JP6102231B2 - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP6102231B2
JP6102231B2 JP2012268552A JP2012268552A JP6102231B2 JP 6102231 B2 JP6102231 B2 JP 6102231B2 JP 2012268552 A JP2012268552 A JP 2012268552A JP 2012268552 A JP2012268552 A JP 2012268552A JP 6102231 B2 JP6102231 B2 JP 6102231B2
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
lithium ion
carbonaceous particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012268552A
Other languages
Japanese (ja)
Other versions
JP2014116155A (en
Inventor
達也 碓井
達也 碓井
啓太 須賀
啓太 須賀
由恵 大崎
由恵 大崎
本棒 英利
英利 本棒
克知 大関
克知 大関
石井 義人
義人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012268552A priority Critical patent/JP6102231B2/en
Publication of JP2014116155A publication Critical patent/JP2014116155A/en
Application granted granted Critical
Publication of JP6102231B2 publication Critical patent/JP6102231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池、並びにリチウムイオン二次電池用負極材の製造方法に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the negative electrode material, and a method for producing a negative electrode material for a lithium ion secondary battery.

リチウムイオン二次電池は、他の二次電池であるニッケルカドミウム電池、ニッケル水素電池及び鉛蓄電池に比べて軽量で高い入出力特性を有する。そのため、近年、電気自動車、ハイブリッド型電気自動車等に用いられる電源などの高入出力用電源として期待されている。ハイブリッド型電気自動車用の電源としては入出力特性のバランスに優れ、かつサイクル特性、保存特性等の寿命特性に優れたリチウムイオン二次電池が求められている。   Lithium ion secondary batteries are lighter and have higher input / output characteristics than other secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lead acid batteries. Therefore, in recent years, it is expected as a power source for high input / output such as a power source used for an electric vehicle, a hybrid electric vehicle and the like. As a power source for a hybrid electric vehicle, a lithium ion secondary battery having an excellent balance of input / output characteristics and excellent life characteristics such as cycle characteristics and storage characteristics is required.

一般に、リチウムイオン二次電池に用いられる負極活物質は、黒鉛系と非晶質系に大別される。黒鉛は炭素原子の六角網面が規則正しく積層した構造を有するもので、積層した網面の端部よりリチウムイオンの挿入脱離反応が進行し充放電を行う。しかしながら、挿入脱離反応が端部でのみ進行するため入出力性能が低い場合がある。また、結晶性が高く表面の欠陥が少ないが故に、電解液との親和性が低く、リチウムイオン二次電池の寿命特性が低下する場合があるといった課題を有する。   In general, negative electrode active materials used for lithium ion secondary batteries are roughly classified into graphite and amorphous materials. Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly stacked, and insertion / extraction reaction of lithium ions proceeds from the end portions of the stacked network surfaces to perform charge / discharge. However, since the insertion / elimination reaction proceeds only at the end, the input / output performance may be low. In addition, since the crystallinity is high and the surface defects are small, there is a problem that the affinity with the electrolytic solution is low and the life characteristics of the lithium ion secondary battery may be deteriorated.

一方、ハードカーボンに代表される非晶質炭素は、六角網面の積層が不規則であるか、網目構造を有しないため、リチウムの挿入脱離反応は粒子の全表面で進行する。そのため、入出力特性に優れたリチウムイオン二次電池を得られやすい。一般に、非晶質炭素はハードカーボンとソフトカーボンの二種に大きく分類される。ハードカーボンは2500℃以上といった高温まで熱処理を行っても結晶が発達し難い炭素であり、ソフトカーボンは高温処理により高結晶性の黒鉛構造へと変化し易い炭素である。   On the other hand, amorphous carbon typified by hard carbon has irregular hexagonal network surfaces or no network structure, and therefore, lithium insertion / extraction reaction proceeds on the entire surface of the particles. Therefore, it is easy to obtain a lithium ion secondary battery excellent in input / output characteristics. In general, amorphous carbon is roughly classified into two types, hard carbon and soft carbon. Hard carbon is carbon in which crystals do not easily develop even when heat-treated to a high temperature of 2500 ° C. or higher, and soft carbon is carbon that is easily changed to a highly crystalline graphite structure by high-temperature treatment.

又はドカーボンは、黒鉛とは対照的に、粒子表面の結晶性が低く、電解液との親和性に優れるため、これを負極材料として用いたリチウムイオン二次電池は、黒鉛を用いた場合と比較して、寿命特性で勝るといった特徴を持つ。反面、構造が不規則であるがゆえに不可逆容量が大きく、かつ比重が小さいために電極密度を高くすることが困難であり、エネルギー密度が低いという問題がある。   Or, in contrast to graphite, decarbon has low crystallinity on the particle surface and excellent affinity with the electrolyte. Therefore, lithium ion secondary batteries using this as a negative electrode material are compared with those using graphite. And it has the feature that it excels in life characteristics. On the other hand, since the structure is irregular, the irreversible capacity is large and the specific gravity is small, so that it is difficult to increase the electrode density and the energy density is low.

そこで、不可逆容量が小さく、かつエネルギー密度が大きく、入出力特性及び寿命特性に優れたリチウムイオン二次電池とそれを得るための負極材料が要求されている。これに関連して、非晶質炭素を負極材として用いる技術が開示されている(例えば、特許文献1及び2参照)。   Therefore, a lithium ion secondary battery having a small irreversible capacity, a large energy density, and excellent input / output characteristics and life characteristics and a negative electrode material for obtaining the lithium ion secondary battery are required. In relation to this, a technique using amorphous carbon as a negative electrode material is disclosed (for example, see Patent Documents 1 and 2).

特開平04−370662号公報Japanese Patent Laid-Open No. 04-370662 特開平05−307956号公報Japanese Patent Laid-Open No. 05-307956

本発明は、従来のリチウムイオン二次電池と比較して、初回不可逆容量が小さく、初回充放電効率が高く、エネルギー密度が大きく、寿命特性に優れたリチウムイオン二次電池を構成可能なリチウムイオン二次電池用負極材及びその製造方法、該リチウムイオン二次電池用負極材を含むリチウムイオン二次電池用負極、並びに該リチウムイオン二次電池用負極を含むリチウムイオン二次電池を提供することを目的とする。   The present invention provides a lithium ion secondary battery having a small initial irreversible capacity, a high initial charge / discharge efficiency, a large energy density, and excellent life characteristics compared to a conventional lithium ion secondary battery. To provide a negative electrode material for a secondary battery and a production method thereof, a negative electrode for a lithium ion secondary battery including the negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery. With the goal.

前記課題を解決するための具体的手段は以下の通りである。
<1> X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であり、粒子径が0.5μmを超える炭素質粒子と、前記炭素質粒子の表面に付着した、粒子径が0.5μm以下の付着炭素質粒子と、を含み、前記付着炭素質粒子の付着数が、前記炭素質粒子の表面面積130μmあたり0個を超え50個以下であり、前記炭素質粒子の種類及び前記付着炭素質粒子の種類が同じであるリチウムイオン二次電池用負極材である。
Specific means for solving the above problems are as follows.
<1> Carbonaceous particles having a 002 plane distance d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffractometer (XRD) measurement, and a particle diameter exceeding 0.5 μm, and the carbonaceous particles Adhering carbonaceous particles having a particle size of 0.5 μm or less attached to the surface of the carbonaceous particles, and the number of adhering carbonaceous particles is more than 0 per surface area of 130 μm 2 of the carbonaceous particles and 50 or less. der is, the type and the type of the attached carbonaceous particles of the carbonaceous particles is a negative electrode material for lithium ion secondary batteries to be the same as.

<2> X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であり、粒子径が0.5μmを超える炭素質粒子と、前記炭素質粒子の表面に付着した、粒子径が0.5μm以下の付着炭素質粒子と、を含み、前記付着炭素質粒子の付着数が、前記炭素質粒子の単位表面面積あたり0.0個/μmを超え0.4個/μm以下であり、前記炭素質粒子の種類及び前記付着炭素質粒子の種類が同じであるリチウムイオン二次電池用負極材である。 <2> Carbonaceous particles having a 002 plane spacing d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffractometer (XRD) measurement, and a particle diameter exceeding 0.5 μm, and the carbonaceous particles Attached carbonaceous particles having a particle diameter of 0.5 μm or less, and the number of attached carbonaceous particles is 0.0 / μm 2 per unit surface area of the carbonaceous particles. der 0.4 pieces / [mu] m 2 or less than is, the type and the type of the attached carbonaceous particles of the carbonaceous particles is a negative electrode material for lithium ion secondary batteries to be the same as.

<3> 前記炭素質粒子のc軸方向の結晶子サイズ(Lc)が3.3nm以上5.5nm以下である前記<1>又は<2>に記載のリチウムイオン二次電池用負極材である。 <3> The negative electrode material for a lithium ion secondary battery according to <1> or <2>, wherein a crystallite size (Lc) in the c-axis direction of the carbonaceous particles is 3.3 nm or more and 5.5 nm or less. .

<4> 純水に濃度が3.8質量%となるように分散させた場合、25℃におけるpHが5.6以上6.1以下である前記<1>〜<3>のいずれか1つに記載のリチウムイオン二次電池用負極材である。 <4> Any one of the above <1> to <3>, wherein the pH at 25 ° C. is 5.6 or more and 6.1 or less when dispersed in pure water so as to have a concentration of 3.8% by mass. It is a negative electrode material for lithium ion secondary batteries as described in above.

<5> 大気雰囲気で、昇温速度を5℃/minとした示差熱分析(DTA)測定において、DTAのピークが、650℃以上680℃以下に存在する前記<1>〜<4>のいずれか1つに記載のリチウムイオン二次電池用負極材である。 <5> Any one of the above items <1> to <4>, wherein a DTA peak is present at 650 ° C. or more and 680 ° C. or less in a differential thermal analysis (DTA) measurement in an air atmosphere at a heating rate of 5 ° C./min It is a negative electrode material for lithium ion secondary batteries as described in any one.

<6> 体積平均粒子径(50%D)が5μm以上30μm以下であり、且つ真比重が1.8g/cm以上2.2g/cm以下である前記<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材である。 <6> Any of <1> to <5>, wherein the volume average particle diameter (50% D) is 5 μm or more and 30 μm or less, and the true specific gravity is 1.8 g / cm 3 or more and 2.2 g / cm 3 or less. 2. A negative electrode material for a lithium ion secondary battery according to claim 1.

<7> 集電体と、前記集電体上に配置され、前記<1>〜<6>のいずれか1つに記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極である。 <7> A current collector and a negative electrode material layer that is disposed on the current collector and includes the negative electrode material for a lithium ion secondary battery according to any one of <1> to <6>. It is a negative electrode for lithium ion secondary batteries.

<8> 前記<7>に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含むリチウムイオン二次電池である。 <8> A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to <7>, a positive electrode, and an electrolyte.

<9> X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下である炭素質粒子を粉砕処理して粉砕物を得る工程と、前記粉砕物を、大気雰囲気中において400℃以上700℃以下で加熱処理する工程と、を含む前記<1>〜<>のいずれか1つに記載のリチウムイオン二次電池用負極材の製造方法である。 <9> A step of obtaining a pulverized product by pulverizing carbonaceous particles having a 002 plane distance d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffractometer (XRD) measurement, and the pulverized product. Is a method for producing a negative electrode material for a lithium ion secondary battery according to any one of the above items <1> to < 6 >, comprising a step of heat-treating at 400 ° C. to 700 ° C. in an air atmosphere. .

本発明によれば、従来のリチウムイオン二次電池と比較して、初回不可逆容量が小さく、初回充放電効率が高く、エネルギー密度が大きく、寿命特性に優れたリチウムイオン二次電池を構成可能なリチウムイオン二次電池用負極材及びその製造方法、該リチウムイオン二次電池用負極材を含むリチウムイオン二次電池用負極、並びに該リチウムイオン二次電池用負極を含むリチウムイオン二次電池を提供することができる。   According to the present invention, compared with a conventional lithium ion secondary battery, a lithium ion secondary battery having a small initial irreversible capacity, high initial charge / discharge efficiency, high energy density, and excellent life characteristics can be configured. Provided are a negative electrode material for a lithium ion secondary battery and a manufacturing method thereof, a negative electrode for a lithium ion secondary battery including the negative electrode material for the lithium ion secondary battery, and a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery. can do.

実施例1の負極材の走査型電子顕微鏡像(倍率1000倍)の一例を示す図である。3 is a diagram showing an example of a scanning electron microscope image (magnification 1000 times) of the negative electrode material of Example 1. FIG. 実施例1の負極材の走査型電子顕微鏡像(倍率5000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscope image (magnification: 5000 times) of the negative electrode material of Example 1. FIG. 実施例1の負極材の走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscopic image (magnification of 10,000 times) of the negative electrode material of Example 1. FIG. 実施例1の負極材の視野1における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscope image (magnification 10,000 times) in a visual field 1 of a negative electrode material of Example 1. FIG. 実施例1の負極材の視野2における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram showing an example of a scanning electron microscope image (magnification of 10,000 times) in a visual field 2 of a negative electrode material of Example 1. FIG. 実施例1の負極材の視野3における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscope image (magnification 10,000 times) in a visual field 3 of a negative electrode material of Example 1. FIG. 実施例1の負極材の視野4における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscope image (magnification: 10,000 times) in a visual field 4 of a negative electrode material of Example 1. FIG. 実施例1の負極材の視野5における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。3 is a diagram illustrating an example of a scanning electron microscope image (magnification 10,000 times) in a visual field 5 of a negative electrode material of Example 1. FIG. 比較例1の負極材の走査型電子顕微鏡像(倍率1000倍)の一例を示す図である。6 is a diagram showing an example of a scanning electron microscope image (magnification 1000 times) of the negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の走査型電子顕微鏡像(倍率5000倍)の一例を示す図である。6 is a diagram showing an example of a scanning electron microscope image (magnification 5000 times) of the negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。6 is a diagram illustrating an example of a scanning electron microscope image (magnification of 10,000 times) of the negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の視野1における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。6 is a diagram illustrating an example of a scanning electron microscope image (a magnification of 10,000 times) in a visual field 1 of a negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の視野2における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。7 is a diagram showing an example of a scanning electron microscope image (magnification of 10,000 times) in a visual field 2 of a negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の視野3における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。6 is a diagram illustrating an example of a scanning electron microscope image (a magnification of 10,000 times) in a visual field 3 of a negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の視野4における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。6 is a diagram illustrating an example of a scanning electron microscope image (10,000 magnifications) in a visual field 4 of a negative electrode material of Comparative Example 1. FIG. 比較例1の負極材の視野5における走査型電子顕微鏡像(倍率10000倍)の一例を示す図である。6 is a diagram illustrating an example of a scanning electron microscope image (a magnification of 10,000 times) in a visual field 5 of a negative electrode material of Comparative Example 1. FIG.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. Furthermore, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.

<リチウムイオン二次電池用負極材及びその製造方法>
本発明のリチウムイオン二次電池用負極材は、X線回折測定(XRD)より求められる002面の面間隔d002が、0.340nm以上0.370nm以下である炭素質粒子であり、走査電子顕微鏡(SEM)で観察した、前記炭素質粒子の表面面積130μmあたりに付着した粒子径が0.5μm以下の付着炭素質粒子の平均個数が、50個以下であることを特徴とする。
すなわち、本発明のリチウムイオン二次電池用負極材は、粒子径が0.5μmを超える第一の炭素質粒子と、前記第一の炭素質粒子の表面に付着し、粒子径が0.5μ以下である第二の炭素質粒子と、を含み、前記第二の炭素質粒子の付着数が、前記第一の炭素質粒子の表面面積130μmあたり50個以下であり、X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であることを特徴とする。
<Anode material for lithium ion secondary battery and method for producing the same>
The negative electrode material for a lithium ion secondary battery of the present invention is a carbonaceous particle having a 002-plane spacing d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffraction measurement (XRD). The average number of adhering carbonaceous particles having a particle diameter of 0.5 μm or less adhered per surface area of 130 μm 2 of the carbonaceous particles observed by (SEM) is 50 or less.
That is, the negative electrode material for a lithium ion secondary battery of the present invention adheres to the first carbonaceous particles having a particle diameter of more than 0.5 μm and the surface of the first carbonaceous particles, and the particle diameter is 0.5 μm. wherein a second carbonaceous particles is m or less, the adhesion speed of the second carbonaceous particles, wherein the first or less 50 per surface area 130 .mu.m 2 of carbonaceous particles, X-rays diffractometer A surface distance d002 of the 002 plane obtained by (XRD) measurement is 0.340 nm or more and 0.370 nm or less.

また、本発明のリチウムイオン二次電池用負極材は、X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下である炭素質粒子であり、前記炭素質粒子の表面に付着した粒子径が0.5μm以下の付着炭素質粒子が、前記炭素質粒子の単位表面面積あたり、0.4個/μm以下であるリチウムイオン二次電池用負極材である。
すなわち、本発明のリチウムイオン二次電池用負極材は、粒子径が0.5μmを超える第一の炭素質粒子と、前記第一の炭素質粒子の表面に付着し、粒子径が0.5μ以下である第二の炭素質粒子と、を含み、前記第二の炭素質粒子の付着数が、前記第一の炭素質粒子の単位表面積あたり、0.4個/μm以下であり、X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であることを特徴とする。
Further, the negative electrode material for a lithium ion secondary battery of the present invention is a carbonaceous particle having a 002-plane spacing d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffractometer (XRD) measurement. The negative electrode for a lithium ion secondary battery, wherein the adhered carbonaceous particles having a particle diameter of 0.5 μm or less attached to the surface of the carbonaceous particles are 0.4 particles / μm 2 or less per unit surface area of the carbonaceous particles. It is a material.
That is, the negative electrode material for a lithium ion secondary battery of the present invention adheres to the first carbonaceous particles having a particle diameter of more than 0.5 μm and the surface of the first carbonaceous particles, and the particle diameter is 0.5 μm. second carbonaceous particles that are less than or equal to m , and the number of attached second carbonaceous particles is 0.4 or less per μm 2 per unit surface area of the first carbonaceous particles, A surface distance d002 of 002 planes determined by X-ray diffractometer (XRD) measurement is 0.340 nm or more and 0.370 nm or less.

上記のように本発明のリチウムイオン二次電池用負極材は、第一の炭素質粒子の表面に付着した粒子径の小さい第二の炭素質粒子の数が少ないことで、初回不可逆容量が小さく、初回充放電効率が高く、エネルギー密度が大きく、寿命特性に優れたリチウムイオン二次電池を構成可能となる。   As described above, the negative electrode material for a lithium ion secondary battery of the present invention has a small initial irreversible capacity due to the small number of second carbonaceous particles having a small particle diameter attached to the surface of the first carbonaceous particles. It is possible to construct a lithium ion secondary battery having high initial charge / discharge efficiency, large energy density, and excellent life characteristics.

以下に、本発明であるリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう)の詳細を述べる。本発明の負極材の核(原料)となる炭素質粒子(第一の炭素質粒子)としては、XRD測定より求められる炭素の002面の面間隔d002が0.340nm以上0.370nm以下であれば特に限定されない。リチウムイオン二次電池の負極材とした場合の不可逆容量、寿命特性、充放電容量を高めるという観点から、特に、易黒鉛化性を示す炭素材料を焼成処理(カ焼)した後、粉砕して得られるコークス等の炭素質粒子を原料に用いることが好ましい。具体的には、易黒鉛化性を示す材料を、例えば、800℃以上の不活性雰囲気中で焼成処理(カ焼)する。ついで、得られた焼成物をジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法により粉砕し、平均粒子径が5μm〜30μmの範囲となるように粒度を分級調整し、核(原料)となる炭素質粒子を得る。ここで平均粒子径は、体積平均粒子径(50%D)である。   Details of the negative electrode material for a lithium ion secondary battery (hereinafter also simply referred to as “negative electrode material”) according to the present invention will be described below. The carbonaceous particles (first carbonaceous particles) serving as the core (raw material) of the negative electrode material of the present invention should have an interplanar spacing d002 of 0.300 nm or more and 0.370 nm or less on the 002 plane of carbon determined by XRD measurement. If it does not specifically limit. From the viewpoint of increasing the irreversible capacity, life characteristics, and charge / discharge capacity of the negative electrode material of a lithium ion secondary battery, in particular, a carbon material exhibiting graphitizability is calcined (calcined) and then pulverized. It is preferable to use the obtained carbonaceous particles such as coke as a raw material. Specifically, a material exhibiting graphitizability is fired (calcined) in an inert atmosphere at 800 ° C. or higher, for example. Next, the obtained fired product is pulverized by a known method such as a jet mill, vibration mill, pin mill, hammer mill, etc., and the particle size is classified and adjusted so that the average particle size is in the range of 5 μm to 30 μm. To obtain carbonaceous particles. Here, the average particle diameter is a volume average particle diameter (50% D).

ここで、上記易黒鉛化性を示す材料としては、特に制限はないが、例えば、熱可塑性樹脂、ナフタレン、アントラセン、フェナントロレン、コールタール、タールピッチ等が挙げられ、好ましくは、石炭系コールタール、石油系タール等が挙げられる。また、易黒鉛化性を示す材料を焼成処理(カ焼)する場合、焼成処理の前に予め焼成処理における温度とは異なる温度で熱処理を施してもよい。この場合には、易黒鉛化性を示す材料を、例えば、オートクレーブ等の機器を用いて予め熱処理し、これを粗粉砕した後、上記と同様に800℃以上の不活性雰囲気中で焼成処理(カ焼)し、再度、粉砕及び分級して粒度を調整することで核(原料)となる炭素質粒子を得ることができる。なお、焼成(カ焼)前に実施する熱処理の温度は、用いる易黒鉛化性を示す材料に応じて適宜決定することができ、特に限定されない。易黒鉛化性を示す材料が石炭系コールタール、石油系タール等である場合には、例えば400℃〜450℃であることが好ましい。   Here, the material exhibiting graphitizability is not particularly limited, and examples thereof include thermoplastic resins, naphthalene, anthracene, phenanthrolen, coal tar, tar pitch, etc., preferably coal-based coal. Tar, petroleum-based tar and the like. In addition, when a material exhibiting graphitizability is fired (calcined), heat treatment may be performed at a temperature different from the temperature in the firing treatment in advance before the firing treatment. In this case, the material exhibiting graphitizability is preliminarily heat-treated using, for example, an autoclave or the like, coarsely pulverized, and then calcined in an inert atmosphere at 800 ° C. or higher as described above ( The carbonaceous particles used as the nucleus (raw material) can be obtained by adjusting the particle size by pulverization and classification again. In addition, the temperature of the heat treatment performed before firing (calcination) can be appropriately determined according to the material exhibiting graphitizability to be used, and is not particularly limited. When the material exhibiting graphitizability is coal-based coal tar, petroleum-based tar, or the like, the temperature is preferably 400 ° C to 450 ° C, for example.

上記の核(原料)となる炭素質粒子の002面の面間隔d002は、0.340nm以上0.370nm以下であり、特に0.340nm以上0.360nm以下であることが、リチウムイオン二次電池の負極材とした場合に不可逆容量が小さい、充放電容量が大きい、サイクル寿命が長い等の電池特性を高めるという観点で好ましい。d002が0.340nm未満の場合は、リチウムイオン二次電池の初回充放電効率が減少する傾向がある。一方、0.370nmを超えると、リチウムイオン二次電池の寿命特性又は入出力特性が劣る傾向があり、好ましくない。なお、炭素材料の002面の面間隔d002は、X線(CuKα線)を炭素粒子粉末試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θ=24°〜26°付近に現れる炭素002面に対応する回折ピークより、ブラッグの式を用いて算出することができる。   The interplanar spacing d002 of the carbonaceous particles serving as the nucleus (raw material) is not less than 0.340 nm and not more than 0.370 nm, and particularly not less than 0.340 nm and not more than 0.360 nm. When the negative electrode material is used, it is preferable from the viewpoint of improving battery characteristics such as low irreversible capacity, large charge / discharge capacity, and long cycle life. When d002 is less than 0.340 nm, the initial charge / discharge efficiency of the lithium ion secondary battery tends to decrease. On the other hand, if it exceeds 0.370 nm, the life characteristics or input / output characteristics of the lithium ion secondary battery tend to be inferior, which is not preferable. In addition, the surface interval d002 of the 002 plane of the carbon material is determined based on a diffraction profile obtained by irradiating a carbon particle powder sample with X-rays (CuKα rays) and measuring diffraction lines with a goniometer. It can be calculated from the diffraction peak corresponding to the carbon 002 plane appearing in the vicinity of ° using the Bragg equation.

本発明者らが、上述の易黒鉛化性を示す炭素材料を焼成処理(カ焼)、粉砕して得られ炭素質粒子の表面を分析した結果、その表面には粒子径が0.5μm以下の微細な炭素質粒子(付着炭素質粒子、第二の炭素質粒子)が多数付着していることが判った。さらに、このような微細な炭素質粒子が多数付着している炭素質粒子をそのままリチウムイオン二次電池の負極材として用いた場合、リチウムイオン二次電池の充放電効率が低く、また、充放電サイクルの容量維持率の低下が大きいなどの課題があった。これは、上述の付着炭素質粒子が電解液に対して反応活性が高いため、負極の初回サイクルの不可逆容量を増加させ、リチウムイオン二次電池の寿命特性を低下させる原因になったと推測される。   As a result of analyzing the surface of the carbonaceous particles obtained by firing (calcining) and pulverizing the carbon material exhibiting graphitizability as described above, the present inventors have a particle diameter of 0.5 μm or less on the surface. It was found that a large number of fine carbonaceous particles (attached carbonaceous particles, second carbonaceous particles) were attached. Furthermore, when such carbonaceous particles with a large number of fine carbonaceous particles attached are used as the negative electrode material of a lithium ion secondary battery, the charge / discharge efficiency of the lithium ion secondary battery is low, There were problems such as a large decrease in cycle capacity retention. This is presumed to be due to the fact that the adhering carbonaceous particles described above have a high reaction activity with respect to the electrolyte solution, thereby increasing the irreversible capacity of the first cycle of the negative electrode and reducing the life characteristics of the lithium ion secondary battery. .

このようなことから、炭素質粒子の分級工程の条件を変更し、付着炭素質粒子を低減することを試みた。しかしながら、通常の分級機又は篩による方法では、付着炭素質粒子を充分に取り除くことは極めて困難であることが判明した。そこで、本発明では付着炭素質粒子を低減する別の方法を鋭意検討した結果、酸化処理して除去する方法が極めて有効であることを見出し、付着炭素質粒子数が低減された本発明の負極材を得るに至った。以下にその詳細を述べる。   In view of the above, an attempt was made to reduce adhering carbonaceous particles by changing the conditions of the carbonaceous particle classification process. However, it has been found that it is extremely difficult to sufficiently remove the adhered carbonaceous particles by a method using an ordinary classifier or sieve. Therefore, as a result of intensive investigations on another method for reducing the attached carbonaceous particles in the present invention, it was found that the method of removing by oxidation treatment was extremely effective, and the negative electrode of the present invention in which the number of attached carbonaceous particles was reduced. I got the material. Details are described below.

酸化処理は、易黒鉛化性を示す炭素材料を焼成処理(カ焼)した後、粉砕処理して得られる、核(原料)となる炭素質粒子を用いて実施する。このとき、酸化処理前に前記炭素質粒子の平均粒径が5μm〜30μmの範囲となるように、予め分級して粒度調整することが望ましい。炭素質粒子の酸化処理における雰囲気は、大気中で400℃〜700℃の範囲が好ましく、さらに、500℃〜650℃の範囲であることが、効率的に付着炭素質粒子を取り除き本発明の負極材が得られる点で好ましい。酸化処理の温度が400℃以上であると、酸化処理による効果が充分に得られ、付着炭素質粒子の低減が充分に達成できる傾向がある。一方700℃以下であると、核(原料)となる炭素質粒子そのものが酸化燃焼することを抑制でき、負極材の収率が向上する傾向がある。   The oxidation treatment is performed using carbonaceous particles serving as nuclei (raw materials) obtained by firing (calcining) a carbon material exhibiting graphitizability and then pulverizing. At this time, it is desirable to classify and adjust the particle size in advance so that the average particle size of the carbonaceous particles is in the range of 5 μm to 30 μm before the oxidation treatment. The atmosphere in the oxidation treatment of the carbonaceous particles is preferably in the range of 400 ° C. to 700 ° C. in the air, and more preferably in the range of 500 ° C. to 650 ° C. It is preferable at the point from which a material is obtained. When the temperature of the oxidation treatment is 400 ° C. or higher, the effect of the oxidation treatment is sufficiently obtained, and there is a tendency that the reduction of attached carbonaceous particles can be sufficiently achieved. On the other hand, when the temperature is 700 ° C. or lower, it is possible to suppress oxidative combustion of the carbonaceous particles themselves serving as nuclei (raw materials), and the yield of the negative electrode material tends to be improved.

酸化処理時間は10分〜5時間が好ましく、さらに、10分〜1時間が効率的に付着炭素質粒子を取り除き、かつ、負極材の収率を高める点で好ましい。酸化処理時間が10分以上であると、酸化処理による効果が充分に得られ、付着炭素質粒子の低減を充分に達成することができる傾向がある。一方、5時間以下であると、核(原料)となる炭素質粒子そのものが酸化燃焼することを抑制でき、負極材の収率が向上する傾向がある。   The oxidation treatment time is preferably 10 minutes to 5 hours, and more preferably 10 minutes to 1 hour in terms of efficiently removing attached carbonaceous particles and increasing the yield of the negative electrode material. When the oxidation treatment time is 10 minutes or longer, the effect of the oxidation treatment is sufficiently obtained, and there is a tendency that the reduction of attached carbonaceous particles can be sufficiently achieved. On the other hand, if it is 5 hours or less, it is possible to suppress oxidative combustion of the carbonaceous particles themselves serving as nuclei (raw materials), and the yield of the negative electrode material tends to be improved.

これら酸化処理用いる処理炉は特に限定されないが、マッフル炉、ローラーハースキルン、ロータリーキルン等を用いることができる。なお、上述のように、付着炭素質粒子を取り除くことを目的とする酸化処理の条件範囲内では、核(原料)となる炭素質粒子のd002及びLcと、本発明の負極材である炭素質粒子のd002及びLcとの間で変化が生じないことを確認している。   Although the processing furnace used for these oxidation treatments is not particularly limited, a muffle furnace, a roller hearth kiln, a rotary kiln, or the like can be used. In addition, as described above, within the condition range of the oxidation treatment aimed at removing attached carbonaceous particles, d002 and Lc of carbonaceous particles serving as nuclei (raw materials) and the carbonaceous material which is the negative electrode material of the present invention. It has been confirmed that there is no change between the particles d002 and Lc.

このようにして得られる酸化処理後の炭素質粒子の表面に付着している付着炭素質粒子は、以下の方法によって調べることができる。即ち、走査型電子顕微鏡(SEM)によって酸化処理後の炭素質粒子を観察する。そのSEM像中から、粒子径が20μm以上の任意の粒子を選択し、倍率10000倍程度で、比較的平坦な粒子表面に付着する炭素質粒子の状況を調べる。本発明では、例えば、10000倍で観察した10μm×13μm=130μmのSEM像の視野において、粒子径が0.5μm以下の付着炭素質粒子の個数と、リチウムイオン二次電池の特性の関係を調べた。その結果、130μmあたりに存在する、粒子径が0.5μm以下の付着炭素質粒子の個数が50個以下である場合、負極の初回充放電効率と、リチウムイオン二次電池のサイクル寿命とが向上する点で好ましいことが判った。さらに、粒子径が0.5μm以下の付着炭素質粒子の個数が30個以下であることがより好ましいことが判った。粒子径が0.5μm以下の付着炭素質粒子が少なければ少ないほど、電解液との副反応を低減し、負極の初回不可逆量容量が低下、初回効率が向上し、リチウムイオン二次電池の寿命特性の向上に効果があることが判った。
なお、付着炭素質粒子の個数は、SEM像の5つの視野について測定し、その算術平均値として求める。
また、炭素質粒子(第一の炭素質粒子)及び付着炭素質粒子(第二の炭素質粒子)の粒子径は、それぞれの粒子の円相当径(直径)として求める。
The attached carbonaceous particles adhering to the surface of the oxidized carbonaceous particles obtained in this way can be examined by the following method. That is, the carbonaceous particles after the oxidation treatment are observed with a scanning electron microscope (SEM). From the SEM image, arbitrary particles having a particle diameter of 20 μm or more are selected, and the state of carbonaceous particles adhering to a relatively flat particle surface is examined at a magnification of about 10,000 times. In the present invention, for example, in the field of view of a 10 μm × 13 μm = 130 μm 2 SEM image observed at a magnification of 10,000, the relationship between the number of attached carbonaceous particles having a particle diameter of 0.5 μm or less and the characteristics of the lithium ion secondary battery is shown. Examined. As a result, when the number of attached carbonaceous particles having a particle size of 0.5 μm or less present per 130 μm 2 is 50 or less, the initial charge / discharge efficiency of the negative electrode and the cycle life of the lithium ion secondary battery are It turned out to be preferable in terms of improvement. Furthermore, it was found that the number of attached carbonaceous particles having a particle size of 0.5 μm or less is more preferably 30 or less. The fewer adhering carbonaceous particles with a particle size of 0.5 μm or less, the fewer side reactions with the electrolyte solution, the lower the initial irreversible capacity of the negative electrode, the higher the initial efficiency, and the life of the lithium ion secondary battery It was found that the characteristics were improved.
Note that the number of attached carbonaceous particles is measured for five fields of view of the SEM image and is obtained as an arithmetic average value thereof.
The particle diameters of the carbonaceous particles (first carbonaceous particles) and the attached carbonaceous particles (second carbonaceous particles) are determined as the equivalent circle diameter (diameter) of each particle.

また、酸化処理後の炭素質粒子に含まれる粒子径が20μm未満の、比較的小さな粒子の表面に付着した付着炭素質粒子を調べる場合、上述より狭い領域に絞って粒子の平坦部分を観察し、単位表面面積当たりの個数を求めることが好ましい。その結果、炭素質粒子の表面の単位面積1μmあたりに存在する粒子径が0.5μm以下の付着炭素質粒子の個数が0.4個/μm以下である場合、負極の初回効率とリチウムイオン二次電池のサイクル寿命とを向上させることができる点で好ましいことが判った。さらに、粒子径が0.5μm以下の付着炭素質粒子の個数が0.25個/μm以下であることがより好ましいことが判った。 In addition, when investigating attached carbonaceous particles adhering to the surface of relatively small particles having a particle diameter of less than 20 μm contained in the oxidized carbonaceous particles, the flat portion of the particles is observed by narrowing down to a narrower area than the above. It is preferable to obtain the number per unit surface area. As a result, when the number of adhering carbonaceous particles having a particle diameter of 0.5 μm or less per unit area 1 μm 2 on the surface of the carbonaceous particles is 0.4 / μm 2 or less, the initial efficiency of the negative electrode and lithium It turned out that it is preferable at the point which can improve the cycle life of an ion secondary battery. Furthermore, it was found that the number of attached carbonaceous particles having a particle diameter of 0.5 μm or less is more preferably 0.25 / μm 2 or less.

以上のように、炭素質粒子を酸化処理することで、分級及び篩で取り除くことが極めて困難な付着炭素質粒子を低減することが容易に可能であり、付着炭素質粒子を低減することで電解液との反応性を抑制し、負極の初回不可逆容量を低減し、初回効率を向上させ、リチウムイオン二次電池の寿命特性の向上させる点で効果を発揮する。
なお、酸化処理後の炭素質粒子(第一の炭素質粒子)には、粒子径が0.5μmを超える炭素質粒子が付着していてもよい。粒子径が0.5μmを超える炭素質粒子の付着数は特に制限されない。
As described above, by oxidizing the carbonaceous particles, it is possible to easily reduce the adhered carbonaceous particles that are extremely difficult to remove by classification and sieving. It is effective in suppressing the reactivity with the liquid, reducing the initial irreversible capacity of the negative electrode, improving the initial efficiency, and improving the life characteristics of the lithium ion secondary battery.
In addition, carbonaceous particles having a particle diameter of more than 0.5 μm may adhere to the carbonaceous particles after oxidation treatment (first carbonaceous particles). The number of attached carbonaceous particles having a particle diameter exceeding 0.5 μm is not particularly limited.

さらに、リチウムイオン二次電池負極材は、シェラーの式で算出されるc軸方向の結晶子サイズ(Lc)が3.3nm以上5.5nm以下であることが好ましく、4.0nm以上5.2nm以下であることがより好ましい。Lcが3.3nm以上であると、炭素質粒子の結晶性がより高くなり、リチウムイオン二次電池の初回充放電効率がより向上する傾向がある。一方、Lcが5.5nm以下であると、炭素質粒子の結晶性がより低くなり、充放電容量がより増加する傾向がある。   Further, the negative electrode material of the lithium ion secondary battery preferably has a crystallite size (Lc) in the c-axis direction calculated by Scherrer's equation of 3.3 nm to 5.5 nm, preferably 4.0 nm to 5.2 nm. The following is more preferable. When Lc is 3.3 nm or more, the crystallinity of the carbonaceous particles becomes higher, and the initial charge / discharge efficiency of the lithium ion secondary battery tends to be further improved. On the other hand, when Lc is 5.5 nm or less, the crystallinity of the carbonaceous particles becomes lower, and the charge / discharge capacity tends to increase.

また、リチウムイオン二次電池用負極材を純水に分散した場合、酸性を呈することが好ましい。具体的には、純水に濃度が3.5質量%となるように分散させた場合、25℃におけるpHが5.6以上6.1以下であることが好ましい。これは例えば、酸化処理により表面に僅かに酸素が残るため、炭素粒子表面にC=O結合を含む官能基が増加して、未処理の場合に比べてpHが0.2〜0.7酸性側へシフトすると考えることができる。
なお、リチウムイオン二次電池用負極材が第一及び第二の炭素質粒子以外の成分を含む場合、第一及び第二の炭素質粒子のみを分散させてpHを測定する。
Moreover, when the negative electrode material for lithium ion secondary batteries is disperse | distributed to a pure water, it is preferable to exhibit acidity. Specifically, when dispersed in pure water so as to have a concentration of 3.5% by mass, the pH at 25 ° C. is preferably from 5.6 to 6.1. This is because, for example, a slight amount of oxygen remains on the surface due to the oxidation treatment, so that the functional group containing a C═O bond increases on the surface of the carbon particles, and the pH is 0.2 to 0.7 acid as compared with the case of no treatment. You can think of shifting to the side.
When the negative electrode material for a lithium ion secondary battery contains components other than the first and second carbonaceous particles, the pH is measured by dispersing only the first and second carbonaceous particles.

さらに、リチウムイオン二次電池用負極材である炭素質粒子は、大気雰囲気で、昇温速度を5℃/minとした示差熱分析(DTA)測定において、DTAのピークが、650℃以上680℃以下の範囲に存在することが好ましい。酸化処理することで、未処理の場合に比べてピーク温度が10℃〜30℃低温度側にシフトする。酸化処理により、炭素質粒子の表面に酸素原子が予め導入されているため、より低温で酸化反応が進行するものと思われる。   Furthermore, the carbonaceous particles that are the negative electrode materials for lithium ion secondary batteries have a DTA peak of 650 ° C. or higher and 680 ° C. or higher in a differential thermal analysis (DTA) measurement at a temperature rising rate of 5 ° C./min in an air atmosphere. It is preferable to exist in the following range. By performing the oxidation treatment, the peak temperature is shifted to a low temperature side of 10 ° C. to 30 ° C. as compared with the case of no treatment. Oxygen atoms are previously introduced into the surface of the carbonaceous particles by the oxidation treatment, so that the oxidation reaction seems to proceed at a lower temperature.

また、リチウムイオン二次電池用負極材は、体積平均粒子径(50%D)が5μm以上30μm以下であることが好ましく、5μm以上25μm以下であることがより好ましい。体積平均粒子径が5μm以上であると、比表面積が小さくなり、リチウムイオン二次電池の初回充放電効率がより向上すると共に、粒子同士の接触が良好になり入出力特性がより向上する傾向がある。一方、体積平均粒子径が30μm以下であると、形成される電極面に凸凹が発生することが抑制されて電池の短絡が抑制されると共に、粒子表面から内部へのLiの拡散距離が短くなるため、リチウムイオン二次電池の入出力特性がより向上する傾向がある。なお、体積平均粒子径は、粒度分布において小径側からの体積累積50%に対応する粒子径として算出される。また、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−3000J)で測定することができる。   The negative electrode material for a lithium ion secondary battery has a volume average particle size (50% D) of preferably 5 μm or more and 30 μm or less, and more preferably 5 μm or more and 25 μm or less. When the volume average particle diameter is 5 μm or more, the specific surface area is reduced, the initial charge / discharge efficiency of the lithium ion secondary battery is further improved, and the contact between the particles is improved and the input / output characteristics are further improved. is there. On the other hand, when the volume average particle diameter is 30 μm or less, unevenness is suppressed on the formed electrode surface, the short circuit of the battery is suppressed, and the diffusion distance of Li from the particle surface to the inside is shortened. Therefore, the input / output characteristics of the lithium ion secondary battery tend to be further improved. The volume average particle size is calculated as a particle size corresponding to 50% volume accumulation from the small diameter side in the particle size distribution. The particle size distribution can be measured by dispersing a sample in purified water containing a surfactant and using a laser diffraction particle size distribution measuring apparatus (SALD-3000J, manufactured by Shimadzu Corporation).

さらに、リチウムイオン二次電池用負極材は、真比重が1.80g/cm以上2.20g/cm以下であることが好ましい。真比重が1.80g/cm以上であると、リチウムイオン二次電池の体積当りの充放電容量がより向上し、また初回充放電効率がより増加する傾向がある。一方、真比重が2.20g/cm以下であると、リチウムイオン二次電池の寿命特性がより向上する傾向がある。なお、真比重はブタノールを用いたピクノメーター法により求めることができる。 Furthermore, the negative electrode material for a lithium ion secondary battery, it is preferable that the true specific gravity of less 1.80 g / cm 3 or more 2.20 g / cm 3. When the true specific gravity is 1.80 g / cm 3 or more, the charge / discharge capacity per volume of the lithium ion secondary battery is further improved, and the initial charge / discharge efficiency tends to be further increased. On the other hand, when the true specific gravity is 2.20 g / cm 3 or less, the life characteristics of the lithium ion secondary battery tend to be further improved. The true specific gravity can be determined by a pycnometer method using butanol.

<リチウムイオン二次電池用負極>
本発明のリチウムイオン二次電池用負極は、集電体と、前記集電体上に配置された前記リチウムイオン二次電池用負極材を含む負極材層とを含む。リチウムイオン二次電池用負極は、例えば、本発明のリチウムイオン二次電池用負極材及び有機系結着材を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練して負極材スラリーを調製し、これを集電体に塗布して負極層を形成して得ることができる。また、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
<Anode for lithium ion secondary battery>
The negative electrode for lithium ion secondary batteries of this invention contains a collector and the negative electrode material layer containing the said negative electrode material for lithium ion secondary batteries arrange | positioned on the said collector. The negative electrode for lithium ion secondary batteries is prepared by, for example, kneading the negative electrode material for lithium ion secondary batteries and the organic binder of the present invention together with a solvent using a dispersing device such as a stirrer, a ball mill, a super sand mill, or a pressure kneader. A negative electrode material slurry can be prepared and applied to a current collector to form a negative electrode layer. Moreover, it can obtain by shape | molding paste-like negative electrode material slurry in shapes, such as a sheet form and a pellet form, and integrating this with a collector.

上記有機系結着材としては、特に限定されない。前記有機結着剤としては例えば、スチレン−ブタジエン共重合体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル及びアクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸から形成される(メタ)アクリル共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。   The organic binder is not particularly limited. Examples of the organic binder include styrene-butadiene copolymers; ethylenic polymers such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate. (Meth) acrylic copolymers formed from saturated carboxylic acid esters and ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid; polyvinylidene fluoride, polyethylene oxide, polyepichrome Examples thereof include polymer compounds such as hydrin, polyphosphazene, polyacrylonitrile, polyimide, and polyamideimide.

リチウムイオン二次電池負極の負極層中の有機結着剤の含有比率は、リチウムイオン二次電池用負極材と有機結着剤の合計100質量部に対して0.5質量部〜20質量部であることが好ましく、1質量部〜10質量部であることがより好ましい。
有機結着剤の含有比率が0.5質量部以上であることで密着性が良好で、充放電時の膨張及び収縮によって負極が破壊されることが抑制される。一方、20質量部以下であることで、電極抵抗が大きくなることを抑制できる。
The content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is 0.5 parts by mass to 20 parts by mass with respect to 100 parts by mass in total of the negative electrode material for the lithium ion secondary battery and the organic binder. It is preferable that it is 1 mass part-10 mass parts.
Adhesiveness is good when the content ratio of the organic binder is 0.5 parts by mass or more, and the negative electrode is prevented from being destroyed by expansion and contraction during charge and discharge. On the other hand, it can suppress that electrode resistance becomes large because it is 20 mass parts or less.

また負極材スラリーには、粘度を調整するために増粘剤を混合してもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(及びその塩)、酸化スターチ、リン酸化スターチ、カゼイン等を使用することができる。   Moreover, you may mix a thickener with a negative electrode material slurry, in order to adjust a viscosity. As the thickener, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (and its salt), oxidized starch, phosphorylated starch, casein and the like can be used.

また負極材スラリーは、必要に応じて導電補助材を含んでいてもよい。導電補助材としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。導電補助材の含有量は、前記負極材スラリーの総固形分質量中に0.1質量%〜15質量%程度とすればよい。なお、負極材スラリーの固形分とは負極材スラリー中の不揮発成分を意味する。   The negative electrode material slurry may contain a conductive auxiliary material as necessary. Examples of the conductive auxiliary material include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride. The content of the conductive auxiliary material may be about 0.1% by mass to 15% by mass in the total solid mass of the negative electrode material slurry. The solid content of the negative electrode material slurry means a non-volatile component in the negative electrode material slurry.

また前記集電体の材質及び形状については特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料であるポーラスメタル(発泡メタル)、カーボンペーパー等も使用可能である。   Further, the material and shape of the current collector are not particularly limited. For example, if a belt-like material made of aluminum, copper, nickel, titanium, stainless steel or the like in a foil shape, a punched foil shape, a mesh shape, or the like is used. Good. Also, porous metal (foamed metal), carbon paper, etc., which are porous materials, can be used.

上記負極材スラリーを集電体に塗布する方法としては、特に限定されない。塗布方法としては、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。
また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。
The method for applying the negative electrode material slurry to the current collector is not particularly limited. Examples of the coating method include known methods such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, and screen printing method. After the application, it is preferable to perform a rolling process using a flat plate press, a calender roll or the like, if necessary.
Further, the integration of the negative electrode slurry and the current collector formed into a sheet shape, a pellet shape, or the like can be performed by a known method such as a roll, a press, or a combination thereof.

前記集電体上に形成された負極層及び集電体と一体化した負極層は、用いた有機結着剤に応じた条件で、熱処理することが好ましい。例えば、ポリアクリロニトリルを主骨格とした有機結着剤を用いた場合は、100℃〜180℃で熱処理することが好ましい。またポリイミド、ポリアミドイミドを主骨格とした有機結着剤を用いた場合には150℃〜450℃で熱処理することが好ましい。
この熱処理により溶媒の除去、バインダの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性が向上できる。なお、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、又は真空雰囲気で行うことが好ましい。
The negative electrode layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably heat-treated under conditions according to the organic binder used. For example, when an organic binder having polyacrylonitrile as the main skeleton is used, it is preferable to perform heat treatment at 100 ° C. to 180 ° C. Further, when an organic binder having a main skeleton of polyimide or polyamideimide is used, heat treatment is preferably performed at 150 ° C. to 450 ° C.
This heat treatment increases the strength by removing the solvent and curing the binder, thereby improving the adhesion between the particles and between the particles and the current collector. Note that these heat treatments are preferably performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.

また熱処理後に、負極は加圧プレス(加圧処理)することが好ましい。加圧処理することで電極密度を調整することができる。前記リチウムイオン二次電池用負極は、電極密度が1.0g/cm〜2.0g/cmであることが好ましく、1.2g/cm〜1.9g/cmであることがより好ましく、1.4g/cm〜1.8g/cmであることがさらに好ましい。電極密度については、高いほど体積容量が向上するほか、密着性が向上し、サイクル特性も向上する傾向がある。 Further, after the heat treatment, the negative electrode is preferably pressed (pressurized). The electrode density can be adjusted by applying pressure treatment. The negative electrode for the lithium ion secondary battery, it is preferable that the electrode density of 1.0g / cm 3 ~2.0g / cm 3 , more to be 1.2g / cm 3 ~1.9g / cm 3 preferably, further preferably 1.4g / cm 3 ~1.8g / cm 3 . As for the electrode density, the higher the volume capacity, the better the adhesion and the cycle characteristics.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、既述の本発明のリチウムイオン二次電池用負極と、正極と、電解質とを有する。リチウムイオン二次電池は例えば、前記リチウムイオン二次電池用負極と正極とを、必要に応じてセパレータを介して対向して配置し、電解質を含む電解液を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention has the above-described negative electrode for a lithium ion secondary battery of the present invention, a positive electrode, and an electrolyte. The lithium ion secondary battery can be obtained, for example, by arranging the negative electrode for a lithium ion secondary battery and the positive electrode so as to face each other with a separator as necessary, and injecting an electrolytic solution containing an electrolyte.

前記正極は、前記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode. In this case, the current collector may be a belt-shaped member made of a metal, such as aluminum, titanium, or stainless steel, or an alloy such as a foil, a punched foil, or a mesh.

前記正極層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いればよく、特に限定されない。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 The positive electrode material used for the positive electrode layer is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used. It is not limited. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and double oxides thereof (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x, 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2, MoV 2 O 8, TiS 2, V 2 S 5, VS 2, MoS 2, MoS 3, Cr 3 O 8, Cr 2 O 5, olivine-type LiMPO 4 (M: Co, Ni , Mn, Fe) , Conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, porous carbon, etc. alone or in combination Can be used.

前記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。   As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.

前記電解液としては、例えば電解質であるLiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3, which are electrolytes, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentacarbonate. Non, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl Carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydro A so-called organic electrolyte solution dissolved in a non-aqueous solvent of a simple substance such as furan, 1,3-dioxolane, methyl acetate, ethyl acetate or a mixture of two or more components can be used.

リチウムイオン二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。リチウムイオン二次電池は、特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。   The structure of the lithium ion secondary battery is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral shape to form a wound electrode group, In general, the electrode plates are laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body. The lithium ion secondary battery is not particularly limited, and is used as a paper-type battery, a button-type battery, a coin-type battery, a stacked battery, a cylindrical battery, a rectangular battery, or the like.

上述したリチウムイオン二次電池用負極材は、リチウムイオン二次電池用として記載したが、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタなどにも適用することが可能であることはいうまでもない。   Although the above-described negative electrode material for lithium ion secondary batteries has been described for lithium ion secondary batteries, it is also applicable to all electrochemical devices that use charging / discharging mechanisms for insertion / extraction of lithium ions, such as hybrid capacitors. It goes without saying that it is possible.

以上で説明した本発明のリチウムイオン二次電池は、従来の炭素材料を負極に用いたリチウムイオン二次電池と比較してサイクル特性に優れ、不可逆容量が小さく、安全性に優れる。   The lithium ion secondary battery of the present invention described above is excellent in cycle characteristics, small in irreversible capacity, and excellent in safety as compared with a lithium ion secondary battery using a conventional carbon material as a negative electrode.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
<核(原料)となる炭素質粒子の作製>
石炭系コールタールを、オートクレーブを用いて400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中で焼成処理(カ焼)を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて粉砕後、300メッシュの篩にて粗粉を除去して核(原料)となる炭素質粒子を得た。
Example 1
<Preparation of carbonaceous particles to be the core (raw material)>
The coal-based coal tar was heat-treated at 400 ° C. using an autoclave to obtain raw coke. After pulverizing this raw coke, it was fired (calcined) in an inert atmosphere at 1200 ° C. to obtain a coke lump. The coke mass was pulverized using an impact pulverizer equipped with a classifier, and then coarse particles were removed with a 300 mesh sieve to obtain carbonaceous particles serving as nuclei (raw materials).

<d002及びLcの測定>
上記で得られた炭素質粒子のX線回折測定を理学電気株式会社製の広角X線回折装置を用いて行った。モノクロメーターで単色化したCu−Kα線を用い、高純度シリコンを標準物質として測定した。002面の面間隔d002は、回折角2θ=24°〜26°付近に現れる002面に対応した回折ピークより、ブラッグの式を用い算出した。Lcはd002の回折ピークの半価幅からシェラーの式により算出した。d002及びLcはそれぞれ、0.346nm及び3.5nmであった。
<Measurement of d002 and Lc>
X-ray diffraction measurement of the carbonaceous particles obtained above was performed using a wide-angle X-ray diffractometer manufactured by Rigaku Corporation. High-purity silicon was measured as a standard substance using Cu-Kα radiation monochromatized with a monochromator. The plane spacing d002 of the 002 plane was calculated from the diffraction peak corresponding to the 002 plane appearing in the vicinity of the diffraction angle 2θ = 24 ° to 26 ° using the Bragg equation. Lc was calculated by the Scherrer equation from the half width of the diffraction peak at d002. d002 and Lc were 0.346 nm and 3.5 nm, respectively.

<炭素質粒子の酸化処理>
その後、上記で得られた核(原料)となる炭素質粒子60gをステンレス鋼製のバット(10cm×6cm×高さ5.5cm)に入れて、マッフル炉(ADVANTEC製、型式:KM−280)を用いて、大気中、600℃の雰囲気で30分間、酸化処理を行い、本発明である実施例1の負極材を得た。なお、実施例1の負極材のd002とLcとを上記と同様にして調べた結果、それぞれは0.346nm及び3.5nmで、核(原料)となる炭素質粒子との間で変化は見られなかった。
<Oxidation treatment of carbonaceous particles>
Thereafter, 60 g of carbonaceous particles as the core (raw material) obtained above were put into a stainless steel vat (10 cm × 6 cm × height 5.5 cm), and a muffle furnace (manufactured by ADVANTEC, model: KM-280). Was used in the atmosphere at 600 ° C. for 30 minutes to obtain an anode material of Example 1 according to the present invention. In addition, as a result of examining d002 and Lc of the negative electrode material of Example 1 in the same manner as described above, the changes were between 0.346 nm and 3.5 nm, respectively, and the carbonaceous particles serving as the nucleus (raw material). I couldn't.

<付着炭素質粒子の観察>
本発明の負極材である炭素質粒子の表面に付着した付着炭素質粒子を、SEMを用いて以下の手順で調べた。SEMには、日本電子(株)製のJSM−6010LAを用いた。サンプルフォルダーにカーボンテープを貼り、その上に本発明の負極材である炭素質粒子を少量のせて観察試料とした。SEMの加速電圧は5kVとした。1000倍程度の低倍率のSEM像において、粒子径が20μm以上の任意の炭素質粒子を1つ選択し、その後、観察倍率を10000倍としてその表面の10μm×13μm=130μmの領域で比較的平坦な領域を観察し、粒子径が0.5μm以下の付着炭素質粒子の個数を調べた。さらに、別の炭素質粒子を選び、同様の測定を合計5視野について行い、付着炭素質粒子の平均個数を求めた。
<Observation of attached carbonaceous particles>
The attached carbonaceous particles adhering to the surface of the carbonaceous particles that are the negative electrode material of the present invention were examined by the following procedure using SEM. JSM-6010LA manufactured by JEOL Ltd. was used for SEM. A carbon tape was affixed to the sample folder, and a small amount of carbonaceous particles as the negative electrode material of the present invention was placed on the sample folder to prepare an observation sample. The acceleration voltage of SEM was 5 kV. In a low magnification SEM image of about 1000 times, one arbitrary carbonaceous particle having a particle diameter of 20 μm or more is selected, and then the observation magnification is set to 10000 times and the surface is relatively 10 μm × 13 μm = 130 μm 2 in the region. A flat region was observed, and the number of attached carbonaceous particles having a particle size of 0.5 μm or less was examined. Further, another carbonaceous particle was selected, and the same measurement was performed for a total of five fields of view to determine the average number of attached carbonaceous particles.

<平均粒子径の測定>
本発明の負極材である炭素質粒子を界面活性剤と共に精製水中に分散させ、その溶液をレーザー回折式粒度分布測定装置((株)島津製作所製、SALD−3000J)を用いて分析した。分散液を装置の水槽に入れ、超音波をかけながらポンプで循環させながら測定した。得られた粒度分布の結果から、その体積累積50%粒径(50%D)を平均粒子径とした。
<Measurement of average particle diameter>
The carbonaceous particles that are the negative electrode material of the present invention were dispersed in purified water together with a surfactant, and the solution was analyzed using a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation). The dispersion was placed in a water tank of the apparatus, and measurement was performed while circulating with a pump while applying ultrasonic waves. From the results of the obtained particle size distribution, the volume cumulative 50% particle size (50% D) was defined as the average particle size.

<真比重(真密度)の測定>
本発明の負極材である炭素質粒子の真比重を、比重瓶を用いたブタノール置換法(JIS R 7212)により測定した。
<Measurement of true specific gravity (true density)>
The true specific gravity of the carbonaceous particles as the negative electrode material of the present invention was measured by a butanol substitution method (JIS R 7212) using a specific gravity bottle.

<DTA測定>
本発明の負極材である炭素質粒子のDTA測定を、示差熱熱重量同時測定装置(エスアイアイ・ナノテクノロジー株式会社製、EXSTAR6000)を用いて行った。昇温速度は5℃/minとした。また、測定雰囲気は、乾燥空気をフローして大気中とした。白金のサンプルパンに入れる本発明の負極材の重量は、3.0±0.1mgとした。
<DTA measurement>
The DTA measurement of the carbonaceous particles, which are the negative electrode material of the present invention, was performed using a differential thermothermal gravimetric simultaneous measurement device (EXSTAR6000, manufactured by SII Nanotechnology Co., Ltd.). The heating rate was 5 ° C./min. Moreover, the measurement atmosphere was made into the air by flowing dry air. The weight of the negative electrode material of the present invention placed in a platinum sample pan was 3.0 ± 0.1 mg.

<pHの測定>
本発明の負極材である炭素質粒子2.0±0.2gを秤量し、純水50mlを加え30分攪拌した。これをろ過し、ろ過液のpHを25℃で測定した。pHの測定は(株)堀場製作所社製のpHメータを用いた。
<Measurement of pH>
2.0 ± 0.2 g of carbonaceous particles as the negative electrode material of the present invention was weighed, 50 ml of pure water was added and stirred for 30 minutes. This was filtered and the pH of the filtrate was measured at 25 ° C. The pH was measured using a pH meter manufactured by Horiba, Ltd.

<負極の初回不可逆容量、充放電効率の測定>
上記で得られた実施例1の負極材98質量部に対し、カルボキシメチルセルロース(CMC)1質量部、スチレン−ブタジエン共重合体(SBR)1質量部を加えて混練してペースト状の負極材スラリーを作製した。このスラリーを厚さ11μmの電解銅箔に厚さ200μmのマスクを用い直径9.5mmとなるよう塗布し、さらに、105℃で乾燥して、実施例1の単極試験用の負極を作製した。
<Measurement of initial irreversible capacity and charge / discharge efficiency of negative electrode>
1 part by mass of carboxymethyl cellulose (CMC) and 1 part by mass of styrene-butadiene copolymer (SBR) are added to 98 parts by mass of the negative electrode material of Example 1 obtained above, and the mixture is kneaded and paste-like negative electrode material slurry. Was made. The slurry was applied to an electrolytic copper foil having a thickness of 11 μm so as to have a diameter of 9.5 mm using a mask having a thickness of 200 μm, and further dried at 105 ° C., so that a negative electrode for a monopolar test of Example 1 was produced. .

次いで、実施例1の単極試験用の負極、セパレータ、対極の順に積層した後、これにエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:1)の混合溶媒にLiPFを0.5モル/リットルの濃度になるように溶解した電解液溶液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。 Then, after laminating the negative electrode for the single electrode test of Example 1, the separator, and the counter electrode in this order, this was mixed with ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are 1: 1 by volume). An electrolyte solution in which LiPF 6 was dissolved in a solvent to a concentration of 0.5 mol / liter was injected to prepare a coin battery. Metal lithium was used for the counter electrode, and a polyethylene microporous film having a thickness of 20 μm was used for the separator.

得られたコイン電池を用い、負極と対極の間に0.165mAの定電流を通電し、対極に対する負極の電位が0.005V(Vvs.Li/Li)に達するまで充電(負極にリチウムを吸蔵)し、次いで0.005Vの定電圧で電流が0.0165mAに減衰するまで充電した。次に30分間の休止を設けた後に、0.165mAの定電流で対極に対する負極の電位が1.5V(Vvs.Li/Li)に達するまで放電(負極からリチウムを放出)した。この充放電試験を1サイクル行い、初回充放電における不可逆容量と充放電効率を求めた。初回不可逆容量は、負極材単位重量当たりの充電容量(Ah/kg)と放電容量(Ah/kg)の差、初回充放電効率は、(放電容量)/(充電容量)×100(%)として算出した。結果を表2に示す。 Using the obtained coin battery, a constant current of 0.165 mA was passed between the negative electrode and the counter electrode, and charging was performed until the potential of the negative electrode with respect to the counter electrode reached 0.005 V (Vvs. Li / Li + ) (lithium was applied to the negative electrode). Occluded) and then charged at a constant voltage of 0.005 V until the current decays to 0.0165 mA. Next, after a pause of 30 minutes, discharging was performed (lithium was released from the negative electrode) at a constant current of 0.165 mA until the potential of the negative electrode with respect to the counter electrode reached 1.5 V (Vvs. Li / Li + ). This charge / discharge test was performed for one cycle, and the irreversible capacity and charge / discharge efficiency in the first charge / discharge were determined. The initial irreversible capacity is the difference between the charge capacity (Ah / kg) and the discharge capacity (Ah / kg) per unit weight of the negative electrode material, and the initial charge / discharge efficiency is (discharge capacity) / (charge capacity) × 100 (%) Calculated. The results are shown in Table 2.

<リチウムイオン二次電池の寿命特性の評価>
実施例1の負極材98質量部に、カルボキシメチルセルロース(CMC)1質量部、スチレン−ブタジエン共重合体(SBR)1質量部を加えて混練し、ペースト状の負極材スラリーを作製した。このスラリーを厚さ11μmの電解銅箔に単位面積当りの塗布量が4.5mg/cmとなるように塗工機を用いて塗布した後、105℃で乾燥し、さらに、ロールプレス機により負極材層の密度が1.05g/cmとなるように圧縮成型し、実施例1のリチウムイオン二次電池用の負極を作製した。
<Evaluation of life characteristics of lithium ion secondary battery>
To 98 parts by mass of the negative electrode material of Example 1, 1 part by mass of carboxymethyl cellulose (CMC) and 1 part by mass of styrene-butadiene copolymer (SBR) were added and kneaded to prepare a paste-like negative electrode material slurry. This slurry was applied to an electrolytic copper foil having a thickness of 11 μm using a coating machine so that the coating amount per unit area was 4.5 mg / cm 2 , then dried at 105 ° C., and further, using a roll press machine. The negative electrode for the lithium ion secondary battery of Example 1 was produced by compression molding so that the density of the negative electrode material layer was 1.05 g / cm 3 .

また、正極活物質として粒径5μmのLiMnを用い、正極活物質90質量部に、アセチレンブラックを5質量部、ポリフッ化ビニリデン(PVDF)を5質量部加えて混練し、ペースト状の正極材スラリーを作製した。このスラリーを厚さ20μmの電解アルミ箔に単位面積当りの塗布量が11.1mg/cmとなるように塗工機を用いて塗布した後、105℃で乾燥し、ロールプレス機により正極材層の密度が2.5g/cmとなるように圧縮成型し、実施例1のリチウムイオン二次電池用の正極を作製した。 Further, LiMn 2 O 4 having a particle size of 5 μm was used as the positive electrode active material, and 5 parts by mass of acetylene black and 5 parts by mass of polyvinylidene fluoride (PVDF) were added to 90 parts by mass of the positive electrode active material, and kneaded. A positive electrode material slurry was prepared. This slurry was applied to an electrolytic aluminum foil having a thickness of 20 μm using a coating machine so that the coating amount per unit area was 11.1 mg / cm 2 , then dried at 105 ° C., and a positive electrode material using a roll press machine. The positive electrode for the lithium ion secondary battery of Example 1 was produced by compression molding so that the layer density was 2.5 g / cm 3 .

ついで、負極、セパレータ、正極の順に積層し、コインセル容器にセットした。これにエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:1)の混合溶媒にLiPFを1.0モル/リットルの濃度になるように溶解した電解液溶液を3ml注入し、コインセル容器をかしめ合わせ、本発明のコインセル型のリチウムイオン二次電池を作製した。 Next, a negative electrode, a separator, and a positive electrode were stacked in this order and set in a coin cell container. An electrolyte solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are 1: 1 by volume) to a concentration of 1.0 mol / liter. 3 ml was injected, and the coin cell container was caulked to produce a coin cell type lithium ion secondary battery of the present invention.

この本発明のコインセル型のリチウムイオン二次電池を用い、25℃の恒温槽中において4.38mAの定電流で4.15Vまで充電し、さらに4.15Vの定電圧で電流が0.438mAになるまで充電した。その後30分の休止を設けた後に、4.38mAの定電流で2.5Vまで放電を行った。さらにその後30分の休止を設け、これを1サイクルとした。このサイクルを250回繰り返したときの1サイクル目に対する放電容量維持率を測定し、寿命特性評価を行った。結果を表2に示す。   Using this coin cell type lithium ion secondary battery of the present invention, the battery was charged to 4.15 V at a constant current of 4.38 mA in a constant temperature bath at 25 ° C., and the current was further reduced to 0.438 mA at a constant voltage of 4.15 V. Charged until Then, after a 30-minute pause, discharging was performed to 2.5 V at a constant current of 4.38 mA. Furthermore, a rest of 30 minutes was provided thereafter, which was defined as one cycle. The discharge capacity retention rate for the first cycle when this cycle was repeated 250 times was measured, and the life characteristics were evaluated. The results are shown in Table 2.

(実施例2)
d002が0.346nm、Lcが5.2nmの市販のコークスを用い、これを分級機付きの衝撃粉砕機を用いて粉砕後、300メッシュの篩にて粗粉を除去して核(原料)となる炭素質粒子を得た。その後は、実施例1と同様にして、炭素質粒子の酸化処理を行い、本発明である実施例2の負極材を得た。さらに、実施例2の負極材を用いて、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の初回不可逆容量、充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
(Example 2)
Commercially available coke having d002 of 0.346 nm and Lc of 5.2 nm was pulverized using an impact pulverizer equipped with a classifier, and then coarse particles were removed with a 300 mesh sieve to remove the core (raw material). Carbonaceous particles were obtained. Thereafter, the carbonaceous particles were oxidized in the same manner as in Example 1 to obtain a negative electrode material of Example 2 according to the present invention. Further, using the negative electrode material of Example 2, as in Example 1, observation of adhered carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, pH measurement, negative electrode The first irreversible capacity, the measurement of charge / discharge efficiency, and the life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

(実施例3)
実施例2における、分級機付きの衝撃粉砕機の分級条件を変更(回転数を低減)した以外は、実施例2と同様にして、粒度分布の異なる本発明である実施例3の負極材を得た。さらに、実施例3の負極材を用いて、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の不可逆容量、初回充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
Example 3
The negative electrode material of Example 3 according to the present invention having a different particle size distribution was prepared in the same manner as in Example 2 except that the classification conditions of the impact pulverizer with a classifier in Example 2 were changed (the number of revolutions was reduced). Obtained. Further, using the negative electrode material of Example 3, in the same manner as in Example 1, observation of adhered carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, pH measurement, negative electrode The irreversible capacity, the initial charge / discharge efficiency, and the life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

(実施例4)
実施例2における、分級機付きの衝撃粉砕機の分級条件を変更(回転数を増加)した以外は、実施例2と同様にして、粒度分布の異なる本発明である実施例4の負極材を得た。さらに、実施例4の負極材を用いて、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の不可逆容量、初回充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
Example 4
The negative electrode material of Example 4 according to the present invention having a different particle size distribution was prepared in the same manner as in Example 2 except that the classification conditions of the impact pulverizer with a classifier in Example 2 were changed (increase in the number of revolutions). Obtained. Further, using the negative electrode material of Example 4, as in Example 1, observation of adhered carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, pH measurement, negative electrode The irreversible capacity, the initial charge / discharge efficiency, and the life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

(実施例5)
d002が0.347nm、Lcが3.9nmの市販のコークスを用い、これを分級機付きの衝撃粉砕機を用いて粉砕後、300メッシュの篩にて粗粉を除去して核(原料)となる炭素質粒子を得た。その後、実施例1の炭素質粒子の酸化処理の処理条件の中で、マッフル炉の温度を650℃、処理時間を15分に変更した以外は実施例1と同様にして、本発明である実施例5の負極材を得た。さらに、実施例5の負極材を用いて、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の初回不可逆容量、充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
(Example 5)
A commercially available coke having a d002 of 0.347 nm and an Lc of 3.9 nm was pulverized using an impact pulverizer equipped with a classifier, and then coarse particles were removed with a 300-mesh sieve to obtain a core (raw material). Carbonaceous particles were obtained. Thereafter, the present invention was carried out in the same manner as in Example 1 except that the muffle furnace temperature was changed to 650 ° C. and the processing time was changed to 15 minutes in the processing conditions of the oxidation treatment of the carbonaceous particles of Example 1. The negative electrode material of Example 5 was obtained. Further, using the negative electrode material of Example 5, in the same manner as in Example 1, observation of attached carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, pH measurement, negative electrode The first irreversible capacity, the measurement of charge / discharge efficiency, and the life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

(実施例6)
d002が0.345nm、Lcが4.9nmの市販のコークスを用い、これを分級機付きの衝撃粉砕機を用いて粉砕後、300メッシュの篩にて粗粉を除去して、核(原料)となる炭素質粒子を得た。その後、実施例5と同様にして、本発明である実施例6の負極材を得た。さらに、実施例6の負極材を用いて、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の初回不可逆容量、充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
Example 6
Using commercially available coke with d002 of 0.345 nm and Lc of 4.9 nm, this was pulverized using an impact pulverizer equipped with a classifier, and then coarse particles were removed with a 300 mesh sieve to obtain a core (raw material) Carbonaceous particles were obtained. Then, it carried out similarly to Example 5, and obtained the negative electrode material of Example 6 which is this invention. Further, using the negative electrode material of Example 6, in the same manner as in Example 1, observation of attached carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, pH measurement, negative electrode The first irreversible capacity, the measurement of charge / discharge efficiency, and the life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

(比較例1)
実施例1において作製した、核(原料)となる炭素質粒子をそのまま比較例1の負極材として用いた。その後、実施例1と同様にして、付着炭素質粒子の観察、平均粒子径の測定、真比重(真密度)の測定、DTA測定、pHの測定、負極の初回不可逆容量、充放電効率の測定、リチウムイオン二次電池の寿命特性の評価を行った。結果を表2に示す。
(Comparative Example 1)
The carbonaceous particles used as the core (raw material) produced in Example 1 were used as the negative electrode material of Comparative Example 1 as they were. Thereafter, in the same manner as in Example 1, observation of adhered carbonaceous particles, measurement of average particle diameter, measurement of true specific gravity (true density), DTA measurement, measurement of pH, initial irreversible capacity of negative electrode, measurement of charge / discharge efficiency The life characteristics of the lithium ion secondary battery were evaluated. The results are shown in Table 2.

<付着炭素質粒子の観察結果>
図1A〜図1Cに、実施例1の負極材についての1000倍(図1A)、5000倍(図1B)及び10000倍(図1C)のSEM像を示す。初めに1000倍の低倍率で観察し、視野の中から任意に20μm以上の粒子を選択した。その粒子の比較的平坦部分を10000倍まで拡大観察して、付着した付着炭素質粒子の個数を確認した。本実施例では、10000倍のSEM像の視野が、10μm×13μm=130μmの領域に相当し、この領域おいて、粒子径が0.5μm以下である付着炭素質粒子の個数を数えた。さらに、別の炭素質粒子を選び、同じ測定を視野1〜視野5の合計5視野について行った。図2A〜図2Eに、10000倍で観察した視野1〜視野5の合計5視野のSEM像を示す。図2A〜図2E中に、粒子径が0.5μm以下である付着炭素質粒子の箇所に白丸印を付記した。以上の手順で数えた130μmの領域に付着した付着炭素質粒子の各視野の個数と、その平均値を表1に示す。
<Observation results of attached carbonaceous particles>
1A to 1C show SEM images of the negative electrode material of Example 1 at 1000 times (FIG. 1A), 5000 times (FIG. 1B), and 10000 times (FIG. 1C). First, observation was performed at a low magnification of 1000 times, and particles having a size of 20 μm or more were arbitrarily selected from the visual field. The relatively flat portion of the particles was magnified up to 10000 times to confirm the number of attached carbonaceous particles attached. In this example, the field of view of the 10,000-times SEM image corresponds to a region of 10 μm × 13 μm = 130 μm 2 , and the number of attached carbonaceous particles having a particle diameter of 0.5 μm or less was counted in this region. Furthermore, another carbonaceous particle was selected, and the same measurement was performed for a total of five fields of view 1 to field of view 5. FIG. 2A to FIG. 2E show SEM images of a total of five fields of fields 1 to 5 observed at 10000 times. In FIG. 2A to FIG. 2E, white circle marks are added to the places of the attached carbonaceous particles having a particle diameter of 0.5 μm or less. Table 1 shows the number of each field of the attached carbonaceous particles adhering to the region of 130 μm 2 counted by the above procedure and the average value thereof.

図3A〜図3Cに、比較例1の負極材についての1000倍(図3A)、5000倍(図3B)及び10000倍(図3C)のSEM像を示す。初めに1000倍の低倍率で観察し、視野の中から任意に20μm以上の粒子を選択した。その粒子の比較的平坦部分を10000倍まで拡大観察して、上述と同様にして、付着した付着炭素質粒子の個数を確認した。さらに、別の炭素質粒子を選び、同じ測定を視野1〜視野5の合計5視野について行った。図4A〜図4Eに、10000倍で観察した視野1〜視野5の合計5視野のSEM像を示す。図4A〜図4E中に、粒子径が0.5μm以下である付着炭素質粒子の箇所に白丸印を付記した。以上の手順で数えた130μmの領域に付着した付着炭素質粒子の各視野の個数と、その平均値を表1に示す。 3A to 3C show SEM images of the negative electrode material of Comparative Example 1 at 1000 times (FIG. 3A), 5000 times (FIG. 3B), and 10000 times (FIG. 3C). First, observation was performed at a low magnification of 1000 times, and particles having a size of 20 μm or more were arbitrarily selected from the visual field. A relatively flat portion of the particles was magnified up to 10,000 times, and the number of adhering carbonaceous particles adhered was confirmed in the same manner as described above. Furthermore, another carbonaceous particle was selected, and the same measurement was performed for a total of five fields of view 1 to field of view 5. FIG. 4A to FIG. 4E show SEM images of a total of five fields, that is, fields 1 to 5 observed at a magnification of 10,000. In FIG. 4A to FIG. 4E, white circle marks are added to the places of the attached carbonaceous particles having a particle diameter of 0.5 μm or less. Table 1 shows the number of each field of the attached carbonaceous particles adhering to the region of 130 μm 2 counted by the above procedure and the average value thereof.

以上の付着炭素質粒子の観察を実施例2〜6についても行った。その結果を表1に示す。実施例1〜6と比較例1を比べると、酸化処理によって付着炭素質粒子の個数が大きく減少したことが判る。   Observation of the above adhering carbonaceous particles was also performed for Examples 2-6. The results are shown in Table 1. When Examples 1-6 are compared with Comparative Example 1, it can be seen that the number of attached carbonaceous particles has been greatly reduced by the oxidation treatment.


表2に、実施例1〜6、及び比較例1で作製した負極材の特性及びリチウムイオン二次電池の特性を示す。   In Table 2, the characteristic of the negative electrode material produced in Examples 1-6 and the comparative example 1 and the characteristic of a lithium ion secondary battery are shown.


表2に示す通り、比較例1に比べ、実施例1〜実施例6の負極は初回サイクルの不可逆容量が小さく、初回充放電効率が高く優れた特性を示した。さらに、比較例1のリチウムイオン二次電池に比べ、実施例1〜実施例6のリチウムイオン二次電池の方が、200サイクル後の容量維持率が高く、長寿命であることが判った。   As shown in Table 2, in comparison with Comparative Example 1, the negative electrodes of Examples 1 to 6 had small initial cycle irreversible capacity, high initial charge / discharge efficiency, and excellent characteristics. Furthermore, compared with the lithium ion secondary battery of Comparative Example 1, it was found that the lithium ion secondary batteries of Examples 1 to 6 had a higher capacity retention rate after 200 cycles and a longer life.

実施例1〜6の負極材では、大気中酸化処理を行い、付着炭素質粒子の低減を図り、負極材表面での電解液との反応が抑制されたため、負極の初回不可逆容量が減少低下、初回充放電効率が向上し、さらには、リチウムイオン二次電池の寿命が向上したと考えられる。   In the negative electrode materials of Examples 1 to 6, the oxidation treatment in the atmosphere was performed to reduce the attached carbonaceous particles, and the reaction with the electrolyte solution on the negative electrode material surface was suppressed, so the initial irreversible capacity of the negative electrode decreased and decreased. It is considered that the initial charge / discharge efficiency was improved and the life of the lithium ion secondary battery was improved.

以上の結果より、本発明のリチウムイオン二次電池用負極材を適用した負極、及びリチウムイオン二次電池は、充放電効率、寿命特性、ならびにこれらのバランスに優れることが判った。

From the above results, it was found that the negative electrode to which the negative electrode material for a lithium ion secondary battery of the present invention and the lithium ion secondary battery were applied were excellent in charge / discharge efficiency, life characteristics, and balance thereof.

Claims (9)

X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であり、粒子径が0.5μmを超える炭素質粒子と、前記炭素質粒子の表面に付着した、粒子径が0.5μm以下の付着炭素質粒子と、を含み、前記付着炭素質粒子の付着数が、前記炭素質粒子の表面面積130μmあたり0個を超え50個以下であり、前記炭素質粒子の種類及び前記付着炭素質粒子の種類が同じであるリチウムイオン二次電池用負極材。 The surface distance d002 of the 002 plane determined by X-ray diffractometer (XRD) measurement is 0.340 nm or more and 0.370 nm or less, and the particle diameter exceeds 0.5 μm. deposited, comprising: a deposition carbonaceous particles having a particle diameter of 0.5μm or less, the adhesion speed of the deposited carbonaceous particles, Ri surface area 130 .mu.m 2 per 0 der 50 or less than the said carbonaceous particles , the type and the attachment carbonaceous particles of type a negative electrode material for lithium ion secondary batteries to be the same as of the carbonaceous particles. X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下であり、粒子径が0.5μmを超える炭素質粒子と、前記炭素質粒子の表面に付着した、粒子径が0.5μm以下の付着炭素質粒子と、を含み、前記付着炭素質粒子の付着数が、前記炭素質粒子の単位表面面積あたり0.0個/μmを超え0.4個/μm以下であり、前記炭素質粒子の種類及び前記付着炭素質粒子の種類が同じであるリチウムイオン二次電池用負極材。 The surface distance d002 of the 002 plane determined by X-ray diffractometer (XRD) measurement is 0.340 nm or more and 0.370 nm or less, and the particle diameter exceeds 0.5 μm. Adhering carbonaceous particles having a particle diameter of 0.5 μm or less, and the adhering number of adhering carbonaceous particles exceeds 0.0 / μm 2 per unit surface area of the carbonaceous particles. 4 / [mu] m 2 Ri der hereinafter, the type and the attachment carbonaceous particles of type a negative electrode material for lithium ion secondary batteries to be the same as of the carbonaceous particles. 前記炭素質粒子のc軸方向の結晶子サイズ(Lc)が3.3nm以上5.5nm以下である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein a crystallite size (Lc) in the c-axis direction of the carbonaceous particles is 3.3 nm or more and 5.5 nm or less. 純水に濃度が3.8質量%となるように分散させた場合、25℃におけるpHが5.6以上6.1以下である請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。   The lithium according to any one of claims 1 to 3, wherein when dispersed in pure water so as to have a concentration of 3.8% by mass, the pH at 25 ° C is 5.6 or more and 6.1 or less. Negative electrode material for ion secondary battery. 大気雰囲気で、昇温速度を5℃/minとした示差熱分析(DTA)測定において、DTAのピークが、650℃以上680℃以下に存在する請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。   5. The differential thermal analysis (DTA) measurement at a heating rate of 5 ° C./min in an air atmosphere has a DTA peak at 650 ° C. or more and 680 ° C. or less according to claim 1. The negative electrode material for lithium ion secondary batteries as described. 体積平均粒子径(50%D)が5μm以上30μm以下であり、且つ真比重が1.8g/cm以上2.2g/cm以下である請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材。 The volume average particle diameter (50% D) is 5 μm or more and 30 μm or less, and the true specific gravity is 1.8 g / cm 3 or more and 2.2 g / cm 3 or less. The negative electrode material for lithium ion secondary batteries as described. 集電体と、
前記集電体上に配置され、請求項1〜請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、
を含むリチウムイオン二次電池用負極。
A current collector,
A negative electrode material layer disposed on the current collector and including the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6,
A negative electrode for a lithium ion secondary battery.
請求項7に記載のリチウムイオン二次電池用負極と、正極と、電解質とを含むリチウムイオン二次電池。   The lithium ion secondary battery containing the negative electrode for lithium ion secondary batteries of Claim 7, a positive electrode, and electrolyte. X線回折装置(XRD)測定より求められる002面の面間隔d002が、0.340nm以上0.370nm以下である炭素質粒子を粉砕処理して粉砕物を得る工程と、
前記粉砕物を、大気雰囲気中において400℃以上700℃以下で加熱処理する工程と、を含む請求項1〜請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
A step of obtaining a pulverized product by pulverizing carbonaceous particles having a 002 plane distance d002 of 0.340 nm or more and 0.370 nm or less determined by X-ray diffractometer (XRD) measurement;
The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 6, comprising a step of heat-treating the pulverized product at 400 ° C to 700 ° C in an air atmosphere. .
JP2012268552A 2012-12-07 2012-12-07 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery Active JP6102231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012268552A JP6102231B2 (en) 2012-12-07 2012-12-07 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268552A JP6102231B2 (en) 2012-12-07 2012-12-07 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014116155A JP2014116155A (en) 2014-06-26
JP6102231B2 true JP6102231B2 (en) 2017-03-29

Family

ID=51171957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268552A Active JP6102231B2 (en) 2012-12-07 2012-12-07 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6102231B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728582B2 (en) * 2015-07-03 2020-07-22 日立化成株式会社 Lithium ion secondary battery
WO2018056280A1 (en) * 2016-09-21 2018-03-29 株式会社Gsユアサ Negative electrode for nonaqueous electrolyte electricity storage elements, and nonaqueous electrolyte electricity storage element
WO2020213628A1 (en) * 2019-04-18 2020-10-22 昭和電工株式会社 Composite carbon particles, method for manufacturing same and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727666B2 (en) * 1991-07-29 2005-12-14 株式会社東芝 Lithium secondary battery
JP4488523B2 (en) * 2003-09-09 2010-06-23 株式会社ジャパンエナジー Non-aqueous electrolyte secondary battery, carbon material used therefor, and precursor of the carbon material
JP5429219B2 (en) * 2011-03-28 2014-02-26 日立化成株式会社 Negative electrode material for lithium secondary battery, lithium secondary battery and automobile

Also Published As

Publication number Publication date
JP2014116155A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6278596B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN102770994B (en) Anode material for lithium-ion secondary battery, the lithium ion secondary battery cathode using this negative material and lithium rechargeable battery
JPWO2020141573A1 (en) Negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP2012124116A (en) Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP6102231B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
WO2017191820A1 (en) Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
JP5707707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP6922927B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5691468B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7047892B2 (en) Carbonaceous particles, negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US20220085370A1 (en) Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7444322B1 (en) Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP2023047223A (en) Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2021059444A1 (en) Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2019087460A (en) Manufacturing method of negative electrode material for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R151 Written notification of patent or utility model registration

Ref document number: 6102231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350