熱機構)36が設けられている。起動バーナ36は、空気再生熱交換器30を経て反応空気供給ライン31を流れる反応空気を加熱する。より具体的に、起動バーナ36は、バーナ用ブロア37から取り込まれた空気と燃料供給器(図示略)から供給された燃料を用いて着火され、燃料ガスと空気(酸化剤ガス)が燃焼した燃焼ガスを反応空気供給ライン31に導入することにより反応空気を加熱する。
燃料電池システム1は、燃料再生熱交換器(再生熱交換器)40を有している。この燃料再生熱交換器40は、燃料ガス流路14の出口部14Bからのアノード側排出ガス(主に燃料ガス)と燃料供給ライン41を流れる燃料ガスとを熱交換させ、SOFC10に導入する燃料ガスを加熱する。
燃料再生熱交換器40は、燃料ガス流路14の入口部14Aへ繋がる燃料供給ライン41と、この燃料供給ライン41の一部であり且つ燃料供給ライン41から分岐する燃料バイパスライン42と、燃料ガス流路14の出口部14Bからのアノード側排出ガスを通す燃料排気ライン46とに接続している。尚、燃料ガス流路14は、SOFC10内で直線(点線)で示したが、セルスタックの形状にあわせて流路を設定してよい。
燃料バイパスライン42には、燃料予熱ヒータ(電気ヒータ)43と、調整弁44とが設けられている。燃料予熱ヒータ43は、燃料再生熱交換器40により燃料バイパスライン42を流れる燃料ガスを乾燥空気により加熱する。燃料バイパスライン42に燃料予熱ヒータ43を設けることで、燃料予熱ヒータ43の耐熱性を下げることができる(高スペックな耐熱性が不要となる)。調整弁44は、自身の開閉状態を切り換えることにより、燃料バイパスライン42(燃料予熱ヒータ43)に排出ガスが流れるのを許容又は禁止する。
燃料供給ライン41には、燃料バイパスライン42の調整弁44と並列となる位置に、調整弁45が設けられている。調整弁45は、自身の開閉状態を切り換えることにより、燃料供給ライン41に燃料ガスが流れるのを許容又は禁止する。
図2に示すように、燃料電池システム1は、当該燃料電池システム1の各構成要素を統括的に制御する制御部(加熱制御部)50を有している。より具体的に、制御部50は、反応空気ブロア20、空気予熱ヒータ33、調整弁34、35、起動バーナ36、バーナ用ブロア37、燃料予熱ヒータ43、調整弁44、45に接続されており、SOFC10の起動時にこれらの各構成要素のオンオフ制御または開閉制御を実行する。
図3のフローチャートを参照して、燃料電池システム1の起動時の動作(制御部50による制御内容)について詳細に説明する。
ステップST1では、制御部50が、調整弁34を開状態にする。ステップST2では、制御部50が、調整弁35を閉状態にする。ステップST3では、制御部50が、バーナ用ブロア37をオン状態にする。ステップST4では、制御部50が、空気予熱ヒータ33をオン状態にする。ステップST1〜ステップST4の処理は、略同時に実行してもよいし、時間的にずらして実行してもよい。ステップST1〜ステップST4の処理を実行することで、バーナ用ブロア37から取り込まれた酸化剤ガス(空気)が空気予熱ヒータ33により加熱されながら空気再生熱交換器30の反応空気供給ライン31及び反応空気バイパスライン32を流れる。これにより、酸化剤ガス流路12を介してSOFC10が昇温していく。
なお、ステップST1〜ステップST4の処理と並行して、制御部50は、調整弁44を開状態にし、調整弁45を閉状態にし、燃料予熱ヒータ43をオン状態にした上で、ガス供給器(図示略)から供給された窒素ガスや水素ガスを燃料予熱ヒータ43で加熱しながら燃料供給ライン41と燃料バイパスライン42に流してもよい。これにより、燃料ガス流路14を介してSOFC10が昇温していく(昇温効果が向上する)。
ステップST5では、制御部50が、SOFC10が所定の予熱温度閾値Tに到達したか否かを判定する。SOFC10が予熱温度閾値Tに到達しているときは(ステップST5:Yes)、ステップST6に進む。SOFC10が予熱温度閾値Tに到達していないときは(ステップST5:No)、SOFC10が予熱温度閾値Tに到達するのを待つ。予熱温度閾値Tは、例えば、50℃〜100℃の範囲内で設定することができる。
ステップST6では、制御部50が、調整弁35を開状態にする。ステップST7では、制御部50が、空気予熱ヒータ33をオフ状態にする。ステップST8では、制御部50が、調整弁34を閉状態にする。ステップST9では、制御部50が、起動バーナ36をオン状態にする(着火する)。ステップST6〜ステップST9の処理は、略同時に実行してもよいが、ステップST7とステップST8の間に、空気予熱ヒータ33を冷却するための待機時間を設けることが好ましい。ステップST6〜ステップST9の処理を実行することで、起動バーナ36による燃焼排ガスが酸化剤ガス(反応空気)に導入され、当該酸化剤ガス(反応空気)が空気再生熱交換器30の反応空気供給ライン31を流れる。これにより、酸化剤ガス流路12を介してSOFC10が予熱温度閾値Tからさらに昇温していく。
なお、ステップST6〜ステップST9の処理と並行して、制御部50は、調整弁44を閉状態にし、調整弁45を開状態にし、燃料予熱ヒータ43をオフ状態にすることで、燃料予熱ヒータ43によるSOFC10の加熱を停止させてもよい。これは、燃料予熱ヒータ43によるSOFC10の昇温効果は、起動バーナ36によるSOFC10の昇温効果よりも十分に小さいためである。
ステップST10では、制御部50が、SOFC10が発電準備温度T’に到達したか否かを判定する。SOFC10が発電準備温度T’に到達しているときは(ステップST10:Yes)、ステップST11に進む。SOFC10が発電準備温度T’に到達していないときは(ステップS10:No)、SOFC10が発電準備温度T’に到達するのを待つ。発電準備温度T’は、例えば、600℃前後に設定することができる。
ステップST11では、制御部50が、バーナ用ブロア37をオフ状態にする。ステップST12では、制御部50が、反応空気ブロア20をオン状態にする。ステップST13では、反応空気ブロア20から取り込まれた酸化剤ガス(空気)が加熱されながら空気再生熱交換器30の反応空気供給ライン31を流れる。これにより、酸化剤ガス流路12を介してSOFC10が発電準備温度T’からさらに昇温していく。SOFC10の温度が例えば800℃前後に到達すると、ステップST14で、燃料ガス供給器(図示略)からの燃料ガスが燃料供給ライン41を流れる。その結果、SOFC10の内部で、酸化剤ガス流路12に供給された酸化剤ガスと燃料ガス流路14に供給された燃料ガスが電気化学反応を起こすことにより、直流電流が発生する(発電する)。
以上のように、本実施形態の燃料電池システム1では、SOFC10の起動時に、SOFC10が所定の予熱温度閾値Tに到達するまでは空気予熱ヒータ33により酸化剤ガス(反応空気)を加熱し、SOFC10が所定の予熱温度閾値Tに到達した後は起動バーナ36により酸化剤ガス(反応空気)を加熱する。
この構成によれば、空気予熱ヒータ33の役割は、SOFC10を予熱温度閾値Tに到達するまで昇温させることであるため、空気予熱ヒータ33の小型化を実現することができる。一方、SOFC10が予熱温度閾値Tに到達した後は起動バーナ36によりSOFC10を一気に昇温するので、SOFC10の起動時間を短縮することができる。このように、空気予熱ヒータ33と起動バーナ36の昇温機能を切り分けてこれらを最適制御することにより、加熱機構の小型化と起動時間の短縮化を両立させることが可能になる。
また、SOFC10が予熱温度閾値Tに到達するまでの低温域では、空気予熱ヒータ33を使用して起動バーナ36を使用しないので、起動バーナ36による燃焼排ガスが直接的にSOFC10に導入されることがない。このため、SOFC10の空気極の触媒上で燃焼排ガス中の水が結露することがなく、昇温時の突沸による空気極の破損ひいてはSOFC10の劣化を防止することができる。また本実施形態では、SOFC10を直接的に加熱するのではなく、SOFC10に流入するガス(酸化剤ガスや燃料ガス等)を加熱するので、SOFC10をムラなく均一に加熱することができる。
さらに、空気予熱ヒータ33と起動バーナ36が、反応空気供給ライン31(反応空気バイパスライン32を含む)に設けられているので、空気予熱ヒータ33と起動バーナ36による予熱熱量をロスなく効率的にSOFC10に与えることができ、この点でもSOFC10の起動時間の短縮を図ることができる。ちなみに、特許文献1〜特許文献3を含む従来の燃料電池システムでは、空気予熱ヒータや起動バーナ等の加熱機構が空気再生熱交換器の前段(反応空気ブロアとの間)に設けられることが多い。このため、加熱機構の起動エネルギーが空気再生熱交換器や排出ガスの加熱に消費され、SOFCの起動時間が長くなってしまう。
なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
上記実施の形態では、空気再生熱交換器30においてカソード側排出ガスの熱により酸化剤ガス(反応空気)を加熱(熱交換)した場合を例示して説明した。上記以外に、カソード側排出ガスとアノード側排出ガスを混合して燃焼させて、その燃焼熱を燃料電池システムの加熱に利用することも可能である。また、カソード側排出ガスの全部又は一部を反応空気供給ライン31及び/又は反応空気バイパスライン32に流して発電に再利用することも可能である。アノード側排出ガスの全部又は一部を燃料供給ライン41及び/又は燃料バイパスライン42に流して発電に再利用することも可能である。
上記実施の形態では、第1の加熱部として空気予熱ヒータ33を設け、第2の加熱部として起動バーナ36を設けた場合を例示して説明したが、第1、第2の加熱部としてそれ以外の加熱機構を設けることも可能である。
上記実施の形態では、空気再生熱交換器30の反応空気バイパスライン32に空気予熱ヒータ33を設け、燃料再生熱交換器40の燃料バイパスライン42に燃料予熱ヒータ43を設けた場合を例示して説明した。しかし、反応空気バイパスライン32を省略して空気再生熱交換器30の反応空気供給ライン31に空気予熱ヒータ33を設け、燃料バイパスライン42を省略して燃料再生熱交換器40の燃料供給ライン41に燃料予熱ヒータ43を設けてもよい。
あるいは、空気再生熱交換器30の反応空気バイパスライン32に起動バーナ36を設けることも可能であるし、燃料供給ライン41または燃料バイパスライン42に別途の起動バーナ(図示略)を設けることも可能である。
さらに、空気再生熱交換器30の空気予熱ヒータ33と起動バーナ36のいずれか一方だけを空気再生熱交換器30の後段の反応空気供給ライン31(反応空気バイパスライン32を含む)に設け、他方を空気再生熱交換器30の前段(反応空気ブロア20との間)に設けることも可能である。
本発明の燃料電池システム及びその運転方法は、家庭用、業務用、その他のあらゆる産業分野の燃料電池システム及びその運転方法に適用して好適である。
1 燃料電池システム
10 固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)
12 酸化剤ガス流路(カソードガス流路)
12A 入口部
12B 出口部
14 燃料ガス流路(アノードガス流路)
14A 入口部
14B 出口部
20 反応空気ブロア(酸化剤ガス供給器)
30 空気再生熱交換器(再生熱交換器)
31 反応空気供給ライン
32 反応空気バイパスライン
33 空気予熱ヒータ(第1の加熱部、加熱機構、電気ヒータ)
34 調整弁
35 調整弁
36 起動バーナ(第2の加熱部、加熱機構)
37 バーナ用ブロア
38 反応空気排気ライン
40 燃料再生熱交換器(再生熱交換器)
41 燃料供給ライン
42 燃料バイパスライン
43 燃料予熱ヒータ(電気ヒータ)
44 調整弁
45 調整弁
46 燃料排気ライン
50 制御部(加熱制御部)

Claims (7)

  1. 燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、
    前記固体酸化物形燃料電池からの排出ガスの熱を前記酸化剤ガスに熱交換する再生熱交換器と、
    前記再生熱交換器を通過後の前記酸化剤ガスを加熱する第1、第2の加熱部と、
    前記固体酸化物形燃料電池の起動時に、前記固体酸化物形燃料電池が所定の予熱温度閾値に到達するまでは前記第1の加熱部により前記酸化剤ガスを加熱し、前記固体酸化物形燃料電池が前記所定の予熱温度閾値に到達した後は前記第2の加熱部により前記酸化剤ガスを加熱する加熱制御部と、
    を有することを特徴とする燃料電池システム。
  2. 前記第1の加熱部は、前記酸化剤ガスを加熱する空気予熱ヒータを有し、
    前記第2の加熱部は、燃料ガスと酸化剤ガスを燃焼させた燃焼ガスを前記酸化剤ガスに導入することにより前記酸化剤ガスを加熱する起動バーナを有することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記第1、第2の加熱部の少なくとも一方は、前記再生熱交換器を通過後の反応空気供給ラインに設けられていることを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記第1、第2の加熱部の少なくとも一方は、前記反応空気供給ラインの一部であり且つ前記反応空気供給ラインから分岐したバイパスラインに設けられていることを特徴とする請求項3に記載の燃料電池システム。
  5. 前記所定の予熱温度閾値は、50℃〜100℃の範囲内で設定されていることを特徴とする請求項1から請求項4のいずれかに記載の燃料電池システム。
  6. 燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池からの排出ガスの熱を前記酸化剤ガスに熱交換する再生熱交換器と、を有する燃料電池システムの運転方法であって、
    前記再生熱交換器を通過後の前記酸化剤ガスを加熱する第1、第2の加熱ステップと、
    前記固体酸化物形燃料電池の起動時に、前記固体酸化物形燃料電池が所定の予熱温度閾値に到達するまでは前記第1の加熱ステップにより前記酸化剤ガスを加熱し、前記固体酸化物形燃料電池が前記所定の予熱温度閾値に到達した後は前記第2の加熱ステップにより前記酸化剤ガスを加熱する加熱制御ステップと、
    を有することを特徴とする燃料電池システムの運転方法。
  7. 前記第1の加熱ステップは、前記酸化剤ガスを加熱する空気予熱ヒータを使用して実行し、
    前記第2の加熱ステップは、燃料ガスと酸化剤ガスを燃焼させた燃焼ガスを前記酸化剤ガスに導入することにより前記酸化剤ガスを加熱する起動バーナを使用して実行することを特徴とする請求項6に記載の燃料電池システムの運転方法。
JP2016219550A 2016-11-10 2016-11-10 燃料電池システム及びその運転方法 Active JP6103127B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219550A JP6103127B1 (ja) 2016-11-10 2016-11-10 燃料電池システム及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219550A JP6103127B1 (ja) 2016-11-10 2016-11-10 燃料電池システム及びその運転方法

Publications (2)

Publication Number Publication Date
JP6103127B1 true JP6103127B1 (ja) 2017-03-29
JP2018078039A JP2018078039A (ja) 2018-05-17

Family

ID=59366041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219550A Active JP6103127B1 (ja) 2016-11-10 2016-11-10 燃料電池システム及びその運転方法

Country Status (1)

Country Link
JP (1) JP6103127B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165251A (zh) * 2019-06-29 2019-08-23 潍柴动力股份有限公司 氢燃料电池发动机启动加热方法及系统
CN110739470A (zh) * 2018-07-18 2020-01-31 郑州宇通客车股份有限公司 一种燃料电池辅助系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071312A (ja) * 2002-08-05 2004-03-04 Tokyo Gas Co Ltd 熱自立型固体酸化物形燃料電池システム
JP2005203223A (ja) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd 高温型燃料電池を用いたコンバインド発電システム
JP2011009104A (ja) * 2009-06-26 2011-01-13 Toto Ltd 燃料電池システム
JP2014010896A (ja) * 2012-06-27 2014-01-20 Kyocera Corp 燃料電池装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071312A (ja) * 2002-08-05 2004-03-04 Tokyo Gas Co Ltd 熱自立型固体酸化物形燃料電池システム
JP2005203223A (ja) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd 高温型燃料電池を用いたコンバインド発電システム
JP2011009104A (ja) * 2009-06-26 2011-01-13 Toto Ltd 燃料電池システム
JP2014010896A (ja) * 2012-06-27 2014-01-20 Kyocera Corp 燃料電池装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739470A (zh) * 2018-07-18 2020-01-31 郑州宇通客车股份有限公司 一种燃料电池辅助系统
CN110739470B (zh) * 2018-07-18 2024-02-27 宇通客车股份有限公司 一种燃料电池辅助系统
CN110165251A (zh) * 2019-06-29 2019-08-23 潍柴动力股份有限公司 氢燃料电池发动机启动加热方法及系统
CN110165251B (zh) * 2019-06-29 2021-01-19 潍柴动力股份有限公司 氢燃料电池发动机启动加热方法及系统

Also Published As

Publication number Publication date
JP2018078039A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6431908B2 (ja) 向上した燃料電池システムおよび方法
JP4981281B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
CN109935855B (zh) 一种重整燃料电池系统的运行方法
JP6072111B2 (ja) 燃料電池モジュール
JP2008277280A (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP2009538502A (ja) アノードガスによるスタック起動ヒータ及びパージガス発生器
JP5323333B2 (ja) 燃料電池システム及びその運転方法
JP2008234994A (ja) 燃料電池システム
JP6103127B1 (ja) 燃料電池システム及びその運転方法
JP2015135735A (ja) 燃料電池システム
JP2017050049A (ja) 燃料電池システム
JP6510262B2 (ja) 燃料電池モジュール及びその運転方法
JP5000867B2 (ja) 燃料電池発電システム
JP2002289227A (ja) 燃料電池コージェネレーションシステム
JP6034511B2 (ja) 燃料電池システム
JPWO2018029829A1 (ja) 燃料電池システム、及び、燃料電池システムの制御方法
JP2017117564A (ja) 燃料電池装置
WO2019064539A1 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5730223B2 (ja) コンバインド発電システム
WO2014006988A1 (ja) 燃料電池発電システム及び燃料電池発電システムの制御方法
JP3997264B2 (ja) 燃料電池コージェネレーションシステム
JP2020155229A (ja) 燃料電池システム及びその運転方法
JP2019160443A (ja) 燃料電池システム及びその運転方法
JP6160757B1 (ja) 燃料電池システム及びその運転方法
JP6981089B2 (ja) 燃料電池システム及び燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6103127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250