WO2022202319A1 - Selective water purification material, selective water purification molded body, and selective water purification device - Google Patents

Selective water purification material, selective water purification molded body, and selective water purification device Download PDF

Info

Publication number
WO2022202319A1
WO2022202319A1 PCT/JP2022/010248 JP2022010248W WO2022202319A1 WO 2022202319 A1 WO2022202319 A1 WO 2022202319A1 JP 2022010248 W JP2022010248 W JP 2022010248W WO 2022202319 A1 WO2022202319 A1 WO 2022202319A1
Authority
WO
WIPO (PCT)
Prior art keywords
selective
water purification
water
ions
selective water
Prior art date
Application number
PCT/JP2022/010248
Other languages
French (fr)
Japanese (ja)
Inventor
勝弥 手嶋
達也 土井
Original Assignee
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学 filed Critical 国立大学法人信州大学
Priority to JP2023508964A priority Critical patent/JPWO2022202319A1/ja
Publication of WO2022202319A1 publication Critical patent/WO2022202319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to a selective water purification material, a selective water purification compact, and a selective water purification device that remove heavy metal ions while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions from water to be purified.
  • Natural water, domestic wastewater, industrial wastewater, etc. contain a wide variety of inorganic ions, and each water is purified as necessary ("purified water” in this application means removing inorganic ions contained in water. means).
  • purified water in this application means removing inorganic ions contained in water. means).
  • Patent Document 1 JP-A-09-155342.
  • predetermined ions here means, for example, cations and anions
  • mineral components such as calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and potassium ions (K + ) are removed together with the harmful ions by purifying water.
  • Ca 2+ calcium ions
  • Mg 2+ magnesium ions
  • K + potassium ions
  • the present invention has been made in view of the above circumstances, and provides a selective water purification material that can remove heavy metal ions from water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions.
  • An object of the present invention is to provide a water purification molding and a selective water purification device.
  • the present invention solves the above problems by means of solutions as described below as one embodiment.
  • the selective water purification material according to the present invention is a selective water purification material that removes heavy metal ions from water to be purified while leaving at least one type of ion selected from the group consisting of calcium ions, magnesium ions, and potassium ions.
  • a selective ion-exchange crystal wherein the selective ion-exchange crystal is a sodium titanate crystal represented by the chemical formula NaxTiyOz (where 0 ⁇ x , 0 ⁇ y , 0 ⁇ z)
  • the sodium titanate crystal is characterized by having a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
  • the sodium titanate crystal is preferably a sodium trititanate crystal represented by the chemical formula Na 2 Ti 3 O 7 .
  • Sodium trititanate crystals have a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
  • the selective ion exchange crystal is preferably a crystal synthesized by a flux method.
  • a flux method sodium trititanate crystal can be synthesized, and the surface area can be increased by making the crystal morphology layered to improve the removal property of harmful ions.
  • the selective water purification molded body according to the present invention is characterized by comprising a molded body obtained by molding a mixture containing the selective water purification material according to the present invention and a binder.
  • the selective water purification material can be processed into the desired shape and size according to the purpose of use.
  • the molded body can be formed into small pieces such as beads or pellets, and the selective water purification molded body can be used as an aggregate of a large number of these small pieces.
  • the surface area can be increased, and the harmful ion removal characteristics can be improved.
  • the molded body can contain materials other than selective water purification materials and binders, such as activated carbon. According to this embodiment, chlorine contained in water can be removed by the activated carbon, and only harmful ions can be selectively removed while leaving so-called mineral components by the selective water purification material.
  • the selective water purification device is characterized in that the selective water purification material according to the present invention is arranged so as to come into contact with the water.
  • the selective water purification material can selectively remove only harmful ions such as heavy metal ions and aluminum ions from water while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. can. Therefore, it can be suitably applied as a brewing water purifying device for obtaining brewing water or a hard water purifying device.
  • activated carbon is further disposed so as to be in contact with the water.
  • Activated carbon can remove chlorine contained in water.
  • FIG. 1 is a schematic diagram of the crystal structure of sodium trititanate (Na 2 Ti 3 O 7 ).
  • FIG. 2 is an X-ray diffraction pattern of the selective ion exchange crystal according to this embodiment. Two types are shown in FIGS. 2A and 2B.
  • FIG. 3 shows the evaluation results of the harmful ion removing properties of sodium trititanate crystals (Na 2 Ti 3 O 7 ).
  • selective water purification material selective water purification material
  • ion removal characteristics focusing on the action of removing ions appropriately
  • ion adsorption characteristics focusing on the action of adsorbing and capturing ions.
  • the selective water purification material according to this embodiment consists of selective ion exchange crystals.
  • the selective ion exchange crystal is a sodium titanate crystal represented by the chemical formula Na x Ti y O z (where 0 ⁇ x, 0 ⁇ y, 0 ⁇ z; hereinafter, this proviso may be omitted). contains.
  • the selective ion-exchange crystals contain sodium titanate crystals as main crystals, and the selective cation exchange properties of the sodium titanate crystals, which will be described later, are the properties of the selective ion-exchange crystals.
  • sodium titanate crystal is the main crystal, as an example, as shown in FIG. 2, in the X-ray diffraction pattern, the intensity of the diffraction line representing the sodium titanate crystal is the strongest. It can be specified by indicating the strength or the like.
  • the above sodium titanate crystal has a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
  • the crystal structure of sodium trititanate represented by the chemical formula Na 2 Ti 3 O 7
  • Na 2 Ti 3 O 7 is composed of three TiO 6 octahedra, which share edges and are linearly linked, as shown in FIG. , and these basic units share edges and vertices to form a layered structure.
  • Each layer is negatively charged and the negative charge is neutralized by sodium ions (Na + ) between the layers.
  • sodium trititanate crystals are known to have cation exchange properties to exchange sodium ions between layers with other cations.
  • FIG. 3 is the result of a known research by the present inventors, showing a multi-element mixed standard containing Pb 2+ , Al 3+ , Mn 2+ , Cu 2+ , Fe 3+ , Cr 6+ , Zn 2+ , Cd 2+ and Ni 2+ .
  • 0.1 g of sodium trititanate crystals were added to 100 ml of test water adjusted so that each ion concentration was 100 ⁇ g ⁇ l ⁇ 1 using liquid WV ICP analysis (manufactured by Fujifilm Wako Pure Chemical Industries).
  • Non-Patent Document 1 After shaking for 24 hours, crystals and test water were separated by filtration and centrifugation, and the residual ion concentration in the test water was measured by inductively coupled plasma (ICP) emission spectrometry. According to this method, 95% or more of all nine kinds of metal ions could be removed (see Non-Patent Document 1).
  • ICP inductively coupled plasma
  • sodium titanate (Na x Ti y O z ) having the above crystal structure exemplified by sodium trititanate (Na 2 Ti 3 O 7 ) by the inventors, contains calcium ions (Ca 2+ ) , Magnesium ions (Mg 2+ ), and Potassium ions (K + ), while ion exchange is performed only for harmful ions such as the above heavy metal ions and aluminum ions. It was newly found to have ion exchange properties.
  • This selective cation exchange property is due to the characteristic crystal structure in which sodium ions are arranged between the layered structures formed by the titanium oxide of the sodium titanate according to the present embodiment, and the The difference in specific gravity, that is, among the elements constituting the exemplified harmful ions, the other elements (Pb, Mn, Cu, Fe, Cr, Zn, Cd, Ni) other than Al are all heavy metals and have large specific gravities ( 7 or more), Ca (specific gravity 1.55), Mg (specific gravity 1.74), and K (specific gravity 0.86) have small specific gravities, and the difference in valence between ions, that is, harmful ions Ca 2+ , Mg 2+ , and K + have smaller valences than Al 3+ , and the difference in groups in the periodic table between the elements that make up the ions, that is, the elements that make up the exemplified harmful ions ( Pb, Al, Mn, Cu, Fe, Cr, Zn, Cd, Ni) are transition metals and base metals belonging to any
  • This selective cation exchange property of sodium titanate appears as it is as a property of selective ion exchange crystals. Therefore, according to the selective water purification material according to the present embodiment, harmful ions such as heavy metal ions and aluminum ions are removed from the water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions almost as they are. can be selectively removed.
  • the selective water purification material according to this embodiment can be suitably applied as a brewing water purification material for obtaining brewing water.
  • Potassium and magnesium are essential for the growth of yeast, which is indispensable in brewing, and calcium has the effect of promoting the production and elution of enzymes.
  • Mineral components such as potassium, magnesium and calcium are required for the brewing water involved, while iron, manganese, copper and the like discolor sake (especially sake), and iron in particular deteriorates the flavor.
  • Manganese accelerates deterioration due to ultraviolet rays, so these harmful components must meet stricter standards than those required for tap water (iron: 0.3 ppm or less, manganese: 0.05 ppm or less). 02 ppm or less).
  • the explanation has been made mainly using water for brewing sake, but the selective water purification material according to the present embodiment can be used for purifying water for brewing various alcoholic beverages such as beer, shochu, whiskey, and fruit wine, in addition to sake. It can be suitably applied as a material. Moreover, it is not limited to sake brewing, and can be suitably applied to brewing water for miso and soy sauce brewing.
  • brewing water in the scope of claims includes not only brewing water for sake brewing, but also brewing water for miso and soy sauce brewing. including water used to manufacture
  • the selective water purification material according to this embodiment can also be suitably applied as a water purification material for hard water.
  • hard water refers to water with a hardness of 100 mg/L or more, and the hardness is calculated as (calcium [mg/L] x 2.5) + (magnesium [mg/L] x 4.1). be done.
  • the essential feature of hard water is that it contains a lot of calcium and magnesium. water can be purified without damaging
  • the selective water purifier according to this embodiment which includes the selective water purifier material according to this embodiment, which will be described later, can also be suitably applied as a brewing water purifier for obtaining brewing water or a hard water purifier.
  • the selective water purification material according to the present embodiment since it hardly adsorbs calcium ions, magnesium ions, etc. contained in large amounts in water, it is compared with conventional water purification materials that indiscriminately adsorb dissolved ions. , can continue to remove harmful ions, including iron ions, manganese ions, and copper ions, without declining adsorption capacity for a long period of time. Therefore, it is possible to purify a larger amount of water than conventional water purifying materials.
  • the selective water-purifying material which concerns on this embodiment is suitable as a water-purifying material for hard water, as mentioned above also from this.
  • the selective water purification material according to the present embodiment it is possible to prevent the adsorption material from breaking through, and it is possible to continue using the material for a long period of time without replacing it.
  • the selective ion-exchange crystal according to the present embodiment can be synthesized by a flux method, a sol-gel method, a solid-phase reaction method, a plasma method, or the like, and preferably a crystal synthesized by a flux method.
  • the flux method is a crystal growth method that uses a solvent (flux) for inorganic compounds or metals. Crystal materials are dissolved in the molten flux, and supersaturation due to cooling of the solution is used as a driving force to crystallize the solution.
  • titanium oxide (TiO 2 ) and “potassium carbonate (K 2 CO 3 ) or sodium carbonate (Na 2 CO 3 )” and “sodium chloride (NaCl) or sodium nitrate (NaNO 3 )” as a flux are dry-mixed, heated and melted, heated to a predetermined temperature, and held for a predetermined time. Then, by cooling at a predetermined cooling rate, sodium titanate (Na x Ti y O z ) crystals having a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide are contained as main crystals.
  • the morphology of the produced crystal can be controlled by adjusting the conditions such as the holding time and the cooling rate. Therefore, it is possible to increase the surface area by layering the crystal morphology and improve the harmful ion removal properties.
  • titanium oxide (TiO 2 ) and the like may remain in the selective ion-exchange crystal synthesized by the flux method in addition to sodium titanate (Na x Ti y O z ) which is the main crystal.
  • some sodium ions (Na + ) in sodium titanate (Na x Ti y O z ) may be replaced with hydrogen ions (H + ). All of these are contained in amounts that do not affect the selective cation exchange properties of the selective ion exchange crystal, and do not affect the effects of the present invention.
  • a plurality of types of sodium titanate (Na x Ti y O z ) having different compositions (ratios of sodium (N), titanium (Ti), and oxygen (O)) may be produced.
  • at least one type must have a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide, and sodium titanate crystals having this structure are selective ion exchange crystals. It preferably constitutes the main crystal.
  • the selective ion-exchange crystal synthesized as described above, ie, the selective water purification material can be mixed with a binder in a predetermined ratio and molded to form a selective water purification molding. That is, the selective water-purifying molding according to the present embodiment is formed by molding a mixture containing a selective water-purifying material and a binder.
  • the shape of the molded body is not limited. Therefore, the molded body can be formed into various shapes such as spherical, cylindrical, cubic, rectangular parallelepiped, and the like. Also, the size of the molded body is not limited.
  • the molded body may be formed into small pieces such as beads or pellets, and the selective water purification molded body may be used as an aggregate of a large number of these small pieces. According to this, it is possible to increase the surface area and improve the performance of removing harmful ions.
  • the selective water-purifying molded body may of course be used as a single body having a predetermined size.
  • the molded body may contain a material other than the selective water purification material and the binder, such as activated carbon.
  • Activated carbon has the effect of removing chlorine (hypochlorous acid: HClO and hypochlorite ion: ClO ⁇ ) added for disinfection of tap water.
  • the activated carbon may be incorporated into the molded body by mixing with the selective water purification material and binder.
  • a molded body may be formed by using activated carbon as a base material and attaching a selective water-purifying material to the base material using a binder.
  • the selective water purifier according to this embodiment is a water purifier including the selective water purifier material according to this embodiment. That is, in the device, the water purification material is arranged so as to come into contact with the water to be purified. According to this, by the action of the selective water purification material, only harmful ions such as heavy metal ions and aluminum ions are selectively removed from the water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. can be removed.
  • the selective water purification material may be arranged in any form (the form of the selective water purification material is not limited). Therefore, "the selective water-purifying material is arranged" here includes, for example, the selective water-purifying material being arranged in the form of a selective water-purifying molding (state).
  • the selective water purifier according to the present embodiment is further arranged so that activated carbon comes into contact with the water to be purified.
  • chlorine hypoochlorous acid: HClO and hypochlorite ion: ClO ⁇
  • the selective water purifier according to the present embodiment is particularly suitable as a water purifier for obtaining drinking water and water for manufacturing food and beverages.
  • chlorine hypoochlorous acid: HClO and hypochlorous acid ions: ClO ⁇
  • chlorine hypoochlorous acid: HClO and hypochlorous acid ions: ClO ⁇
  • the specific configuration for bringing the selective water purification material and activated carbon into contact with the water to be purified is not limited.
  • a configuration may be adopted in which a pipeline for passing water to be purified is provided in the apparatus, and the selective water purification material and activated carbon are arranged in the middle of the pipeline.
  • the selective water purification material and the activated carbon may be located in separate locations or may be located in one location. If located in one location, the selective water purification material and activated carbon may be mixed, partitioned, or the selective water purification material may be adhered to the surface of the activated carbon.
  • the selective water purification material may be adhered and molded using a suitable binder or the like.
  • the selective water purifier according to this embodiment may be configured as a water purification kit including a replaceable water purification cartridge.
  • the water purification kit may be configured as a press spot type, and the filter portion at the tip of the press rod may be configured as a water purification cartridge filled with a selective water purification material and activated carbon.
  • the water in the pot can be easily purified by putting water to be purified in the pot and pushing down the press rod.
  • the water purification cartridge can be easily removed for cleaning or replacement.
  • alumina crucible Place an alumina crucible in a porcelain crucible filled with alumina powder, place the porcelain crucible in a predetermined position in an electric furnace (position on the open/close door side where heat can easily escape), and heat at about 45 ° C. h -1 at 600 ° C. heated to Then, after holding at that temperature for 10 hours, it was gradually cooled to 500°C at 5°C ⁇ h -1 . Then, the power of the electric furnace was turned off, and it was allowed to cool to room temperature. Next, the alumina crucible was immersed in hot water to dissolve and remove the remaining flux to obtain crystals.
  • FIG. 2 is the X-ray diffraction pattern of the resulting crystal.
  • FIG. 2A shows the case where the entire alumina crucible is filled with alumina powder
  • FIG. 2B shows the case where only the lower part of the alumina crucible is filled with alumina powder.
  • 2A and 2B show some differences in the composition of the crystals produced due to the difference in the degree of weight loss during heating, but both represent sodium trititanate (Na 2 Ti 3 O 7 ) crystals.
  • the intensity of the diffraction line shows the strongest intensity, and it can be seen that the crystal is a sodium trititanate crystal as the main crystal.
  • a crystal having a sodium trititanate crystal as a main crystal (a crystal corresponding to FIG. 2B) was again synthesized by the flux method under the conditions described above, and a cylindrical activated carbon compact (length: 10 inches, diameter: about 70 mm). The amount (weight) of the crystals was 10% of the weight of the activated carbon.
  • a water purifier was manufactured by arranging five housings containing the activated carbon compacts in the middle of a pipeline through which water to be purified passes. Tap water was passed through this water purifier (pipe line) at a flow rate of 60 L/min for several minutes, and then the water was sampled and subjected to component analysis (Example 1).
  • the water according to Comparative Example 1 had lower concentrations of Mg, K, Ca, and Mn than tap water, and Cu, Cd, and Pb were not detected.
  • the concentrations of Mg, K, and Ca hardly changed from those in the tap water.
  • the concentrations of Mn and Fe decreased, and Cu, Cd and Pb were not detected. Therefore, the crystals produced according to Example 1 remove heavy metal ions including iron ions, manganese ions, and copper ions from the water to be purified, while leaving calcium ions, magnesium ions, and potassium ions. It was shown to have selective cation exchange properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

The present invention addresses the problem of providing a selective water purification material and a selective water purification device, which are capable of removing, from water to be subjected to water purification, heavy metal ions while retaining so-called mineral components such as calcium ions, magnesium ions, and potassium ions. As a solution to the problem, the selective water purification material according to the present invention is for removing, from water to be subjected to water purification, heavy metal ions while retaining at least one type of ion selected from the group consisting of calcium ion, magnesium ion, and potassium ion. The selective water purification material comprises selective ion-exchange crystals. The selective ion-exchange crystals include a sodium titanate crystal represented by chemical formula NaxTiyOz (wherein, 0<x, 0<y, and 0<z are satisfied). The sodium titanate crystal has a crystal structure in which sodium ions are disposed between layer structures formed by titanium oxide.

Description

選択的浄水材料、選択的浄水成型体および選択的浄水装置Selective water purification material, selective water purification molding, and selective water purification device
 本発明は、浄水対象の水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンを除去する選択的浄水材料、選択的浄水成型体および選択的浄化装置に関する。 The present invention relates to a selective water purification material, a selective water purification compact, and a selective water purification device that remove heavy metal ions while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions from water to be purified.
 自然水、生活排水、産業排水等は、多種多様な無機イオンを含んでおり、必要に応じて各々浄水される(本願でいう「浄水」とは、水に含まれる無機イオンを除去することを意味する)。これにより、人体や環境に有害である鉛イオン(Pb2+)、マンガンイオン(Mn2+)、銅イオン(Cu2+)、鉄イオン(Fe3+)、クロムイオン(Cr6+)、亜鉛イオン(Zn2+)、カドミウムイオン(Cd2+)、ニッケルイオン(Ni2+)等の重金属イオンや、アルミニウムイオン(Al3+)等が除去されて、人体に安全な飲料水を得たり、自然環境に悪影響を与えることなく排水したりすることが可能になる。 Natural water, domestic wastewater, industrial wastewater, etc. contain a wide variety of inorganic ions, and each water is purified as necessary ("purified water" in this application means removing inorganic ions contained in water. means). As a result, lead ions (Pb 2+ ), manganese ions (Mn 2+ ), copper ions (Cu 2+ ), iron ions (Fe 3+ ), chromium ions (Cr 6+ ), zinc ions (Zn 2+ ), which are harmful to the human body and the environment ), cadmium ions (Cd 2+ ), nickel ions (Ni 2+ ) and other heavy metal ions, as well as aluminum ions (Al 3+ ), etc., are removed to obtain safe drinking water for the human body and adversely affect the natural environment. It is possible to drain water without
 従来、浄水材料として、イオン交換樹脂、キレート樹脂、多孔質材料、ゼオライト系材料等が使用されてきた(特許文献1:特開平09-155342号公報参照)。 Conventionally, ion-exchange resins, chelate resins, porous materials, zeolite-based materials, etc. have been used as water purification materials (see Patent Document 1: JP-A-09-155342).
特開平09-155342号公報JP-A-09-155342
 しかしながら、従来の浄水材料は、いずれもイオン種に関わらず所定の溶存イオン(ここでいう「所定のイオン」とは、例えば、陽イオン、陰イオンのことを意味する)を無差別的に除去する材料であった。そのため、浄水により、上記の有害イオンと共に、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、カリウムイオン(K)といった所謂ミネラル成分も除去されてしまうという問題があった。特に、酒造りのための酒造用水、その中でも直接酒の成分に関わる醸造用水を得る際には、自然水を浄水して溶存する無機イオンを一律に除去した後で、酵母の生育や酵素の産生等のために必要なミネラル成分を水に再度添加することが行われており、コストおよび手間が大きかった。 However, conventional water purification materials indiscriminately remove predetermined dissolved ions ("predetermined ions" here means, for example, cations and anions) regardless of ion species. It was a material to Therefore, there is a problem that so-called mineral components such as calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ), and potassium ions (K + ) are removed together with the harmful ions by purifying water. In particular, when obtaining brewing water for sake brewing, especially brewing water that is directly related to the ingredients of sake, after uniformly removing dissolved inorganic ions by purifying natural water, yeast growth and enzyme production are performed. For this reason, the necessary mineral components are added to the water again, which is costly and labor intensive.
 本発明は、上記事情に鑑みてなされ、浄水対象の水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンを除去することができる選択的浄水材料、選択的浄水成型体および選択的浄水装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a selective water purification material that can remove heavy metal ions from water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. An object of the present invention is to provide a water purification molding and a selective water purification device.
 本発明は、一実施形態として以下に記載するような解決手段により、前記課題を解決する。 The present invention solves the above problems by means of solutions as described below as one embodiment.
 本発明に係る選択的浄水材料は、浄水対象の水から、カルシウムイオン、マグネシウムイオン、カリウムイオンからなる群より選ばれる少なくとも1種類のイオンを残留させつつ、重金属イオンを除去する選択的浄水材料であって、選択的イオン交換結晶からなり、前記選択的イオン交換結晶は、化学式NaTi(ただし、0<x、0<y、0<z)で表されるチタン酸ナトリウム結晶を含有し、前記チタン酸ナトリウム結晶は、チタン酸化物によって形成された層状構造間にナトリウムイオンが配置された結晶構造を有していることを特徴とする。 The selective water purification material according to the present invention is a selective water purification material that removes heavy metal ions from water to be purified while leaving at least one type of ion selected from the group consisting of calcium ions, magnesium ions, and potassium ions. comprising a selective ion-exchange crystal, wherein the selective ion-exchange crystal is a sodium titanate crystal represented by the chemical formula NaxTiyOz (where 0< x , 0< y , 0<z) The sodium titanate crystal is characterized by having a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
 これによれば、水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンやアルミニウムイオン等の有害イオンだけを選択的に除去することができる。したがって、醸造用水を得るための醸造用浄水材料や、硬水用浄水材料として好適に適用できる。 According to this, only harmful ions such as heavy metal ions and aluminum ions can be selectively removed from water while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. Therefore, it can be suitably applied as a brewing water purification material for obtaining brewing water or as a water purification material for hard water.
 また、前記チタン酸ナトリウム結晶は、化学式NaTiで表される三チタン酸ナトリウム結晶であることが好ましい。三チタン酸ナトリウム結晶は、チタン酸化物によって形成された層状構造間にナトリウムイオンが配置された結晶構造を有している。 Also, the sodium titanate crystal is preferably a sodium trititanate crystal represented by the chemical formula Na 2 Ti 3 O 7 . Sodium trititanate crystals have a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
 また、前記選択的イオン交換結晶は、フラックス法で合成された結晶であることが好ましい。フラックス法により、三チタン酸ナトリウム結晶を合成することができ、また、結晶形態を層状にして表面積を拡大させて、有害イオンの除去特性を向上させることができる。 Also, the selective ion exchange crystal is preferably a crystal synthesized by a flux method. By the flux method, sodium trititanate crystal can be synthesized, and the surface area can be increased by making the crystal morphology layered to improve the removal property of harmful ions.
 また、本発明に係る選択的浄水成型体は、本発明に係る選択的浄水材料、およびバインダーを含む混合物が成型された成型体からなることを特徴とする。 In addition, the selective water purification molded body according to the present invention is characterized by comprising a molded body obtained by molding a mixture containing the selective water purification material according to the present invention and a binder.
 これによれば、選択的浄水材料を使用目的に応じて所望の形状および大きさに加工できる。一例として、前記成型体を、ビーズ状またはペレット状等をなすような小片に形成し、選択的浄水成型体を、この小片が多数集合した集合体として用いられる形態にすることができる。この形態によれば、表面積を拡大させて、有害イオンの除去特性を向上させることができる。また、前記成型体に、選択的浄水材料およびバインダー以外の材料、例えば活性炭を含ませることができる。この形態によれば、活性炭により水に含まれる塩素を除去すると共に、選択的浄水材料により所謂ミネラル成分を残留させつつ有害イオンだけを選択的に除去することができる。 According to this, the selective water purification material can be processed into the desired shape and size according to the purpose of use. As an example, the molded body can be formed into small pieces such as beads or pellets, and the selective water purification molded body can be used as an aggregate of a large number of these small pieces. According to this configuration, the surface area can be increased, and the harmful ion removal characteristics can be improved. Also, the molded body can contain materials other than selective water purification materials and binders, such as activated carbon. According to this embodiment, chlorine contained in water can be removed by the activated carbon, and only harmful ions can be selectively removed while leaving so-called mineral components by the selective water purification material.
 また、本発明に係る選択的浄水装置は、本発明に係る選択的浄水材料が、前記水と接触するように配設されていることを特徴とする。 In addition, the selective water purification device according to the present invention is characterized in that the selective water purification material according to the present invention is arranged so as to come into contact with the water.
 これによれば、選択的浄水材料により、水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンやアルミニウムイオン等の有害イオンだけを選択的に除去することができる。したがって、醸造用水を得るための醸造用浄水装置や、硬水用浄水装置として好適に適用できる。 According to this, the selective water purification material can selectively remove only harmful ions such as heavy metal ions and aluminum ions from water while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. can. Therefore, it can be suitably applied as a brewing water purifying device for obtaining brewing water or a hard water purifying device.
 また、活性炭が、前記水と接触するようにさらに配設されていることが好ましい。活性炭により、水に含まれる塩素を除去することができる。 In addition, it is preferable that activated carbon is further disposed so as to be in contact with the water. Activated carbon can remove chlorine contained in water.
 本発明によれば、浄水対象の水から、カルシウムイオン、マグネシウムイオン、カリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンを除去することができる。 According to the present invention, it is possible to remove heavy metal ions from water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions.
図1は、三チタン酸ナトリウム(NaTi)の結晶構造の概略図である。FIG. 1 is a schematic diagram of the crystal structure of sodium trititanate (Na 2 Ti 3 O 7 ). 図2は、本実施形態に係る選択的イオン交換結晶のX線回折パターンである。図2Aと図2Bとで2種類を示す。FIG. 2 is an X-ray diffraction pattern of the selective ion exchange crystal according to this embodiment. Two types are shown in FIGS. 2A and 2B. 図3は、三チタン酸ナトリウム結晶(NaTi)の有害イオン除去特性の評価結果である。FIG. 3 shows the evaluation results of the harmful ion removing properties of sodium trititanate crystals (Na 2 Ti 3 O 7 ).
 (選択的浄水材料)
 以下、本発明の実施形態に係る選択的浄水材料について説明する。なお、本文におけるイオン交換特性については、適宜イオンを除去する作用に着目して「イオン除去特性」と表記したり、イオンを吸着して捕捉する作用に着目して「イオン吸着特性」と表記したりする場合がある。本実施形態に係る選択的浄水材料は、選択的イオン交換結晶からなる。選択的イオン交換結晶は、化学式NaTi(ただし、0<x、0<y、0<z。以下、本ただし書を省略することがある)で表されるチタン酸ナトリウム結晶を含有する。
(selective water purification material)
Hereinafter, selective water purification materials according to embodiments of the present invention will be described. In addition, regarding the ion exchange characteristics in the text, it is written as "ion removal characteristics" focusing on the action of removing ions appropriately, and it is written as "ion adsorption characteristics" focusing on the action of adsorbing and capturing ions. may occur. The selective water purification material according to this embodiment consists of selective ion exchange crystals. The selective ion exchange crystal is a sodium titanate crystal represented by the chemical formula Na x Ti y O z (where 0 < x, 0 < y, 0 <z; hereinafter, this proviso may be omitted). contains.
 より詳しくは、選択的イオン交換結晶は、チタン酸ナトリウム結晶を主結晶として含有し、後述するチタン酸ナトリウム結晶の選択的陽イオン交換特性が、そのまま選択的イオン交換結晶の特性となっている。選択的イオン交換結晶において、チタン酸ナトリウム結晶が主結晶となっていることは、一例として、図2に示すように、X線回折パターンにおいて、チタン酸ナトリウム結晶を表す回折線の強度が最も強い強度を示すこと等によって規定することができる。 More specifically, the selective ion-exchange crystals contain sodium titanate crystals as main crystals, and the selective cation exchange properties of the sodium titanate crystals, which will be described later, are the properties of the selective ion-exchange crystals. In the selective ion exchange crystal, sodium titanate crystal is the main crystal, as an example, as shown in FIG. 2, in the X-ray diffraction pattern, the intensity of the diffraction line representing the sodium titanate crystal is the strongest. It can be specified by indicating the strength or the like.
 また、上記のチタン酸ナトリウム結晶は、チタン酸化物によって形成された層状構造間にナトリウムイオンが配置された結晶構造を有している。一例として、化学式NaTiで表される三チタン酸ナトリウムの結晶構造は、図1に示すように、稜を共有して直線的に結合した3個のTiO八面体が基本単位となり、この基本単位が稜および頂点を共有して層状構造を形成する。各層は負に帯電し、その負電荷は層間のナトリウムイオン(Na)により中和される。 In addition, the above sodium titanate crystal has a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide. As an example, the crystal structure of sodium trititanate, represented by the chemical formula Na 2 Ti 3 O 7 , is composed of three TiO 6 octahedra, which share edges and are linearly linked, as shown in FIG. , and these basic units share edges and vertices to form a layered structure. Each layer is negatively charged and the negative charge is neutralized by sodium ions (Na + ) between the layers.
 上記の結晶構造によって、三チタン酸ナトリウム結晶は、層間のナトリウムイオンを他の陽イオンと交換する陽イオン交換特性を有することが知られている。その結果、図3に示すように、鉛イオン(Pb2+)、マンガンイオン(Mn2+)、銅イオン(Cu2+)、鉄イオン(Fe3+)、クロムイオン(Cr6+)、亜鉛イオン(Zn2+)、カドミウムイオン(Cd2+)、ニッケルイオン(Ni2+)、およびアルミニウムイオン(Al3+)の除去効果を発揮することが知られている。 Due to the above crystal structure, sodium trititanate crystals are known to have cation exchange properties to exchange sodium ions between layers with other cations. As a result, as shown in FIG. 3, lead ions (Pb 2+ ), manganese ions (Mn 2+ ), copper ions (Cu 2+ ), iron ions (Fe 3+ ), chromium ions (Cr 6+ ), zinc ions (Zn 2+ ), cadmium ions (Cd 2+ ), nickel ions (Ni 2+ ), and aluminum ions (Al 3+ ).
 なお、図3は、本発明者による公知の研究結果であって、Pb2+、Al3+、Mn2+、Cu2+、Fe3+、Cr6+、Zn2+、Cd2+およびNi2+を含む多元素混合標準液W-V ICP分析用(富士フイルム和光純薬製)を用い、各イオン濃度が100μg・l-1になるように調整した試験水100mlに、三チタン酸ナトリウム結晶0.1gを添加して24h振盪した後、ろ過および遠心分離により結晶と試験水とを分離し、試験水中の残留イオン濃度を誘導結合プラズマ(ICP)発光分析法にて測定した結果である。これによれば、9種全ての金属イオンを95%以上除去できた(非特許文献1参照)。 It should be noted that FIG. 3 is the result of a known research by the present inventors, showing a multi-element mixed standard containing Pb 2+ , Al 3+ , Mn 2+ , Cu 2+ , Fe 3+ , Cr 6+ , Zn 2+ , Cd 2+ and Ni 2+ . 0.1 g of sodium trititanate crystals were added to 100 ml of test water adjusted so that each ion concentration was 100 μg·l −1 using liquid WV ICP analysis (manufactured by Fujifilm Wako Pure Chemical Industries). After shaking for 24 hours, crystals and test water were separated by filtration and centrifugation, and the residual ion concentration in the test water was measured by inductively coupled plasma (ICP) emission spectrometry. According to this method, 95% or more of all nine kinds of metal ions could be removed (see Non-Patent Document 1).
 一方、本発明者によって、三チタン酸ナトリウム(NaTi)に例示される、上記の結晶構造を有するチタン酸ナトリウム(NaTi)には、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)、およびカリウムイオン(K)に対しては殆どイオン交換を行わずに、上記の重金属イオンやアルミニウムイオン等の有害イオンだけに対してイオン交換を行う、選択的陽イオン交換特性を有することが新たに見出された。 On the other hand, sodium titanate (Na x Ti y O z ) having the above crystal structure, exemplified by sodium trititanate (Na 2 Ti 3 O 7 ) by the inventors, contains calcium ions (Ca 2+ ) , Magnesium ions (Mg 2+ ), and Potassium ions (K + ), while ion exchange is performed only for harmful ions such as the above heavy metal ions and aluminum ions. It was newly found to have ion exchange properties.
 この選択的陽イオン交換特性は、本実施形態に係るチタン酸ナトリウムのチタン酸化物によって形成された層状構造間にナトリウムイオンが配置された特徴的な結晶構造、また、イオンを構成する元素間の比重の相違、すなわち例示した有害イオンを構成する元素のうち、Alを除く他の元素(Pb、Mn、Cu、Fe、Cr、Zn、Cd、Ni)はいずれも重金属であって比重が大きい(7以上)のに対して、Ca(比重1.55)、Mg(比重1.74)、K(比重0.86)は比重が小さいこと、また、イオン間の価数の相違、すなわち有害イオンであるAl3+と比較するとCa2+、Mg2+、Kは価数が小さいこと、また、イオンを構成する元素間の原子周期表における族の相違、すなわち、例示した有害イオンを構成する元素(Pb、Al、Mn、Cu、Fe、Cr、Zn、Cd、Ni)は第6族~第14族のいずれかに属する遷移金属や卑金属であるのに対して、CaおよびMgは第2族元素のアルカリ土類金属、Kは第1族元素のアルカリ金属であること、等の様々な要因が複合して生じていると考えられる。したがって、当業者が出願時の技術常識を考慮しても、例えば、チタン酸ナトリウムの結晶構造等から、当該特性を予測することは全く困難であり、当該特性は発明者の鋭意研究による試行錯誤によって見出されたものである。 This selective cation exchange property is due to the characteristic crystal structure in which sodium ions are arranged between the layered structures formed by the titanium oxide of the sodium titanate according to the present embodiment, and the The difference in specific gravity, that is, among the elements constituting the exemplified harmful ions, the other elements (Pb, Mn, Cu, Fe, Cr, Zn, Cd, Ni) other than Al are all heavy metals and have large specific gravities ( 7 or more), Ca (specific gravity 1.55), Mg (specific gravity 1.74), and K (specific gravity 0.86) have small specific gravities, and the difference in valence between ions, that is, harmful ions Ca 2+ , Mg 2+ , and K + have smaller valences than Al 3+ , and the difference in groups in the periodic table between the elements that make up the ions, that is, the elements that make up the exemplified harmful ions ( Pb, Al, Mn, Cu, Fe, Cr, Zn, Cd, Ni) are transition metals and base metals belonging to any of Groups 6 to 14, while Ca and Mg are Group 2 elements. is an alkaline earth metal, and K is an alkali metal of Group 1 elements. Therefore, even if a person skilled in the art considers the common general knowledge at the time of filing, it is quite difficult to predict the properties from, for example, the crystal structure of sodium titanate. It was discovered by
 このチタン酸ナトリウムの選択的陽イオン交換特性は、選択的イオン交換結晶の特性としてそのまま表れる。したがって、本実施形態に係る選択的浄水材料によれば、浄水対象の水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を殆どそのまま残留させつつ、重金属イオンやアルミニウムイオン等の有害イオンだけを選択的に除去することができる。 This selective cation exchange property of sodium titanate appears as it is as a property of selective ion exchange crystals. Therefore, according to the selective water purification material according to the present embodiment, harmful ions such as heavy metal ions and aluminum ions are removed from the water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions almost as they are. can be selectively removed.
 本実施形態に係る選択的浄水材料は、醸造用水を得るための醸造用浄水材料として好適に適用できる。醸造において欠かせない酵母の生育にはカリウムおよびマグネシウムが必須であり、また、カルシウムには酵素の産生や溶出を促進する作用があることから、酒造りのための酒造用水、その中でも直接酒の成分に関わる醸造用水には、カリウム、マグネシウムおよびカルシウム等のミネラル成分が必要とされる一方、鉄、マンガンおよび銅等は、酒(特に、清酒)を変色させると共に、特に、鉄は香味を悪化させ、マンガンは紫外線による劣化を早めることから、これらの有害成分は、水道水に求められる基準(鉄:0.3ppm以下、マンガン:0.05ppm以下)よりもさらに厳しい基準(鉄、マンガン各々0.02ppm以下)の下で低濃度に管理されている。 The selective water purification material according to this embodiment can be suitably applied as a brewing water purification material for obtaining brewing water. Potassium and magnesium are essential for the growth of yeast, which is indispensable in brewing, and calcium has the effect of promoting the production and elution of enzymes. Mineral components such as potassium, magnesium and calcium are required for the brewing water involved, while iron, manganese, copper and the like discolor sake (especially sake), and iron in particular deteriorates the flavor. , Manganese accelerates deterioration due to ultraviolet rays, so these harmful components must meet stricter standards than those required for tap water (iron: 0.3 ppm or less, manganese: 0.05 ppm or less). 02 ppm or less).
 従来のイオン交換樹脂等の浄水材料およびこれを備える浄水装置では、酒造用水(特に、醸造用水)を得る際には、自然水を浄水して溶存する無機イオンを一律に除去した後で、上記のミネラル成分を水に再度添加すること等が行われていた。例えば、日本酒における酒造用水の使用量は仕込みに使用する総米重量の30~50倍であり、ミネラル成分を殆ど完全に除去したうえで再度添加するにはコストおよび手間が大きかった。これに対して、本実施形態に係る選択的浄水材料(および後述する選択的浄水装置)で自然水を浄水すれば、カルシウムイオン、マグネシウムイオンおよびカリウムイオンを残留させつつ、鉄イオン、マンガンイオン、および銅イオンを含む有害イオンだけを選択的に除去できる。したがって、あとはこの浄水をそのまま酒造用水(特に、醸造用水)としてよく、または目的に応じて成分を微調整すればよいため、コストおよび手間を大きく軽減することができる。 In conventional water purification materials such as ion-exchange resins and water purification devices equipped with the same, when obtaining sake brewing water (particularly, brewing water), after uniformly removing dissolved inorganic ions by purifying natural water, the above-mentioned was added to the water again. For example, the amount of sake brewing water used for sake is 30 to 50 times the weight of the total rice used for preparation, and it was costly and laborious to remove mineral components almost completely and then add them again. On the other hand, if natural water is purified with the selective water purification material (and the selective water purification device described later) according to the present embodiment, iron ions, manganese ions, iron ions, manganese ions, and only harmful ions including copper ions can be selectively removed. Therefore, this purified water can be used as brewing water (particularly, brewing water) as it is, or the components can be finely adjusted according to the purpose, so that cost and labor can be greatly reduced.
 なお、ここでは、主として日本酒の醸造用水を例にして説明したが、本実施形態に係る選択的浄水材料は、日本酒の他、ビール、焼酎、ウイスキー、果実酒等の様々な酒類の醸造用浄水材料として好適に適用できる。また、酒醸造に限らず、味噌や醤油醸造のための醸造用水にも好適に適用できる。特許請求の範囲における「醸造用水」には、酒醸造のための醸造用水だけでなく、味噌や醤油醸造のための醸造用水等の、発酵菌による発酵作用を利用して食品、飲料、薬剤等を製造するために用いる水を含む。 Here, the explanation has been made mainly using water for brewing sake, but the selective water purification material according to the present embodiment can be used for purifying water for brewing various alcoholic beverages such as beer, shochu, whiskey, and fruit wine, in addition to sake. It can be suitably applied as a material. Moreover, it is not limited to sake brewing, and can be suitably applied to brewing water for miso and soy sauce brewing. The term "brewing water" in the scope of claims includes not only brewing water for sake brewing, but also brewing water for miso and soy sauce brewing. including water used to manufacture
 また、本実施形態に係る選択的浄水材料は、硬水用浄水材料としても好適に適用できる。ここでいう「硬水」とは、硬度が100mg/L以上の水をいい、硬度は、(カルシウム[mg/L]×2.5)+(マグネシウム[mg/L]×4.1)で算出される。硬水の本質的特徴は、カルシウムおよびマグネシウムを豊富に含むことにあり、本実施形態に係る選択的浄水材料を硬水に適用すれば、カルシウムおよびマグネシウムを残留させつつ、すなわち、硬水としての本質的特徴を損なうことなく、浄水することができる。なお、後述する本実施形態に係る選択的浄水材料を備える本実施形態に係る選択的浄水装置も同様に、醸造用水を得るための醸造用浄水装置や、硬水用浄水装置として好適に適用できる。 In addition, the selective water purification material according to this embodiment can also be suitably applied as a water purification material for hard water. The term "hard water" as used herein refers to water with a hardness of 100 mg/L or more, and the hardness is calculated as (calcium [mg/L] x 2.5) + (magnesium [mg/L] x 4.1). be done. The essential feature of hard water is that it contains a lot of calcium and magnesium. water can be purified without damaging The selective water purifier according to this embodiment, which includes the selective water purifier material according to this embodiment, which will be described later, can also be suitably applied as a brewing water purifier for obtaining brewing water or a hard water purifier.
 さらに、本実施形態に係る選択的浄水材料によれば、水に多量に含まれるカルシウムイオンやマグネシウムイオン等を殆ど吸着しないため、無差別的に溶存イオンを吸着する従来の浄水材料と比較して、長期間吸着能が低下することなく、鉄イオン、マンガンイオン、および銅イオンを含む有害イオンを除去し続けることができる。したがって、従来の浄水材料よりも、多量の水を浄水処理することができる。なお、このことからも、前述の通り、本実施形態に係る選択的浄水材料は、硬水用浄水材料として好適であるといえる。すなわち、カルシウムイオンやマグネシウムイオン等の所謂ミネラル成分を豊富に含む硬水に従来の浄水材料を適用した場合、その吸着サイトがこれらのミネラル成分に係るイオンで占有され、短期間で吸着能が限界に達して破過してしまうおそれがある。これに対して、本実施形態に係る選択的浄水材料によれば、吸着材料の破過を防止することができ、長期間材料を交換することなく使い続けることができる。 Furthermore, according to the selective water purification material according to the present embodiment, since it hardly adsorbs calcium ions, magnesium ions, etc. contained in large amounts in water, it is compared with conventional water purification materials that indiscriminately adsorb dissolved ions. , can continue to remove harmful ions, including iron ions, manganese ions, and copper ions, without declining adsorption capacity for a long period of time. Therefore, it is possible to purify a larger amount of water than conventional water purifying materials. In addition, it can be said that the selective water-purifying material which concerns on this embodiment is suitable as a water-purifying material for hard water, as mentioned above also from this. That is, when conventional water purification materials are applied to hard water rich in so-called mineral components such as calcium ions and magnesium ions, the adsorption sites are occupied by ions related to these mineral components, and the adsorption capacity reaches its limit in a short period of time. There is a risk of reaching and breaking through. On the other hand, according to the selective water purification material according to the present embodiment, it is possible to prevent the adsorption material from breaking through, and it is possible to continue using the material for a long period of time without replacing it.
 本実施形態に係る選択的イオン交換結晶は、フラックス法、ゾル・ゲル法、固相反応法、またはプラズマ法等で合成可能であるが、好適にはフラックス法で合成された結晶であることが好ましい。フラックス法は、無機化合物や金属の溶媒(フラックス)を用いた結晶育成法であって、溶融するフラックス中に結晶材料を溶かし、溶液の冷却による過飽和を駆動力として溶液を結晶化させる。本実施形態に係る選択的イオン交換結晶をフラックス法で合成する場合、一例として、溶質としての「酸化チタン(TiO)」、および「炭酸カリウム(KCO)または炭酸ナトリウム(NaCO)」と、フラックスとしての「塩化ナトリウム(NaCl)または硝酸ナトリウム(NaNO)」と、を乾式混合した調合物を、加熱溶融しつつ所定温度に昇温してから所定時間保持する。次いで所定の冷却速度で冷却することによって、チタン酸化物により形成された層状構造間にナトリウムイオンが配置された結晶構造を有するチタン酸ナトリウム(NaTi)結晶を主結晶として含有する選択的イオン交換結晶を得ることができる。フラックス法によれば、上記の保持時間や冷却速度等の条件を調整することによって生成結晶の形態を制御できる。したがって、結晶形態を層状にして表面積を拡大させて、有害イオンの除去特性を向上させることができる。 The selective ion-exchange crystal according to the present embodiment can be synthesized by a flux method, a sol-gel method, a solid-phase reaction method, a plasma method, or the like, and preferably a crystal synthesized by a flux method. preferable. The flux method is a crystal growth method that uses a solvent (flux) for inorganic compounds or metals. Crystal materials are dissolved in the molten flux, and supersaturation due to cooling of the solution is used as a driving force to crystallize the solution. When synthesizing the selective ion exchange crystal according to the present embodiment by the flux method, as an example, "titanium oxide (TiO 2 )" and "potassium carbonate (K 2 CO 3 ) or sodium carbonate (Na 2 CO 3 )” and “sodium chloride (NaCl) or sodium nitrate (NaNO 3 )” as a flux are dry-mixed, heated and melted, heated to a predetermined temperature, and held for a predetermined time. Then, by cooling at a predetermined cooling rate, sodium titanate (Na x Ti y O z ) crystals having a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide are contained as main crystals. Selective ion exchange crystals can be obtained. According to the flux method, the morphology of the produced crystal can be controlled by adjusting the conditions such as the holding time and the cooling rate. Therefore, it is possible to increase the surface area by layering the crystal morphology and improve the harmful ion removal properties.
 なお、フラックス法で合成された選択的イオン交換結晶には、主結晶であるチタン酸ナトリウム(NaTi)以外に、酸化チタン(TiO)等が残存する場合がある。また、チタン酸ナトリウム(NaTi)におけるナトリウムイオン(Na)の一部が水素イオン(H)に置換されている場合がある。これらは、いずれも選択的イオン交換結晶の選択的陽イオン交換特性に影響を与えない程度の含有量であって本発明の作用効果に影響を与えない。また、組成(ナトリウム(N)とチタン(Ti)と酸素(O)との比率)の異なる複数種類のチタン酸ナトリウム(NaTi)が生成される場合がある。この場合、少なくとも1種類はチタン酸化物により形成された層状構造間にナトリウムイオンが配置された結晶構造を有している必要があり、当該構造を有するチタン酸ナトリウム結晶が選択的イオン交換結晶の主結晶をなしていることが好ましい。 Note that titanium oxide (TiO 2 ) and the like may remain in the selective ion-exchange crystal synthesized by the flux method in addition to sodium titanate (Na x Ti y O z ) which is the main crystal. Also, some sodium ions (Na + ) in sodium titanate (Na x Ti y O z ) may be replaced with hydrogen ions (H + ). All of these are contained in amounts that do not affect the selective cation exchange properties of the selective ion exchange crystal, and do not affect the effects of the present invention. In addition, a plurality of types of sodium titanate (Na x Ti y O z ) having different compositions (ratios of sodium (N), titanium (Ti), and oxygen (O)) may be produced. In this case, at least one type must have a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide, and sodium titanate crystals having this structure are selective ion exchange crystals. It preferably constitutes the main crystal.
 (選択的浄水成型体)
 また、上記のようにして合成された選択的イオン交換結晶すなわち選択的浄水材料を、バインダーと所定の割合で混合し、成型して、選択的浄水成型体を形成させることができる。すなわち、本実施形態に係る選択的浄水成型体は、選択的浄水材料、およびバインダーを含む混合物が成型された成型体からなる。成型体の形状は限定されない。したがって、成型体を、例えば、球状、円柱状、立方体状、直方体状その他の様々な形状に形成できる。また、成型体の大きさも限定されない。したがって、成型体を、例えば、ビーズ状またはペレット状等をなすような小片に形成し、選択的浄水成型体を、この小片が多数集合した集合体として用いられる形態にしてもよい。これによれば、表面積を拡大させて、有害イオンの除去特性を向上させることができる。一方、選択的浄水成型体を、所定の大きさを有する単体として用いられる形態にしても勿論よい。
(Selective water purification molding)
Alternatively, the selective ion-exchange crystal synthesized as described above, ie, the selective water purification material, can be mixed with a binder in a predetermined ratio and molded to form a selective water purification molding. That is, the selective water-purifying molding according to the present embodiment is formed by molding a mixture containing a selective water-purifying material and a binder. The shape of the molded body is not limited. Therefore, the molded body can be formed into various shapes such as spherical, cylindrical, cubic, rectangular parallelepiped, and the like. Also, the size of the molded body is not limited. Therefore, the molded body may be formed into small pieces such as beads or pellets, and the selective water purification molded body may be used as an aggregate of a large number of these small pieces. According to this, it is possible to increase the surface area and improve the performance of removing harmful ions. On the other hand, the selective water-purifying molded body may of course be used as a single body having a predetermined size.
 なお、成型体は、選択的浄水材料およびバインダー以外の材料、例えば活性炭等を含んでいてもよい。活性炭は、水道水の消毒のために添加された塩素(次亜塩素酸:HClO、および次亜塩素酸イオン:ClO)を除去する作用を有する。この活性炭を、選択的浄水材料およびバインダーと共に混合することによって成型体に含有させてもよい。また、活性炭を基材としてこれに選択的浄水材料をバインダーにより付着させて成型体を形成してもよい。 In addition, the molded body may contain a material other than the selective water purification material and the binder, such as activated carbon. Activated carbon has the effect of removing chlorine (hypochlorous acid: HClO and hypochlorite ion: ClO ) added for disinfection of tap water. The activated carbon may be incorporated into the molded body by mixing with the selective water purification material and binder. Alternatively, a molded body may be formed by using activated carbon as a base material and attaching a selective water-purifying material to the base material using a binder.
 (選択的浄水装置)
 続いて、本実施形態に係る選択的浄水装置は、本実施形態に係る選択的浄水材料を備える浄水装置である。すなわち、当該装置において、当該浄水材料が浄水対象の水と接触するように配設されている。これによれば、選択的浄水材料の作用によって、浄水対象の水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンといった所謂ミネラル成分を残留させつつ、重金属イオンやアルミニウムイオン等の有害イオンだけを選択的に除去することができる。なお、選択的浄水材料はどのような形態で配設されていてもよい(選択的浄水材料の形態は限定されない)。したがって、ここでいう「選択的浄水材料が配設されていること」は、例えば、選択的浄水材料が選択的浄水成型体の形態で配設されていること(状態)を含む。
(Selective water purification device)
Subsequently, the selective water purifier according to this embodiment is a water purifier including the selective water purifier material according to this embodiment. That is, in the device, the water purification material is arranged so as to come into contact with the water to be purified. According to this, by the action of the selective water purification material, only harmful ions such as heavy metal ions and aluminum ions are selectively removed from the water to be purified while leaving so-called mineral components such as calcium ions, magnesium ions, and potassium ions. can be removed. The selective water purification material may be arranged in any form (the form of the selective water purification material is not limited). Therefore, "the selective water-purifying material is arranged" here includes, for example, the selective water-purifying material being arranged in the form of a selective water-purifying molding (state).
 また、本実施形態に係る選択的浄水装置は、任意の構成として、活性炭が浄水対象の水と接触するようにさらに配設されている。これによれば、活性炭の作用によって、浄水対象の水から、水道水の消毒のために添加された塩素(次亜塩素酸:HClO、および次亜塩素酸イオン:ClO)を除去することができる。したがって、本実施形態に係る選択的浄水装置は、飲料水や食品・飲料製造用の水を得るための浄水装置として特に好適であり、例えば、飲料水を得るための飲料用浄水装置の場合、水道水中の有害イオンに加えて塩素(次亜塩素酸:HClO、および次亜塩素酸イオン:ClO)も除去することができる。 As an optional configuration, the selective water purifier according to the present embodiment is further arranged so that activated carbon comes into contact with the water to be purified. According to this, chlorine (hypochlorous acid: HClO and hypochlorite ion: ClO ) added for disinfection of tap water can be removed from the water to be purified by the action of activated carbon. can. Therefore, the selective water purifier according to the present embodiment is particularly suitable as a water purifier for obtaining drinking water and water for manufacturing food and beverages. For example, in the case of a drinking water purifier for obtaining drinking water, In addition to harmful ions in tap water, chlorine (hypochlorous acid: HClO and hypochlorous acid ions: ClO ) can also be removed.
 本実施形態に係る選択的浄水装置において、選択的浄水材料および活性炭を浄水対象の水と接触させることを実現する具体的構成は限定されない。一例として、装置内に、浄水対象の水を通過させる管路を設け、当該管路の途中に、選択的浄水材料および活性炭を配置する構成としてもよい。この構成において、例えば、選択的浄水材料と活性炭とを別々の箇所に配置してもよく、または1箇所に配置してもよい。1箇所に配置する場合、選択的浄水材料と活性炭とを混合してもよく、仕切ってもよく、または選択的浄水材料を活性炭の表面に接着してもよい。選択的浄水材料は適宜バインダー等を用いて接着、成型すればよい。 In the selective water purifier according to the present embodiment, the specific configuration for bringing the selective water purification material and activated carbon into contact with the water to be purified is not limited. As an example, a configuration may be adopted in which a pipeline for passing water to be purified is provided in the apparatus, and the selective water purification material and activated carbon are arranged in the middle of the pipeline. In this configuration, for example, the selective water purification material and the activated carbon may be located in separate locations or may be located in one location. If located in one location, the selective water purification material and activated carbon may be mixed, partitioned, or the selective water purification material may be adhered to the surface of the activated carbon. The selective water purification material may be adhered and molded using a suitable binder or the like.
 また、他の構成例として、本実施形態に係る選択的浄水装置を、交換式の浄水カートリッジを備える浄水キットとして構成してもよい。この構成において、例えば、浄水キットをプレスポット型に構成し、プレスロッド先端のフィルタ部位を選択的浄水材料および活性炭を充填した浄水カートリッジに構成してもよい。これによれば、ポット内に浄水対象の水を入れてプレスロッドを押下げることで、ポット内の水を簡易に浄水できる。また、浄水カートリッジを簡易に取外して洗浄したり、交換したりすることができる。 As another configuration example, the selective water purifier according to this embodiment may be configured as a water purification kit including a replaceable water purification cartridge. In this configuration, for example, the water purification kit may be configured as a press spot type, and the filter portion at the tip of the press rod may be configured as a water purification cartridge filled with a selective water purification material and activated carbon. According to this, the water in the pot can be easily purified by putting water to be purified in the pot and pushing down the press rod. Also, the water purification cartridge can be easily removed for cleaning or replacement.
 フラックス法により選択的イオン交換結晶を合成した。溶質としての酸化チタン(TiO、アナターゼ)10.878gおよび炭酸ナトリウム(NaCO)2.406g(混合組成比は、TiO:NaCO=6:1)と、フラックスとしての硝酸ナトリウム(NaNO)7.716gと、を乾式混合した調合物(溶質濃度20mol%、計21.000g)を容量約30cmのアルミナるつぼ(純度99.6%)に充填し、アルミナ製の蓋をした。アルミナるつぼをアルミナ粉末を充填した磁器るつぼ内に設置し、磁器るつぼを電気炉内の所定位置(熱が逃げ易い開閉扉側の位置)に設置して、約45℃・h-1で600℃まで加熱した。次いでその温度で10h保持した後、5℃・h-1で500℃まで徐冷した。次いで電気炉の電源を切り、室温まで放冷した。次いでアルミナるつぼを温水に浸して、残存するフラックスを溶解除去し、生成結晶を得た。 Selective ion-exchange crystals were synthesized by the flux method. 10.878 g of titanium oxide (TiO 2 , anatase) and 2.406 g of sodium carbonate (Na 2 CO 3 ) as a solute (the mixing composition ratio is TiO 2 :Na 2 CO 3 =6:1), and nitric acid as a flux 7.716 g of sodium (NaNO 3 ) and a dry-mixed preparation (solute concentration 20 mol%, total 21.000 g) were filled into an alumina crucible (purity 99.6%) with a capacity of about 30 cm 3 and covered with an alumina lid. Did. Place an alumina crucible in a porcelain crucible filled with alumina powder, place the porcelain crucible in a predetermined position in an electric furnace (position on the open/close door side where heat can easily escape), and heat at about 45 ° C. h -1 at 600 ° C. heated to Then, after holding at that temperature for 10 hours, it was gradually cooled to 500°C at 5°C·h -1 . Then, the power of the electric furnace was turned off, and it was allowed to cool to room temperature. Next, the alumina crucible was immersed in hot water to dissolve and remove the remaining flux to obtain crystals.
 図2は、生成結晶のX線回折パターンである。図2Aは、アルミナるつぼ全体をアルミナ粉末に埋めた場合、また、図2Bは、アルミナるつぼ下部だけをアルミナ粉末に埋めた場合である。図2Aと図2Bとでは、加熱時の重量損失の程度の違いから、生成結晶の構成にある程度の違いが見られたが、いずれも三チタン酸ナトリウム(NaTi)結晶を表す回折線の強度が最も強い強度を示し、三チタン酸ナトリウム結晶を主結晶とする結晶であることが分かる。 FIG. 2 is the X-ray diffraction pattern of the resulting crystal. FIG. 2A shows the case where the entire alumina crucible is filled with alumina powder, and FIG. 2B shows the case where only the lower part of the alumina crucible is filled with alumina powder. 2A and 2B show some differences in the composition of the crystals produced due to the difference in the degree of weight loss during heating, but both represent sodium trititanate (Na 2 Ti 3 O 7 ) crystals. The intensity of the diffraction line shows the strongest intensity, and it can be seen that the crystal is a sodium trititanate crystal as the main crystal.
 フラックス法により上記記載の条件で三チタン酸ナトリウム結晶を主結晶とする結晶(図2Bに相当する結晶)を改めて合成し、当該生成結晶とバインダーとを含む円筒形の活性炭成型体(長さ:10インチ、直径:約70mm)を作製した。結晶の配合量(重量)は、活性炭重量の10%とした。この活性炭成型体を収容するハウジングを、浄水対象の水が通過する管路の途中に5本配設し、浄水装置を作製した。この浄水装置(管路)に水道水を流速60L/分で数分間通流させた後採水して成分分析を行った(実施例1)。 A crystal having a sodium trititanate crystal as a main crystal (a crystal corresponding to FIG. 2B) was again synthesized by the flux method under the conditions described above, and a cylindrical activated carbon compact (length: 10 inches, diameter: about 70 mm). The amount (weight) of the crystals was 10% of the weight of the activated carbon. A water purifier was manufactured by arranging five housings containing the activated carbon compacts in the middle of a pipeline through which water to be purified passes. Tap water was passed through this water purifier (pipe line) at a flow rate of 60 L/min for several minutes, and then the water was sampled and subjected to component analysis (Example 1).
 一方、イオン交換樹脂が搭載された市販の浄水器を通常に(マニュアル記載の通りに)使用して水道水を浄水した後採水して成分分析を行った(比較例1)。 On the other hand, after purifying tap water using a commercially available water purifier equipped with an ion exchange resin (as described in the manual), water was sampled and component analysis was performed (Comparative Example 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、比較例1に係る水は、水道水に対してMg、K、Ca、Mnの濃度が低下し、Cu、Cd、Pbは検出されなかった。これに対して、実施例1に係る水は、水道水に対してMg、K、Caの濃度は殆ど変化しなかった。また、Mn、Feの濃度が低下し、Cu、Cd、Pbは検出されなかった。このことから、実施例1に係る生成結晶には、浄水対象の水から、カルシウムイオン、マグネシウムイオン、およびカリウムイオンを残留させつつ、鉄イオン、マンガンイオン、および銅イオンを含む重金属イオンを除去する選択的陽イオン交換特性を有することが示された。

 
According to Table 1, the water according to Comparative Example 1 had lower concentrations of Mg, K, Ca, and Mn than tap water, and Cu, Cd, and Pb were not detected. In contrast, in the water according to Example 1, the concentrations of Mg, K, and Ca hardly changed from those in the tap water. Also, the concentrations of Mn and Fe decreased, and Cu, Cd and Pb were not detected. Therefore, the crystals produced according to Example 1 remove heavy metal ions including iron ions, manganese ions, and copper ions from the water to be purified, while leaving calcium ions, magnesium ions, and potassium ions. It was shown to have selective cation exchange properties.

Claims (12)

  1.  浄水対象の水から、カルシウムイオン、マグネシウムイオン、カリウムイオンからなる群より選ばれる少なくとも1種類のイオンを残留させつつ、重金属イオンを除去する選択的浄水材料であって、
     選択的イオン交換結晶からなり、
     前記選択的イオン交換結晶は、化学式NaTi(ただし、0<x、0<y、0<z)で表されるチタン酸ナトリウム結晶を含有し、
     前記チタン酸ナトリウム結晶は、チタン酸化物によって形成された層状構造間にナトリウムイオンが配置された結晶構造を有していること
    を特徴とする選択的浄水材料。
    A selective water purification material that removes heavy metal ions from water to be purified while leaving at least one type of ion selected from the group consisting of calcium ions, magnesium ions, and potassium ions,
    made of selective ion exchange crystals,
    The selective ion exchange crystal contains a sodium titanate crystal represented by the chemical formula Na x Ti y O z (where 0<x, 0<y, 0<z),
    A selective water purification material, wherein the sodium titanate crystal has a crystal structure in which sodium ions are arranged between layered structures formed by titanium oxide.
  2.  前記チタン酸ナトリウム結晶は、化学式NaTiで表される三チタン酸ナトリウム結晶であること
    を特徴とする請求項1記載の選択的浄水材料。
    The selective water purification material according to claim 1 , characterized in that said sodium titanate crystals are sodium trititanate crystals represented by the chemical formula Na2Ti3O7 .
  3.  前記選択的イオン交換結晶は、フラックス法で合成された結晶であること
    を特徴とする請求項1または請求項2記載の選択的浄水材料。
    3. The selective water purification material according to claim 1, wherein said selective ion exchange crystals are crystals synthesized by a flux method.
  4.  醸造用水を得るための醸造用浄水材料であること
    を特徴とする請求項1~3のいずれか1項に記載の選択的浄水材料。
    The selective water purification material according to any one of claims 1 to 3, which is a brewing water purification material for obtaining brewing water.
  5.  前記水が硬水である硬水用浄水材料であること
    を特徴とする請求項1~3のいずれか1項に記載の選択的浄水材料。
    The selective water purification material according to any one of claims 1 to 3, wherein the water is hard water.
  6.  請求項1~3のいずれか1項に記載の選択的浄水材料、およびバインダーを含む混合物が成型された成型体からなること
    を特徴とする選択的浄水成型体。
    4. A selective water purification molded article comprising a molded article obtained by molding a mixture containing the selective water purification material according to any one of claims 1 to 3 and a binder.
  7.  前記成型体は、活性炭を含んでいること
    を特徴とする請求項6記載の選択的浄水成型体。
    7. The selective water purification molded body according to claim 6, wherein said molded body contains activated carbon.
  8.  前記成型体は、ビーズ状またはペレット状をなし、
     前記成型体が複数集合した集合体として用いられるものであること
    を特徴とする請求項6または請求項7記載の選択的浄水成型体。
    The molded body has a bead shape or a pellet shape,
    8. A selective water-purifying molded body according to claim 6 or 7, wherein said molded body is used as an aggregate in which a plurality of said molded bodies are assembled.
  9.  請求項1~3のいずれか1項に記載の選択的浄水材料が、前記水と接触するように配設されていること
    を特徴とする選択的浄水装置。
    A selective water purification device, wherein the selective water purification material according to any one of claims 1 to 3 is disposed so as to be in contact with said water.
  10.  活性炭が、前記水と接触するようにさらに配設されていること
    を特徴とする請求項9記載の選択的浄水装置。
    10. The selective water purification system of claim 9, further comprising activated carbon disposed in contact with said water.
  11.  醸造用水を得るための醸造用浄水装置であること
    を特徴とする請求項9または請求項10記載の選択的浄水装置。
    11. A selective water purification system according to claim 9 or 10, characterized in that it is a brewing water purification system for obtaining brewing water.
  12.  前記水が硬水である硬水用浄水装置であること
    を特徴とする請求項9または請求項10記載の選択的浄水装置。

     
    11. The selective water purifier according to claim 9 or 10, wherein the water is hard water.

PCT/JP2022/010248 2021-03-22 2022-03-09 Selective water purification material, selective water purification molded body, and selective water purification device WO2022202319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508964A JPWO2022202319A1 (en) 2021-03-22 2022-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047234 2021-03-22
JP2021047234 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202319A1 true WO2022202319A1 (en) 2022-09-29

Family

ID=83395678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010248 WO2022202319A1 (en) 2021-03-22 2022-03-09 Selective water purification material, selective water purification molded body, and selective water purification device

Country Status (2)

Country Link
JP (1) JPWO2022202319A1 (en)
WO (1) WO2022202319A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117729A (en) * 2006-08-04 2008-02-06 上海秀普复合材料有限公司 Method for treating water solution heavy metallic ion by using trititanic acid sodium whisker
JP2011200779A (en) * 2010-03-25 2011-10-13 Shinshu Univ Filter material and cleaning apparatus
WO2012058583A1 (en) * 2010-10-29 2012-05-03 Graver Technologies, Llc Synthesis of sodium titanate
CN102949983A (en) * 2012-12-14 2013-03-06 山东轻工业学院 Preparation method of Na2Ti3O7 absorbing agent
JP2014069136A (en) * 2012-09-28 2014-04-21 Futamura Chemical Co Ltd Composite activated carbon material and method for manufacturing the same as well as filter body including the same
JP2015229122A (en) * 2014-06-03 2015-12-21 フタムラ化学株式会社 Metal ion adsorbent material, and combined adsorbent material obtained by using the same
JP2019089043A (en) * 2017-11-16 2019-06-13 フタムラ化学株式会社 Metal ion adsorbent and composite adsorbent using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117729A (en) * 2006-08-04 2008-02-06 上海秀普复合材料有限公司 Method for treating water solution heavy metallic ion by using trititanic acid sodium whisker
JP2011200779A (en) * 2010-03-25 2011-10-13 Shinshu Univ Filter material and cleaning apparatus
WO2012058583A1 (en) * 2010-10-29 2012-05-03 Graver Technologies, Llc Synthesis of sodium titanate
JP2014069136A (en) * 2012-09-28 2014-04-21 Futamura Chemical Co Ltd Composite activated carbon material and method for manufacturing the same as well as filter body including the same
CN102949983A (en) * 2012-12-14 2013-03-06 山东轻工业学院 Preparation method of Na2Ti3O7 absorbing agent
JP2015229122A (en) * 2014-06-03 2015-12-21 フタムラ化学株式会社 Metal ion adsorbent material, and combined adsorbent material obtained by using the same
JP2019089043A (en) * 2017-11-16 2019-06-13 フタムラ化学株式会社 Metal ion adsorbent and composite adsorbent using the same

Also Published As

Publication number Publication date
JPWO2022202319A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
Margeta et al. Natural zeolites in water treatment–how effective is their use
Taffarel et al. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites
Meng et al. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater
Taj et al. Lithium, rubidium and cesium ion removal using potassium iron (III) hexacyanoferrate (II) supported on polymethylmethacrylate
US20020195407A1 (en) Purfication media
CN1821108A (en) Poly metal cluster water purifying material and its preparing method and use
Kinhikar Removal of nickel (II) from aqueous solutions by adsorption with granular activated carbon (GAC)
JP5970453B2 (en) Iron-copper composition for fluid purification
Bahabadi et al. Removal of Cd, Cu and Zn ions from aqueous solutions using natural and Fe modified sepiolite, zeolite and palygorskite clay minerals
ES2232400T3 (en) ZEOLITAS X EXCHANGED SPECIFICALLY WITH LITHIUM, ITS PREPARATION PROCEDURE AND ITS USE WITH NITROGEN ADSORBENTS IN THE SEPARATION OF AIR GASES.
WO2014136550A1 (en) Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same.
Ahmed et al. Characterization and application of kaolinite clay as solid phase extractor for removal of copper ions from environmental water samples
Pan et al. The investigation into the adsorption removal of ammonium by natural and modified zeolites: kinetics, isotherms, and thermodynamics
KR101739286B1 (en) Manufacturing method of adsorbent for phosphorus chemisorption
WO2022202319A1 (en) Selective water purification material, selective water purification molded body, and selective water purification device
JP2013146660A (en) Cleaning agent and cleaning method
El-Kordy et al. Manufacturing of novel zeolite-clay composite membrane from natural clay and diatomite, an electrochemical study of the surface and application towards heavy metals removal
Thole et al. Water defluoridation by bauxite-gypsum magnesite (BG-Mc) based filters calcined at 350 500C
JP2006239482A (en) Desalination method for seawater, mixed adsorbent and desalination device for seawater using the adsorbent
KR100863755B1 (en) Composition comprising gadolinium oxide and water filtering method using the same
JP3695845B2 (en) Water purification material
JP6187898B2 (en) Dioxin adsorbent, heavy metal adsorbent and method for producing the adsorbent
WO2006080467A1 (en) Hydrotalcite-like compound, bromide ion exchanger, and utilization thereof
JP4469948B2 (en) Ammonium ion adsorbent and method for removing ammonium ion
JP7013067B1 (en) Filtration material, manufacturing method of filtration material, water treatment material and water purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775111

Country of ref document: EP

Kind code of ref document: A1