JP6096454B2 - Method for producing activated carbon composite material - Google Patents

Method for producing activated carbon composite material Download PDF

Info

Publication number
JP6096454B2
JP6096454B2 JP2012217341A JP2012217341A JP6096454B2 JP 6096454 B2 JP6096454 B2 JP 6096454B2 JP 2012217341 A JP2012217341 A JP 2012217341A JP 2012217341 A JP2012217341 A JP 2012217341A JP 6096454 B2 JP6096454 B2 JP 6096454B2
Authority
JP
Japan
Prior art keywords
activated carbon
composite material
carbon composite
crystal
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012217341A
Other languages
Japanese (ja)
Other versions
JP2014069136A (en
Inventor
和宏 石原
和宏 石原
謙太 並木
謙太 並木
俊樹 北村
俊樹 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2012217341A priority Critical patent/JP6096454B2/en
Publication of JP2014069136A publication Critical patent/JP2014069136A/en
Application granted granted Critical
Publication of JP6096454B2 publication Critical patent/JP6096454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は活性炭複合材料製造方法関し、特に、活性炭表面に吸着機能等を有する無機結晶体を成長させることによって形成した活性炭複合材料と、そのための製造方法と、さらには活性炭複合材料を含んでなるフィルター体に関する。 The present invention relates to a method for manufacturing activated carbon composite material, in particular, include activated carbon composite material formed by growing an inorganic crystal having an adsorption function and the like on the surface of activated carbon, and a manufacturing method therefor, and more activated carbon composite material It relates to a filter body.

活性炭は発達した多孔質により様々な分子を吸着可能である。また、原料自体も安価であることから、産業用もしくは家庭用と問わず広汎に使用されている。活性炭の吸着対象は主に活性炭表面の細孔径や容積、細孔の分布等に依存する。そのため、目的に合わせて原料となる炭素源、焼成や賦活の条件が適切に選択される。   Activated carbon can adsorb various molecules due to its developed porosity. Moreover, since the raw materials themselves are inexpensive, they are widely used regardless of whether they are for industrial use or household use. The adsorption target of the activated carbon mainly depends on the pore diameter and volume of the activated carbon surface, the pore distribution, and the like. Therefore, a carbon source as a raw material and conditions for firing and activation are appropriately selected according to the purpose.

しかしながら、一般的に活性炭はイオンの吸着に適してはいないため、活性炭と他の吸着剤を組み合わせて使用することは一般的である。具体的には、活性炭とイオン交換樹脂等の有機系吸着剤、活性炭とゼオライト等の無機吸着剤の組み合わせが提案されている。無機吸着剤はイオン交換作用を有するため、水中からの重金属イオンを除去する際に有効である。特に人口増加に伴う水の需要増大と環境悪化から、重金属の除去は安全な飲料用水の確保において喫緊の課題である。   However, since activated carbon is generally not suitable for adsorption of ions, it is common to use activated carbon in combination with other adsorbents. Specifically, a combination of an organic adsorbent such as activated carbon and an ion exchange resin, or an inorganic adsorbent such as activated carbon and zeolite has been proposed. Since the inorganic adsorbent has an ion exchange action, it is effective in removing heavy metal ions from water. In particular, the removal of heavy metals is an urgent issue in securing safe drinking water due to an increase in water demand accompanying a population increase and environmental deterioration.

そこで、繊維状活性炭にチタンケイ酸塩等の無機吸着剤を備えた浄水器が提案されている(引用文献1参照)。チタンケイ酸塩と熱可塑性樹脂粉末を混合、加熱して適当な大きさに砕き、粒状活性炭と合わせた複合吸着剤が提案されている(引用文献2参照)。また、チタンケイ酸塩、活性炭、熱可塑性樹脂を混合して圧縮により一体化した濾過材も提案されている(引用文献3参照)。その後、フラックス法を利用してチタン酸金属塩の結晶性無機材料を生成し、濾過材料への応用が提案されている(特許文献4参照)。   Then, the water purifier provided with inorganic adsorbents, such as a titanium silicate, in fibrous activated carbon is proposed (refer cited reference 1). A composite adsorbent in which titanium silicate and thermoplastic resin powder are mixed and heated to be crushed to an appropriate size and combined with granular activated carbon has been proposed (see Reference 2). In addition, a filter medium in which titanium silicate, activated carbon, and a thermoplastic resin are mixed and integrated by compression has been proposed (see cited document 3). Thereafter, a crystalline inorganic material of a metal titanate is generated using a flux method, and application to a filtering material has been proposed (see Patent Document 4).

各引用文献によると、チタンケイ酸塩やチタン酸ナトリウム塩等の作用により水中の鉛イオンの除去に効果を発揮する。しかしながら、活性炭と無機材料は別々に存在しているに過ぎず、安定性に乏しい。また、樹脂バインダーを使用して双方を結着させる場合、活性炭の細孔が塞がれることになり、活性炭の吸着性能の低下を引き起こしかねない。   According to each cited document, the effect of removing lead ions in water is exhibited by the action of titanium silicate, sodium titanate, or the like. However, the activated carbon and the inorganic material exist only separately and have poor stability. Further, when both are bound using a resin binder, the pores of the activated carbon are blocked, which may cause a decrease in the adsorption performance of the activated carbon.

特開2001−232361号公報JP 2001-232361 A 特許第4361489号公報Japanese Patent No. 4361489 特表2011−521775号公報Special table 2011-521775 gazette 特開2011−200779号公報JP 2011-200779 A

このような経緯を踏まえ、発明者らは、金属イオンの吸着に効果的なチタン酸アルカリ金属塩に着目し、これを活性炭表面に直接成長させることによってバインダーを省略して吸着性能を向上した両材料の一体化を可能とした活性炭複合材料を得ると同時に当該活性炭複合材料の製造方法を構築するに至った。   In light of such circumstances, the inventors focused on an alkali metal titanate that is effective for adsorption of metal ions, and by directly growing it on the activated carbon surface, the binder was omitted to improve the adsorption performance. At the same time as obtaining an activated carbon composite material capable of integrating materials, a method for producing the activated carbon composite material was constructed.

本発明は、上記状況に鑑み提案されたものであり、バインダーを用いることなく活性炭の吸着性能低下を回避し、しかも活性炭表面に直接結晶性無機材料を成長させて吸着剤としての安定性を高めた複合吸着能を発揮する活性炭複合材料製造方法を提供する。 The present invention has been proposed in view of the above situation, avoiding a decrease in the adsorption performance of activated carbon without using a binder, and further increasing the stability as an adsorbent by growing a crystalline inorganic material directly on the activated carbon surface. and that provides a method for manufacturing activated carbon composite material exhibits a complex adsorption capacity.

すなわち、請求項1の発明は、粒径が0.1〜0.5mmの活性炭に炭酸ナトリウムの水溶液を含浸し含浸活性炭を得る含浸工程と、前記含浸活性炭に酸化チタンとフラックス剤である硝酸ナトリウムを添加し活性炭混合物を得る混合工程と、ロータリーキルンにおいて、前記活性炭混合物を加熱し活性炭の表面にフラックス法による前記炭酸ナトリウムと前記酸化チタンの反応により柱状もしくは針状のチタン酸ナトリウム塩の結晶体を形成した活性炭複合材料を得る加熱工程とを有し、前記活性炭複合材料における前記チタン酸ナトリウム塩の重量割合は単位活性炭重量の4〜10重量%であることを特徴とする活性炭複合材料の製造方法に係る。
That is, the invention of claim 1 includes an impregnation step of impregnating an activated carbon having a particle size of 0.1 to 0.5 mm with an aqueous solution of sodium carbonate to obtain an impregnated activated carbon, and titanium oxide and sodium nitrate as a flux agent in the impregnated activated carbon. a mixing step of obtaining an activated carbon mixture was added, in a rotary kiln, the crystal of columnar or needle-like titanium sodium salt by reaction of the titanium oxide and the sodium carbonate and heating the activated carbon mixture by flux method on the surface of the activated carbon And a heating step for obtaining an activated carbon composite material formed with a weight ratio of the sodium titanate salt in the activated carbon composite material of 4 to 10% by weight of the unit activated carbon weight. Related to the method.

請求項の発明は、前記活性炭複合材料が鉛イオン除去剤である請求項1に記載の活性炭複合材料の製造方法に係る。 The invention of claim 2, wherein the activated carbon composite material according to the manufacturing method of the activated carbon composite material according to claim 1 is a lead ion removal agent.

請求項の発明は、前記活性炭複合材料フィルター体に組み込まれる請求項1または2に記載の活性炭複合材料の製造方法に係る。 Invention of Claim 3 concerns on the manufacturing method of the activated carbon composite material of Claim 1 or 2 with which the said activated carbon composite material is integrated in a filter body.

請求項1の発明に係る活性炭複合材料の製造方法によると、粒径が0.1〜0.5mmの活性炭に炭酸ナトリウムの水溶液を含浸し含浸活性炭を得る含浸工程と、前記含浸活性炭に酸化チタンとフラックス剤である硝酸ナトリウムを添加し活性炭混合物を得る混合工程と、ロータリーキルンにおいて、前記活性炭混合物を加熱し活性炭の表面にフラックス法による前記炭酸ナトリウムと前記酸化チタンの反応により柱状もしくは針状のチタン酸ナトリウム塩の結晶体を形成した活性炭複合材料を得る加熱工程とを有し、前記活性炭複合材料における前記チタン酸ナトリウム塩の重量割合は単位活性炭重量の4〜10重量%であるため、バインダーを用いることなく活性炭の吸着性能低下を回避し、しかも活性炭表面に直接結晶性無機材料を成長させて吸着剤としての安定性を高めた複合吸着能を発揮する活性炭複合材料を得ることができる。
According to the method for producing an activated carbon composite material according to the invention of claim 1, an impregnation step of obtaining an impregnated activated carbon by impregnating an activated carbon having a particle size of 0.1 to 0.5 mm with an aqueous solution of sodium carbonate; and a mixing step of obtaining an activated carbon mixture was added sodium nitrate is fluxing agent, in a rotary kiln, the reaction by the columnar or needle-like of the titanium oxide and the sodium carbonate and heating the activated carbon mixture by flux method on the surface of the activated carbon A heating step of obtaining an activated carbon composite material in which a sodium titanate salt crystal is formed, and the weight ratio of the sodium titanate salt in the activated carbon composite material is 4 to 10% by weight of the unit activated carbon weight. Avoids the decrease in the adsorption performance of the activated carbon without the use of carbon, and forms a crystalline inorganic material directly on the activated carbon surface. Is allowed can be obtained activated carbon composite material exhibits a complex adsorption capability with enhanced stability as adsorbent.

また、処理能力の低下を回避しつつ良好な吸着効率を備えることができる。加えて、不純物は洗浄されて残存が少なくなり結晶生成に都合よい。さらに、常時回転、攪拌を与えながら加熱することができ、連続生産に適しており量産性に優れ、出来上がる活性炭複合材料の製造経費の軽減が可能である。Moreover, favorable adsorption efficiency can be provided while avoiding a decrease in processing capacity. In addition, the impurities are washed away and the remaining amount is reduced, which is convenient for crystal formation. Furthermore, it can be heated while constantly rotating and stirring, and is suitable for continuous production, is excellent in mass productivity, and can reduce the manufacturing cost of the finished activated carbon composite material.

請求項の発明に係る活性炭複合材料の製造方法によると、請求項の発明において、前記活性炭複合材料が鉛イオン除去剤であるため、上水や水道水の重金属汚染対策に有効となる。 According to the method for producing an activated carbon composite material according to the invention of claim 2 , since the activated carbon composite material is a lead ion remover in the invention of claim 1 , it is effective for measures against heavy metal contamination of tap water and tap water.

請求項3の発明に係る活性炭複合材料の製造方法によると、請求項1の発明において、前記活性炭複合材料がフィルター体に組み込まれるため、活性炭自体の吸着能力と、活性炭表面に付着しているチタン酸アルカリ金属塩に起因する重金属イオンの吸着能力を兼備できる。 According to the method for producing an activated carbon composite material according to the invention of claim 3, since the activated carbon composite material is incorporated into the filter body in the invention of claim 1, the adsorption capacity of the activated carbon itself and the titanium adhering to the activated carbon surface It has the ability to adsorb heavy metal ions caused by acid alkali metal salts.

本発明の活性炭複合材料の製造方法を説明する概略工程図である。It is a schematic process drawing explaining the manufacturing method of the activated carbon composite material of this invention. 本発明のフィルター体の斜視図である。It is a perspective view of the filter body of the present invention. フィルター体の製造工程を示す概略工程図である。It is a schematic process drawing which shows the manufacturing process of a filter body. 実施例1の活性炭複合材料表面の第1電子顕微鏡写真である。2 is a first electron micrograph of the activated carbon composite material surface of Example 1. FIG. 実施例1の活性炭複合材料表面の第2電子顕微鏡写真である。2 is a second electron micrograph of the surface of the activated carbon composite material of Example 1. FIG. 比較例1の活性炭複合材料表面の第1電子顕微鏡写真である。2 is a first electron micrograph of the surface of an activated carbon composite material of Comparative Example 1. 比較例1の活性炭複合材料表面の第2電子顕微鏡写真である。4 is a second electron micrograph of the surface of the activated carbon composite material of Comparative Example 1.

本発明の活性炭複合材料は、基材となる活性炭の表面にチタン酸アルカリ金属塩の結晶体を直に成長させて形成し、活性炭と結晶体を一体化した複合材料である。後掲の電子顕微鏡写真からも確認できるように、柱状もしくは針状の結晶として活性炭表面や活性炭の細孔内において直接発達して形成される。従って、活性炭に事後的にチタン酸アルカリ金属塩の結晶を被着や添着させてその表面に現出させた構造と本質的に異なる。写真はチタン酸ナトリウム塩の成長結晶である。実施例に開示のとおり、チタン酸ナトリウム塩の結晶は比較的安価な原料により調製できる。   The activated carbon composite material of the present invention is a composite material in which a crystal of an alkali metal titanate salt is directly grown on the surface of activated carbon as a base material, and the activated carbon and the crystal are integrated. As can be confirmed from the electron micrographs to be described later, it is formed directly as a columnar or needle-like crystal on the activated carbon surface or in the pores of the activated carbon. Therefore, the structure is essentially different from the structure in which the activated metal is subsequently attached or attached with crystals of alkali metal titanate to appear on the surface. The photo is a grown crystal of sodium titanate. As disclosed in the examples, sodium titanate crystals can be prepared from relatively inexpensive raw materials.

本発明の活性炭複合材料において、チタン酸アルカリ金属塩の結晶体はフラックス法(融剤法)により生成される。特に、活性炭と結晶体との一体化に際し樹脂のバインダー等は必要とされず活性炭表面に成長する。そこで、活性炭複合材料は活性炭の多孔質に由来するハロゲン、有機分子等の吸着性能と、チタン酸アルカリ金属塩に起因する金属イオンの吸着性能の性質の異なる対象に対して同時に吸着力を発揮する複合吸着剤の特性を備える。   In the activated carbon composite material of the present invention, the crystal of alkali metal titanate is produced by a flux method (flux method). In particular, when the activated carbon and the crystal are integrated, a resin binder or the like is not required, and the activated carbon grows on the surface of the activated carbon. Therefore, the activated carbon composite material simultaneously exhibits adsorption power for objects with different properties of adsorption performance of halogen, organic molecules, etc. derived from the porous structure of activated carbon and adsorption performance of metal ions caused by alkali metal titanate. It has the characteristics of a composite adsorbent.

図1の概略工程図に従い活性炭ACから活性炭複合材料Mに至るまでの製造方法について、使用する原料を交えながら順に説明する。   A manufacturing method from activated carbon AC to activated carbon composite material M will be described in order with reference to the schematic process diagram of FIG.

はじめに基材となる活性炭ACが用意される。この活性炭ACは、木材の製材、加工時に生じるオガコ(大鋸屑や鉋屑等)、廃材や間伐材、廃竹、伐採竹、ヤシ殻等のセルロース分に富む木質の植物原料の粉砕物を炭化、焼成、適宜の賦活を経て得た炭化物である。植物原料の他に、古タイヤ、フェノール樹脂等の各種樹脂製品の炭化物等も加えることができる。基材に活性炭を用いる利点は、比較的安価かつ量的に調達可能である。また、従来から吸着、濾過材料として使用されており、安定性が高くしかも活性炭表面に発達した細孔により幅広い物質を吸着対象とすることができる。これらを勘案して非常に利便性に富む材料といえるためである。   First, activated carbon AC is prepared as a base material. This activated carbon AC carbonizes and fires pulverized woody plant materials rich in cellulose, such as sawn wood, sawdust (such as sawdust and sawdust), waste wood and thinned wood, waste bamboo, felled bamboo, and coconut shells. It is a carbide obtained through appropriate activation. In addition to plant materials, carbides of various resin products such as old tires and phenol resins can be added. The advantage of using activated carbon as the substrate is relatively inexpensive and can be procured quantitatively. Further, it has been conventionally used as an adsorbing and filtering material, and a wide range of substances can be adsorbed by the pores having high stability and developed on the activated carbon surface. This is because it can be said that the material is very convenient considering these factors.

活性炭の大きさは出来上がる活性炭複合材料の用途、使用状況等を勘案して調達可能な活性炭の中から選択される。そこで、請求項4の発明に規定するように、比較的良好な大きさを検討すると、活性炭の平均粒径は0.08mmないし2.0mmの範囲、好ましくは0.1mmないし1.7mm、さらに好ましくは0.1mmないし0.5mmの範囲が適切である。粒径の制御は篩別やサイクロン等により分級される。   The size of the activated carbon is selected from among the activated carbons that can be procured in consideration of the use and usage of the activated carbon composite material. Therefore, when a relatively good size is studied as defined in the invention of claim 4, the average particle size of the activated carbon is in the range of 0.08 mm to 2.0 mm, preferably 0.1 mm to 1.7 mm, A range of 0.1 mm to 0.5 mm is preferable. The particle size is controlled by sieving or cyclone.

粒径が2.0mm付近を超える場合、チタン酸アルカリ金属塩の結晶体の付着量が減少する傾向にあり性能を押し下げてしまうため好ましくない。活性炭の粒径については、細かくなるほど接触面積が増加するため吸着効率が高まり好ましい。ただし、例えば濾過装置のカラムに充填して使用する用途を想定すると、極端に粒径が小さい場合、装置を通過する被処理液の圧力損失が大きくなり処理能力の低下を招く。そこで、0.08mmを粒径の下限とした。   When the particle diameter exceeds about 2.0 mm, the amount of the alkali metal titanate crystals tends to decrease, and the performance is pushed down. About the particle size of activated carbon, since a contact area increases, so that it becomes fine, adsorption | suction efficiency increases and it is preferable. However, assuming an application in which the column of a filtration device is used, for example, if the particle size is extremely small, the pressure loss of the liquid to be processed that passes through the device increases, resulting in a reduction in processing capacity. Therefore, 0.08 mm was set as the lower limit of the particle size.

次に、活性炭にアルカリ金属塩を均一に付着させる目的でアルカリ金属塩の水溶液が用意される。アルカリ金属塩はチタン酸アルカリ金属塩を生成するための原料となり、請求項5の発明に規定し、後記実施例に示すように、炭酸ナトリウムが用いられる。他に塩化ナトリウム、炭酸カリウム、塩化カリウム等も含められる。アルカリ金属塩水溶液の濃度は塩の種類によるものの、3ないし25重量%の濃度である。最終的に生成される結晶量により調整される。活性炭の重量に対し、およそ40ないし70重量%に相当する量のアルカリ金属塩水溶液が用意され、活性炭に当該量のアルカリ金属塩水溶液は含浸される。アルカリ金属塩水溶液の量は活性炭と負荷なく混合、混練可能とすることから規定した。   Next, an aqueous solution of the alkali metal salt is prepared for the purpose of uniformly attaching the alkali metal salt to the activated carbon. The alkali metal salt is a raw material for producing the alkali metal titanate, and sodium carbonate is used as defined in the invention of claim 5 and shown in the examples described later. In addition, sodium chloride, potassium carbonate, potassium chloride and the like are also included. The concentration of the alkali metal salt aqueous solution is 3 to 25% by weight depending on the type of salt. It is adjusted by the amount of crystals finally produced. An amount of an alkali metal salt aqueous solution corresponding to approximately 40 to 70% by weight with respect to the weight of the activated carbon is prepared, and the amount of the alkali metal salt aqueous solution is impregnated into the activated carbon. The amount of the alkali metal salt aqueous solution was defined because it can be mixed and kneaded without load with activated carbon.

活性炭とアルカリ金属塩水溶液の混合、含浸により含浸活性炭を得ることができ、その後、適度に乾燥される。後記の実施例では約70℃で1時間の乾燥とした。ここで、乾燥を含めることによりアルカリ金属塩水溶液の水分を蒸発させて、溶解していたアルカリ金属塩を活性炭側に担持させることができる。   Impregnated activated carbon can be obtained by mixing and impregnating activated carbon and an aqueous alkali metal salt solution, and then dried appropriately. In the examples described later, drying was performed at about 70 ° C. for 1 hour. Here, by including drying, the water content of the alkali metal salt aqueous solution is evaporated, and the dissolved alkali metal salt can be supported on the activated carbon side.

こうして、アルカリ金属塩を含浸した含浸活性炭が得られる。当該工程が「含浸工程」である(S1)。   In this way, impregnated activated carbon impregnated with an alkali metal salt is obtained. The said process is an "impregnation process" (S1).

含浸工程(S1)の後、含浸活性炭に酸化チタンとフラックス剤が添加され、各成分は十分に混合される。量産規模による混合に際しては、公知のブレンダーやニーダー等の一般的な混練機が用いられる。   After the impregnation step (S1), titanium oxide and a fluxing agent are added to the impregnated activated carbon, and each component is sufficiently mixed. For mixing on a mass production scale, a general kneader such as a known blender or kneader is used.

酸化チタンはチタン酸アルカリ金属塩結晶を形成するための必須成分である。酸化チタンはアナターゼ型が好ましい。酸化チタンは作業性の点から粉末状が好ましく用いられる。   Titanium oxide is an essential component for forming an alkali metal titanate crystal. Titanium oxide is preferably anatase type. Titanium oxide is preferably used in the form of powder from the viewpoint of workability.

本来、前出のアルカリ金属塩と酸化チタンの反応によりチタン酸アルカリ金属塩結晶を生成させようとする場合、極めて高温、高圧の条件にしなければ結晶生成は難しい。当然ながら、高温下では基材となる活性炭は分解することがある。また、反応系に投入するエネルギーが過剰となり実用上容易ではない。この点を上手く制御するべくフラックス剤が用いられる。フラックス剤が反応系に加わることにより、本来の結晶生成に必要な温度が引き下げられる。結晶生成の分野において温度条件を緩和できる利点からフラックス剤使用の利便性は高い。   Originally, when an alkali metal titanate crystal is to be produced by the reaction between the alkali metal salt and titanium oxide, it is difficult to produce the crystal unless the conditions are extremely high and high. Of course, the activated carbon used as a base material may decompose at a high temperature. In addition, the energy input to the reaction system becomes excessive, which is not easy in practice. A fluxing agent is used to control this point well. By adding the fluxing agent to the reaction system, the temperature necessary for the original crystal formation is lowered. The convenience of using the fluxing agent is high because of the advantage that the temperature condition can be relaxed in the field of crystal formation.

活性炭複合材料を構成するチタン酸アルカリ金属塩結晶の形成に用いるフラックス剤として、請求項5の発明に規定するように、硝酸ナトリウムが用いられる。硝酸ナトリウムは、前出のアルカリ金属塩の炭酸ナトリウムと同一の金属成分であり不純物とならず、水洗により洗浄除去が可能である。なお、炭酸カリウムを用いる場合、フラックス剤として硝酸カリウムが適当と勘案される。   As the fluxing agent used for forming the alkali metal titanate crystal constituting the activated carbon composite material, sodium nitrate is used as defined in the invention of claim 5. Sodium nitrate is the same metal component as the above-mentioned alkali metal salt sodium carbonate and does not become an impurity, and can be washed away with water. When potassium carbonate is used, potassium nitrate is considered appropriate as a fluxing agent.

含浸活性炭に各原料が混ざり合うことによって活性炭混合物が得られる。当該工程が「混合工程」である(S2)。   An activated carbon mixture is obtained by mixing the raw materials with the impregnated activated carbon. The said process is a "mixing process" (S2).

混合工程(S2)の後、活性炭混合物は加熱される。加熱により活性炭表面に付着したアルカリ金属塩と酸化チタンが反応してチタン酸アルカリ金属塩の結晶、ナトリウムの場合にはチタン酸ナトリウム塩の結晶が生成される。特に、フラックス剤も含まれているため、結晶生成に必要な温度が下げられる。後記の実施例においては、フラックス剤が溶解し、結晶が生成するときの温度は概ね600℃である。   After the mixing step (S2), the activated carbon mixture is heated. The alkali metal salt adhering to the activated carbon surface by heating reacts with titanium oxide to produce crystals of alkali metal titanate, and in the case of sodium, crystals of sodium titanate. In particular, since a fluxing agent is also included, the temperature required for crystal formation can be lowered. In the examples described later, the temperature at which the flux agent is dissolved and crystals are formed is approximately 600 ° C.

当該加熱を経ることにより活性炭複合材料Mを得ることができる。当該工程が「加熱工程」である(S3)。   The activated carbon composite material M can be obtained through the heating. The said process is a "heating process" (S3).

結晶成分であるチタン酸アルカリ金属塩が金属分を吸着する作用は、イオン交換によると考えられる。チタン酸アルカリ金属塩の存在量が同量の場合、効率良い金属分の吸着性能を発揮するためには、その結晶体の表面積を極力大きくすることが望ましい。このため、チタン酸アルカリ金属塩の最適な結晶体構造は柱状もしくは針状であることから、柱状もしくは針状を多く含む構造の生成が求められる。活性炭表面にどのような形状のチタン酸アルカリ金属塩の結晶が生成するのかは、加熱時の溶融温度や加熱条件、加熱装置等により影響されると考えられる。   It is considered that the action of the alkali metal titanate, which is a crystalline component, adsorbs a metal component is due to ion exchange. When the abundance of alkali metal titanate is the same, it is desirable to increase the surface area of the crystal as much as possible in order to exhibit efficient adsorption performance of metal. For this reason, since the optimal crystal structure of the alkali metal titanate is columnar or needle-like, the generation of a structure containing many columnar or needle-like shapes is required. It is considered that the shape of the alkali metal titanate crystal formed on the activated carbon surface is influenced by the melting temperature during heating, heating conditions, the heating device, and the like.

発明者らの試行によると、チタン酸アルカリ金属塩の柱状もしくは針状を含む結晶体が活性炭表面に発達する状況を確認したところ、静的条件下での加熱よりも動的条件下での加熱とする方が良好な結果を得た。動的条件による加熱例として、請求項6の発明に規定するように、活性炭混合物を回転して攪拌しながら加熱する公知の回転炉が使用される。加熱時の条件と活性炭表面に発達するチタン酸アルカリ金属塩の結晶構造についての関係は現時点では解明されていない。おそらく、回転や攪拌の影響が結晶成長に作用しているためと予想される。   According to the inventors' trial, it was confirmed that crystals containing columnar or acicular crystals of alkali metal titanate developed on the surface of activated carbon, and heating under dynamic conditions rather than heating under static conditions. And better results were obtained. As an example of heating under dynamic conditions, as defined in the invention of claim 6, a known rotary furnace that heats the activated carbon mixture while rotating and stirring is used. The relationship between the heating conditions and the crystal structure of the alkali metal titanate developed on the activated carbon surface has not been elucidated at this time. Probably because of the effect of rotation and stirring on crystal growth.

前記の回転炉の中でも、請求項7の発明に規定するように、ロータリーキルンが好例である。活性炭混合物は供給部から投入され、ロータリーキルンの回転炉部分で加熱されながら通過すると排出部から活性炭複合材料として出来上がって排出される。この場合、活性炭の過剰燃焼を防ぐため、窒素や二酸化炭素等の不活性ガスが供給され、還元雰囲気下に維持される。ロータリーキルンは単位時間当たり高い生産効率を発揮し、連続生産に適しており量産性に優れる。従って、出来上がる活性炭複合材料の製造経費を軽減する上でも望ましい。なお、活性炭混合物の焼成に際し、チタン酸アルカリ金属塩の柱状もしくは針状を含む結晶体が活性炭表面に発達できる方法であれば、前記の回転炉やロータリーキルン以外にも特段限定されない。例えば、活性炭混合物に振動や衝撃を加えて焼成することによっても、問題なく当該結晶体を発達させることができると予想される。   Among the rotary furnaces, a rotary kiln is a good example as defined in the invention of claim 7. The activated carbon mixture is charged from the supply unit, and when heated while passing through the rotary kiln part of the rotary kiln, the activated carbon mixture is completed and discharged as an activated carbon composite material from the discharge unit. In this case, in order to prevent excessive combustion of activated carbon, an inert gas such as nitrogen or carbon dioxide is supplied and maintained in a reducing atmosphere. The rotary kiln exhibits high production efficiency per unit time, is suitable for continuous production, and has excellent mass productivity. Therefore, it is desirable to reduce the manufacturing cost of the activated carbon composite material to be completed. In addition, when the activated carbon mixture is baked, there is no particular limitation other than the rotary furnace and the rotary kiln as long as a crystal containing columnar or needle-shaped alkali metal titanate can be developed on the activated carbon surface. For example, it is expected that the crystal body can be developed without problems even by firing the activated carbon mixture by applying vibration or impact.

加熱を終えた活性炭複合材料は、フラックス剤や未反応成分の除去のため水洗される。そして、水分を蒸発させるため100℃ないし120℃で5ないし24時間、加熱乾燥される。その後、篩やサイクロン等により規定の粒径とするべく分級が行われる。   The activated carbon composite material that has been heated is washed with water to remove the fluxing agent and unreacted components. Then, it is dried by heating at 100 to 120 ° C. for 5 to 24 hours in order to evaporate the moisture. Thereafter, classification is performed so as to obtain a prescribed particle size using a sieve or a cyclone.

一連の工程を経て出来上がった活性炭複合材料Mは、不定形状の活性炭粒子表面の所々に成長したチタン酸アルカリ金属塩の結晶が存在している形態である。つまり、必ずしも活性炭表面の全てがチタン酸アルカリ金属塩結晶で被われてはいない。仮に完全に結晶体が活性炭を被覆してしまうと活性炭表面の細孔が閉塞されることになり、本来的に活性炭が具備する吸着性能を阻害してしまう。また、チタン酸アルカリ金属塩の結晶が少なすぎれば、同結晶体に起因する金属分の吸着性能も発揮されない。   The activated carbon composite material M obtained through a series of steps is in a form in which crystals of alkali metal titanate grown on the surface of the irregular-shaped activated carbon particles are present. That is, not all of the activated carbon surface is covered with the alkali metal titanate crystal. If the crystal completely covers the activated carbon, pores on the surface of the activated carbon are blocked, and the adsorption performance inherently possessed by the activated carbon is impaired. Moreover, if there are too few crystals of an alkali metal titanate, the adsorption performance of the metal component resulting from the crystal will not be exhibited.

そこで、双方の長所を生かすべく、単位重量当たりの活性炭に付着するチタン酸アルカリ金属塩の重量が規定される。後記の実施例からも明らかなように、4重量%ないし10重量%が妥当な量と想定される。4重量%を下回る場合、チタン酸アルカリ金属塩が少なすぎて所望の金属分吸着能力が低くなる。また、10重量%を上回る場合、チタン酸アルカリ金属塩が多すぎとなり活性炭の吸着作用に影響を及ぼす。そこで、双方の均衡から、前記の範囲が適切である。なお、目的に応じて、活性炭側またはチタン酸アルカリ金属塩側の吸着性能のいずれかを重視するのかにより、チタン酸アルカリ金属塩の付着量(結晶生成量)は調整される。   Therefore, in order to take advantage of both advantages, the weight of the alkali metal titanate adhering to the activated carbon per unit weight is defined. As is clear from the examples described later, 4 to 10% by weight is assumed to be a reasonable amount. When the amount is less than 4% by weight, the alkali metal titanate is too little and the desired metal content adsorption ability is lowered. Moreover, when it exceeds 10 weight%, there will be too much alkali metal titanate and it will affect the adsorption | suction effect | action of activated carbon. Therefore, the above range is appropriate from the balance of both. Depending on the purpose, the adhesion amount (crystal production amount) of the alkali metal titanate is adjusted depending on whether the adsorption performance on the activated carbon side or the alkali metal titanate side is emphasized.

活性炭複合材料Mの主要な用途は水浄化である。上水や工業用水等から、塩素やヨウ素等に加え、鉛、鉄、クロム、銅、亜鉛等の金属イオンを一括して吸着除去する用途に好例である。特に、チタン酸アルカリ金属塩は、鉛等の重金属分の吸着に効果的であることから上水や水道水の重金属汚染対策に有効となる。このことに鑑み、請求項8の発明に規定し、後記実施例に示すように、活性炭複合材料Mは重金属を代表する鉛イオンの除去剤として用いられる。具体的には、中空糸等のメンブレンフィルタ、本発明の活性炭複合材料、さらには他の活性炭を組み合わせた浄水器等の水浄化の装置を提案することができる。本発明の活性炭複合材料は活性炭自体の吸着性能も備えることから、吸着剤自体の容積を軽減でき、装置を小型化することができる。   The main use of the activated carbon composite material M is water purification. This is a good example for the purpose of adsorbing and removing metal ions such as lead, iron, chromium, copper and zinc in addition to chlorine and iodine from tap water and industrial water. In particular, the alkali metal titanate is effective in adsorbing heavy metals such as lead, and is effective in preventing heavy metal contamination of tap water and tap water. In view of this, the activated carbon composite material M is used as a lead ion remover typified by heavy metals, as defined in the invention of claim 8 and as shown in the examples below. Specifically, it is possible to propose a water purification device such as a water filter combining a membrane filter such as a hollow fiber, the activated carbon composite material of the present invention, and another activated carbon. Since the activated carbon composite material of the present invention also has the adsorption performance of activated carbon itself, the volume of the adsorbent itself can be reduced and the apparatus can be downsized.

そこで、本発明の活性炭複合材料、特には本発明の活性炭複合材料の製造方法により製造した活性炭複合材料を吸着剤として配合したフィルター体を作製することができる。そして、当該フィルター体は規模に応じて浄水器や水質処理装置等の内部に装填される。活性炭複合材料を有するフィルター体の最大の特徴は、前述ないし後記実施例に開示のとおり、活性炭自体の吸着能力と、活性炭表面に付着しているチタン酸アルカリ金属塩に起因する主に鉛等の重金属イオンの吸着能力を兼備していることである。   Therefore, a filter body in which the activated carbon composite material of the present invention, in particular, the activated carbon composite material manufactured by the method of manufacturing the activated carbon composite material of the present invention is blended as an adsorbent can be produced. And the said filter body is loaded in the inside of a water purifier, a water quality treatment apparatus, etc. according to a scale. The main features of the filter body having the activated carbon composite material are, as disclosed in the above-mentioned examples or later examples, mainly the adsorption ability of the activated carbon itself and the alkali metal titanate adhering to the activated carbon surface, such as lead. It also has the ability to adsorb heavy metal ions.

活性炭複合材料配合のフィルター体の一例について図2を用い説明する。図2(a)のフィルター体1のフィルター本体10は、適宜の透過孔を有した中空円筒形芯部材12の表面に濾過能力を有する濾過部11を凝集させた構造体である。また、図2(b)のフィルター体1Aのように、キャップ14等の付属品が取り付けられ、取り扱いの利便性が図られる。同図において、フィルター本体10の濾過部11の表面は、不織布等の透過性の高い布状物13により被覆、保護される。そして、濾過部11の上下を保護するキャップ14が被せられる(キャップの形状、材質は用途により異なる。)。   An example of the filter body containing the activated carbon composite material will be described with reference to FIG. The filter body 10 of the filter body 1 in FIG. 2A is a structure in which a filtration part 11 having filtration ability is aggregated on the surface of a hollow cylindrical core member 12 having appropriate permeation holes. Moreover, accessories, such as the cap 14, are attached like the filter body 1A of FIG.2 (b), and the convenience of handling is achieved. In the figure, the surface of the filtration part 11 of the filter body 10 is covered and protected by a highly permeable cloth 13 such as a nonwoven fabric. And the cap 14 which protects the upper and lower sides of the filtration part 11 is covered (the shape and material of a cap differ with uses).

フィルター体のフィルター本体の濾過部は、例えば、活性炭複合材料と、ポリエチレン繊維、これらの結合性を高めるためにアクリル繊維バインダー、さらには繊維状活性炭等が適量添加されて形成される。活性炭複合材料の他の成分により濾過部の保形性を確保した構造体である。   The filter part of the filter body of the filter body is formed, for example, by adding an appropriate amount of an activated carbon composite material, polyethylene fibers, an acrylic fiber binder, and further fibrous activated carbon in order to enhance their binding properties. It is a structure in which the shape retention of the filtration part is ensured by other components of the activated carbon composite material.

図3を用い活性炭複合材料配合のフィルター体の製造例も説明する。はじめに、活性炭複合材料Mと、繊維状構成材22は水中に投入され、十分に混合されて混合スラリー状物20が調製される。繊維状構成材22は、例えば、ポリエチレン繊維、アクリル繊維、または繊維状活性炭等から選択される。   A production example of a filter body containing an activated carbon composite material will be described with reference to FIG. First, the activated carbon composite material M and the fibrous constituent material 22 are put into water and mixed sufficiently to prepare the mixed slurry 20. The fibrous constituent material 22 is selected from, for example, polyethylene fiber, acrylic fiber, or fibrous activated carbon.

中空円筒形芯部材12の内部に、混合スラリー状物を減圧吸引するための多孔の金型棒状部材26が挿入される。中空円筒形芯部材12には透過のための細孔(図示省略)が形成されており、金型棒状部材26は多孔形状のステンレス製である。中空円筒形芯部材12と金型棒状部材26の一体化物が混合スラリー状物20内に降ろされた後、金型棒状部材26を介して減圧吸引することにより、混合スラリー状物20は中空円筒形芯部材12の側面に引き寄せられて被着する。図示の切り欠き部分参照のとおり、中空円筒形芯部材の表面にスラリー被着部27が形成される。所定量のスラリー被着部27が形成された後、混合スラリー状物から引き上げられ、金型棒状部材26が取り外される。こうして中空円筒形芯部材12の表面にスラリー被着部27を備えた吸着被着物25が得られる。その後、吸着被着物25は乾燥機30内で加熱乾燥される。   Inside the hollow cylindrical core member 12 is inserted a porous die rod member 26 for sucking the mixed slurry-like material under reduced pressure. The hollow cylindrical core member 12 is formed with pores (not shown) for permeation, and the die rod member 26 is made of porous stainless steel. After the integrated product of the hollow cylindrical core member 12 and the mold bar-like member 26 is lowered into the mixed slurry-like article 20, the mixed slurry-like article 20 is hollow-cylindrical by being sucked under reduced pressure through the mold rod-like member 26. The core member 12 is attracted and attached to the side surface. As shown in the notch portion shown in the drawing, a slurry adherend 27 is formed on the surface of the hollow cylindrical core member. After a predetermined amount of the slurry adherend 27 is formed, the slurry is pulled up from the mixed slurry, and the mold bar 26 is removed. In this way, the adhering adherend 25 having the slurry adhering portion 27 on the surface of the hollow cylindrical core member 12 is obtained. Thereafter, the adsorbed adherend 25 is heated and dried in the dryer 30.

浄化用フィルター体の吸着機能自体は活性炭複合材料が担う。ここにアクリル繊維や炭素繊維等が配合されることにより活性炭複合材料を互いに保持する構造材料として作用する。活性炭複合材料を互いに保持する結着材料として作用し、フィルター本体の形状を維持するための網状の構造材として作用する。   The adsorption function itself of the purification filter body is borne by the activated carbon composite material. When an acrylic fiber, a carbon fiber, or the like is mixed here, the activated carbon composite material acts as a structural material for holding each other. It acts as a binding material that holds the activated carbon composite material together, and acts as a net-like structural material for maintaining the shape of the filter body.

むろん、フィルター体の構造、作製方法は図示し詳述した例に限られることなく適宜の構造、作製方法を採用可能である。例えば、小孔を複数設けた収容容器に活性炭複合材料自体を充填する等の簡便な構造のフィルター体とすることも可能である。また、開示例のフィルター体に他の既存の濾過用のフィルター体を組み合わせて総合的に水処理能力を高めて使用することもできる。すなわち、フィルター体を適用する濾過装置、浄水規模等を勘案して適切に構築される。   Of course, the structure and manufacturing method of the filter body are not limited to the examples shown and described in detail, and appropriate structures and manufacturing methods can be adopted. For example, a filter body having a simple structure such as filling an activated carbon composite material itself into a storage container provided with a plurality of small holes may be used. In addition, the filter body of the disclosed example can be combined with other existing filter bodies for filtration to increase the water treatment capacity comprehensively. That is, it is appropriately constructed in consideration of the filtration device to which the filter body is applied, the water purification scale, and the like.

発明者らは、活性炭、アルカリ金属塩、フラックス剤を使用し実施例1ないし4、比較例1,2,5の活性炭複合材料を作成した。バインダーにより結晶体を固定した例として比較例3,4を作成した。併せて、各種の吸着性能も測定した。詳細は表1及び表2である。   The inventors created activated carbon composite materials of Examples 1 to 4 and Comparative Examples 1, 2, and 5 using activated carbon, alkali metal salt, and flux agent. Comparative examples 3 and 4 were prepared as examples in which the crystal was fixed with a binder. In addition, various adsorption performances were also measured. Details are shown in Tables 1 and 2.

〔使用原料〕
フタムラ化学株式会社製の椰子殻活性炭:CW5100A(粒径0.15〜0.3mm)、同社製の椰子殻活性炭:CW480A(粒径0.18〜0.36mm)、同社製の椰子殻活性炭:CW360A(粒径0.25〜0.5mm)、同社製の椰子殻活性炭:CW130A(粒径0.5〜1.7mm)、同社製の椰子殻活性炭:CW8200A(粒径0.08〜0.18mm)を使用した。粒径の制御は、篩の種類を変えて揃えた。
[Raw materials]
Coconut shell activated carbon manufactured by Futamura Chemical Co., Ltd .: CW5100A (particle size 0.15-0.3 mm), Coconut shell activated carbon manufactured by the company: CW480A (particle size 0.18-0.36 mm), Coconut shell activated carbon manufactured by the company: CW360A (particle size 0.25-0.5 mm), company-made coconut shell activated carbon: CW130A (particle size 0.5-1.7 mm), company-made coconut shell activated carbon: CW8200A (particle size 0.08-0. 18 mm) was used. The particle size was controlled by changing the type of sieve.

アルカリ金属塩に炭酸ナトリウム(大東化学株式会社製)を使用し、フラックス剤に硝酸ナトリウム(大東化学株式会社製)を使用した。二酸化チタンは(大東化学株式会社製)を使用した。また、対照として、チタン酸ナトリウム塩(フタムラ化学株式会社製)を使用し、バインダーにフッ素樹脂(ポリテトラフルオロエチレン)(旭硝子株式会社製)とポリエチレン(三木産業株式会社製,商品名:フローセン)を使用した。   Sodium carbonate (Daito Chemical Co., Ltd.) was used as the alkali metal salt, and sodium nitrate (Daito Chemical Co., Ltd.) was used as the flux agent. Titanium dioxide (Daito Chemical Co., Ltd.) was used. In addition, as a control, sodium titanate (Futamura Chemical Co., Ltd.) was used, and the binder was fluororesin (polytetrafluoroethylene) (Asahi Glass Co., Ltd.) and polyethylene (Miki Sangyo Co., Ltd., trade name: Flocene) It was used.

〔活性炭複合材料の作成〕
〈実施例1〉
後出の表1等に示す原料種とその量に従い、はじめに活性炭(粒径0.15〜0.3mm)を200g計量した。イオン交換水を活性炭重量の60%となる120mL計量し、ここにアルカリ金属塩の炭酸ナトリウムを9.6g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン43.5gとフラックス剤となる硝酸ナトリウム30.8gを添加し均一に混合し活性炭混合物とした。活性炭混合物をロータリーキルンに投入し、加熱した。加熱時の条件として昇温速度を300℃/hrとし、フラックス剤が溶融しチタン酸ナトリウム塩の結晶が成長する600℃を1時間維持した。そして20℃/hrの降温速度で500℃まで冷却した。加熱中、窒素ガスを通気して還元雰囲気とした。
[Creation of activated carbon composite material]
<Example 1>
First, 200 g of activated carbon (particle size: 0.15 to 0.3 mm) was weighed in accordance with the raw material species and the amount thereof shown in Table 1 below. Ion exchange water was weighed in 120 mL, which is 60% of the weight of activated carbon, and 9.6 g of alkali metal salt sodium carbonate was added and dissolved therein. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 43.5 g of titanium dioxide and 30.8 g of sodium nitrate as a flux agent were added and mixed uniformly to obtain an activated carbon mixture. The activated carbon mixture was put into a rotary kiln and heated. As a heating condition, the temperature rising rate was 300 ° C./hr, and 600 ° C. at which the flux agent melted and crystals of sodium titanate grew was maintained for 1 hour. And it cooled to 500 degreeC with the temperature-fall rate of 20 degreeC / hr. During the heating, nitrogen gas was passed to create a reducing atmosphere.

〈実施例2〉
実施例2は、前記実施例1の活性炭を粒径0.18〜0.36mmの活性炭に変更した。当該活性炭を200g計量した。イオン交換水120mLに炭酸ナトリウムを4.1g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン18.6gと硝酸ナトリウム13.2gを添加し均一に混合し活性炭混合物とした。活性炭混合物の加熱条件、装置は実施例1と同様とした。
<Example 2>
In Example 2, the activated carbon of Example 1 was changed to activated carbon having a particle size of 0.18 to 0.36 mm. 200 g of the activated carbon was weighed. To 120 mL of ion exchange water, 4.1 g of sodium carbonate was added and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 18.6 g of titanium dioxide and 13.2 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The heating conditions and apparatus for the activated carbon mixture were the same as in Example 1.

〈実施例3〉
実施例3は、前記実施例1の活性炭を粒径0.15〜0.3mmの活性炭に変更した。当該活性炭を200g計量した。イオン交換水120mLに炭酸ナトリウムを4.1g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン18.6gと硝酸ナトリウム13.2gを添加し均一に混合し活性炭混合物とした。活性炭混合物の加熱条件、装置は実施例1と同様とした。
<Example 3>
In Example 3, the activated carbon of Example 1 was changed to activated carbon having a particle size of 0.15 to 0.3 mm. 200 g of the activated carbon was weighed. To 120 mL of ion exchange water, 4.1 g of sodium carbonate was added and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 18.6 g of titanium dioxide and 13.2 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The heating conditions and apparatus for the activated carbon mixture were the same as in Example 1.

〈実施例4〉
実施例4は、前記実施例1の活性炭を粒径0.25〜0.5mmの活性炭に変更した。当該活性炭を200g計量した。イオン交換水120mLに炭酸ナトリウムを23.8g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン107.1gと硝酸ナトリウム76.1gを添加し均一に混合し活性炭混合物とした。活性炭混合物の加熱条件、装置は実施例1と同様とした。
<Example 4>
In Example 4, the activated carbon of Example 1 was changed to activated carbon having a particle size of 0.25 to 0.5 mm. 200 g of the activated carbon was weighed. 23.8 g of sodium carbonate was added to 120 mL of ion exchange water and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 107.1 g of titanium dioxide and 76.1 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The heating conditions and apparatus for the activated carbon mixture were the same as in Example 1.

〈比較例1〉
比較例1は、前記実施例1と同一の活性炭200gを使用した。イオン交換水120mLに炭酸ナトリウムを9.6g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン43.5gと硝酸ナトリウム30.8gを添加し均一に混合し活性炭混合物とした。活性炭混合物を坩堝に移し、静置炉にて加熱した。加熱時の条件として昇温速度を300℃/hrとし、フラックス剤が溶融しチタン酸ナトリウム塩の結晶が成長する600℃を1時間維持した。そして20℃/hrの降温速度で500℃まで冷却した。加熱中、窒素ガスを通気して還元雰囲気とした。
<Comparative example 1>
In Comparative Example 1, 200 g of the same activated carbon as in Example 1 was used. 9.6 g of sodium carbonate was added to 120 mL of ion exchange water and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 43.5 g of titanium dioxide and 30.8 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The activated carbon mixture was transferred to a crucible and heated in a stationary furnace. As a heating condition, the temperature rising rate was 300 ° C./hr, and 600 ° C. at which the flux agent melted and crystals of sodium titanate grew was maintained for 1 hour. And it cooled to 500 degreeC with the temperature-fall rate of 20 degreeC / hr. During the heating, nitrogen gas was passed to create a reducing atmosphere.

〈比較例2〉
比較例2は、前記実施例1と同一の活性炭100gを使用した。イオン交換水120mLに炭酸ナトリウムを23.8g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン107.1gと硝酸ナトリウム76.1gを添加し均一に混合し活性炭混合物とした。活性炭混合物の加熱条件、装置は実施例1と同様とした。
<Comparative example 2>
In Comparative Example 2, the same activated carbon 100 g as in Example 1 was used. 23.8 g of sodium carbonate was added to 120 mL of ion exchange water and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 107.1 g of titanium dioxide and 76.1 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The heating conditions and apparatus for the activated carbon mixture were the same as in Example 1.

〈比較例3〉
比較例3は、活性炭にフッ素樹脂バインダーを介してチタン酸ナトリウム塩を接着(添着)した例である。前記実施例1と同一の活性炭200g、チタン酸ナトリウム塩10g、フッ素樹脂バインダー6gを混合し、120℃で8時間加熱した。
<Comparative Example 3>
Comparative Example 3 is an example in which sodium titanate is bonded (attached) to activated carbon through a fluororesin binder. 200 g of the same activated carbon as in Example 1, 10 g of sodium titanate, and 6 g of a fluororesin binder were mixed and heated at 120 ° C. for 8 hours.

〈比較例4〉
比較例4は、活性炭にポリエチレン樹脂バインダーを介してチタン酸ナトリウム塩を接着(添着)した例である。前記実施例1と同一の活性炭200gとチタン酸ナトリウム塩10gを混合し、ポリエチレン樹脂バインダー4gをイオン交換水120mLに分散し、このバインダー液を活性炭とチタン酸ナトリウム塩の混合物に吹き付けた。その後、120℃で8時間加熱した。
<Comparative example 4>
Comparative Example 4 is an example in which sodium titanate is bonded (attached) to activated carbon via a polyethylene resin binder. 200 g of the same activated carbon as in Example 1 and 10 g of sodium titanate were mixed, 4 g of polyethylene resin binder was dispersed in 120 mL of ion-exchanged water, and this binder solution was sprayed onto a mixture of activated carbon and sodium titanate. Then, it heated at 120 degreeC for 8 hours.

〈比較例5〉
比較例5は、前記実施例1の活性炭を粒径0.5〜1.7mmの活性炭に変更した。当該活性炭を200g計量した。イオン交換水120mLに炭酸ナトリウムを9.6g添加し溶解した。この水溶液に活性炭を含浸して適当に攪拌した後、70℃にて1時間乾燥し含浸活性炭を得た。この含浸活性炭に二酸化チタン43.5gと硝酸ナトリウム30.8gを添加し均一に混合し活性炭混合物とした。活性炭混合物の加熱条件、装置は実施例1と同様とした。
<Comparative Example 5>
In Comparative Example 5, the activated carbon of Example 1 was changed to activated carbon having a particle size of 0.5 to 1.7 mm. 200 g of the activated carbon was weighed. 9.6 g of sodium carbonate was added to 120 mL of ion exchange water and dissolved. The aqueous solution was impregnated with activated carbon and stirred appropriately, and then dried at 70 ° C. for 1 hour to obtain impregnated activated carbon. To this impregnated activated carbon, 43.5 g of titanium dioxide and 30.8 g of sodium nitrate were added and mixed uniformly to obtain an activated carbon mixture. The heating conditions and apparatus for the activated carbon mixture were the same as in Example 1.

〔物性等の測定〕
〈充填密度〉
実施例並びに比較例の活性炭複合材料の充填密度については、JIS K 1474(2007)の活性炭試験方法の「6.7充填密度」、「6.7.1手動充てん法」に準拠して充填密度(g/mL)測定した。
[Measurement of physical properties, etc.]
<Filling density>
About the packing density of the activated carbon composite material of an Example and a comparative example, it is based on "6.7 packing density" of the activated carbon test method of JISK1474 (2007), and "6.7.1 manual filling method". (G / mL) was measured.

〈ヨウ素吸着性能〉
JIS K 1474(2007)の活性炭試験方法の「6.1.1.1よう素吸着性能」の試験方法に準拠し、実施例並びに比較例の活性炭複合材料のヨウ素吸着性能(mg/g)を測定した。
<Iodine adsorption performance>
In accordance with the test method “6.1.1.1 Iodine adsorption performance” of the activated carbon test method of JIS K 1474 (2007), the iodine adsorption performance (mg / g) of the activated carbon composite materials of Examples and Comparative Examples was determined. It was measured.

〈チタン酸ナトリウム塩の結晶重量〉
活性炭の表面に生成したチタン酸ナトリウム塩の結晶の重量(相対重量割合)については、JIS K 1474(2007)「6.9 強熱残分」において準拠する方法により測定し算出した。実施例、比較例の活性炭複合材料の各試料と、実施例、比較例の活性炭複合材料の調製で使用した活性炭の強熱残分を求めた(単位%)。そして、強熱残分同士の差を求め、当該実施例等の試料の活性炭重量に占めるチタン酸ナトリウム塩結晶の相対重量割合を算出した。
<Crystal weight of sodium titanate>
About the weight (relative weight ratio) of the crystal | crystallization of the sodium titanate salt produced | generated on the surface of activated carbon, it measured and calculated by the method based on JISK1474 (2007) "6.9 ignition residue." Each sample of the activated carbon composite material of the example and the comparative example and the ignition residue of the activated carbon used in the preparation of the activated carbon composite material of the example and the comparative example were determined (unit%). And the difference between ignition residues was calculated | required and the relative weight ratio of the sodium titanate salt crystal to the activated carbon weight of the sample of the said Example etc. was computed.

〈結晶の形状観察〉
活性炭複合材料の表面に生成したチタン酸ナトリウム塩の結晶形状については走査型電子顕微鏡(SEM)により撮影し、具体的に特定した。その結果、針状もしくは針状及び柱状の混成と、柱状のみの結晶成長となった。チタン酸ナトリウム塩の結晶の多くは活性炭の表面に発達した細孔内に生成していた。
<Crystal shape observation>
The crystal shape of the sodium titanate salt formed on the surface of the activated carbon composite material was photographed with a scanning electron microscope (SEM) and specifically identified. As a result, needle-like or a mixture of needle-like and columnar shapes and crystal growth of only columnar shapes were obtained. Many of the crystals of sodium titanate were formed in the pores developed on the surface of the activated carbon.

図4ないし図7に代表的な電子顕微鏡写真を示す。図4は実施例1の活性炭複合材料表面の20000倍拡大写真であり活性炭の細孔内に結晶が生成した。結晶は柱状と針状の混成である。図5は別の細孔内の20000倍拡大写真でありほぼ針状結晶である(針状は柱状を含む。)。これに対し、図6は比較例1の活性炭複合材料表面の10000倍拡大写真であり活性炭の細孔内に板状結晶が生成した。図7は同じ細孔内の20000倍拡大写真であり板状結晶がほとんどである。   4 to 7 show representative electron micrographs. FIG. 4 is a 20000 times magnified photograph of the surface of the activated carbon composite material of Example 1, and crystals were formed in the pores of the activated carbon. The crystal is a hybrid of columnar and needle-like shapes. FIG. 5 is an enlarged photograph of 20,000 times inside another pore, which is almost a needle crystal (the needle shape includes a columnar shape). On the other hand, FIG. 6 is a 10,000 times magnified photograph of the surface of the activated carbon composite material of Comparative Example 1, and plate crystals were generated in the pores of the activated carbon. FIG. 7 is an enlarged photo of 20,000 times in the same pore, and most of the plate crystals.

〈溶解性鉛除去性能〉
実施例並びに比較例の各活性炭複合材料については、JIS S 3201(2010)の家庭用浄水器試験方法の「6.4.6溶解性鉛除去性能試験」に準拠し測定した。当該測定に際し、内径40mmのカラムに活性炭複合材料を100cc充填した。50ppbの溶解性鉛を含む原水を調製し、2.0L/min(SV:1200hr-1)の流速で充填済みカラムに通水した。カラム内の活性炭複合材料による溶解性鉛(鉛イオン)の除去率を測定し、除去率が80%となった時点の総通水量を活性炭複合材料の充填量(cc)で割った値を当該活性炭複合材料の性能値(L/cc)とした。
<Dissolvable lead removal performance>
About each activated carbon composite material of an Example and a comparative example, it measured based on "6.4.6 soluble lead removal performance test" of the household water purifier test method of JIS S3201 (2010). In the measurement, 100 cc of the activated carbon composite material was packed in a column having an inner diameter of 40 mm. Raw water containing 50 ppb soluble lead was prepared and passed through a packed column at a flow rate of 2.0 L / min (SV: 1200 hr −1 ). Measure the removal rate of soluble lead (lead ions) by the activated carbon composite material in the column, and calculate the value obtained by dividing the total water flow rate when the removal rate reaches 80% by the packing amount (cc) of the activated carbon composite material. It was set as the performance value (L / cc) of the activated carbon composite material.

〈遊離残留塩素除去性能〉
実施例並びに比較例の各活性炭複合材料については、JIS S 3201(2010)の家庭用浄水器試験方法の「6.5.1遊離残留塩素ろ過能力試験」に準拠し測定した。当該測定に際し、内径40mmのカラムに活性炭複合材料を100cc充填した。2.0ppmの遊離残留塩素を含む原水を調製し、2.0L/min(SV:1200hr-1)の流速で充填済みカラムに通水した。カラム内の活性炭複合材料による遊離残留塩素の除去率を測定し、除去率が80%となった時点の総通水量を活性炭複合材料の充填量(cc)で割った値を当該活性炭複合材料の性能値(L/cc)とした。
<Free residual chlorine removal performance>
About each activated carbon composite material of an Example and a comparative example, it measured based on "6.5.1 free residual chlorine filtration ability test" of the household water purifier test method of JIS S3201 (2010). In the measurement, 100 cc of the activated carbon composite material was packed in a column having an inner diameter of 40 mm. Raw water containing 2.0 ppm free residual chlorine was prepared and passed through a packed column at a flow rate of 2.0 L / min (SV: 1200 hr −1 ). The removal rate of free residual chlorine by the activated carbon composite material in the column was measured, and the value obtained by dividing the total water flow rate when the removal rate reached 80% by the packed amount (cc) of the activated carbon composite material The performance value (L / cc) was used.

〈結晶担持性評価〉
結晶担持性は試料の活性炭重量に占めるチタン酸ナトリウム塩結晶の相対重量割合から判断した。チタン酸ナトリウム塩の結晶量が4重量%(wt%)以上を「○」と評価し、同結晶量が4重量%(wt%)以下を「×」と評価した。
<Crystal supportability evaluation>
The crystal supportability was judged from the relative weight ratio of sodium titanate crystals to the weight of the activated carbon of the sample. A crystal amount of sodium titanate salt of 4% by weight (wt%) or more was evaluated as “◯”, and a crystal amount of 4% by weight (wt%) or less was evaluated as “x”.

〈総合評価〉
活性炭複合材料について、各種の吸着性能を総合的に勘案し全体としての良否を評価した。
ヨウ素吸着性能1000mg/g以上、溶解性鉛除去性能7L/cc以上、及び遊離残留塩素除去性能14L/cc以上の全てを満たす例を「優」の評価とした。
ヨウ素吸着性能800mg/g以上、溶解性鉛除去性能5L/cc以上、及び遊離残留塩素除去性能10L/cc以上の全てを満たす例を「良」の評価とした。
ヨウ素吸着性能800mg/g以上、溶解性鉛除去性能5L/cc以上、及び遊離残留塩素除去性能10L/cc以上の中で1つでも欠落した項目がある例を「不可」の評価とした。
<Comprehensive evaluation>
About the activated carbon composite material, various adsorbing performance was considered comprehensively and the quality as a whole was evaluated.
An example satisfying all of iodine adsorption performance of 1000 mg / g or more, soluble lead removal performance of 7 L / cc or more, and free residual chlorine removal performance of 14 L / cc or more was evaluated as “excellent”.
An example that satisfies all of iodine adsorption performance of 800 mg / g or more, soluble lead removal performance of 5 L / cc or more, and free residual chlorine removal performance of 10 L / cc or more was evaluated as “good”.
The evaluation of “impossible” was an example in which even one item was missing among iodine adsorption performance of 800 mg / g or more, soluble lead removal performance of 5 L / cc or more, and free residual chlorine removal performance of 10 L / cc or more.

表1及び表2は、使用した活性炭の量(g)、粒径範囲(mm)、各原料の量(g)、結晶担持の仕方、加熱装置、加熱条件を示し、物性として充填密度(g/mL)、チタン酸ナトリウム塩の結晶重量(重量%)、結晶形状、ヨウ素吸着性能(mg/g)、溶解性鉛除去性能(L/cc)、遊離残留塩素除去性能(L/cc)、結晶担持性、そして総合評価を順に示す。   Tables 1 and 2 show the amount of activated carbon used (g), the particle size range (mm), the amount of each raw material (g), the way of supporting the crystals, the heating device, and the heating conditions. / ML), crystal weight (% by weight) of sodium titanate, crystal shape, iodine adsorption performance (mg / g), soluble lead removal performance (L / cc), free residual chlorine removal performance (L / cc), The crystal supportability and overall evaluation are shown in order.

Figure 0006096454
Figure 0006096454

Figure 0006096454
Figure 0006096454

〔活性炭複合材料の結果・考察〕
実施例並びに比較例の除去性能に関する総合評価から、いずれの実施例も良以上であり、特に実施例1ないし3は優の高評価である。実施例1,2,3の順に使用した活性炭の粒径は細かくなる。これに合わせて、チタン酸ナトリウム塩に起因する溶解性鉛除去性能や遊離残留塩素除去性能が上昇した。原因として、単位重量当たりの活性炭全体の接触面積が増加したことによると考える。比較例5は実施例よりも粒径の大きな活性炭の使用例である。結晶形成に必要な試薬量を実施例1と同一としても、単位重量当たりの接触面積が少なくなるため、各種の吸着性能は低下したといえる。
[Results and discussion of activated carbon composite materials]
From the comprehensive evaluation regarding the removal performance of the examples and comparative examples, all of the examples are good or better, and in particular, Examples 1 to 3 are excellent evaluations. The particle diameter of the activated carbon used in the order of Examples 1, 2, and 3 becomes finer. In accordance with this, the soluble lead removal performance and free residual chlorine removal performance caused by sodium titanate increased. The cause is considered to be the increase in the contact area of the entire activated carbon per unit weight. Comparative Example 5 is an example of using activated carbon having a particle size larger than that of the example. Even if the amount of reagent necessary for crystal formation is the same as in Example 1, the contact area per unit weight is reduced, so that it can be said that the various adsorption performances have decreased.

実施例4や比較例2は活性炭表面に形成したチタン酸ナトリウム塩の結晶量を他の実施例よりも多くした例となる。実施例4ぐらいのチタン酸ナトリウム塩結晶の重量割合であれば、ヨウ素吸着性能、溶解性鉛除去性能、遊離残留塩素除去性能のバランスが良く、結晶量に伴って溶解性鉛除去性能も向上する。このことを踏まえ、より重視すべき除去対象に着目してチタン酸ナトリウム塩結晶の重量割合を加減することができる。ところが、比較例2の場合、チタン酸ナトリウム塩結晶が19.8重量%と過剰であるため、活性炭本来の細孔が閉塞されて逆に各種の吸着性能を悪化させた。従って、チタン酸ナトリウム塩結晶の適切な重量割合は単位活性炭重量の4重量%ないし10重量%に収斂する。   Example 4 and Comparative Example 2 are examples in which the amount of crystal of sodium titanate formed on the activated carbon surface is larger than in other examples. If the weight ratio of the sodium titanate salt crystals is about Example 4, the balance of iodine adsorption performance, soluble lead removal performance, and free residual chlorine removal performance is good, and the soluble lead removal performance improves with the amount of crystals. . Based on this, the weight ratio of the sodium titanate salt crystal can be adjusted by paying attention to the removal object to be emphasized. However, in the case of Comparative Example 2, since the sodium titanate crystal was excessive at 19.8% by weight, the original pores of the activated carbon were clogged and the various adsorption performances were adversely affected. Therefore, an appropriate weight ratio of sodium titanate crystal converges to 4 to 10% by weight of the unit activated carbon weight.

比較例3及び4はチタン酸ナトリウム塩を活性炭に被着する際に樹脂製バインダーを使用した例となる。そのため、活性炭の細孔の閉塞が不可避となり、活性炭に由来するヨウ素吸着性能や遊離残留塩素除去性能の低下が著しい。従って、公知の樹脂バインダーによる被着の例と比較すると、本発明のように活性炭表面に直接結晶を生成できる利点は極めて大きい。   Comparative Examples 3 and 4 are examples in which a resinous binder was used when depositing sodium titanate on activated carbon. For this reason, the pores of the activated carbon are obstructed, and the iodine adsorption performance and free residual chlorine removal performance derived from the activated carbon are significantly reduced. Therefore, the advantage that crystals can be directly generated on the activated carbon surface as in the present invention is very large as compared with the case of deposition using a known resin binder.

活性炭とともに、チタン酸ナトリウム塩の結晶の原料及びフラックス剤を混ぜて加熱する際、加熱装置の加熱条件により生成する結晶の形状が相違することも明らかとなった。針状結晶の生成はいずれもロータリーキルンを用い常時動かし続けた加熱である。対照的に、比較例1の静置炉の加熱からは板状結晶のみの生成であった(図2ないし図5の電子顕微鏡写真参照)。撮影結果からも明らかなように、ロータリーキルンを用いた動的条件による加熱の例は、いずれも針状結晶もしくは針状及び柱状の混成結晶であった。しかし、比較例1の静的条件による加熱の場合、針状結晶を発見できず板状結晶のみの成長であった。   It was also clarified that when the raw material of the sodium titanate salt crystal and the fluxing agent are mixed and heated together with the activated carbon, the shape of the crystal produced differs depending on the heating conditions of the heating device. All of the formation of the needle-like crystals is heating that is continuously moved using a rotary kiln. In contrast, the heating of the stationary furnace of Comparative Example 1 produced only plate crystals (see the electron micrographs of FIGS. 2 to 5). As is clear from the imaging results, examples of heating under dynamic conditions using a rotary kiln were all acicular crystals or mixed crystals of acicular and columnar shapes. However, in the case of heating under the static conditions of Comparative Example 1, acicular crystals could not be found, and only plate crystals were grown.

実施例1と比較例1の結晶形状の相違、すなわち針状結晶の有無と溶解性鉛除去性能の高低を比較した場合、明確な差となって現れた。このことから、チタン酸ナトリウム塩は針状(柱状)の結晶構造であるほど溶解性鉛除去性能は高まる。しかも、そのためには、ロータリーキルン等により加熱時に動かし続ける製造方法が有利である。針状(柱状)の結晶構造が多くなるほど溶解性鉛除去性能が上昇する理由としては、結晶の表面積が増加しチタン酸ナトリウム塩と溶解性鉛との接触面積が多くなるためと考えられる。   When the difference in crystal shape between Example 1 and Comparative Example 1, that is, the presence or absence of acicular crystals and the level of soluble lead removal performance were compared, a clear difference appeared. From this, the soluble lead removal performance increases as the sodium titanate has an acicular (columnar) crystal structure. In addition, for this purpose, a production method that continues to move during heating with a rotary kiln or the like is advantageous. The reason why the soluble lead removal performance increases as the acicular (columnar) crystal structure increases is that the surface area of the crystal increases and the contact area between sodium titanate and soluble lead increases.

加熱時の条件と生成する結晶の形状が相違する理由は現時点では明らかではない。加熱時に静的な条件であれば、結晶自体板状に広がりやすい。しかし、活性炭はロータリーキルン内を回転しながら転動する動的な加熱条件であり、回転や攪拌の影響から柱状もしくは針状に結晶が成長したと予想する。おそらく、針状結晶の成長は金平糖における角の成長モデルに近似すると考えられる。   The reason why the conditions at the time of heating and the shape of the generated crystal are different is not clear at present. If the conditions are static during heating, the crystals themselves are likely to spread in a plate shape. However, activated carbon is a dynamic heating condition that rolls while rotating in the rotary kiln, and crystals are expected to grow in the shape of columns or needles due to the effects of rotation and stirring. Presumably, the growth of needle-like crystals approximates the corner growth model in confetti.

〔フィルター体のための活性炭複合材料の作成〕
実施例1ないし4と比較例1ないし5との対比より、本発明の活性炭複合材料及びその製造方法の優位性を確認した発明者らは、続けて活性炭複合材料を組み込んだフィルター体も作成した。そして、ヨウ素吸着性能、溶解性鉛除去性能、及び遊離残留塩素除去性能を測定し、併せてフィルター体としての性能を評価した。フィルター体の作成に先だって、実施例5及び比較例6ないし8の活性炭複合材料を用意した。ここでは、実施例2と3との比較を踏まえて前掲の実施例よりもさらに粒径の小さい活性炭を選択した。
[Creation of activated carbon composite material for filter body]
The inventors who confirmed the superiority of the activated carbon composite material of the present invention and the manufacturing method thereof from the comparison between Examples 1 to 4 and Comparative Examples 1 to 5 continued to create a filter body incorporating the activated carbon composite material. . And iodine adsorption | suction performance, soluble lead removal performance, and free residual chlorine removal performance were measured, and the performance as a filter body was evaluated collectively. Prior to preparation of the filter body, activated carbon composite materials of Example 5 and Comparative Examples 6 to 8 were prepared. Here, activated carbon having a particle size smaller than that of the above-mentioned examples was selected based on a comparison between Examples 2 and 3.

〈実施例5〉
実施例5は、前記実施例1の活性炭を粒径0.08〜0.18mmに変更し、当該活性炭を200g計量した。以降の原料配合量、活性炭混合物の加熱条件、装置は実施例1と同様として実施例5の活性炭複合材料を作成した。
<Example 5>
In Example 5, the activated carbon of Example 1 was changed to a particle size of 0.08 to 0.18 mm, and 200 g of the activated carbon was weighed. Subsequent raw material blending amounts, heating conditions for the activated carbon mixture, and the apparatus were the same as in Example 1, and the activated carbon composite material of Example 5 was prepared.

〈比較例6〉
比較例6は粒径0.08〜0.18mmの活性炭を使用した。前記比較例1と同様の原料配合量、活性炭混合物の加熱条件として比較例6の活性炭複合材料を作成した。
<Comparative Example 6>
In Comparative Example 6, activated carbon having a particle size of 0.08 to 0.18 mm was used. The activated carbon composite material of the comparative example 6 was created as the raw material compounding quantity similar to the said comparative example 1, and the heating conditions of an activated carbon mixture.

〈比較例7〉
比較例7は、前記比較例3にて使用した活性炭を粒径0.08〜0.18mmに変更した。以降、比較例3と同様の原料配合量、活性炭混合物の加熱条件として比較例7の活性炭複合材料(フッ素樹脂バインダー使用例)を作成した。
<Comparative Example 7>
In Comparative Example 7, the activated carbon used in Comparative Example 3 was changed to a particle size of 0.08 to 0.18 mm. Thereafter, an activated carbon composite material (an example of using a fluororesin binder) of Comparative Example 7 was prepared as the same raw material blending amount as in Comparative Example 3 and heating conditions of the activated carbon mixture.

〈比較例8〉
比較例8は、前記比較例4にて使用した活性炭を粒径0.08〜0.18mmに変更した。以降、比較例4と同様の原料配合量、活性炭混合物の加熱条件として比較例7の活性炭複合材料(ポリエチレン樹脂バインダー使用例)を作成した。
<Comparative Example 8>
In Comparative Example 8, the activated carbon used in Comparative Example 4 was changed to a particle size of 0.08 to 0.18 mm. Thereafter, the activated carbon composite material (use example of polyethylene resin binder) of Comparative Example 7 was prepared as the raw material blending amount similar to Comparative Example 4 and the heating conditions of the activated carbon mixture.

〔活性炭複合材料ごとのフィルター体の作成〕
フィルター体の作成は、前掲の図3に開示の混合スラリー状物から吸引する作成方法に準じた。そこで、実施例5、及び比較例6、7、8の活性炭複合材料のそれぞれを85重量部、繊維状活性炭(フタムラ化学株式会社製,商品名:フェノール系繊維状活性炭)を10重量部、アクリル樹脂繊維(東洋紡績株式会社製,商品名:ビィパル)を5重量部秤量した。これら3種類を水中に投入後、均一に混合して混合スラリー状物を調製した。
[Creation of filter body for each activated carbon composite material]
The filter body was prepared in accordance with the preparation method of sucking from the mixed slurry disclosed in FIG. Therefore, 85 parts by weight of each of the activated carbon composite materials of Example 5 and Comparative Examples 6, 7, and 8 and 10 parts by weight of fibrous activated carbon (Futamura Chemical Co., Ltd., trade name: phenol-based fibrous activated carbon), acrylic 5 parts by weight of resin fibers (manufactured by Toyobo Co., Ltd., trade name: Bipal) were weighed. These three types were put into water and then mixed uniformly to prepare a mixed slurry.

次に、外直径24mm、内直径20mm、全長50mmであり直径2mmの細孔を有するポリプロピレン製の中空円筒形芯部材を用意した。中空円筒形芯部材内に、多孔形状のステンレス製の金型棒状部材を挿入して固定するとともに混合スラリー状物を溜めた液中に投入した。減圧吸引により混合スラリー状物内から固形分を引き寄せて中空円筒形芯部材の表面に約13mm被着させてスラリー被着部を形成した。中空円筒形芯部材から金型棒状部材を取り外し、スラリー被着部と中空円筒形芯部材の一体化物となる吸着被着物を得た。   Next, a hollow cylindrical core member made of polypropylene having an outer diameter of 24 mm, an inner diameter of 20 mm, a total length of 50 mm, and pores having a diameter of 2 mm was prepared. A porous stainless steel metal rod member was inserted into the hollow cylindrical core member and fixed, and the mixed slurry was put into the liquid. The solid content was drawn from the mixed slurry by suction under reduced pressure, and was applied to the surface of the hollow cylindrical core member by about 13 mm to form a slurry applied portion. The die rod-shaped member was removed from the hollow cylindrical core member to obtain an adsorbed adherend that was an integrated product of the slurry adherend and the hollow cylindrical core member.

吸着被着物を乾燥機に入れて100℃、12時間かけて加熱、乾燥した。こうして、実施例5、及び比較例6、7、8のそれぞれの活性炭複合材料を組み込んだフィルター体を逐次作成した。いずれのフィルター体の寸法も、外直径50mm、内直径20mm、全高50mmとした。なお、フィルター体の区別においても、由来する活性炭複合材料に応じて実施例5、及び比較例6、7、8の名称を用いる。   The adsorbed adherend was placed in a dryer and heated and dried at 100 ° C. for 12 hours. Thus, filter bodies incorporating the activated carbon composite materials of Example 5 and Comparative Examples 6, 7, and 8 were sequentially prepared. The dimensions of all the filter bodies were an outer diameter of 50 mm, an inner diameter of 20 mm, and an overall height of 50 mm. In addition, also in distinction of a filter body, the name of Example 5 and Comparative Examples 6, 7, and 8 is used according to the activated carbon composite material from which it originates.

〔フィルター体の各種吸着性能測定〕
ヨウ素吸着性能は、JIS K 1474(2007)の活性炭試験方法の「6.1.1.1よう素吸着性能」の試験方法に準拠し、実施例並びに比較例のフィルター体のヨウ素吸着性能(mg/g)を測定した。
[Measurement of various adsorption performances of filter bodies]
The iodine adsorption performance conforms to the test method of “6.1.1.1 iodine adsorption performance” of the activated carbon test method of JIS K 1474 (2007), and the iodine adsorption performance (mg of filter bodies of Examples and Comparative Examples). / G) was measured.

溶解性鉛除去性能は、JIS S 3201(2010)の家庭用浄水器試験方法の「6.4.6溶解性鉛除去性能試験」に準拠し測定した。当該測定に際し、50ppbの溶解性鉛を含む原水を調製し、1.5L/min(SV:1200hr-1)の流速で実施例並びに比較例の各フィルター体を装填したハウジングに通水した。フィルター体の活性炭複合材料による溶解性鉛(鉛イオン)の除去率を測定し、除去率が80%となった時点の総通水量を活性炭複合材料の充填量(cc)で割った値を当該活性炭複合材料の性能値(L/cc)とした。 The soluble lead removal performance was measured in accordance with “6.4.6 soluble lead removal performance test” in the household water purifier test method of JIS S 3201 (2010). In the measurement, raw water containing 50 ppb of soluble lead was prepared, and water was passed through the housing loaded with the filter bodies of Examples and Comparative Examples at a flow rate of 1.5 L / min (SV: 1200 hr −1 ). Measure the removal rate of soluble lead (lead ion) by the activated carbon composite material of the filter body, and calculate the value obtained by dividing the total water flow when the removal rate reaches 80% by the filling amount (cc) of the activated carbon composite material. It was set as the performance value (L / cc) of the activated carbon composite material.

遊離残留塩素除去性能は、JIS S 3201(2010)の家庭用浄水器試験方法の「6.5.1遊離残留塩素ろ過能力試験」に準拠し測定した。当該測定に際し、2.0ppmの遊離残留塩素を含む原水を調製し、1.5L/min(SV:1200hr-1)の流速で実施例並びに比較例の各フィルター体を装填したハウジングに通水した。フィルター体の活性炭複合材料による遊離残留塩素の除去率を測定し、除去率が80%となった時点の総通水量を活性炭複合材料の充填量(cc)で割った値を当該活性炭複合材料の性能値(L/cc)とした。 The free residual chlorine removal performance was measured according to “6.5.1 Free residual chlorine filtration ability test” of the domestic water purifier test method of JIS S 3201 (2010). At the time of the measurement, raw water containing 2.0 ppm of free residual chlorine was prepared, and water was passed through the housing loaded with the filter bodies of Examples and Comparative Examples at a flow rate of 1.5 L / min (SV: 1200 hr −1 ). . The removal rate of free residual chlorine by the activated carbon composite material of the filter body is measured, and the value obtained by dividing the total water flow rate when the removal rate reaches 80% by the filling amount (cc) of the activated carbon composite material The performance value (L / cc) was used.

〔フィルター体の評価〕
フィルター体の結晶担持性は、フィルター体成形時に活性炭複合材料からこぼれたチタン酸ナトリウム塩結晶の量の多少により判断した。こぼれ落ちた結晶が少ない例を「○」と評価し、こぼれ落ちた結晶が多い例を「×」と評価した。
[Evaluation of filter body]
The crystal supportability of the filter body was judged by the amount of sodium titanate crystal spilled from the activated carbon composite material when the filter body was molded. Examples with few spilled crystals were evaluated as “◯”, and examples with many spilled crystals were evaluated as “x”.

フィルター体としての各種の吸着性能を総合的に勘案し、全体としての総合評価を下した。
ヨウ素吸着性能1000mg/g以上、溶解性鉛除去性能15L/cc以上、及び遊離残留塩素除去性能60L/cc以上の全てを満たす例を「優」の評価とした。
ヨウ素吸着性能800mg/g以上、溶解性鉛除去性能10L/cc以上、及び遊離残留塩素除去性能50L/cc以上の全てを満たす例を「良」の評価とした。
ヨウ素吸着性能800mg/g以上、溶解性鉛除去性能7L/cc以上、及び遊離残留塩素除去性能40L/cc以上の中で1つでも欠落した項目がある例を「不可」の評価とした。
A comprehensive evaluation was made by comprehensively considering various adsorption performances as a filter body.
An example satisfying all of iodine adsorption performance of 1000 mg / g or more, soluble lead removal performance of 15 L / cc or more, and free residual chlorine removal performance of 60 L / cc or more was evaluated as “excellent”.
An example satisfying all of iodine adsorption performance of 800 mg / g or more, soluble lead removal performance of 10 L / cc or more, and free residual chlorine removal performance of 50 L / cc or more was evaluated as “good”.
An example in which there was one missing item among iodine adsorption performance of 800 mg / g or more, soluble lead removal performance of 7 L / cc or more, and free residual chlorine removal performance of 40 L / cc or more was evaluated as “impossible”.

実施例5及び比較例6、7、8の各フィルター体について、表3に原料配合割合(重量部表記)と、ヨウ素吸着性能(mg/g)、溶解性鉛除去性能(L/cc)、及び遊離残留塩素除去性能(L/cc)の物性と、結晶担持性、総合評価を順に示す。   For each filter body of Example 5 and Comparative Examples 6, 7, and 8, Table 3 shows the raw material blending ratio (parts by weight), iodine adsorption performance (mg / g), soluble lead removal performance (L / cc), In addition, physical properties of free residual chlorine removal performance (L / cc), crystal supportability, and comprehensive evaluation are shown in this order.

Figure 0006096454
Figure 0006096454

〔フィルター体の結果・考察〕
実施例5の評価結果より、活性炭複合材料をフィルター体に組み込んだ場合であっても、活性炭複合材料の単独の測定時と同様に溶解性鉛をはじめ各種の良好な吸着性能を示した。このことから、活性炭複合材料はフィルターとしての実需用に好適であることを実証できた。実施例5と比較例6の性能差は、活性炭複合材料の製法の違いである。前述の比較例1にて説明のとおりチタン酸ナトリウム塩の結晶形状の相違と考えることができる。
[Results and consideration of filter body]
From the evaluation results of Example 5, even when the activated carbon composite material was incorporated into the filter body, various good adsorption performances including soluble lead were shown in the same manner as when the activated carbon composite material was measured alone. This proved that the activated carbon composite material is suitable for actual demand as a filter. The difference in performance between Example 5 and Comparative Example 6 is the difference in the manufacturing method of the activated carbon composite material. As described in Comparative Example 1 above, it can be considered that the crystal shape of sodium titanate is different.

比較例7及び8の樹脂製バインダーを使用して作成した例については、前述の比較例3及び4において言及のとおり、活性炭の細孔の閉塞やチタン酸ナトリウム塩の結晶自体の被覆のために性能低下が明らかである。このため、本発明のように活性炭表面に直接結晶を生成できる活性炭複合材料の効果はフィルター体に加工したときでも大きく、極めて利用価値が高い。   For the examples prepared using the resinous binders of Comparative Examples 7 and 8, as mentioned in Comparative Examples 3 and 4 above, the pores of activated carbon were blocked and the sodium titanate crystals themselves were coated. The performance degradation is obvious. For this reason, the effect of the activated carbon composite material which can produce | generate a crystal | crystallization directly on the activated carbon surface like this invention is large even when processed into a filter body, and its utility value is very high.

本発明の活性炭複合材料製造方法により製造した活性炭複合材料は、活性炭に直接チタン酸ナトリウム塩の結晶を成長させて形成していることから、活性炭自体の吸着性能を活かしつつ、チタン酸ナトリウム塩のイオン交換の吸着性能も併せ持つ。また、製造自体も簡便である。従って、既存の金属分除去等に用いられる吸着用材料の代替可能である。加えて、活性炭複合材料をフィルター体に加工しても十分な吸着性能を発揮できるため、既存の濾過装置への使用が可能である。 Activated carbon composite material manufactured by the manufacturing method of the activated carbon composite material of the present invention, since it is formed by growing a crystal of a direct titanate sodium salt on activated carbon, while taking advantage of the adsorption performance of activated carbon per se, sodium titanate It also has ion exchange adsorption performance. Further, the production itself is simple. Therefore, it is possible to replace an existing adsorbing material used for removing metal components. In addition, even if the activated carbon composite material is processed into a filter body, sufficient adsorption performance can be exhibited, so that it can be used for an existing filtration device.

AC 活性炭
M 活性炭複合材料(複合吸着剤)
1 フィルター体
10 フィルター本体
11 濾過部
12 中空円筒形芯部材
20 混合スラリー状物
22 繊維状構成材
25 吸着被着物
26 金型棒状部材
27 スラリー被着部
30 乾燥機
AC activated carbon M activated carbon composite material (composite adsorbent)
DESCRIPTION OF SYMBOLS 1 Filter body 10 Filter main body 11 Filtration part 12 Hollow cylindrical core member 20 Mixed slurry-like material 22 Fibrous constituent material 25 Adsorption adherend 26 Mold stick-shaped member 27 Slurry adherence part 30 Dryer

Claims (3)

粒径が0.1〜0.5mmの活性炭に炭酸ナトリウムの水溶液を含浸し含浸活性炭を得る含浸工程と、
前記含浸活性炭に酸化チタンとフラックス剤である硝酸ナトリウムを添加し活性炭混合物を得る混合工程と、
ロータリーキルンにおいて、前記活性炭混合物を加熱し活性炭の表面にフラックス法による前記炭酸ナトリウムと前記酸化チタンの反応により柱状もしくは針状のチタン酸ナトリウム塩の結晶体を形成した活性炭複合材料を得る加熱工程とを有し、
前記活性炭複合材料における前記チタン酸ナトリウム塩の重量割合は単位活性炭重量の4〜10重量%である
ことを特徴とする活性炭複合材料の製造方法。
An impregnation step of impregnating activated carbon having a particle size of 0.1 to 0.5 mm with an aqueous solution of sodium carbonate to obtain impregnated activated carbon;
A mixing step of adding titanium oxide and sodium nitrate as a fluxing agent to the impregnated activated carbon to obtain an activated carbon mixture;
In rotary kiln, the heating step of obtaining an activated carbon composite material formed crystals of columnar or needle-like titanium sodium salt by reaction of the titanium oxide and the sodium carbonate and heating the activated carbon mixture by flux method on the surface of the activated carbon Have
The weight ratio of the said sodium titanate salt in the said activated carbon composite material is 4 to 10 weight% of unit activated carbon weight. The manufacturing method of the activated carbon composite material characterized by the above-mentioned.
前記活性炭複合材料が鉛イオン除去剤である請求項1に記載の活性炭複合材料の製造方法。   The method for producing an activated carbon composite material according to claim 1, wherein the activated carbon composite material is a lead ion remover. 前記活性炭複合材料がフィルター体に組み込まれる請求項1または2に記載の活性炭複合材料の製造方法。   The method for producing an activated carbon composite material according to claim 1 or 2, wherein the activated carbon composite material is incorporated into a filter body.
JP2012217341A 2012-09-28 2012-09-28 Method for producing activated carbon composite material Active JP6096454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217341A JP6096454B2 (en) 2012-09-28 2012-09-28 Method for producing activated carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217341A JP6096454B2 (en) 2012-09-28 2012-09-28 Method for producing activated carbon composite material

Publications (2)

Publication Number Publication Date
JP2014069136A JP2014069136A (en) 2014-04-21
JP6096454B2 true JP6096454B2 (en) 2017-03-15

Family

ID=50744863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217341A Active JP6096454B2 (en) 2012-09-28 2012-09-28 Method for producing activated carbon composite material

Country Status (1)

Country Link
JP (1) JP6096454B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100029091A (en) * 2007-05-23 2010-03-15 디에스엠 아이피 어셋츠 비.브이. Colored suture

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106311184B (en) * 2016-08-23 2019-09-27 昆明理工大学 A kind of modified activated carbon preparation method loading polyaniline
CN107021539A (en) * 2017-03-13 2017-08-08 河海大学 It is a kind of can catching heavy metal porous pavement hybrid system
JP6922989B2 (en) * 2017-09-13 2021-08-18 株式会社大阪ソーダ Manufacturing method of heavy metal treatment agent
JP6965117B2 (en) * 2017-11-16 2021-11-10 フタムラ化学株式会社 Metal ion adsorbent and composite adsorbent using it
CN109126699B (en) * 2018-09-14 2021-09-17 蚌埠越昇科技服务有限公司 Method for preparing supported activated carbon by taking furfural residues as raw materials and application of method
JPWO2022202319A1 (en) * 2021-03-22 2022-09-29

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521775A (en) * 2008-05-14 2011-07-28 スリーエム イノベイティブ プロパティズ カンパニー Filter material and water filtration system including the same
JP5551483B2 (en) * 2010-03-25 2014-07-16 国立大学法人信州大学 Filtration material and purification device
JP2012061390A (en) * 2010-09-14 2012-03-29 Futamura Chemical Co Ltd Filter for purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100029091A (en) * 2007-05-23 2010-03-15 디에스엠 아이피 어셋츠 비.브이. Colored suture
KR101693850B1 (en) * 2007-05-23 2017-01-06 디에스엠 아이피 어셋츠 비.브이. Colored suture

Also Published As

Publication number Publication date
JP2014069136A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6096454B2 (en) Method for producing activated carbon composite material
JP6283435B2 (en) Activated carbon molded body and water purifier using the same
CN104583120B (en) Activated carbon with high active surface area
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
JP6902536B2 (en) Activated carbon, and adsorption filters and water purifiers using it
JP6175552B2 (en) Porous carbon material, method for producing the same, filter, sheet, and catalyst carrier
JP6726520B2 (en) Activated carbon molding and water purification cartridge
JP2020019016A (en) Adsorption filter
WO2003022425A1 (en) Composite particulate article and method for preparation thereof
JP7356458B2 (en) Water purification filter and water purifier using it
JP5070254B2 (en) Charcoal-metal composite for water treatment and molded product for charcoal-metal composite
JP2014095556A (en) Cesium adsorbent and cesium adsorption filter body
JP7303118B2 (en) adsorption filter
WO2017081857A1 (en) Adsorption-member support body
JP7301591B2 (en) Manufacturing method for residual chlorine removal filter body
JP6965117B2 (en) Metal ion adsorbent and composite adsorbent using it
JP3537149B2 (en) Molded adsorbent
JP6695764B2 (en) Activated carbon for water purifier and cartridge for water purifier using the same
JPH06335632A (en) Molded adsorbing body
JP6174556B2 (en) Modified activated carbon, method for producing the same, and filtration cartridge
TWI830845B (en) Filters for water purification and water purifiers equipped with filters
JP7453462B1 (en) Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
TWI753390B (en) Composite aggregate particles, and adsorbents, shaped bodies, and water purifiers using the same
JP3799382B2 (en) Humidity control body and porous sintered body used therefor
JP2007216215A (en) Adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250