WO2014136550A1 - Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same. - Google Patents

Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same. Download PDF

Info

Publication number
WO2014136550A1
WO2014136550A1 PCT/JP2014/053502 JP2014053502W WO2014136550A1 WO 2014136550 A1 WO2014136550 A1 WO 2014136550A1 JP 2014053502 W JP2014053502 W JP 2014053502W WO 2014136550 A1 WO2014136550 A1 WO 2014136550A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treatment agent
mass
water treatment
harmful substances
Prior art date
Application number
PCT/JP2014/053502
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 英一郎
飯島 勝之
智之 古田
宏介 森
後藤 義己
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480012081.5A priority Critical patent/CN105008285B/en
Publication of WO2014136550A1 publication Critical patent/WO2014136550A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Definitions

  • the present invention relates to a granular environmental water treatment agent for removing harmful substances from groundwater, river water, lake water, various industrial effluents, etc. contaminated with harmful substances that are harmful to human bodies and cause health problems,
  • the present invention relates to a method for treating water contaminated with harmful substances.
  • Hazardous substances that are harmful to the human body and cause health problems are harmful to the human body if ingested above a certain amount. is there.
  • Water quality standards such as environmental standards and drainage standards have been established so that health hazards will not be caused by ingesting water contaminated with harmful substances or animals and plants grown in a contaminated environment. ing. Therefore, when harmful substances contained in water such as rivers, lakes, groundwater, and various industrial wastewaters exceed the water quality standards, it is necessary to remove these harmful substances from the water.
  • Various water treatment agents and water treatment methods have been devised as means for removing (purifying) harmful substances from water contaminated with harmful substances (hereinafter referred to as “polluted water”).
  • a general water treatment agent and water treatment method a method using an inorganic flocculant such as an iron salt or an aluminum salt (hereinafter referred to as a precipitation treatment method) is performed.
  • This precipitation method is a method in which after adding an inorganic flocculant to contaminated water and adjusting the pH to precipitate the flocs of metal hydroxide, the flocs take in harmful substances and co-precipitate them for separation. It is.
  • a polymer flocculant may be used in combination with the flocculant.
  • the aggregated floc incorporating toxic substances is an aggregate of amorphous fine particles, and requires a large amount of equipment and a long time to settle. Furthermore, there is a problem in that a large amount of precipitate (sludge) treatment is complicated and requires many steps.
  • an adsorbent such as activated carbon, activated alumina, zeolite, titanate, zirconium hydrate, etc. is brought into contact with contaminated water containing harmful substances, and harmful substances are brought into contact.
  • a method for adsorbing and removing (hereinafter referred to as an adsorption method) has been proposed.
  • the adsorption method can achieve a high adsorption / removal efficiency by selecting an adsorbent having an excellent adsorption / removal capability.
  • an adsorbent is usually expensive, an increase in processing cost is inevitable.
  • iron powder which is cheaper and more versatile than the adsorbent described above, and an adsorption method using this as an adsorbent has been proposed.
  • ordinary iron powder has insufficient adsorption and removal capability, and a satisfactory removal effect cannot be obtained. Therefore, development of iron powder with enhanced adsorption and removal capability of harmful substances has been promoted.
  • Patent Document 1 iron powder containing an appropriate amount of at least one selected from phosphorus, sulfur, and boron as iron powder for removing harmful substances, and further, a specific amount of carbon and inevitable impurities (for example, Si) Water atomized iron powder containing Mn) has been proposed.
  • this technology by adding specific elements in specific amounts in iron powder, the elution rate of iron into contaminated water can be increased, and harmful substances such as phosphorus compounds, heavy metals, and organic chlorine compounds in contaminated water can be increased. It is disclosed that it can be removed efficiently.
  • this technology mainly removes phosphorus compounds in contaminated water, and the adsorption removal ability of heavy metals such as cadmium, hexavalent chromium, selenium, lead, arsenic, etc. Not considered.
  • heavy metals such as cadmium, hexavalent chromium, selenium, lead, arsenic, etc.
  • the present inventors confirmed the adsorption removal ability of heavy metals etc. about the said iron powder, it could not be said that the adsorption removal ability of heavy metals etc. was enough.
  • Patent Document 2 proposes a method for producing reducible sponge iron containing a predetermined amount of sulfur and its use as an environmental purification agent for treating contaminated water that has a reducing ability for organic halogen compounds, heavy metals, etc. and has excellent sustainability.
  • a technique is disclosed in which an organic halogen compound is reduced and dehalogenated or heavy metal or the like is reduced and insolubilized with sponge iron (also referred to as sponge iron) having an excellent reducing ability.
  • Sponge iron is considered to be an industrially effective method because it has a higher surface area than ordinary iron powder and thus has high removal performance and efficiency, and is cheaper than other adsorbents.
  • sponge iron is more expensive than ordinary iron powder obtained by the water atomization method, there is still room for further improvement from the viewpoint of versatility on an industrial scale.
  • iron powder like patent document 1 and patent document 2 has, when iron powder is impregnated with water in order to treat contaminated water, iron powder is influenced by water molecules or dissolved oxygen. Since the surface of the iron is covered with iron oxide, iron hydroxide, iron oxyhydroxide, etc., and the generation of iron ions is hindered, the adsorption and removal ability derived from the action of iron ions cannot be maintained for a long time. It is done.
  • Patent Document 3 a contaminated soil insolubilizing solidifying agent characterized by containing MgO and iron powder, and a sulfate, hydrochloride, sulfamic acid, phosphoric acid, and a phosphorus compound whose aqueous solution has a pH of 7 or less.
  • Contaminated soil insolubilizing solidifying agent containing one or two or more auxiliary agents selected from the group consisting of, and one or two selected from the group consisting of water-soluble gums, water-soluble fibrin derivatives and clays.
  • a contaminated soil insolubilizing solidifying agent containing a viscosity imparting agent of more than seeds has been proposed.
  • MgO and iron powder reduce and insolubilize harmful substances in the soil (in the example of Patent Document 3, lead, arsenic and trichlorethylene are targeted), and MgO solidifies the soil by solidifying soil. It can contain harmful substances insolubilized in it, and when an auxiliary agent is added, insolubilization of harmful substances in the soil is promoted, and the gel strength of the solidified soil can be improved. It is disclosed that the settling of iron powder in the insolubilized solidifying agent can be prevented.
  • Patent Document 3 since 1 to 50 parts by mass of iron powder is usually added to 100 parts by mass of MgO, heavy metals and the like in this technique are used.
  • the insolubilization ability is largely due to the insolubilization ability and soil solidification ability of MgO. Therefore, after the reaction between the MgO component and the soil proceeds and the MgO component is consumed, the insolubilizing ability may not be exhibited.
  • Patent Document 3 the purpose of use of the technology is specified to insolubilize and solidify harmful substances in contaminated soil, and its application to water treatment agents has not been studied at all, and the description is also suggested. I have not done it.
  • Patent Document 4 it is a purification material that is mixed with soil and installed at a thickness of 5 cm or more below or on the side or both of contaminated soil or waste, and is capable of adsorbing heavy metals by contact with water, Iron hydroxide, iron oxide or hydrate thereof, magnesium hydroxide, magnesium oxide or hydrate thereof, cerium carbonate fluoride, cerium hydroxide, cerium oxide or hydrate thereof, or powder containing one or more thereof.
  • patent document 5 it is a purification material formed by granulating metal iron powder and / or iron oxide powder, magnesium hydroxide and / or magnesium oxide, and a pH adjuster with a binder, and the pH adjuster is treated.
  • the purification agent is 10 to 100 parts by weight with respect to 100 parts by weight of magnesium hydroxide and / or magnesium oxide
  • the pH adjuster is selected from aluminum sulfate, iron sulfate, iron chloride, acid clay, and citric acid
  • This technology is intended to mitigate the effects of increased pH values caused by metal iron powder, magnesium oxide, and magnesium hydroxide produced by hydration of magnesium oxide on contaminated soil that is complexly contaminated with heavy metals. It has been disclosed that a purifying material granulated including a pH adjusting agent can uniformly maintain various materials and can always maintain an optimum pH value at which the purifying action of metallic iron powder can be exhibited.
  • a binder is essential for granulating, and since an aqueous binder is used as described in the specification of Patent Document 5, the binder dissolves and flows out in water. There is concern that eutrophication will adversely affect the surrounding environment.
  • the hardness of the granulated purification material there is a possibility that the hardness may be remarkably lowered due to the outflow of the aqueous binder, or there is a possibility that the granulated state will collapse. It is suggested that time cannot be maintained.
  • the specific blending ratio of metal iron powder and / or iron oxide powder and magnesium hydroxide and / or magnesium oxide is not shown.
  • the blending ratio of magnesium and magnesium is 1: 1 (mass ratio), and is optimal as a water treatment agent, such as metal iron powder and / or iron oxide powder, and magnesium hydroxide and / or magnesium oxide.
  • the blending ratio of is not disclosed.
  • the present invention has sufficient hardness and can maintain the adsorption and removal ability of heavy metals for a long time, does not cause environmental pollution, has high versatility, and is resistant to water flow even when used in a column or the like. It is an object of the present invention to provide a granular environmental water treatment agent that is easy to handle, and a method for treating water contaminated with harmful substances using them.
  • the above-mentioned problem is that granulated by adding fresh water to a composition in which magnesia and acidic inorganic sulfate are mixed at a specific ratio with respect to iron powder.
  • the present invention has been completed.
  • the first of the present invention for solving the above-mentioned problems is a water treatment agent for removing harmful substances, which comprises adding fresh water to a composition containing iron powder, magnesia, and acidic inorganic sulfate.
  • the particulate environmental water treatment agent according to the first aspect is further characterized by any one or more of the following (a) to (d).
  • the composition contains 10 to 50 parts by mass of magnesia and 5 to 50 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder.
  • the fresh water is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the composition;
  • the magnesia is obtained by pulverizing light-burned magnesia containing 60% by mass or more of magnesium oxide, and is in a powder form having a maximum particle size of 2.0 mm or less.
  • the acidic inorganic sulfate is at least one selected from iron (II) salt, iron (III) salt, and aluminum salt, and has a maximum particle size of 2.0 mm or less.
  • the hardness of the granular material is 80% or more when measured according to JIS K 1474-2007. .
  • a fourth aspect of the present invention is the particulate environmental water treatment agent according to the first or second aspect, wherein the composition is granulated by adding fresh water, and then the particle size is adjusted in the range of 0.1 to 2.0 mm. It is characterized by being in the form of a granular material.
  • 5th of this invention is the processing method of the water contaminated with the harmful
  • 6th of this invention is the processing method of the water contaminated with the harmful substance of 5th invention,
  • the said contaminated water is from the soil containing a hazardous substance, sludge, coal ash, incineration ash, dust, and industrial waste. It is contained in the kind chosen.
  • a seventh aspect of the present invention is the method for treating water polluted with harmful substances according to the fifth aspect, wherein polluted water containing harmful substances is passed through the packed bed filled with the particulate environmental water treatment agent. It is made to contact.
  • the harmful substance can be adsorbed and removed from the contaminated water containing the harmful substance only by using a readily available material, and the granular material has high hardness. Since harmful substances can be adsorbed and removed over a period of time and does not contain an organic compound binder or the like, the influence on the environment can be reduced.
  • the amount of magnesia used can be reduced as compared with the conventional one, and at the same time, the hardness of the granular environmental water treatment agent can be made sufficient.
  • the second (b) of the present invention no water-based binder is used, environmental pollution is not caused, and hydraulic action of magnesia and acidic inorganic sulfate can be expressed.
  • a processing agent can be made into moderate hardness.
  • the second (c) of the present invention since it is distributed as an industrial product, it can be easily obtained, and powdery light-burned magnesia that is generally used in a wide variety can be used. It can be highly versatile and economical.
  • the second (d) of the present invention not only is it possible to use acidic inorganic sulfates which are distributed as industrial products and are easily available and generally used in a wide variety of fields. These acidic inorganic sulfates are highly soluble in water, can adjust the pH quickly, and can exhibit more excellent adsorption and removal ability due to the aggregation and precipitation action and reduction action of these acidic inorganic sulfates.
  • the third aspect of the present invention since it is a granule that is granulated by adding only fresh water without using an aqueous binder, it is impregnated with water or subjected to external force. Therefore, the shape of the granular material can be maintained for a long time because it does not easily collapse.
  • the fourth aspect of the present invention when used in a contaminated water treatment column or the like, while making the granulated product into a specific particle size range, the water flow resistance is reduced and clogging is suppressed. It is possible to pack densely, sufficiently ensure the contact area and contact time between the water treatment agent and the contaminated water, and increase the efficiency of adsorbing and removing harmful substances from the contaminated water.
  • the harmful substance by bringing contaminated water containing a harmful substance into contact with a water treatment agent, the harmful substance can be adsorbed and removed from the contaminated water, and the concentration of the harmful substance can be reduced as compared with that before the treatment. .
  • the harmful substances can be adsorbed and removed from the contaminated water and the concentration of the harmful substances can be reduced more than before the treatment, so that the diffusion of the harmful substances to the environment can be prevented.
  • a contact time between the water treatment agent and the contaminated water is provided by providing a packed bed filled with the water treatment agent and allowing the contaminated water containing harmful substances to pass through and contact the packed bed. Therefore, the efficiency of adsorbing and removing harmful substances from contaminated water can be increased.
  • FIG. 1 is a schematic view showing an example of a method for treating water contaminated with harmful substances when the granular environmental water treatment agent of the present invention is used in a column.
  • the present invention is described in detail below.
  • the particulate environmental water treatment agent of the present invention is intended for contaminated water contaminated with harmful substances that are harmful to the human body and cause health problems.
  • the particulate environmental water treatment agent refers to a water treatment agent that is granular and does not cause environmental pollution and can adsorb and remove harmful substances.
  • the water treatment agent of the present invention is made into a granulated form by adding fresh water to a composition containing iron powder, magnesia, and acidic inorganic sulfate.
  • the composition may contain other components as necessary.
  • the amount of the iron powder is, for example, 50% by mass or more, preferably 55% by mass or more, more preferably 60% by mass or more, and further preferably 65% by mass with respect to the entire composition from the viewpoint of adsorbing and removing harmful substances. For example, it is 97% by mass or less, preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
  • the amount of magnesia is, for example, 2% by mass or more, preferably 4% by mass or more, more preferably 6% by mass or more, and further preferably 8% by mass or more based on the entire composition. For example, it is 36% by mass or less, preferably 34% by mass or less, more preferably 32% by mass or less, and further preferably 30% by mass or less.
  • the amount of the acidic inorganic sulfate is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, further preferably from the viewpoint of a hydraulic reaction with magnesia.
  • This granulated product can be further granulated as necessary to form a granular environmental water treatment agent.
  • the ability to adsorb and remove harmful substances from contaminated water can be achieved by the ability to adsorb and remove the harmful substances derived from the material of the water treatment agent.
  • the water treatment agent of the present invention preferably does not contain a binder, and water is used instead of the conventional binder, and a hydraulic reaction is caused by a chemical reaction such as magnesia and water, magnesia and acidic inorganic sulfate and water. It can be expressed to increase the hardness of the granulated product, and can remove adsorbed harmful substances from contaminated water over a long period of time. Furthermore, since no conventional binder is used, there is no environmental pollution.
  • Composition A The role of iron powder, which is a constituent of iron powder, is as follows: (1) Iron ions (Fe 2+ ) eluted in the vicinity of the iron powder surface are anions (selenate ion (SeO 4 2- ), arsenate in contaminated water) (2) Cation (lead ion (Pb 2+ ), cadmium ion (Cd), effect of adsorbing and immobilizing poorly soluble iron compounds produced by reaction with ions (AsO 4 3- )) on the surface of iron powder 2+ )) in which the harmful substances dissolved in water are reduced to metals by the iron anodic reaction (Fe ⁇ Fe 2+ + 2e ⁇ ), and deposited on the surface of the iron powder to be immobilized, or ( 3) The poorly soluble chromium hydroxide produced by the reaction of hydroxide ions generated by the supply of electrons to water by the iron anode reaction and chromium ions (Cr 3+ , Cr
  • the iron powder used in the present invention is distributed as an industrial product, is easily available, is generally used in a wide variety of ways, is highly versatile, and economical, and is an atomizing method. Is preferable. Furthermore, the atomized iron powder produced by the water atomization method can be mass-produced, is economical, has the same components and particle size, and has a stable adsorption removal capability with little variation in performance. To more preferable.
  • sponge iron powder, cast iron powder, iron-base alloy powder (pre-alloy alloy powder) and the like can be used in addition to the atomized iron powder as long as the effects of the present invention are achieved.
  • the preferable average particle diameter of the raw iron powder that improves the hardness of the granulated body by the action of the iron powder as an aggregate in the granulation step is 1000 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 80 ⁇ m or less. It is. Further, the lower limit of the average particle size of the iron powder is preferably 50 ⁇ m or more, more preferably 55 ⁇ m or more, and further preferably 60 ⁇ m or more.
  • the “average particle size” means a particle size distribution obtained by a dry sieving test using a sieve (sieving) specified in JIS Z 8801, wherein the percentage above the cumulative sieve or the percentage below the cumulative sieve is 50 mass. % Particle size.
  • magnesia which is a component of magnesia, is as follows: (1) The effect of adsorbing harmful substances (lead, arsenic, etc.) on magnesium hydroxide (Mg (OH) 2 ) produced by hydration of magnesia (MgO), (2) Due to the formation of magnesium hydroxide, the pH in the vicinity increases to about 10 to 11, and harmful substances (lead, cadmium, etc.) that form poorly soluble hydroxides in this range of pH are precipitated and insolubilized.
  • the magnesia used in the present invention is distributed as an industrial product, is easily available, and is generally widely used.
  • magnesium hydroxide purified from seawater is calcined.
  • the magnesia obtained by baking the natural ore magnesite obtained in this way, etc. can be used.
  • magnesia that rapidly hydrates and contains a large amount of magnesium oxide (MgO) is preferable in order to improve the ability to adsorb and remove harmful substances. It is preferable that it is obtained by pulverizing magnesia as necessary.
  • Magnesium oxide is more preferably 70% by mass or more, more preferably 75% by mass or more, preferably 99% by mass or less, more preferably 98% by mass or less, and still more preferably 95% by mass or less in light-burned magnesia. is there.
  • the firing temperature when producing light-burned magnesia varies depending on the raw material, but in general, when magnesium hydroxide purified from seawater is used as the raw material, it is about 350 ° C or higher. When natural ore magnesite is used as the raw material, Baking at about 540 ° C. or higher is preferred. On the other hand, when the firing temperature is higher than 1,000 ° C., the hydration reactivity of magnesia is impaired. Therefore, in order to obtain light calcined magnesia having a high hydration reactivity, firing at a temperature lower than this is required. preferable.
  • the magnesia used in the present invention should be a powder obtained by pulverization so that the maximum particle size is 2.0 mm or less.
  • “the maximum particle size is 2.0 mm or less” of magnesia is, for example, a cumulative sieving percentage of the particle size distribution obtained by a wet sieving test using a sieve (sieve) specified in JIS Z 8801 is 100. It means that the particle size is mass%.
  • a preferable range of the maximum particle size is 0.60 mm or less, more preferably 0.15 mm or less, and further preferably 0.045 mm or less.
  • the lower limit of the maximum particle size is not particularly limited as long as it exists as particles, but for example, the size of primary particles observed with a scanning electron microscope is usually 0.001 ⁇ m or more (particularly 0.01 ⁇ m or more).
  • the preferable average particle diameter of magnesia is 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 20 ⁇ m or less, preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the average particle size is a particle size corresponding to a cumulative 50% of the volume reference particle size measured by a laser diffraction / scattering particle size distribution measuring apparatus (the dispersion medium uses an organic solvent such as isopropanol).
  • the role of the acidic inorganic sulfate which is a constituent of the acidic inorganic sulfate, mainly includes an effect of promoting a hydraulic reaction with magnesia to form a curable substance.
  • the acidic inorganic sulfate used in the present invention is distributed as an industrial product, is easily available, and is generally used in a wide variety, and those exhibiting pH acidity are preferable, and iron (II) One or more selected from a salt, an iron (III) salt, and an aluminum salt can be used.
  • Preferred acidic inorganic sulfates include ferrous sulfate such as ferrous sulfate and ferric sulfate, aluminum sulfate and the like. Among these, ferrous sulfate (FeSO 4 ) or a hydrate thereof (for example, monohydrate, tetrahydrate, pentahydrate, heptahydrate) is particularly preferable.
  • these salts are preferably in the form of a powder having a maximum particle size of 2.0 mm or less.
  • the maximum particle size is larger than 2.0 mm, the contact area between magnesia, acidic inorganic sulfate and water becomes small, and due to insufficient magnesium oxysulfate production, it contributes to the hydraulic reaction in the granulation process. May lead to suppression.
  • a preferable range of the maximum particle size is 1.0 mm or less, more preferably 0.6 mm or less, and is usually 0.05 ⁇ m or more (particularly 0.1 ⁇ m or more).
  • the average particle size of the acidic inorganic sulfate is preferably 600 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 106 ⁇ m or less, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • “the maximum particle size is 2.0 mm or less” of the acidic inorganic sulfate is, for example, a cumulative percentage of the particle size distribution obtained by a dry sieving test using a sieve defined in JIS Z8801 is 100. It means that the particle size is mass%.
  • the “average particle diameter” of the acidic inorganic sulfate has the same meaning as in the case of the iron powder.
  • iron sulfate is preferably 70% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass or more, preferably 99% by mass or less, more preferably 98% by mass in the acidic inorganic sulfate.
  • it is more preferably 95% by mass or less.
  • the composition preferably contains 10 to 50 parts by mass of magnesia and 5 to 50 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder, and more preferably 100 parts by mass of iron powder. 12 to 48 parts by mass of magnesia, 6 to 30 parts by mass of acidic inorganic sulfate, more preferably 15 to 45 parts by mass of magnesia and 7 to 20 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder To do. When mixed in such a ratio, the water treatment agent granulated and granulated as follows can have sufficient hardness.
  • the composition When the composition is used by being packed in a contaminated water treatment column or the like, the water resistance is reduced and the clogging factor is avoided by making the composition into a granular form having excellent handleability.
  • Granulation is easily achieved by adding an appropriate amount of fresh water to the degree of granulation by the granulation step and granulating.
  • the reason why it can be granulated is that the magnesium hydroxide contained in the water treatment agent binds the constituent particles together, and the magnesium hydroxide produced by magnesia hydration gives an appropriate viscosity. This is considered to be due to the effect of maintaining the granular form in the grain process.
  • magnesia since magnesia is mixed in a ratio sufficient to granulate the water treatment agent, it is an organic compound binder for obtaining thickening and binding properties that are essential in the granulation process. Granulation can be carried out without using.
  • the hardness of the granulated product is increased by carbonation of magnesium hydroxide (generation of magnesium carbonate or basic magnesium carbonate).
  • granulation is also expected to be promoted in the formation of a curable substance by a hydraulic reaction between acidic inorganic sulfate and magnesia.
  • a curable substance called magnesium oxysulfate is formed by the hydraulic reaction with magnesia and promotes granulation.
  • iron powder due to the hydraulic reaction of magnesia and the hydraulic reaction of magnesia and acidic inorganic sulfate, iron powder has a role as an aggregate (skeleton), and hydraulic reactivity generated by the reaction of other materials It is considered that the compound fills the gaps between the material particles and advances the densification, and as a result, the strength of the cured body (granulated product) is increased.
  • the granulation method in the granulation step required for granulating the water treatment agent of the present invention is performed when granulating iron powder, magnesia and acidic inorganic sulfate mixed at a specific blending ratio.
  • the fresh water is not particularly limited as long as the composition can be granulated.
  • industrial water, tap water, pure water, ion-exchanged water, or the like may be used.
  • Examples of granulation methods include mixed granulation (rolling granulation (rotary dish type, rotary cylindrical type, rotary conical type), fluidized bed granulation (fluidized bed type, fluidized spouted bed type, spouted bed type), composite Fluidized bed (centrifugal rolling type, rolling flow type, spiral flow type), stirring granulation (Pagmill type, Henschel type, Eirich type)), forced granulation (compression molding (compression roll type, briquetting roll type) , Tableting type), extrusion granulation (screw type, rotary porous die type, rotary blade type), crushing granulation (rotary knife (horizontal) type, rotary knife ( ⁇ ⁇ ⁇ ) type, rotary bar type)) and the like.
  • mixed granulation rolling granulation (rotary dish type, rotary cylindrical type, rotary conical type)
  • fluidized bed granulation fluidized bed type, fluidized spouted bed type, spouted bed type
  • composite Fluidized bed
  • iron powder particles are used as the core, and when iron powder particles are bound together by magnesia or magnesium hydroxide, rolling is performed.
  • a granulation method such as rolling granulation, forced granulation or extrusion granulation
  • iron powder particles are used as the core, and when iron powder particles are bound together by magnesia or magnesium hydroxide, rolling is performed.
  • the granular material mainly composed of iron powder having a large specific gravity is easily consolidated, and as a result, a heavy granular material with sufficient hardness is easily obtained. Therefore, it is preferable.
  • Fresh water The amount of fresh water in the granulation step varies depending on the combination of materials, the blending ratio of the materials, the particle size of the material, and the granulation method employed, and may be adjusted to an optimum amount according to the conditions.
  • the fresh water is preferably 1 part by mass or more and 50 parts by mass or less, more preferably 3 parts by mass or more and 45 parts by mass or less, and further preferably 5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the composition. Even more preferably, it is 10 parts by mass or more and 35 parts by mass or less.
  • the amount of water added to each of iron powder, magnesia, and acidic inorganic sulfate is as follows.
  • the amount of water added for granulation is (1) 5 to 15 parts by weight with respect to 100 parts by weight of iron powder. (2) 30 to 150 parts by mass with respect to 100 parts by mass of magnesia, and (3) 10 parts by mass or less with respect to 100 parts by mass of acidic inorganic sulfate.
  • the amount of fresh water is too large, the solid content per granular material becomes small and heavy granular materials cannot be obtained, so there is a risk that the hardness of the granular materials will be insufficient. If the amount is too small, it is necessary to be careful because granulation may not be achieved or sufficient hardness may not be obtained due to insufficient hydraulic properties of magnesia and insufficient amount of magnesium hydroxide.
  • the particle size of the granular material can be used without any problem in the state obtained in the granulation step. However, by adjusting the particle size according to the purpose of use, harmful substances can be efficiently adsorbed and removed. Examples of the method for adjusting the particle size of the granular material include classification by sieving and adjustment by pulverization. In addition, when packed in a column for treatment of contaminated water, etc., it is possible to secure a sufficient contact area and contact time between the water treatment agent and the contaminated water by densely packing the particulate matter, and from the contaminated water to harmful substances The efficiency of adsorbing and removing can be increased.
  • the particle size of the granular material In order to densely fill the granular material, it is preferable to adjust the particle size of the granular material to a range of 0.1 to 2.0 mm, more preferably 0.2 to 1.8 mm, and still more preferably 0.00. Adjust to the range of 25-1.4mm. Furthermore, by adjusting the average particle size of the granular material to a range of 0.5 to 1.0 mm, not only can the granular material be densely packed, but also an appropriate gap (water passage) between the filled granular materials. Can reduce water flow resistance and lead to no clogging. As a result, not only the contact area and contact time between the water treatment agent and the contaminated water can be sufficiently secured, but also the granular material filled with the contaminated water can pass through all the parts. It can be used efficiently.
  • the granular environmental water treatment agent of the present invention when used in a contaminated water treatment column or the like, it is impregnated with water or by receiving external force. It is preferable to maintain the shape of the granular material for a long time without easily disintegrating.
  • the hardness of the granular material is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, as measured by JIS K 1474-2007 (activated carbon test method, hardness). It is. Further, when packed in a contaminated water treatment column or the like and used in a large amount of contaminated water for a long period, the hardness is preferably 95% or more.
  • the granular environmental water treatment agent of the present invention is suitably used for the treatment of contaminated water containing hazardous substances (for example, heavy metals such as lead, chromium, arsenic, selenium, cadmium).
  • hazardous substances for example, heavy metals such as lead, chromium, arsenic, selenium, cadmium.
  • the method for treating water contaminated with harmful substances of the present invention is characterized in that contaminated water containing harmful substances is brought into contact with the water treatment agent of the present invention.
  • the harmful substances can be adsorbed and removed from the contaminated water, and the concentration of the harmful substances can be reduced more than before the treatment.
  • the method for bringing the contaminated water into contact with the water treatment agent is not particularly limited.
  • the water treatment agent is filled in a suitable container and the contaminated water is allowed to pass through the container, and the water treatment agent is contaminated. After adding to water, the method of adsorbing harmful substances by stirring and dispersing can be used.
  • the concentration of harmful substances contained in contaminated water is not particularly limited, but the lower the concentration of harmful substances, the easier it is to adsorb and remove harmful substances to an environmental standard value or lower.
  • concentration of the harmful substance is high, it is possible to adsorb and remove the harmful substance to the environmental standard value or less by repeatedly performing the treatment with the water treatment agent of the present invention many times.
  • type or total amount of harmful substances contained in the contaminated water affects the adsorption / removal capacity and adsorption / removal efficiency. Select the composition of the water treatment agent and the contact method with the contaminated water. Thus, the efficiency of adsorption removal can be improved.
  • Contaminated water is not particularly limited as long as it contains harmful substances, and examples thereof include groundwater, river water, lake water, and various industrial wastewater.
  • the contaminated water may be contained in at least one selected from soil containing toxic substances, sludge, coal ash, incinerated ash, dust, and industrial waste. For example, if it is contained in at least one selected from soil, sludge, coal ash, incinerated ash, dust, and industrial waste that originally contained hazardous substances, it will be converted into hazardous substances at the stage of leaching or passing through them.
  • the water treatment agent of the present invention By contacting the contaminated water with the water treatment agent of the present invention, harmful substances can be adsorbed and removed from the contaminated water, and the concentration of harmful substances can be reduced compared to before treatment. It is possible to prevent diffusion.
  • harmful substances include arsenic, selenium, lead, cadmium and chromium.
  • a packed bed filled with the water treatment agent of the present invention may be provided, and the contaminated water containing harmful substances may be passed through the packed bed and contacted. Good.
  • Such a method is preferable because the contact time between the water treatment agent and the contaminated water can be sufficiently secured, and the efficiency of adsorbing and removing harmful substances from the contaminated water is increased.
  • the water treatment agent packed layer is not particularly limited as long as the granular material can be densely packed and the contact area and contact time between the water treatment agent and the contaminated water can be sufficiently ensured.
  • Examples include a column in which a contaminated water treatment column is filled with a water treatment agent, or a water treatment agent spread and leveled and stacked to give a sufficient thickness.
  • the column for the contaminated water treatment is selected to have an appropriate size according to the target treatment amount of the contaminated water and the treatment time. Further, for the packed bed spread with a water treatment agent, the layer thickness is adjusted according to the amount of contaminated water passing through the packed bed, the concentration and type of harmful substances.
  • one or a plurality of packed beds may be used.
  • the particle size of the water treatment agent may be changed according to the degree of contamination of the contaminated water.
  • the contaminated water may be adsorbed and removed by supplying the packed bed or the treatment apparatus including the packed bed twice or more.
  • toxic substances can be adsorbed and removed by contact with a water treatment agent, but when these are disposed of in landfills, contaminated water is continuously generated each time rainwater passes through.
  • the packed bed of the water treatment agent of the present invention may be disposed in the downward direction or the lateral direction of the landfill site so that it can be continuously treated.
  • FIG. 1 An example of a method for treating contaminated water containing harmful substances of the present invention is shown in FIG.
  • the contaminated water containing harmful substances is supplied to the tank 2 and stored.
  • the contaminated water containing harmful substances is preferably sent from the tank 2 to the packed tower 5 containing the water treatment agent 4 via the metering pump 3.
  • the differential pressure gauge 6 it is preferable to monitor the pressure of the water before sending the contaminated water to the packed tower and the pressure of the water after the harmful substances are adsorbed and removed from the packed tower by the differential pressure gauge 6.
  • the differential pressure gauge 6 it is possible to monitor whether or not the water flow resistance of the water treatment agent in the packed tower is increased by a differential pressure gauge. When the pressure difference of the differential pressure gauge is high, the contaminated water may be further diluted or the water treatment agent may be replaced.
  • Ferrous sulfate monohydrate FeSO 4 content 92.9% by mass
  • Maximum particle size of ferrous sulfate monohydrate 1.00mm
  • Measuring method of maximum particle size Dry sieving test using sieve (sieving) specified in JIS Z 8801
  • Average particle size of ferrous sulfate monohydrate 26 ⁇ m
  • Measurement method of average particle size Dry sieving test using sieve (screen) specified in JIS Z 8801 ⁇
  • Granular activated carbon Kuraray Co., Ltd. Kuraray Coal KW10X32 (applied as a comparative reference material for hardness and water resistance test) )
  • the water flow resistance was measured by the following method.
  • ⁇ Measurement of water resistance with a loss head measuring device> A column made of quartz glass having a length of ⁇ 25 mm ⁇ 1200 mm was filled with a water treatment agent at a height of 1000 mm, and the upper part of the column and each tube were connected to each other while injecting water into the column so as not to chew air.
  • Table 2 An outline of the loss head measuring device is shown in FIG.
  • Comparative Example 1 only three kinds of raw material powders were mixed and stirred with a small soil mixer (rotation speed: 140 rpm).
  • Potassium arsenate (KH 2 AsO 4 ) as a model solution for arsenic-containing wastewater, sodium selenate (Na 2 SeO 4 ) as a model solution for selenium-containing wastewater, and lead (II) nitrate (Pb) as a model solution for lead-containing wastewater (NO 3 ) 2 ), cadmium chloride hemihydrate (CdCl 2 ⁇ 2.5H 2 O) as a cadmium-containing wastewater model solution, and potassium dichromate (K 2 Cr) as a chrome-containing wastewater model solution A solution in which 2 O 7 ) was dissolved in water was used.
  • water to be treated As raw water concentrations of the five heavy metal species, water to be treated was prepared that was 10 times the environmental standard value (that is, 0.1 mg / L for arsenic, selenium, lead, and cadmium; 0.5 mg / L for chromium). 250 ml of each water to be treated is put in a 500 ml plastic container, and each water treatment agent prepared in the example is added to 2.5 g (solid / liquid ratio 1: 100), and shaken at room temperature for 24 hours. It was. Next, shaking was stopped, and the water treatment agent and the supernatant were separated by filtration through a membrane filter having an opening of 0.45 ⁇ m, and the residual heavy metal concentration in the supernatant was measured as follows.
  • Arsenic is JIS K0102 61.3
  • selenium is hydride generation ICP emission spectrometry according to JIS K0102 67.3
  • lead is ICP mass spectrometry according to JIS K0102 54.4
  • cadmium is according to JIS K0102 55.4.
  • ICP mass spectrometry chromium was measured by ICP mass spectrometry according to JIS K0102 65.1.5. The results are shown in Table 3.
  • Examples 1 and 2 all showed good heavy metal removal performance.
  • the concentrations of arsenic, selenium, lead, cadmium, and chromium are about 1/100 times or more, about 1/8 times, about 1/20 times, and about 1/20 times, respectively. It shows that the concentration can be reduced to 4 times or about 1/5 times.
  • the concentrations of arsenic, selenium, lead, cadmium, and chromium were about 1/100 times or more, about 1/4 times, about 1/3 times, about 1/4 times, and about 1 respectively. This indicates that the concentration can be reduced to /2.5 times. From the above, with respect to selenium, lead, and chromium, it can be seen that the water treatment agent of Example 1 has higher removal ability than that of Example 2.
  • the granular type environmental water treatment agent of the present invention is a low-priced industrial product that contains magnesia and acidic inorganic sulfate at a predetermined ratio in iron powder that can be manufactured by the atomizing method, and is added with fresh water to the composition. Granulates by granulation.
  • a water treatment agent can easily adsorb and remove harmful substances from water contaminated with harmful substances that are harmful to human body and cause health problems, and can maintain the adsorption removal ability for a long time.
  • no organic compound binder since no organic compound binder is used, there is no concern about environmental pollution due to the organic compound, and it can be manufactured at low cost.
  • the water resistance required to increase the purification efficiency can be reduced, and the industrial utility value is high.

Abstract

The present invention pertains: to a particulate water treatment agent for the environment, for eliminating a harmful substance, and characterized by resulting in a granulated form by adding pure water to a composition configured from iron powder, magnesia, and an acidic inorganic sulfate salt; and a method that is for treating water polluted by harmful substances and that is characterized by bringing into contact polluted water containing harmful substances and the particulate water treatment agent for the environment.

Description

粒状型環境用水処理剤およびそれを用いた有害物質に汚染された水の処理方法Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same
 本発明は、人体に対して有害であり健康障害をもたらす有害物質で汚染された地下水や河川水、湖沼水、各種工業排水等から有害物質を除去するための粒状型環境用水処理剤と、これを用いた有害物質に汚染された水の処理方法に関するものである。 The present invention relates to a granular environmental water treatment agent for removing harmful substances from groundwater, river water, lake water, various industrial effluents, etc. contaminated with harmful substances that are harmful to human bodies and cause health problems, The present invention relates to a method for treating water contaminated with harmful substances.
 人体に対して有害であり健康障害をもたらす有害物質(例えば、カドミウム、六価クロム、セレン、鉛、ヒ素等の重金属類)は、ある特定量以上を経口摂取した場合、人体に対して有害である。有害物質に汚染された水や、汚染された環境で育った動植物を摂取することによって、健康障害をおよぼさぬように、これらに対して、環境基準、排水基準等の水質基準が定められている。したがって、河川、湖沼、地下水、各種工業排水等の水中に含まれている有害物質が水質基準を超える場合には、水中からこれらの有害物質を除去する必要がある。 Hazardous substances that are harmful to the human body and cause health problems (for example, heavy metals such as cadmium, hexavalent chromium, selenium, lead, arsenic) are harmful to the human body if ingested above a certain amount. is there. Water quality standards such as environmental standards and drainage standards have been established so that health hazards will not be caused by ingesting water contaminated with harmful substances or animals and plants grown in a contaminated environment. ing. Therefore, when harmful substances contained in water such as rivers, lakes, groundwater, and various industrial wastewaters exceed the water quality standards, it is necessary to remove these harmful substances from the water.
 有害物質で汚染された水(以下、「汚染水」と呼ぶ)から有害物質を除去(浄化)するための手段として、様々な水処理剤や水処理方法が考案されている。一般的な水処理剤および水処理方法としては、鉄塩やアルミニウム塩等の無機質凝集剤を用いた方法(以下、沈殿処理法と呼ぶ)が行われている。この沈殿処理法は、汚染水に無機質凝集剤を添加した後、pHを調整して金属水酸化物の凝集フロックを沈殿させる際に、該フロックに有害物質を取り込んで共沈させて分離する方法である。また、前記凝集剤に高分子凝集剤を併用する場合もある。 Various water treatment agents and water treatment methods have been devised as means for removing (purifying) harmful substances from water contaminated with harmful substances (hereinafter referred to as “polluted water”). As a general water treatment agent and water treatment method, a method using an inorganic flocculant such as an iron salt or an aluminum salt (hereinafter referred to as a precipitation treatment method) is performed. This precipitation method is a method in which after adding an inorganic flocculant to contaminated water and adjusting the pH to precipitate the flocs of metal hydroxide, the flocs take in harmful substances and co-precipitate them for separation. It is. Further, a polymer flocculant may be used in combination with the flocculant.
 しかしながら、このような沈殿処理法によって汚染水中の有害物質の濃度を充分に低くするためには、多量の水処理剤を必要とする。また、有害物質を取り込んだ凝集フロックは、アモルファス状微細粒子の集合体であり、沈降させるためには大掛かりな設備と長い時間を要する。さらに、多量に生成する沈殿物(スラッジ)の処理は、煩雑で多くの工程を要するという問題がある。 However, in order to sufficiently reduce the concentration of harmful substances in the contaminated water by such a precipitation treatment method, a large amount of water treatment agent is required. In addition, the aggregated floc incorporating toxic substances is an aggregate of amorphous fine particles, and requires a large amount of equipment and a long time to settle. Furthermore, there is a problem in that a large amount of precipitate (sludge) treatment is complicated and requires many steps.
 このような沈殿処理法の問題を解決する水処理方法として、活性炭、活性アルミナ、ゼオライト、チタン酸塩、ジルコニウム水和物等の吸着剤と、有害物質を含む汚染水を接触させて、有害物質を吸着除去する方法(以下、吸着法と呼ぶ)が提案されている。吸着法は、優れた吸着除去能力を有する吸着剤を選択することによって、高い吸着除去効率を達成できるが、そのような吸着剤は大抵高価であることから、処理コストの高騰が避けられない。 As a water treatment method that solves the problem of such a precipitation treatment method, an adsorbent such as activated carbon, activated alumina, zeolite, titanate, zirconium hydrate, etc. is brought into contact with contaminated water containing harmful substances, and harmful substances are brought into contact. A method for adsorbing and removing (hereinafter referred to as an adsorption method) has been proposed. The adsorption method can achieve a high adsorption / removal efficiency by selecting an adsorbent having an excellent adsorption / removal capability. However, since such an adsorbent is usually expensive, an increase in processing cost is inevitable.
 そこで、先述の吸着剤と比較して廉価であり、かつ汎用性が高い材料である鉄粉に着目し、これを吸着剤に使用した吸着法が提案されるようになった。しかし、通常の鉄粉では吸着除去能力が不十分であり、満足のいく除去効果は得られないため、有害物質の吸着除去能力を高めた鉄粉の開発が進められてきた。 Therefore, attention has been paid to iron powder, which is cheaper and more versatile than the adsorbent described above, and an adsorption method using this as an adsorbent has been proposed. However, ordinary iron powder has insufficient adsorption and removal capability, and a satisfactory removal effect cannot be obtained. Therefore, development of iron powder with enhanced adsorption and removal capability of harmful substances has been promoted.
 例えば、特許文献1では、有害物質除去処理用鉄粉として、リン、硫黄およびほう素から選ばれた1種以上を適量含んだ鉄粉、さらにこれに特定量の炭素と不可避的不純物(例えばSi、Mn)を含んだ水アトマイズ鉄粉が提案されている。この技術では、特定の元素を特定の量で、鉄粉に含有させることにより、汚染水への鉄の溶出速度を増大でき、汚染水中のリン化合物や、重金属、有機塩素化合物等の有害物を効率良く除去できることが開示されている。しかしながら、この技術は、特許文献1の実施例からも分かるとおり、汚染水中のリン化合物の除去を主体としており、カドミウム、六価クロム、セレン、鉛、ヒ素等の重金属等の吸着除去能力については考慮されていない。なお、本発明者らが、重金属等の吸着除去能力を前記鉄粉について確認したところによると、重金属等の吸着除去能力については十分なものとはいえないものであった。 For example, in Patent Document 1, iron powder containing an appropriate amount of at least one selected from phosphorus, sulfur, and boron as iron powder for removing harmful substances, and further, a specific amount of carbon and inevitable impurities (for example, Si) Water atomized iron powder containing Mn) has been proposed. In this technology, by adding specific elements in specific amounts in iron powder, the elution rate of iron into contaminated water can be increased, and harmful substances such as phosphorus compounds, heavy metals, and organic chlorine compounds in contaminated water can be increased. It is disclosed that it can be removed efficiently. However, as can be seen from the examples of Patent Document 1, this technology mainly removes phosphorus compounds in contaminated water, and the adsorption removal ability of heavy metals such as cadmium, hexavalent chromium, selenium, lead, arsenic, etc. Not considered. In addition, when the present inventors confirmed the adsorption removal ability of heavy metals etc. about the said iron powder, it could not be said that the adsorption removal ability of heavy metals etc. was enough.
 特許文献2では、有機ハロゲン化合物や重金属等の還元能力を有する、持続性に優れた汚染水処理用の環境浄化剤として、硫黄を所定量含む還元性の海綿鉄の製造方法およびその用途が提案されている。この技術では、優れた還元能力を有する海綿鉄(スポンジ鉄とも呼ぶ)によって、有機ハロゲン化合物を還元して脱ハロゲン化する、あるいは重金属等を還元して不溶化する技術を開示している。海綿鉄は、通常の鉄粉よりも表面積が大きいことから除去性能や除去効率が高く、他の吸着剤と比較しても廉価であることから、工業的に有効な方法と考えられる。しかしながら、海綿鉄は、水アトマイズ法によって得られる通常の鉄粉に比べると高価であるため、工業的規模での汎用性の観点からして、更なる改善の余地が残されている。 Patent Document 2 proposes a method for producing reducible sponge iron containing a predetermined amount of sulfur and its use as an environmental purification agent for treating contaminated water that has a reducing ability for organic halogen compounds, heavy metals, etc. and has excellent sustainability. Has been. In this technique, a technique is disclosed in which an organic halogen compound is reduced and dehalogenated or heavy metal or the like is reduced and insolubilized with sponge iron (also referred to as sponge iron) having an excellent reducing ability. Sponge iron is considered to be an industrially effective method because it has a higher surface area than ordinary iron powder and thus has high removal performance and efficiency, and is cheaper than other adsorbents. However, since sponge iron is more expensive than ordinary iron powder obtained by the water atomization method, there is still room for further improvement from the viewpoint of versatility on an industrial scale.
 また、特許文献1、特許文献2のような鉄粉が抱える大きな問題点としては、汚染水を処理するために鉄粉を水に含浸させた際、水分子、あるいは溶存酸素の影響によって鉄粉の表面が酸化鉄、水酸化鉄、オキシ水酸化鉄等で覆われてしまい、鉄イオンの発生が阻害されてしまうため、鉄イオンの作用に由来する吸着除去能力を長い時間維持できないことが挙げられる。 Moreover, as a big problem which iron powder like patent document 1 and patent document 2 has, when iron powder is impregnated with water in order to treat contaminated water, iron powder is influenced by water molecules or dissolved oxygen. Since the surface of the iron is covered with iron oxide, iron hydroxide, iron oxyhydroxide, etc., and the generation of iron ions is hindered, the adsorption and removal ability derived from the action of iron ions cannot be maintained for a long time. It is done.
 この他、鉄粉が有する重金属等の吸着除去能力と、その他の材料が有する重金属等の不溶化能力を組み合わせた不溶化・浄化技術についても開発が進められている。例えば、特許文献3では、MgOと鉄粉を含有することを特徴とする汚染土壌不溶化固化剤、これに硫酸塩、塩酸塩、スルファミン酸、リン酸、水溶液のpHが7以下であるリン化合物からなる組から選ばれる一種または二種以上の助剤とを含有させた汚染土壌不溶化固化剤、ならびにさらにこれに水溶性ガム類、水溶性繊維素誘導体、粘土質からなる組から選ばれる一種または二種以上の粘度付与剤とを含有させた汚染土壌不溶化固化剤が提案されている。 In addition to this, the development of an insolubilization / purification technology that combines the ability of adsorption and removal of heavy metals, etc., possessed by iron powder and the insolubilization capability of heavy metals, etc., possessed by other materials is also underway. For example, in Patent Document 3, a contaminated soil insolubilizing solidifying agent characterized by containing MgO and iron powder, and a sulfate, hydrochloride, sulfamic acid, phosphoric acid, and a phosphorus compound whose aqueous solution has a pH of 7 or less. Contaminated soil insolubilizing solidifying agent containing one or two or more auxiliary agents selected from the group consisting of, and one or two selected from the group consisting of water-soluble gums, water-soluble fibrin derivatives and clays. A contaminated soil insolubilizing solidifying agent containing a viscosity imparting agent of more than seeds has been proposed.
 この技術では、MgOと鉄粉が土壌中の有害物質(特許文献3の実施例では、鉛、ヒ素、トリクロロエチレンを対象としている)を還元して不溶化し、さらにMgOが土壌を固化して固化土壌中に不溶化した有害物質を封じ込めることができ、助剤を添加すると、土壌中の有害物質の不溶化が促進され、土壌固化物のゲル強度も向上でき、さらに粘度付与剤を添加すると、土壌に混合した不溶化固化剤中の鉄粉の沈降が防止できることが開示されている。 In this technology, MgO and iron powder reduce and insolubilize harmful substances in the soil (in the example of Patent Document 3, lead, arsenic and trichlorethylene are targeted), and MgO solidifies the soil by solidifying soil. It can contain harmful substances insolubilized in it, and when an auxiliary agent is added, insolubilization of harmful substances in the soil is promoted, and the gel strength of the solidified soil can be improved. It is disclosed that the settling of iron powder in the insolubilized solidifying agent can be prevented.
 しかしながら、特許文献3の明細書および実施例に記載されているとおり、通常100質量部のMgOに対して、1~50質量部の鉄粉を添加していることから、この技術における重金属等の不溶化能力は、MgOの不溶化能力と土壌固化能力によるところが大きい。したがって、MgO成分と土壌との反応が進行して、MgO成分が消費された後は、不溶化能力が発揮されなくなる恐れがある。さらに、特許文献3で開示されているとおり、技術の利用目的が汚染土壌の有害物質の不溶化および固化に特定されており、水処理剤への適用については全く検討されておらず、記載も示唆もしていない。 However, as described in the specification and Examples of Patent Document 3, since 1 to 50 parts by mass of iron powder is usually added to 100 parts by mass of MgO, heavy metals and the like in this technique are used. The insolubilization ability is largely due to the insolubilization ability and soil solidification ability of MgO. Therefore, after the reaction between the MgO component and the soil proceeds and the MgO component is consumed, the insolubilizing ability may not be exhibited. Furthermore, as disclosed in Patent Document 3, the purpose of use of the technology is specified to insolubilize and solidify harmful substances in contaminated soil, and its application to water treatment agents has not been studied at all, and the description is also suggested. I have not done it.
 この他に、鉄粉が有する重金属等の吸着除去能力と、その他の材料が有する重金属等の不溶化能力を組み合わせた不溶化・浄化技術を用いた、水処理用浄化剤に関する技術は、例えば、特許文献4および特許文献5に開示されている。
 特許文献4では、土壌に混合し、汚染土壌若しくは廃棄物の下方若しくは側方若しくはその双方に5cm以上の厚みで設置する浄化材料であって、水との接触によって重金属等を吸着可能な鉄、水酸化鉄、酸化鉄若しくはその水和物、水酸化マグネシウム、酸化マグネシウム若しくはその水和物、炭酸フッ化セリウム、水酸化セリウム、酸化セリウム若しくはその水和物、若しくはこれらを一つ以上含む粉体材料を、平均直径1~1000μm未満の繊維状素材と、繊維状素材/粉体材料=0.33~3の割合で混合して構成することを特徴とする浄化材料が提案されている。
 この技術では、汚染土壌若しくは廃棄物の下方若しくは側方若しくはその双方に前述の浄化材を配することで、汚染土壌若しくは廃棄物からの浸出した重金属等を含む水のスムーズな流れを得つつ、スピーディに浄化を進行させることができることが開示されている。しかしながら、この技術では、各種粉体材料の適正な組合せや配合割合、あるいは吸着除去能力を長い期間維持させるための工夫や検討がなされておらず、更なる改善の余地が残されている。
In addition to this, technologies relating to water treatment purifiers using insolubilization / purification technology that combines the ability to adsorb and remove heavy metals, etc., in iron powder and the insolubilization capabilities, such as heavy metals, in other materials are disclosed in, for example, Patent Literature 4 and Patent Document 5.
In Patent Document 4, it is a purification material that is mixed with soil and installed at a thickness of 5 cm or more below or on the side or both of contaminated soil or waste, and is capable of adsorbing heavy metals by contact with water, Iron hydroxide, iron oxide or hydrate thereof, magnesium hydroxide, magnesium oxide or hydrate thereof, cerium carbonate fluoride, cerium hydroxide, cerium oxide or hydrate thereof, or powder containing one or more thereof There has been proposed a purification material characterized by comprising a material mixed with a fibrous material having an average diameter of 1 to less than 1000 μm and a ratio of fibrous material / powder material = 0.33 to 3.
In this technology, by arranging the aforementioned purification material below or on the side or both of the contaminated soil or waste, while obtaining a smooth flow of water containing heavy metals leached from the contaminated soil or waste, It is disclosed that purification can be advanced promptly. However, this technique has not been devised and studied for maintaining a proper combination and blending ratio of various powder materials, or adsorption / removing ability for a long period of time, and there is room for further improvement.
 特許文献5では、金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムと、pH調整剤とをバインダーで造粒してなる浄化材であって、前記pH調整剤は処理対象となる汚染水のpH値を4~10に調整することを特徴とする浄化材、さらにこれに酸化セリウム及び/又は水酸化セリウムを含んで造粒してなる浄化材、前記pH調整剤が、水酸化マグネシウム及び/又は酸化マグネシウム100重量部に対して、10~100重量部である浄化材、前記pH調整剤が、硫酸アルミニウム、硫酸鉄、塩化鉄、酸性白土、クエン酸のうちから選択される一種又は複数種のものである浄化材が提案されている。
 この技術では、重金属等に複合的に汚染されている汚染土壌に対して、金属鉄粉と酸化マグネシウムと、酸化マグネシウムの水和によって生成する水酸化マグネシウムによるpH値上昇の影響を軽減するためのpH調整剤とを含めて造粒した浄化材では、各種材料を均一に調製でき、常に金属鉄粉の浄化作用が発揮できる最適なpH値に維持できることが開示されている。
In patent document 5, it is a purification material formed by granulating metal iron powder and / or iron oxide powder, magnesium hydroxide and / or magnesium oxide, and a pH adjuster with a binder, and the pH adjuster is treated. A purification material characterized in that the pH value of the contaminated water to be controlled is adjusted to 4 to 10, a purification material obtained by granulating the purification material containing cerium oxide and / or cerium hydroxide, and the pH adjusting agent. The purification agent is 10 to 100 parts by weight with respect to 100 parts by weight of magnesium hydroxide and / or magnesium oxide, and the pH adjuster is selected from aluminum sulfate, iron sulfate, iron chloride, acid clay, and citric acid One or more types of purification materials have been proposed.
This technology is intended to mitigate the effects of increased pH values caused by metal iron powder, magnesium oxide, and magnesium hydroxide produced by hydration of magnesium oxide on contaminated soil that is complexly contaminated with heavy metals. It has been disclosed that a purifying material granulated including a pH adjusting agent can uniformly maintain various materials and can always maintain an optimum pH value at which the purifying action of metallic iron powder can be exhibited.
 しかしながら、この技術では、粒状化するためにバインダーが必須であり、かつ特許文献5の明細書に記載されているように水性のバインダーが用いられているため、バインダーが水に溶解・流出し、富栄養化等によって周辺環境に悪影響をおよぼすことが懸念される。また、造粒した浄化材の硬度については一切触れられていないが、水性バインダーの流出によって硬度が著しく低下する恐れがあること、あるいは崩壊してしまう恐れがあることから、粒状化した状態を長い時間維持できないことが示唆される。さらに、特許文献5の請求項ならびに明細書では、金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムの具体的な配合割合が示されておらず、実施例において鉄粉とマグネシウムの配合比率が1:1(質量比)であることが示されているのみであり、水処理剤として最適な金属鉄粉及び/又は酸化鉄粉と、水酸化マグネシウム及び/又は酸化マグネシウムの配合比率は開示されていない。 However, in this technique, a binder is essential for granulating, and since an aqueous binder is used as described in the specification of Patent Document 5, the binder dissolves and flows out in water. There is concern that eutrophication will adversely affect the surrounding environment. In addition, although there is no mention of the hardness of the granulated purification material, there is a possibility that the hardness may be remarkably lowered due to the outflow of the aqueous binder, or there is a possibility that the granulated state will collapse. It is suggested that time cannot be maintained. Furthermore, in the claim and specification of Patent Document 5, the specific blending ratio of metal iron powder and / or iron oxide powder and magnesium hydroxide and / or magnesium oxide is not shown. It is only shown that the blending ratio of magnesium and magnesium is 1: 1 (mass ratio), and is optimal as a water treatment agent, such as metal iron powder and / or iron oxide powder, and magnesium hydroxide and / or magnesium oxide. The blending ratio of is not disclosed.
特開2000-80401号公報Japanese Unexamined Patent Publication No. 2000-80401 特開2004-331996号公報JP 2004-331996 A 特開2005-007256号公報JP 2005007256 A 特許第4187223号公報Japanese Patent No. 4187223 特開2011-110476号公報JP 2011-110476 A
 以上のことから、重金属(例えば、カドミウム、六価クロム、セレン、鉛、ヒ素)等を含む汚染水を処理するための粒状型環境用水処理剤であって、十分な硬度を有し、重金属等の吸着除去能力を長い時間維持でき、環境汚染を引き起こすことがなく、かつ汎用性の高い水処理剤およびそれを用いた方法が求められていた。また、併せて汚染水処理用カラム等に充填して使用する場合において、通水抵抗が低く取り扱いが容易な粒状型環境用水処理剤およびそれを用いた方法が求められていた。 From the above, it is a granular type environmental water treatment agent for treating contaminated water containing heavy metals (eg, cadmium, hexavalent chromium, selenium, lead, arsenic), etc., and has sufficient hardness, such as heavy metals Thus, there has been a demand for a water treatment agent and a method using the same that can maintain the adsorption / removal ability for a long time without causing environmental pollution. In addition, in the case of using in a packed state in a contaminated water treatment column or the like, there has been a demand for a granular environmental water treatment agent having a low water flow resistance and easy handling, and a method using the same.
 すなわち、本発明は、十分な硬度を有して重金属等の吸着除去能力を長い時間維持でき、環境汚染を及ぼすことがなく、汎用性が高く、また、カラム等に使用しても通水抵抗が低く取扱いが容易な粒状型環境用水処理剤、およびそれらを用いた有害物質に汚染された水の処理方法を提供することを課題とする。 That is, the present invention has sufficient hardness and can maintain the adsorption and removal ability of heavy metals for a long time, does not cause environmental pollution, has high versatility, and is resistant to water flow even when used in a column or the like. It is an object of the present invention to provide a granular environmental water treatment agent that is easy to handle, and a method for treating water contaminated with harmful substances using them.
 本発明者らが鋭意研究を重ねた結果、鉄粉に対して、特定の割合でマグネシアと酸性無機硫酸塩を混合した組成物に清水を加えて造粒し粒状化したものが、前述の課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies by the inventors, the above-mentioned problem is that granulated by adding fresh water to a composition in which magnesia and acidic inorganic sulfate are mixed at a specific ratio with respect to iron powder. As a result, the present invention has been completed.
 すなわち、前記課題を解決するための本発明の第1は、有害物質を除去するための水処理剤であって、鉄粉、マグネシア、および酸性無機硫酸塩を含有する組成物に清水を加えて造粒形態としたものであることを特徴とする粒状型環境用水処理剤である。 That is, the first of the present invention for solving the above-mentioned problems is a water treatment agent for removing harmful substances, which comprises adding fresh water to a composition containing iron powder, magnesia, and acidic inorganic sulfate. A granular environmental water treatment agent characterized by being in a granulated form.
 本発明の第2は、第1の発明に記載の粒状型環境用水処理剤において、さらに、以下の(a)~(d)のいずれか1つ以上であることを特徴とする。
(a)前記組成物が、鉄粉100質量部に対して、マグネシアを10~50質量部、酸性無機硫酸塩を5~50質量部含有すること、
(b)前記清水が、前記組成物100質量部に対して、1質量部以上50質量部以下であること、
(c)前記マグネシアが、酸化マグネシウムを60質量%以上含有する軽焼マグネシアを粉砕して得られたものであり、かつ最大粒径が2.0mm以下の粉末状であること、
(d)前記酸性無機硫酸塩が、鉄(II)塩、鉄(III)塩、およびアルミニウム塩から選ばれる1種以上であり、かつ最大粒径が2.0mm以下の粉末状であること。
According to a second aspect of the present invention, the particulate environmental water treatment agent according to the first aspect is further characterized by any one or more of the following (a) to (d).
(A) The composition contains 10 to 50 parts by mass of magnesia and 5 to 50 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder.
(B) The fresh water is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the composition;
(C) The magnesia is obtained by pulverizing light-burned magnesia containing 60% by mass or more of magnesium oxide, and is in a powder form having a maximum particle size of 2.0 mm or less.
(D) The acidic inorganic sulfate is at least one selected from iron (II) salt, iron (III) salt, and aluminum salt, and has a maximum particle size of 2.0 mm or less.
 本発明の第3は、第1または第2に記載の粒状型環境用水処理剤において、前記粒状物の硬さが、JIS K 1474-2007によって測定したとき80%以上であることを特徴とする。 According to a third aspect of the present invention, in the granular environmental water treatment agent according to the first or second aspect, the hardness of the granular material is 80% or more when measured according to JIS K 1474-2007. .
 本発明の第4は、第1または第2に記載の粒状型環境用水処理剤において、前記組成物に清水を加えて造粒したのち、0.1~2.0mmの範囲に粒度を調整して粒状物の形態としたものであることを特徴とする。 A fourth aspect of the present invention is the particulate environmental water treatment agent according to the first or second aspect, wherein the composition is granulated by adding fresh water, and then the particle size is adjusted in the range of 0.1 to 2.0 mm. It is characterized by being in the form of a granular material.
 本発明の第5は、有害物質を含む汚染水と、第1または第2に記載の粒状型環境用水処理剤とを接触させることを特徴とする有害物質に汚染された水の処理方法である。 5th of this invention is the processing method of the water contaminated with the harmful | toxic substance characterized by making the contaminated water containing a hazardous | toxic substance and the granular-type environmental water treatment agent as described in 1st or 2 contact. .
 本発明の第6は、第5の発明の有害物質に汚染された水の処理方法において、前記汚染水は、有害物質を含む土壌、汚泥、石炭灰、焼却灰、煤塵、および産業廃棄物から選ばれる一種に含まれるものであることを特徴とする。 6th of this invention is the processing method of the water contaminated with the harmful substance of 5th invention, The said contaminated water is from the soil containing a hazardous substance, sludge, coal ash, incineration ash, dust, and industrial waste. It is contained in the kind chosen.
 本発明の第7は、第5の発明に記載の有害物質に汚染された水の処理方法において、前記粒状型環境用水処理剤を充填した充填層に、有害物質を含む汚染水を通過させて接触させることを特徴とする。 A seventh aspect of the present invention is the method for treating water polluted with harmful substances according to the fifth aspect, wherein polluted water containing harmful substances is passed through the packed bed filled with the particulate environmental water treatment agent. It is made to contact.
 本発明の第1によれば、容易に入手可能な材料を使用するだけで、有害物質を含む汚染水から前記有害物質を吸着除去することができ、粒状物は高い硬度を有することから、長期間に渡って有害物質を吸着除去することができ、有機系化合物のバインダー等は含んでいないため、環境への影響を小さくすることができる。 According to the first aspect of the present invention, the harmful substance can be adsorbed and removed from the contaminated water containing the harmful substance only by using a readily available material, and the granular material has high hardness. Since harmful substances can be adsorbed and removed over a period of time and does not contain an organic compound binder or the like, the influence on the environment can be reduced.
 本発明の第2の(a)によれば、従来よりもマグネシアの使用量を減らすことができると同時に、粒状型環境用水処理剤の硬度を十分なものとすることができる。 According to the second (a) of the present invention, the amount of magnesia used can be reduced as compared with the conventional one, and at the same time, the hardness of the granular environmental water treatment agent can be made sufficient.
 本発明の第2の(b)によれば、水性のバインダーを用いず、環境汚染を及ぼすことがないため、また、マグネシアおよび酸性無機硫酸塩の水硬作用を発現することができるため、水処理剤を適度な硬度とすることができる。 According to the second (b) of the present invention, no water-based binder is used, environmental pollution is not caused, and hydraulic action of magnesia and acidic inorganic sulfate can be expressed. A processing agent can be made into moderate hardness.
 本発明の第2の(c)によれば、工業製品として流通しており、容易に入手可能であり、一般的に多岐に渡って使用されている粉末状の軽焼マグネシアが使用できるので、汎用性が高く、かつ経済的なものとすることができる。 According to the second (c) of the present invention, since it is distributed as an industrial product, it can be easily obtained, and powdery light-burned magnesia that is generally used in a wide variety can be used. It can be highly versatile and economical.
 本発明の第2の(d)によれば、工業製品として流通しており、容易に入手可能であり、一般的に多岐に渡って使用されている酸性無機硫酸塩が使用できるだけでなく、これらの酸性無機硫酸塩は水に対する溶解性が高く、速やかにpHを調整でき、さらにこれらの酸性無機硫酸塩の凝集沈殿作用や還元作用によって、より優れた吸着除去能力を発揮することができる。 According to the second (d) of the present invention, not only is it possible to use acidic inorganic sulfates which are distributed as industrial products and are easily available and generally used in a wide variety of fields. These acidic inorganic sulfates are highly soluble in water, can adjust the pH quickly, and can exhibit more excellent adsorption and removal ability due to the aggregation and precipitation action and reduction action of these acidic inorganic sulfates.
 本発明の第3によれば、水性のバインダーを用いず、清水のみを加えて造粒し、十分な硬さを保持した粒状物であることから、水に含浸させること、あるいは外力を受けることによって、容易に崩壊しないため、粒状物の形態を長い時間維持できる。 According to the third aspect of the present invention, since it is a granule that is granulated by adding only fresh water without using an aqueous binder, it is impregnated with water or subjected to external force. Therefore, the shape of the granular material can be maintained for a long time because it does not easily collapse.
 本発明の第4によれば、汚染水処理用カラム等に充填して使用する場合に、造粒物を特定の粒度範囲にすることによって、通水抵抗を小さくし目詰まり等を抑制させながら緻密に充填でき、水処理剤と汚染水との接触面積および接触時間を十分に確保でき、汚染水から有害物質を吸着除去する効率を高くすることができる。 According to the fourth aspect of the present invention, when used in a contaminated water treatment column or the like, while making the granulated product into a specific particle size range, the water flow resistance is reduced and clogging is suppressed. It is possible to pack densely, sufficiently ensure the contact area and contact time between the water treatment agent and the contaminated water, and increase the efficiency of adsorbing and removing harmful substances from the contaminated water.
 本発明の第5によれば、有害物質を含む汚染水と、水処理剤を接触させることにより、汚染水から有害物質を吸着除去し、処理前よりも有害物質の濃度を低減することができる。 According to the fifth aspect of the present invention, by bringing contaminated water containing a harmful substance into contact with a water treatment agent, the harmful substance can be adsorbed and removed from the contaminated water, and the concentration of the harmful substance can be reduced as compared with that before the treatment. .
 本発明の第6によれば、汚染水から有害物質を吸着除去し、処理前よりも有害物質の濃度を低減することができるので、環境への有害物質の拡散を防止できる。 According to the sixth aspect of the present invention, the harmful substances can be adsorbed and removed from the contaminated water and the concentration of the harmful substances can be reduced more than before the treatment, so that the diffusion of the harmful substances to the environment can be prevented.
 本発明の第7によれば、水処理剤を充填した充填層を設け、充填層に有害物質を含む汚染された水を通過させて接触させることによって、水処理剤と汚染水との接触時間を十分に確保できることから、汚染水から有害物質を吸着除去する効率を高くすることができる。 According to the seventh aspect of the present invention, a contact time between the water treatment agent and the contaminated water is provided by providing a packed bed filled with the water treatment agent and allowing the contaminated water containing harmful substances to pass through and contact the packed bed. Therefore, the efficiency of adsorbing and removing harmful substances from contaminated water can be increased.
図1は、本発明の粒状型環境用水処理剤をカラムに使用した場合の有害物質に汚染された水の処理方法の一例を示すための概略図である。FIG. 1 is a schematic view showing an example of a method for treating water contaminated with harmful substances when the granular environmental water treatment agent of the present invention is used in a column.
  ・ 粒状型環境用水処理剤
 以下、本発明を詳細に説明する。
 本発明の粒状型環境用水処理剤は、人体に対して有害であり健康障害をもたらす有害物質に汚染された汚染水を対象とするものである。本発明において、粒状型環境用水処理剤とは、粒状であり、かつ環境汚染を引き起こすことがなく、有害物質を吸着・除去できる水処理剤のことをいう。
-Granular environmental water treatment agent The present invention is described in detail below.
The particulate environmental water treatment agent of the present invention is intended for contaminated water contaminated with harmful substances that are harmful to the human body and cause health problems. In the present invention, the particulate environmental water treatment agent refers to a water treatment agent that is granular and does not cause environmental pollution and can adsorb and remove harmful substances.
 本発明の水処理剤は、鉄粉、マグネシア、および酸性無機硫酸塩を含有する組成物に清水を加えて、造粒形態としたものである。前記組成物は必要に応じて他の成分を含有していてもよい。
 鉄粉の量は、有害物質を吸着除去する観点から、組成物全体に対して、例えば、50質量%以上、好ましくは55質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上であり、例えば、97質量%以下、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。
 マグネシアの量は、有害物質を吸着除去する観点から、組成物全体に対して、例えば、2質量%以上、好ましくは4質量%以上、より好ましくは6質量%以上、さらに好ましくは8質量%以上であり、例えば36質量%以下、好ましくは34質量%以下、より好ましくは32質量%以下、さらに好ましくは30質量%以下である。
 酸性無機硫酸塩の量は、マグネシアとの水硬反応の観点から、組成物全体に対して、例えば、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上、さらに好ましくは4質量%以上であり、例えば14質量%以下、好ましくは13質量%以下、より好ましくは12質量%以下、さらに好ましくは11質量%以下である。また残部は不可避不純物であってもよい。
 この造粒物は必要に応じてさらに粒状化処理して粒状型環境用水処理剤にできる。該水処理剤の材料に由来する複合的な有害物質の吸着除去能力によって、汚染水から有害物質を吸着除去することができるものである。
 また、本発明の水処理剤は、バインダーを含まないことが好ましく、従来のバインダーの代わりに水を用いて、マグネシアと水、マグネシアと酸性無機硫酸塩と水等の化学反応により水硬作用を発現させて、造粒物としての硬度を高めて、長期間に渡って汚染水の有害物質を吸着除去することもできる。さらに、従来のバインダーを使用することもないことから環境汚染を及ぼすことがない。
The water treatment agent of the present invention is made into a granulated form by adding fresh water to a composition containing iron powder, magnesia, and acidic inorganic sulfate. The composition may contain other components as necessary.
The amount of the iron powder is, for example, 50% by mass or more, preferably 55% by mass or more, more preferably 60% by mass or more, and further preferably 65% by mass with respect to the entire composition from the viewpoint of adsorbing and removing harmful substances. For example, it is 97% by mass or less, preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
From the viewpoint of adsorbing and removing harmful substances, the amount of magnesia is, for example, 2% by mass or more, preferably 4% by mass or more, more preferably 6% by mass or more, and further preferably 8% by mass or more based on the entire composition. For example, it is 36% by mass or less, preferably 34% by mass or less, more preferably 32% by mass or less, and further preferably 30% by mass or less.
The amount of the acidic inorganic sulfate is, for example, 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, further preferably from the viewpoint of a hydraulic reaction with magnesia. For example, it is 14% by mass or less, preferably 13% by mass or less, more preferably 12% by mass or less, and further preferably 11% by mass or less. The balance may be inevitable impurities.
This granulated product can be further granulated as necessary to form a granular environmental water treatment agent. The ability to adsorb and remove harmful substances from contaminated water can be achieved by the ability to adsorb and remove the harmful substances derived from the material of the water treatment agent.
In addition, the water treatment agent of the present invention preferably does not contain a binder, and water is used instead of the conventional binder, and a hydraulic reaction is caused by a chemical reaction such as magnesia and water, magnesia and acidic inorganic sulfate and water. It can be expressed to increase the hardness of the granulated product, and can remove adsorbed harmful substances from contaminated water over a long period of time. Furthermore, since no conventional binder is used, there is no environmental pollution.
 1-1.組成物
 A.鉄粉
 構成物である鉄粉の役割としては、(1)鉄粉表面近傍において溶出した鉄イオン(Fe2+)が、汚染水中の陰イオン(セレン酸イオン(SeO4 2-)、ヒ酸イオン(AsO4 3-))と反応して生成した難溶性の鉄化合物を鉄粉表面に吸着し、固定化する効果、(2)陽イオン(鉛イオン(Pb2+)、カドミウムイオン(Cd2+))の形態で水中に溶解している有害物質を、鉄のアノード反応(Fe→Fe2++2e-)により金属に還元し、鉄粉表面に析出させて固定化する効果、あるいは(3)鉄のアノード反応により水に電子が供給されて生成する水酸化物イオンと、クロムイオン(Cr3+、Cr6+)が反応して生成した難溶性の水酸化クロムを鉄粉表面に吸着し、固定化する効果等が挙げられ、これらによって、汚染水から有害物質を吸着除去する。
1-1. Composition A. The role of iron powder, which is a constituent of iron powder, is as follows: (1) Iron ions (Fe 2+ ) eluted in the vicinity of the iron powder surface are anions (selenate ion (SeO 4 2- ), arsenate in contaminated water) (2) Cation (lead ion (Pb 2+ ), cadmium ion (Cd), effect of adsorbing and immobilizing poorly soluble iron compounds produced by reaction with ions (AsO 4 3- )) on the surface of iron powder 2+ )) in which the harmful substances dissolved in water are reduced to metals by the iron anodic reaction (Fe → Fe 2+ + 2e ), and deposited on the surface of the iron powder to be immobilized, or ( 3) The poorly soluble chromium hydroxide produced by the reaction of hydroxide ions generated by the supply of electrons to water by the iron anode reaction and chromium ions (Cr 3+ , Cr 6+ ) on the iron powder surface The effect of adsorbing and immobilizing can be mentioned. Adsorb and remove harmful substances.
 本発明で用いる鉄粉は、工業製品として流通しており、容易に入手可能であり、一般的に多岐に渡って使用されており、汎用性が高く、かつ経済的である点から、アトマイズ法によって得られる鉄粉が好ましい。さらに、水アトマイズ法によって製造されたアトマイズ鉄粉は、大量生産が可能であり、経済的であること、成分や粒径が揃っており、性能のバラツキが少なく安定した吸着除去能力が得られることから、より好ましい。
 本発明では、本発明の効果を奏する限り、上記アトマイズ鉄粉のほかに、スポンジ鉄粉、鋳鉄粉、鉄基合金粉(プレアロイ合金粉末)等も使用することもできる。
The iron powder used in the present invention is distributed as an industrial product, is easily available, is generally used in a wide variety of ways, is highly versatile, and economical, and is an atomizing method. Is preferable. Furthermore, the atomized iron powder produced by the water atomization method can be mass-produced, is economical, has the same components and particle size, and has a stable adsorption removal capability with little variation in performance. To more preferable.
In the present invention, sponge iron powder, cast iron powder, iron-base alloy powder (pre-alloy alloy powder) and the like can be used in addition to the atomized iron powder as long as the effects of the present invention are achieved.
 本発明で用いる鉄粉は、その粒径(平均粒径)が小さければ小さいほど表面積(比表面積)が増大し、有害物質の吸着除去速度が速まるが、逆に汚染水が鉄粉の間隙を通りにくくなり、吸着除去効率に悪影響を及ぼすこと、貯蔵中や輸送中に発熱しやすくなり、貯蔵安定性が悪くなること、鉄粉の酸化反応の進行が速まり、鉄粉の表面が酸化物皮膜で覆われやすくなること等の問題が生じる。一方、鉄粉の粒径が大きいほど、歩留まりが高くなって取り扱い性も向上するが、有害物質の除去速度が低下することになる。
 また、造粒工程で鉄粉が骨材としての働きにより造粒体の硬度を向上させる原料の鉄粉の好ましい平均粒径は、1000μm以下であり、より好ましくは100μm以下、さらに好ましくは80μm以下である。また、鉄粉の平均粒径の下限値は、50μm以上が好ましく、55μm以上がより好ましく、60μm以上がさらに好ましい。
 尚、本発明において「平均粒径」とは、JIS Z 8801に規定されるふるい(篩)を用いた乾式ふるい分け試験によって得られた粒度分布を累積ふるい上百分率、もしくは累積ふるい下百分率が50質量%となる粒径をいう。
The smaller the particle size (average particle size) of the iron powder used in the present invention, the greater the surface area (specific surface area) and the higher the rate of adsorption and removal of harmful substances. It becomes difficult to pass through, has an adverse effect on adsorption removal efficiency, tends to generate heat during storage and transportation, deteriorates storage stability, accelerates the oxidation reaction of iron powder, and the surface of iron powder becomes oxide Problems such as being easily covered with a film arise. On the other hand, the larger the particle size of the iron powder, the higher the yield and the better the handleability, but the harmful substance removal rate decreases.
Moreover, the preferable average particle diameter of the raw iron powder that improves the hardness of the granulated body by the action of the iron powder as an aggregate in the granulation step is 1000 μm or less, more preferably 100 μm or less, and still more preferably 80 μm or less. It is. Further, the lower limit of the average particle size of the iron powder is preferably 50 μm or more, more preferably 55 μm or more, and further preferably 60 μm or more.
In the present invention, the “average particle size” means a particle size distribution obtained by a dry sieving test using a sieve (sieving) specified in JIS Z 8801, wherein the percentage above the cumulative sieve or the percentage below the cumulative sieve is 50 mass. % Particle size.
 B.マグネシア
 構成物であるマグネシアの役割としては、(1)マグネシア(MgO)が水和して生成する水酸化マグネシウム(Mg(OH)2)に、有害物質(鉛、ヒ素等)が吸着する効果、(2)水酸化マグネシウムの生成により、その近傍のpHが10~11程度に上昇し、この範囲のpHで難溶性の水酸化物を形成する有害物質(鉛、カドミウム等)を沈殿させて不溶化する効果、あるいは(3)水酸化マグネシウムと炭酸ガスが反応し、塩基性炭酸マグネシウム(mMgCO3・Mg(OH)2)・nH2O)が生成する際に、有害物質を吸着する効果等が挙げられ、これらによって、汚染水から有害物質を吸着除去する。
B. The role of magnesia, which is a component of magnesia, is as follows: (1) The effect of adsorbing harmful substances (lead, arsenic, etc.) on magnesium hydroxide (Mg (OH) 2 ) produced by hydration of magnesia (MgO), (2) Due to the formation of magnesium hydroxide, the pH in the vicinity increases to about 10 to 11, and harmful substances (lead, cadmium, etc.) that form poorly soluble hydroxides in this range of pH are precipitated and insolubilized. Or (3) the effect of adsorbing harmful substances when magnesium hydroxide reacts with carbon dioxide to produce basic magnesium carbonate (mMgCO 3 · Mg (OH) 2 ) · nH 2 O) These adsorb and remove harmful substances from contaminated water.
 本発明で用いるマグネシアは、工業製品として流通しており、容易に入手可能であり、一般的に多岐に亘って使用されているものが好ましく、例えば、海水から精製された水酸化マグネシウムを焼成して得られたマグネシア、天然鉱石マグネサイトを焼成して得られたマグネシア等が使用できる。本発明において、有害物質の吸着除去能力を向上させるためには、速やかに水和反応し、かつ酸化マグネシウム(MgO)の含有量が多いマグネシアが好ましく、酸化マグネシウムを60質量%以上含有する軽焼マグネシアを必要に応じて粉砕して得られたものであることが好ましい。酸化マグネシウムは、軽焼マグネシア中、より好ましくは70質量%以上、さらに好ましくは75質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは95質量%以下である。 The magnesia used in the present invention is distributed as an industrial product, is easily available, and is generally widely used. For example, magnesium hydroxide purified from seawater is calcined. The magnesia obtained by baking the natural ore magnesite obtained in this way, etc. can be used. In the present invention, magnesia that rapidly hydrates and contains a large amount of magnesium oxide (MgO) is preferable in order to improve the ability to adsorb and remove harmful substances. It is preferable that it is obtained by pulverizing magnesia as necessary. Magnesium oxide is more preferably 70% by mass or more, more preferably 75% by mass or more, preferably 99% by mass or less, more preferably 98% by mass or less, and still more preferably 95% by mass or less in light-burned magnesia. is there.
 軽焼マグネシアを製造する際の焼成温度は、原料によって異なるが、一般的には海水から精製された水酸化マグネシウムを原料とした場合は約350℃以上、天然鉱石マグネサイトを原料とした場合は約540℃以上で焼成することが好ましい。一方で、焼成温度が1,000℃より高い場合は、マグネシアの水和反応性が損なわれるので、水和反応性の高い軽焼マグネシアを得るためには、これ以下の温度で焼成することが好ましい。 The firing temperature when producing light-burned magnesia varies depending on the raw material, but in general, when magnesium hydroxide purified from seawater is used as the raw material, it is about 350 ° C or higher. When natural ore magnesite is used as the raw material, Baking at about 540 ° C. or higher is preferred. On the other hand, when the firing temperature is higher than 1,000 ° C., the hydration reactivity of magnesia is impaired. Therefore, in order to obtain light calcined magnesia having a high hydration reactivity, firing at a temperature lower than this is required. preferable.
 マグネシアに由来する有害物質の吸着除去能力を効率よく得るためには、本発明で使用するマグネシアは、最大粒径が2.0mm以下となるように粉砕して得られた粉末状であることが好ましい。本発明において、マグネシアの「最大粒径が2.0mm以下」とは、例えばJIS Z 8801に規定されるふるい(篩)を用いた湿式ふるい分け試験によって得られた粒度分布の累積ふるい下百分率が100質量%となる粒径であることを意味する。最大粒径が2.0mmより大きい場合は、粗大粒子の存在によって、マグネシアと水との接触面積が小さくなり、水和反応による水酸化マグネシウム生成量の不足により、造粒工程での水硬反応への寄与の抑制を招く恐れがある。最大粒径の好ましい範囲は、0.60mm以下、より好ましくは0.15mm以下であり、さらに好ましくは0.045mm以下である。最大粒径の下限値は粒子として存在すれば特に限定されないが、例えば走査型電子顕微鏡によって観察される一次粒子の大きさが、通常0.001μm以上(特に0.01μm以上)であればよい。また、マグネシアの好ましい平均粒径としては、100μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下であり、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。かかる平均粒径は、レーザー回折/散乱式粒度分布測定装置(分散媒は、イソプロパノールなどの有機溶媒を使用)により測定した体積基準粒径の累積50%に相当する粒径である。 In order to efficiently obtain the adsorption removal ability of harmful substances derived from magnesia, the magnesia used in the present invention should be a powder obtained by pulverization so that the maximum particle size is 2.0 mm or less. preferable. In the present invention, “the maximum particle size is 2.0 mm or less” of magnesia is, for example, a cumulative sieving percentage of the particle size distribution obtained by a wet sieving test using a sieve (sieve) specified in JIS Z 8801 is 100. It means that the particle size is mass%. When the maximum particle size is larger than 2.0 mm, the contact area between magnesia and water becomes small due to the presence of coarse particles, and the hydraulic reaction in the granulation process due to the insufficient amount of magnesium hydroxide produced by the hydration reaction. There is a risk of reducing the contribution to. A preferable range of the maximum particle size is 0.60 mm or less, more preferably 0.15 mm or less, and further preferably 0.045 mm or less. The lower limit of the maximum particle size is not particularly limited as long as it exists as particles, but for example, the size of primary particles observed with a scanning electron microscope is usually 0.001 μm or more (particularly 0.01 μm or more). The preferable average particle diameter of magnesia is 100 μm or less, more preferably 50 μm or less, further preferably 20 μm or less, preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. . The average particle size is a particle size corresponding to a cumulative 50% of the volume reference particle size measured by a laser diffraction / scattering particle size distribution measuring apparatus (the dispersion medium uses an organic solvent such as isopropanol).
 C.酸性無機硫酸塩
 構成物である酸性無機硫酸塩の役割としては、主にマグネシアとの水硬反応を促し、硬化性物質を形成させる効果等が挙げられる。本発明で用いる酸性無機硫酸塩としては、工業製品として流通しており、容易に入手可能であり、一般的に多岐に渡って使用されており、pH酸性を呈するものが好ましく、鉄(II)塩、鉄(III)塩、およびアルミニウム塩から選ばれる1種以上を使用することができる。好ましい酸性無機硫酸塩としては、硫酸第一鉄、硫酸第二鉄等の硫酸鉄、硫酸アルミニウム等が挙げられる。なかでも、硫酸第一鉄(FeSO4)またはその水和物(例えば、一水和物、四水和物、五水和物、七水和物)が特に好ましい。
C. The role of the acidic inorganic sulfate, which is a constituent of the acidic inorganic sulfate, mainly includes an effect of promoting a hydraulic reaction with magnesia to form a curable substance. The acidic inorganic sulfate used in the present invention is distributed as an industrial product, is easily available, and is generally used in a wide variety, and those exhibiting pH acidity are preferable, and iron (II) One or more selected from a salt, an iron (III) salt, and an aluminum salt can be used. Preferred acidic inorganic sulfates include ferrous sulfate such as ferrous sulfate and ferric sulfate, aluminum sulfate and the like. Among these, ferrous sulfate (FeSO 4 ) or a hydrate thereof (for example, monohydrate, tetrahydrate, pentahydrate, heptahydrate) is particularly preferable.
 なお、これらの塩は、水硬反応性を向上させるために、最大粒径が2.0mm以下の粉末状であることが好ましい。最大粒径が2.0mmより大きい場合は、マグネシアと酸性無機硫酸塩と水との接触面積が小さくなり、マグネシウムオキシサルフェイト生成量の不足により、造粒工程での水硬反応への寄与の抑制を招く恐れがある。最大粒径の好ましい範囲は、1.0mm以下、より好ましくは0.6mm以下であり、通常、0.05μm以上(特に0.1μm以上)である。また酸性無機硫酸塩の平均粒径は、好ましくは600μm以下、より好ましくは300μm以下、さらに好ましくは106μm以下であり、好ましくは1μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。なお、酸性無機硫酸塩の「最大粒径が2.0mm以下」とは、例えばJIS Z 8801に規定されるふるい(篩)を用いた乾式ふるい分け試験によって得られた粒度分布の累積下百分率が100質量%となる粒径であることを意味する。酸性無機硫酸塩の「平均粒径」は、上記鉄粉の場合と同意義である。 In addition, in order to improve hydraulic reactivity, these salts are preferably in the form of a powder having a maximum particle size of 2.0 mm or less. When the maximum particle size is larger than 2.0 mm, the contact area between magnesia, acidic inorganic sulfate and water becomes small, and due to insufficient magnesium oxysulfate production, it contributes to the hydraulic reaction in the granulation process. May lead to suppression. A preferable range of the maximum particle size is 1.0 mm or less, more preferably 0.6 mm or less, and is usually 0.05 μm or more (particularly 0.1 μm or more). The average particle size of the acidic inorganic sulfate is preferably 600 μm or less, more preferably 300 μm or less, still more preferably 106 μm or less, preferably 1 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. In addition, “the maximum particle size is 2.0 mm or less” of the acidic inorganic sulfate is, for example, a cumulative percentage of the particle size distribution obtained by a dry sieving test using a sieve defined in JIS Z8801 is 100. It means that the particle size is mass%. The “average particle diameter” of the acidic inorganic sulfate has the same meaning as in the case of the iron powder.
 例えば、硫酸鉄は、酸性無機硫酸塩中、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは95質量%以下である。 For example, iron sulfate is preferably 70% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass or more, preferably 99% by mass or less, more preferably 98% by mass in the acidic inorganic sulfate. Hereinafter, it is more preferably 95% by mass or less.
 前記組成物は、鉄粉100質量部に対して、マグネシアを10~50質量部、酸性無機硫酸塩を5~50質量部含有することが好ましく、より好ましくは鉄粉100質量部に対して、マグネシアを12~48質量部、酸性無機硫酸塩を6~30質量部、さらに好ましくは鉄粉100質量部に対してマグネシアを15~45質量部、酸性無機硫酸塩を7~20質量部を含有する。かかる比率で混合すると、以下のようにして造粒して粒状化された水処理剤は、十分な硬度を有することができる。 The composition preferably contains 10 to 50 parts by mass of magnesia and 5 to 50 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder, and more preferably 100 parts by mass of iron powder. 12 to 48 parts by mass of magnesia, 6 to 30 parts by mass of acidic inorganic sulfate, more preferably 15 to 45 parts by mass of magnesia and 7 to 20 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder To do. When mixed in such a ratio, the water treatment agent granulated and granulated as follows can have sufficient hardness.
 前記組成物は、汚染水処理用カラム等に充填して使用する場合等において、取り扱い性に優れた形態である粒状にすることで通水抵抗が小さくなり目詰まりの要因が回避される。粒状化は、造粒工程により粒状化する程度の適量の清水を加えて、造粒することによって容易に達成される。粒状化できる理由は、水処理剤に含まれているマグネシアの水硬性によって、構成する粒子同士を結着させる作用、マグネシアの水和によって生成した水酸化マグネシウムが適度な粘性を与えることで、造粒工程において粒状の形態を維持できる作用によるものと考えられる。本発明では、水処理剤を粒状化するのに十分な割合のマグネシアを配合していることから、造粒工程において、本来必要となる増粘性や結着性を得るための有機系化合物のバインダーを使用することなく粒状化が可能である。 When the composition is used by being packed in a contaminated water treatment column or the like, the water resistance is reduced and the clogging factor is avoided by making the composition into a granular form having excellent handleability. Granulation is easily achieved by adding an appropriate amount of fresh water to the degree of granulation by the granulation step and granulating. The reason why it can be granulated is that the magnesium hydroxide contained in the water treatment agent binds the constituent particles together, and the magnesium hydroxide produced by magnesia hydration gives an appropriate viscosity. This is considered to be due to the effect of maintaining the granular form in the grain process. In the present invention, since magnesia is mixed in a ratio sufficient to granulate the water treatment agent, it is an organic compound binder for obtaining thickening and binding properties that are essential in the granulation process. Granulation can be carried out without using.
 <マグネシアの水和反応による硬化について>
 マグネシアの水和反応によって水酸化マグネシウムが生成する際に、水硬性を発現する。生成する微細な水酸化マグネシウムは、粗粒子間の空隙を埋めることにより水和硬化体の緻密化を促す。
MgO + H2O → Mg(OH)2
<Hardening of magnesia by hydration reaction>
When magnesium hydroxide is produced by the hydration reaction of magnesia, it exhibits hydraulic properties. The fine magnesium hydroxide produced promotes densification of the hydrated cured product by filling the gaps between the coarse particles.
MgO + H 2 O → Mg (OH) 2
 また、水酸化マグネシウムの炭酸化(炭酸マグネシウム、あるいは塩基性炭酸マグネシウムの生成)によって造粒物の硬度が増進する。
Mg(OH)2 + CO2 + 2H2O → MgCO3・3H2
[m+1]Mg(OH)2 + mCO2 + xH2O → mMgCO3・Mg(OH)2・nH2
(m=3~5, n=3~7, x=0~2)
In addition, the hardness of the granulated product is increased by carbonation of magnesium hydroxide (generation of magnesium carbonate or basic magnesium carbonate).
Mg (OH) 2 + CO 2 + 2H 2 O → MgCO 3 .3H 2 O
[m + 1] Mg (OH) 2 + mCO 2 + xH 2 O → mMgCO 3 .Mg (OH) 2 .nH 2 O
(m = 3-5, n = 3-7, x = 0-2)
 他方、酸性無機硫酸塩とマグネシアの水硬反応による硬化性物質の形成においても、粒状化が促進されると予想される。例えば好ましい酸性無機硫酸塩として挙げられる硫酸鉄の場合では、マグネシアとの水硬反応により、マグネシウムオキシサルフェイトなる硬化性物質が形成され、粒状化を促進させると予想される。 On the other hand, granulation is also expected to be promoted in the formation of a curable substance by a hydraulic reaction between acidic inorganic sulfate and magnesia. For example, in the case of iron sulfate mentioned as a preferable acidic inorganic sulfate, it is expected that a curable substance called magnesium oxysulfate is formed by the hydraulic reaction with magnesia and promotes granulation.
 <マグネシアと硫酸第一鉄の反応物による硬化>
 軽焼マグネシアと硫酸第一鉄は、水の存在化で反応すると、次のような化合物(マグネシアと硫酸マグネシウムの複塩(マグネシウムオキシサルフェイト)、及び水酸化鉄(II))を生成し、このうちマグネシウムオキシサルフェイトは造粒物の硬度を増進させる。
[m+1]MgO + FeSO4・H2O + nH2O → mMgO・MgSO4・nH2O + Fe(OH)2
<Hardening with reaction product of magnesia and ferrous sulfate>
When lightly burned magnesia and ferrous sulfate react in the presence of water, the following compounds (magnesia and magnesium sulfate double salt (magnesium oxysulfate) and iron (II) hydroxide) are generated, Of these, magnesium oxysulfate increases the hardness of the granulated product.
[m + 1] MgO + FeSO 4 · H 2 O + nH 2 O → mMgO · MgSO 4 · nH 2 O + Fe (OH) 2
 最終的に、マグネシアの水硬反応およびマグネシアと酸性無機硫酸塩との水硬反応により、鉄粉が骨材(骨格)としての役割を持ち、その他の材料が反応して生成する水硬反応性化合物は、材料粒子の間隙を埋めて緻密化を進行させ、その結果硬化体(造粒物)の強度が増進すると考えられる。 Finally, due to the hydraulic reaction of magnesia and the hydraulic reaction of magnesia and acidic inorganic sulfate, iron powder has a role as an aggregate (skeleton), and hydraulic reactivity generated by the reaction of other materials It is considered that the compound fills the gaps between the material particles and advances the densification, and as a result, the strength of the cured body (granulated product) is increased.
 本発明の水処理剤を粒状化するのに必要となる造粒工程における造粒方法は、鉄粉、マグネシアおよび酸性無機硫酸塩を特定の配合割合で混合したものに対して、造粒する際に粒状化する程度の適量の清水を加えて、造粒できるのであれば、別段限定されるものではない。なお清水は、組成物を造粒できるものであれば特に限定されないが、例えば、工業用水、水道水、純水、イオン交換水等を使用してもよい。 The granulation method in the granulation step required for granulating the water treatment agent of the present invention is performed when granulating iron powder, magnesia and acidic inorganic sulfate mixed at a specific blending ratio. There is no particular limitation as long as it can be granulated by adding an appropriate amount of fresh water to the extent that it is granulated. The fresh water is not particularly limited as long as the composition can be granulated. For example, industrial water, tap water, pure water, ion-exchanged water, or the like may be used.
 造粒方法としては、例えば、混合造粒(転動造粒(回転皿式、回転円筒式、回転円錐式)、流動層造粒(流動層式、流動噴流層式、噴流層式)、複合化流動層(遠心転動式、転動流動式、スパイラルフロー式)、攪拌造粒(パグミル式、ヘンシェル式、アイリッヒ式))、強制造粒(圧縮成形(圧縮ロール式、ブリケッティングロール式、打錠式)、押出し造粒(スクリュー式、回転多孔ダイス式、回転ブレード式)、破砕造粒(回転ナイフ(横)式、回転ナイフ(竪)式、回転バー式))等が挙げられる。なかでも、転動造粒、強制造粒および押出し造粒等の造粒方法を用いた場合は、鉄粉粒子を核とし、マグネシアや水酸化マグネシウムによって鉄粉粒子同士が結着する際、転動運動、圧縮力、あるいは押し出す力の作用を受けると、比重の大きい鉄粉を主体としている粒状物は圧密化されやすく、その結果、十分な硬度を持った重質の粒状物が得られやすいので好ましい。 Examples of granulation methods include mixed granulation (rolling granulation (rotary dish type, rotary cylindrical type, rotary conical type), fluidized bed granulation (fluidized bed type, fluidized spouted bed type, spouted bed type), composite Fluidized bed (centrifugal rolling type, rolling flow type, spiral flow type), stirring granulation (Pagmill type, Henschel type, Eirich type)), forced granulation (compression molding (compression roll type, briquetting roll type) , Tableting type), extrusion granulation (screw type, rotary porous die type, rotary blade type), crushing granulation (rotary knife (horizontal) type, rotary knife (ナ イ フ) type, rotary bar type)) and the like. . In particular, when a granulation method such as rolling granulation, forced granulation or extrusion granulation is used, iron powder particles are used as the core, and when iron powder particles are bound together by magnesia or magnesium hydroxide, rolling is performed. When subjected to dynamic motion, compressive force, or pushing force, the granular material mainly composed of iron powder having a large specific gravity is easily consolidated, and as a result, a heavy granular material with sufficient hardness is easily obtained. Therefore, it is preferable.
 D.清水
 前記造粒工程における清水の加水量は、材料の組合せ、材料の配合割合、材料の粒径および採用する造粒方法によって異なるので、条件にあわせて最適な量に調整すればよい。前記清水は、前記組成物100質量部に対して、好ましくは1質量部以上50質量部以下であり、より好ましくは3質量部以上45質量部以下、さらに好ましくは5質量部以上40質量部以下、さらにより好ましくは10質量部以上35質量部以下である。或いは、鉄粉、マグネシアおよび酸性無機硫酸塩のそれぞれに対する加水量は以下の通りであり、例えば、粒状化するための加水量は、(1)鉄粉100質量部に対して5~15質量部、(2)マグネシア100質量部に対して30~150質量部、(3)酸性無機硫酸塩100質量部に対して10質量部以下の量であることも好ましい。ただし、清水の量が多すぎる場合は、粒状物当りの固形分含有率が小さくなり、重質の粒状物が得られなくなるため、粒状物の硬度が不足してしまう恐れがあり、清水の量が少なすぎる場合は、マグネシアの水硬性作用の不足や水酸化マグネシウムの生成量の不足によって、粒状化できない、あるいは十分な硬度が得られない恐れがあるので、注意が必要である。
D. Fresh water The amount of fresh water in the granulation step varies depending on the combination of materials, the blending ratio of the materials, the particle size of the material, and the granulation method employed, and may be adjusted to an optimum amount according to the conditions. The fresh water is preferably 1 part by mass or more and 50 parts by mass or less, more preferably 3 parts by mass or more and 45 parts by mass or less, and further preferably 5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the composition. Even more preferably, it is 10 parts by mass or more and 35 parts by mass or less. Alternatively, the amount of water added to each of iron powder, magnesia, and acidic inorganic sulfate is as follows. For example, the amount of water added for granulation is (1) 5 to 15 parts by weight with respect to 100 parts by weight of iron powder. (2) 30 to 150 parts by mass with respect to 100 parts by mass of magnesia, and (3) 10 parts by mass or less with respect to 100 parts by mass of acidic inorganic sulfate. However, if the amount of fresh water is too large, the solid content per granular material becomes small and heavy granular materials cannot be obtained, so there is a risk that the hardness of the granular materials will be insufficient. If the amount is too small, it is necessary to be careful because granulation may not be achieved or sufficient hardness may not be obtained due to insufficient hydraulic properties of magnesia and insufficient amount of magnesium hydroxide.
 清水の加水方法は、造粒方法にあわせて選択すればよい。混合造粒の場合は、造粒時に清水を噴霧しながら加える。このとき、造粒工程前に適切な加水量のうち15~40質量%程度の清水を事前に添加・混合しておくと、粒状化の効率を高めることができる。強制造粒の場合は、造粒工程前に適切な加水量の清水を加えて混合しておくと良い。なお、清水を加えたあとに長時間放置しておくと、マグネシアの水硬性によって材料が硬化・固結してしまい、粒状化が困難となるため、加水後1時間以内に造粒工程を経ることが好ましい。 What is necessary is just to select the hydration method of fresh water according to the granulation method. In the case of mixed granulation, it is added while spraying fresh water during granulation. At this time, if fresh water of about 15 to 40% by mass of an appropriate amount of water is added and mixed in advance before the granulation step, the efficiency of granulation can be increased. In the case of forced granulation, it is advisable to add and mix an appropriate amount of fresh water before the granulation step. In addition, if it is allowed to stand for a long time after adding fresh water, the material hardens and solidifies due to the hydraulic properties of magnesia, and granulation becomes difficult. It is preferable.
 得られた粒状物は、粒状化後速やかに使用しても、有害物質の吸着除去能力に影響はないが、汚染水処理用カラム等に充填して使用する場合等は、取り扱い性を向上させるため、ある程度の硬度が得られていることが好ましい。この場合、粒状化後2~3時間程度養生すれば、容易に崩壊することのない程度の硬度を得ることができ、粒状化後1日以上養生しておくことで、さらなる硬度が得られ、養生時間が長いほど硬度は向上する。粒状物の養生は、一般的な屋内外の気温と湿度で行うことで別段問題はないが、短い時間で硬度を得るには気温を高くし、硬度を向上させるには湿度を高くすることが好ましい。ただし、高温および高湿度下で長時間養生した場合は、鉄の酸化反応を促進させ、有害物質の吸着除去能力が低下する恐れがあるため、注意が必要である。 Even if the obtained particulate matter is used immediately after granulation, it does not affect the ability to adsorb and remove harmful substances, but it improves handling when it is used in a column for treating contaminated water. Therefore, it is preferable that a certain degree of hardness is obtained. In this case, if it is cured for about 2 to 3 hours after granulation, it is possible to obtain a hardness that does not easily disintegrate, and further hardness can be obtained by curing for 1 day or more after granulation. The longer the curing time, the better the hardness. There is no particular problem with the curing of granular materials at normal indoor and outdoor temperatures and humidity. However, it is necessary to increase the temperature to obtain hardness in a short time, and to increase the humidity to improve hardness. preferable. However, care should be taken when aging at high temperatures and high humidity for a long time because it may promote the iron oxidation reaction and reduce the ability to adsorb and remove harmful substances.
 粒状物の粒度は、造粒工程で得られた状態のままで、別段問題なく使用できるが、使用目的に合わせて粒度を調整することによって、有害物質の吸着除去を効率よく行うことができる。粒状物の粒度を調整する方法としては、篩による分級、粉砕による調整等の方法が挙げられる。また、汚染水処理用カラム等に充填して使用する場合、粒状物を緻密に充填することによって、水処理剤と汚染水との接触面積および接触時間を十分に確保でき、汚染水から有害物質を吸着除去する効率を高くすることができる。粒状物を緻密に充填するためには、前記粒状物の粒径を0.1~2.0mmの範囲に調整することが好ましく、より好ましくは0.2~1.8mm、さらに好ましくは0.25~1.4mmの範囲に調整する。さらに、粒状物の平均粒径を0.5~1.0mmの範囲に調整することによって、粒状物を緻密に充填できるだけでなく、充填した粒状物同士の間に適度な間隙(水の通り道)を生むことができ、通水抵抗を下げることができ、目詰まりを起こさないことに繋がる。これによって、水処理剤と汚染水との接触面積および接触時間を十分に確保できるだけでなく、汚染水が充填された粒状物の隅々まで通過することができるので、粒状化した水処理剤を効率よく使用することができる。 The particle size of the granular material can be used without any problem in the state obtained in the granulation step. However, by adjusting the particle size according to the purpose of use, harmful substances can be efficiently adsorbed and removed. Examples of the method for adjusting the particle size of the granular material include classification by sieving and adjustment by pulverization. In addition, when packed in a column for treatment of contaminated water, etc., it is possible to secure a sufficient contact area and contact time between the water treatment agent and the contaminated water by densely packing the particulate matter, and from the contaminated water to harmful substances The efficiency of adsorbing and removing can be increased. In order to densely fill the granular material, it is preferable to adjust the particle size of the granular material to a range of 0.1 to 2.0 mm, more preferably 0.2 to 1.8 mm, and still more preferably 0.00. Adjust to the range of 25-1.4mm. Furthermore, by adjusting the average particle size of the granular material to a range of 0.5 to 1.0 mm, not only can the granular material be densely packed, but also an appropriate gap (water passage) between the filled granular materials. Can reduce water flow resistance and lead to no clogging. As a result, not only the contact area and contact time between the water treatment agent and the contaminated water can be sufficiently secured, but also the granular material filled with the contaminated water can pass through all the parts. It can be used efficiently.
 本発明の粒状型環境用水処理剤は、汚染水処理用カラム等に充填して使用する場合等において、取り扱い性をさらに向上させるためには、水に含浸させることによって、あるいは外力を受けることによって、容易に崩壊せず、粒状物の形態を長い時間形態を維持することが好ましい。そのためには、粒状物の硬さは、JIS K 1474-2007(活性炭試験方法、硬さ)によって測定したとき85%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上である。さらに、汚染水処理用カラム等に充填して使用する際に、長い期間、大量に汚染水を通過させる場合等では、前記硬さは95%以上であることが好ましい。 In order to further improve the handleability of the granular environmental water treatment agent of the present invention when used in a contaminated water treatment column or the like, it is impregnated with water or by receiving external force. It is preferable to maintain the shape of the granular material for a long time without easily disintegrating. For that purpose, the hardness of the granular material is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, as measured by JIS K 1474-2007 (activated carbon test method, hardness). It is. Further, when packed in a contaminated water treatment column or the like and used in a large amount of contaminated water for a long period, the hardness is preferably 95% or more.
 本発明の粒状型環境用水処理剤は、有害物質(例えば、鉛、クロム、ヒ素、セレン、カドミウム等の重金属)を含む汚染水の処理に好適に用いられる。 The granular environmental water treatment agent of the present invention is suitably used for the treatment of contaminated water containing hazardous substances (for example, heavy metals such as lead, chromium, arsenic, selenium, cadmium).
  ・ 有害物質に汚染された水の処理方法
 本発明の有害物質に汚染された水の処理方法は、有害物質を含む汚染水と、本発明の水処理剤とを接触させることを特徴とする。これによって、汚染水から有害物質を吸着除去し、処理前よりも有害物質の濃度を低減することができる。汚染水と水処理剤を接触させる方法は、別段限定されるものではなく、例えば、水処理剤を適当な容器に充填し、これに汚染水を通過させて接触させる方法、水処理剤を汚染水に加えたあと、撹拌・分散させて有害物質を吸着する方法等が挙げられる。
-Method for treating water contaminated with harmful substances The method for treating water contaminated with harmful substances of the present invention is characterized in that contaminated water containing harmful substances is brought into contact with the water treatment agent of the present invention. As a result, the harmful substances can be adsorbed and removed from the contaminated water, and the concentration of the harmful substances can be reduced more than before the treatment. The method for bringing the contaminated water into contact with the water treatment agent is not particularly limited. For example, the water treatment agent is filled in a suitable container and the contaminated water is allowed to pass through the container, and the water treatment agent is contaminated. After adding to water, the method of adsorbing harmful substances by stirring and dispersing can be used.
 汚染水に含まれる有害物質の濃度は、別段限定されるものではないが、有害物質の濃度が低いほど、有害物質の濃度を環境基準値以下にまで吸着除去しやすい。有害物質の濃度が高い場合には、本発明の水処理剤で何度も繰り返し処理を行うことによって、環境基準値以下まで有害物質を吸着除去することも可能である。また、汚染水に含まれている有害物質の種類、あるいはその総量によって、吸着除去能力や吸着除去効率等に影響を与えるので、水処理剤の組成や、汚染水との接触方法を選択することによって、吸着除去の効率を向上することができる。 The concentration of harmful substances contained in contaminated water is not particularly limited, but the lower the concentration of harmful substances, the easier it is to adsorb and remove harmful substances to an environmental standard value or lower. When the concentration of the harmful substance is high, it is possible to adsorb and remove the harmful substance to the environmental standard value or less by repeatedly performing the treatment with the water treatment agent of the present invention many times. In addition, the type or total amount of harmful substances contained in the contaminated water affects the adsorption / removal capacity and adsorption / removal efficiency. Select the composition of the water treatment agent and the contact method with the contaminated water. Thus, the efficiency of adsorption removal can be improved.
 汚染水は、有害物質を含んでいるものであれば、別段限定されるものではなく、例えば、地下水、河川水、湖沼水、各種工業排水等が挙げられる。 Contaminated water is not particularly limited as long as it contains harmful substances, and examples thereof include groundwater, river water, lake water, and various industrial wastewater.
 また、汚染水は、有害物質を含む土壌、汚泥、石炭灰、焼却灰、煤塵、および産業廃棄物から選ばれる少なくとも一種に含まれるものであってもよい。例えば、元々有害物質を含む土壌、汚泥、石炭灰、焼却灰、煤塵、および産業廃棄物から選ばれる少なくとも一種に含まれていれば、これらから浸出した、あるいはこれらを通過する段階で有害物質に汚染された水についても、本発明の水処理剤を接触させることにより、汚染水から有害物質を吸着除去し、処理前よりも有害物質の濃度を低減することができ、環境への有害物質の拡散を防止することが可能である。 Also, the contaminated water may be contained in at least one selected from soil containing toxic substances, sludge, coal ash, incinerated ash, dust, and industrial waste. For example, if it is contained in at least one selected from soil, sludge, coal ash, incinerated ash, dust, and industrial waste that originally contained hazardous substances, it will be converted into hazardous substances at the stage of leaching or passing through them. By contacting the contaminated water with the water treatment agent of the present invention, harmful substances can be adsorbed and removed from the contaminated water, and the concentration of harmful substances can be reduced compared to before treatment. It is possible to prevent diffusion.
 有害物質としては、ヒ素、セレン、鉛、カドミウム、クロム等が挙げられる。
 本発明の方法において、汚染水と水処理剤との接触方法において、本発明の水処理剤を充填した充填層を設け、充填層に、有害物質を含む汚染水を通過させて接触させてもよい。かかる方法は、水処理剤と汚染水との接触時間を十分に確保できることから、汚染水から有害物質を吸着除去する効率が高くなるので、好ましい。水処理剤の充填層としては、粒状物を緻密に充填でき、水処理剤と汚染水との接触面積および接触時間を十分に確保できるものであれば、別段限定されるものではなく、例えば、汚染水処理用カラムに水処理剤を充填したもの、あるいは水処理剤を敷き均し、積み重ねて十分な厚みを持たせたもの等が挙げられる。汚染水処理用カラムは、目標とする汚染水の処理量および処理時間によって、適切な大きさのものを選択する。また、水処理剤を敷き均した充填層については、充填層への汚染水の通過量、有害物質の濃度および種類によって層厚を調整する。
Examples of harmful substances include arsenic, selenium, lead, cadmium and chromium.
In the method of the present invention, in the contact method between the contaminated water and the water treatment agent, a packed bed filled with the water treatment agent of the present invention may be provided, and the contaminated water containing harmful substances may be passed through the packed bed and contacted. Good. Such a method is preferable because the contact time between the water treatment agent and the contaminated water can be sufficiently secured, and the efficiency of adsorbing and removing harmful substances from the contaminated water is increased. The water treatment agent packed layer is not particularly limited as long as the granular material can be densely packed and the contact area and contact time between the water treatment agent and the contaminated water can be sufficiently ensured. Examples include a column in which a contaminated water treatment column is filled with a water treatment agent, or a water treatment agent spread and leveled and stacked to give a sufficient thickness. The column for the contaminated water treatment is selected to have an appropriate size according to the target treatment amount of the contaminated water and the treatment time. Further, for the packed bed spread with a water treatment agent, the layer thickness is adjusted according to the amount of contaminated water passing through the packed bed, the concentration and type of harmful substances.
 本発明の方法において、充填層は、1つまたは複数で使用してもよく、複数で使用する場合には、汚染水の汚染度に応じて、水処理剤の粒度を変更してもよい。汚染水は、充填層または充填層を含む処理装置に2回以上供することより有害物質を吸着・除去してもよい。 In the method of the present invention, one or a plurality of packed beds may be used. When a plurality of packed beds are used, the particle size of the water treatment agent may be changed according to the degree of contamination of the contaminated water. The contaminated water may be adsorbed and removed by supplying the packed bed or the treatment apparatus including the packed bed twice or more.
 有害物質を含む土壌、汚泥、石炭灰、焼却灰、煤塵、および産業廃棄物から選ばれた一種以上から浸出した、あるいは通過した段階で有害物質に汚染された水は、汚染水を回収したあとに、水処理剤と接触させることによって有害物質を吸着除去できるが、これらを埋め立て処分している場合は、雨水等が通過するごとに汚染水が連続的に発生してしまうため、汚染水を連続的に処理できるように、埋め立て箇所の下方向あるいは横方向に本発明の水処理剤の充填層を配置してもよい。 Water that has been leached from or passed through one or more selected from soil, sludge, coal ash, incineration ash, dust, and industrial waste containing harmful substances, after collecting the contaminated water In addition, toxic substances can be adsorbed and removed by contact with a water treatment agent, but when these are disposed of in landfills, contaminated water is continuously generated each time rainwater passes through. The packed bed of the water treatment agent of the present invention may be disposed in the downward direction or the lateral direction of the landfill site so that it can be continuously treated.
 本発明の有害物質を含む汚染水の処理方法の一例を図1に示す。図1の損失水頭測定装置1において、有害物質を含む汚染水は、タンク2に供給されて、貯蔵されることが好適である。次に有害物質を含む汚染水は、このタンク2から定量ポンプ3を介して水処理剤4を含む充填塔5に送水されることが好ましい。この際、充填塔に前記汚染水を送り込む前の水の圧力、及び充填塔から有害物質が吸着・除去された後の水の圧力を、差圧計6によりモニターすることが好ましい。例えば、差圧計により、充填塔内の水処理剤の通水抵抗が上昇しているか否かをモニターすることができる。差圧計の圧力差が高い場合には、汚染水をさらに希釈したり、水処理剤を交換すればよい。 An example of a method for treating contaminated water containing harmful substances of the present invention is shown in FIG. In the loss head measuring device 1 of FIG. 1, it is preferable that the contaminated water containing harmful substances is supplied to the tank 2 and stored. Next, the contaminated water containing harmful substances is preferably sent from the tank 2 to the packed tower 5 containing the water treatment agent 4 via the metering pump 3. At this time, it is preferable to monitor the pressure of the water before sending the contaminated water to the packed tower and the pressure of the water after the harmful substances are adsorbed and removed from the packed tower by the differential pressure gauge 6. For example, it is possible to monitor whether or not the water flow resistance of the water treatment agent in the packed tower is increased by a differential pressure gauge. When the pressure difference of the differential pressure gauge is high, the contaminated water may be further diluted or the water treatment agent may be replaced.
 本願は、2013年3月7日に出願された日本国特許出願第2013-045960号に基づく優先権の利益を主張するものである。2013年3月7日に出願された日本国特許出願第2013-045960号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2013-045960 filed on March 7, 2013. The entire contents of Japanese Patent Application No. 2013-045960 filed on March 7, 2013 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
<粒状型環境用水処理剤の原料種>
・ 鉄粉:平均粒径65μm
  最大粒径の測定方法:JIS Z 8801に規定されるふるい(篩)を用いた乾式ふるい分け試験
・ 軽焼マグネシア:海水由来の水酸化マグネシウムを約500℃で焼成後、粒度調整して得られた軽焼マグネシア粉末:MgO含有率89.0質量%
  マグネシアの最大粒径:0.045mm
  最大粒径の測定方法:JIS Z 8801に規定されるふるい(篩)を用いた湿式ふるい分け試験
  マグネシアの平均粒径:3.4μm
  平均粒径の測定方法:堀場製作所製、レーザー回折/散乱式粒度分布測定装置LA-920により測定された体積基準粒径の累積50%に相当する粒径(分散媒としてイソプロパノールを使用)
・ 硫酸第一鉄・一水和物:FeSO4含有率92.9質量%
  硫酸第一鉄・一水和物の最大粒径:1.00mm
  最大粒径の測定方法:JIS Z 8801に規定されるふるい(篩)を用いた乾式ふるい分け試験
  硫酸第一鉄・一水和物の平均粒径:26μm
  平均粒径の測定方法:JIS Z 8801に規定されるふるい(篩)を用いた乾式ふるい分け試験
・ 粒状活性炭:(株)クラレ製 クラレコール KW10X32(硬さおよび通水抵抗試験の比較参照材として適用)
<Raw material for granular type environmental water treatment agent>
・ Iron powder: average particle size 65μm
Maximum particle size measurement method: Dry sieving test using a sieve (sieving) specified in JIS Z 8801. Light burned magnesia: obtained by calcining seawater-derived magnesium hydroxide at about 500 ° C and adjusting the particle size Lightly burned magnesia powder: MgO content 89.0% by mass
Maximum particle size of magnesia: 0.045mm
Measuring method of maximum particle size: Wet sieving test using sieve (screen) specified in JIS Z 8801 Average particle size of magnesia: 3.4 μm
Average particle size measurement method: Particle size equivalent to 50% cumulative volume reference particle size measured by a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA, Ltd. (using isopropanol as a dispersion medium)
・ Ferrous sulfate monohydrate: FeSO 4 content 92.9% by mass
Maximum particle size of ferrous sulfate monohydrate: 1.00mm
Measuring method of maximum particle size: Dry sieving test using sieve (sieving) specified in JIS Z 8801 Average particle size of ferrous sulfate monohydrate: 26 μm
Measurement method of average particle size: Dry sieving test using sieve (screen) specified in JIS Z 8801 ・ Granular activated carbon: Kuraray Co., Ltd. Kuraray Coal KW10X32 (applied as a comparative reference material for hardness and water resistance test) )
<粒状型環境用水処理剤の調製方法>
 表1記載の原料種および各原料種の配合量を秤量し、小型ソイルミキサー(回転数140r.p.m.)にて混合撹拌しながら、所定量の清水をスプレー噴霧しながら添加した。
得られた混合物を直径1.5mmの排出口を有する押出造粒機にて押出成型し、24時間大気放置した。この操作によって得られた棒状の固形物を粉砕し、篩いによって1.4mmを超える粒と0.25mm未満の粒を取り除き、分級し粒度調整して粒状型環境浄化用水処理剤を得た。
<Preparation Method of Granular Environmental Water Treatment Agent>
The raw material species shown in Table 1 and the blending amount of each raw material species were weighed, and a predetermined amount of fresh water was added while spraying while mixing and stirring with a small soil mixer (rotation speed 140 rpm).
The obtained mixture was extruded using an extrusion granulator having a discharge port having a diameter of 1.5 mm, and left in the atmosphere for 24 hours. The rod-shaped solid material obtained by this operation was pulverized, and particles larger than 1.4 mm and particles smaller than 0.25 mm were removed by sieving, classified and adjusted in particle size to obtain a granular type environmental treatment water treatment agent.
 得られた水処理剤について、下記の方法によって強度(硬さ)を測定した。
<水処理剤の強度(硬さ)の測定>
 JIS K 1474-2007に従って水処理剤の強度を測定した。まず、篩分けした試料(水処理剤)を100mL採取した。直径:12.7mm、9.5mmの鋼球を各々15個ずつと共に、前記採取試料を硬さ試験用皿に入れ、篩振とう機に取り付け、30分振とうした。次いで、篩分け時の下限粒度よりも目開きが2段下の篩の上に、鋼球を除いた試料を全部入れた。篩振とう機にて3分間振とうし、夫々の試料を計量した。篩の上に残った試料の質量割合(全体に対する質量%)を測定し、強度(硬度)の指標とした(この値が大きいほど、強度が高いことを示す)。得られた結果を表2に示す。
About the obtained water treatment agent, intensity | strength (hardness) was measured with the following method.
<Measurement of strength (hardness) of water treatment agent>
The strength of the water treatment agent was measured according to JIS K 1474-2007. First, 100 mL of the sieved sample (water treatment agent) was collected. Along with 15 steel balls each having a diameter of 12.7 mm and 9.5 mm, the sample collected was placed in a hardness test dish, attached to a sieve shaker, and shaken for 30 minutes. Next, all the samples excluding the steel balls were put on a sieve whose mesh size was two steps lower than the lower limit particle size at the time of sieving. Each sample was weighed by shaking for 3 minutes on a sieve shaker. The mass ratio (mass% with respect to the whole) of the sample remaining on the sieve was measured and used as an index of strength (hardness) (the larger the value, the higher the strength). The obtained results are shown in Table 2.
 得られた水処理剤について、下記の方法によって通水抵抗を測定した。
 <損失水頭測定装置による通水抵抗の測定>
 φ25mm×1200mm長の石英ガラス製カラムに水処理剤を1000mmの高さに充填し、カラム上部と各チューブとを、これらに水を注入して空気を噛まないようにしながら接続した。送液ポンプを用い、所定のLV(線速度)で下降流に通水し、差圧が安定した時点で差圧を測定した(差圧計は木幡計器製作所製で最大20kPaのものを用いた)。差圧は通水量でLV=30m/hrにして差圧が安定した後に測定した。得られた結果を表2に示すと共に、損失水頭測定装置の概要を図1に示す。
About the obtained water treatment agent, the water flow resistance was measured by the following method.
<Measurement of water resistance with a loss head measuring device>
A column made of quartz glass having a length of φ25 mm × 1200 mm was filled with a water treatment agent at a height of 1000 mm, and the upper part of the column and each tube were connected to each other while injecting water into the column so as not to chew air. Using a liquid feed pump, water was passed through the downward flow at a predetermined LV (linear velocity), and the differential pressure was measured when the differential pressure became stable (the differential pressure gauge made by Kiso Keiki Seisakusho was used with a maximum of 20 kPa). . The differential pressure was measured after the water flow rate was LV = 30 m / hr and the differential pressure was stabilized. The obtained results are shown in Table 2, and an outline of the loss head measuring device is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1は、3種の原料粉体を小型ソイルミキサー(回転数140r.p.m.)にて混合撹拌を実施したのみである。 In Comparative Example 1, only three kinds of raw material powders were mixed and stirred with a small soil mixer (rotation speed: 140 rpm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の1~2はいずれも硬さの値も満足した結果が得られ、参照材として用いた粒状活性炭と比較しても良好な値が得られている。一方、通水抵抗においても、実施例の2つは粒状活性炭と同等の値が得られる結果となった。造粒を実施しない比較例1においては、通水抵抗が差圧計の限界(20kPa)を超えたものとなり、通水に障害を来す可能性が高いことが伺える。 The results of Examples 1 and 2 satisfying the hardness values were obtained, and good values were obtained even when compared with the granular activated carbon used as the reference material. On the other hand, also in the water flow resistance, two of the examples resulted in the same value as the granular activated carbon. In Comparative Example 1 in which granulation is not performed, it can be seen that the water flow resistance exceeds the limit of the differential pressure gauge (20 kPa), and there is a high possibility of causing a failure in water flow.
<造粒物の有害物質吸着除去性能試験>
 有害物質の吸着除去性能を判断する上で、ヒ素、セレン、鉛、カドミウムおよびクロムの重金属種を用いた吸着性能による試験を実施した。ヒ素含有排水のモデル液としてヒ酸カリウム(KH2AsO4)を、セレン含有排水のモデル液としてセレン酸ナトリウム(Na2SeO4)を、鉛含有排水のモデル液として硝酸鉛(II)(Pb(NO32)を、カドミウム含有排水のモデル液として塩化カドミウム2.5水和物(CdCl2・2.5H2O)を、クロム含有排水のモデル液として二クロム酸カリウム(K2Cr27)を各々水に溶かした液を用いた。5種類の重金属種の原水濃度としては、環境基準値の10倍(すなわちヒ素、セレン、鉛、カドミウムでは0.1mg/L。クロムでは0.5mg/L)とした被処理水を調製した。各被処理水を500mLのポリ容器に250mL入れて、実施例で調製した各水処理剤を各々2.5g(固液比 1:100)となるように添加し、室温で24時間振とうさせた。次いで、振とうを止めて水処理剤と上澄液を0.45μmの目開きを有したメンブレンフィルターで濾過分離し、該上澄液中の残留重金属濃度を以下の通りに測定した。
 ヒ素はJIS K0102 61.3、セレンはJIS K0102 67.3に則った水素化物発生ICP発光分析法、鉛はJIS K0102 54.4に則ったICP質量分析法、カドミウムはJIS K0102 55.4に則ったICP質量分析法、クロムはJIS K0102 65.1.5に則ったICP質量分析法により測定した。結果を表3に示す。
<Hazardous substance removal performance test of granulated products>
In order to judge the adsorption removal performance of harmful substances, tests using adsorption performance using heavy metal species of arsenic, selenium, lead, cadmium and chromium were conducted. Potassium arsenate (KH 2 AsO 4 ) as a model solution for arsenic-containing wastewater, sodium selenate (Na 2 SeO 4 ) as a model solution for selenium-containing wastewater, and lead (II) nitrate (Pb) as a model solution for lead-containing wastewater (NO 3 ) 2 ), cadmium chloride hemihydrate (CdCl 2 · 2.5H 2 O) as a cadmium-containing wastewater model solution, and potassium dichromate (K 2 Cr) as a chrome-containing wastewater model solution A solution in which 2 O 7 ) was dissolved in water was used. As raw water concentrations of the five heavy metal species, water to be treated was prepared that was 10 times the environmental standard value (that is, 0.1 mg / L for arsenic, selenium, lead, and cadmium; 0.5 mg / L for chromium). 250 ml of each water to be treated is put in a 500 ml plastic container, and each water treatment agent prepared in the example is added to 2.5 g (solid / liquid ratio 1: 100), and shaken at room temperature for 24 hours. It was. Next, shaking was stopped, and the water treatment agent and the supernatant were separated by filtration through a membrane filter having an opening of 0.45 μm, and the residual heavy metal concentration in the supernatant was measured as follows.
Arsenic is JIS K0102 61.3, selenium is hydride generation ICP emission spectrometry according to JIS K0102 67.3, lead is ICP mass spectrometry according to JIS K0102 54.4, cadmium is according to JIS K0102 55.4. ICP mass spectrometry, chromium was measured by ICP mass spectrometry according to JIS K0102 65.1.5. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~2は、いずれも良好な重金属除去性能を示した。具体的には、実施例1の水処理剤は、ヒ素、セレン、鉛、カドミウム、クロムの濃度をそれぞれ、約1/100倍以上、約1/8倍、約1/20倍、約1/4倍、約1/5倍の濃度に低減できることを示す。実施例2の水処理剤は、ヒ素、セレン、鉛、カドミウム、クロムの濃度をそれぞれ、約1/100倍以上、約1/4倍、約1/3倍、約1/4倍、約1/2.5倍の濃度に低減できることを示す。以上より、セレン、鉛、クロムに関しては、実施例1の水処理剤が実施例2のものよりも高い除去能を有することが分かる。 Examples 1 and 2 all showed good heavy metal removal performance. Specifically, in the water treatment agent of Example 1, the concentrations of arsenic, selenium, lead, cadmium, and chromium are about 1/100 times or more, about 1/8 times, about 1/20 times, and about 1/20 times, respectively. It shows that the concentration can be reduced to 4 times or about 1/5 times. In the water treatment agent of Example 2, the concentrations of arsenic, selenium, lead, cadmium, and chromium were about 1/100 times or more, about 1/4 times, about 1/3 times, about 1/4 times, and about 1 respectively. This indicates that the concentration can be reduced to /2.5 times. From the above, with respect to selenium, lead, and chromium, it can be seen that the water treatment agent of Example 1 has higher removal ability than that of Example 2.
 本発明の粒状型環境用水処理剤は、安価な工業製品であるアトマイズ法によって製造可能な鉄粉にマグネシア、および酸性無機硫酸塩を所定の割合で配合し、かつその配合構成に清水を加えて造粒することで粒状体としたものである。かかる水処理剤は、人体に対して有害であり健康障害をもたらす有害物質に汚染された水から、有害物質を容易に吸着除去することができ、吸着除去能力を長い時間維持することが可能であり、有機系化合物のバインダーを使用していないことから、有機系化合物による環境汚染の心配がなく、且つ安価に製造が可能である。他方カートリッジタイプの通水式浄化方法での重金属除去においては浄化効率を高めるのに必要な通水抵抗を低減でき、産業上の利用価値が高い。 The granular type environmental water treatment agent of the present invention is a low-priced industrial product that contains magnesia and acidic inorganic sulfate at a predetermined ratio in iron powder that can be manufactured by the atomizing method, and is added with fresh water to the composition. Granulates by granulation. Such a water treatment agent can easily adsorb and remove harmful substances from water contaminated with harmful substances that are harmful to human body and cause health problems, and can maintain the adsorption removal ability for a long time. In addition, since no organic compound binder is used, there is no concern about environmental pollution due to the organic compound, and it can be manufactured at low cost. On the other hand, in removing heavy metals in the cartridge type water purification method, the water resistance required to increase the purification efficiency can be reduced, and the industrial utility value is high.
1:損失水頭測定装置
2:タンク
3:定量ポンプ
4:水処理剤
5:充填塔
6:差圧計
1: Loss head measuring device 2: Tank 3: Metering pump 4: Water treatment agent 5: Packing tower 6: Differential pressure gauge

Claims (7)

  1.  有害物質を除去するための水処理剤であって、鉄粉、マグネシア、および酸性無機硫酸塩を含有する組成物に清水を加えて造粒形態としたものであることを特徴とする粒状型環境用水処理剤。 A water treatment agent for removing toxic substances, characterized by adding granulated form by adding fresh water to a composition containing iron powder, magnesia, and acidic inorganic sulfate Water treatment agent.
  2.  さらに、以下の(a)~(d)のいずれか1つ以上であることを特徴とする請求項1に記載の粒状型環境用水処理剤。
    (a)前記組成物が、鉄粉100質量部に対して、マグネシアを10~50質量部、酸性無機硫酸塩を5~50質量部含有すること、
    (b)前記清水が、前記組成物100質量部に対して、1質量部以上50質量部以下であること、
    (c)前記マグネシアが、酸化マグネシウムを60質量%以上含有する軽焼マグネシアを粉砕して得られたものであり、かつ最大粒径が2.0mm以下の粉末状であること、
    (d)前記酸性無機硫酸塩が、鉄(II)塩、鉄(III)塩、およびアルミニウム塩から選ばれる1種以上であり、かつ最大粒径が2.0mm以下の粉末状であること。
    The granular environmental water treatment agent according to claim 1, further comprising one or more of the following (a) to (d):
    (A) The composition contains 10 to 50 parts by mass of magnesia and 5 to 50 parts by mass of acidic inorganic sulfate with respect to 100 parts by mass of iron powder.
    (B) The fresh water is 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the composition;
    (C) The magnesia is obtained by pulverizing light-burned magnesia containing 60% by mass or more of magnesium oxide, and is in a powder form having a maximum particle size of 2.0 mm or less.
    (D) The acidic inorganic sulfate is at least one selected from iron (II) salt, iron (III) salt, and aluminum salt, and has a maximum particle size of 2.0 mm or less.
  3.  前記組成物に清水を加え、造粒することによって粒状物の形態としたものの硬さが、JIS K 1474-2007によって測定したとき80%以上であることを特徴とする請求項1または請求項2に記載の粒状型環境用水処理剤。 The hardness of a granular product obtained by adding fresh water to the composition and granulating it is 80% or more as measured by JIS K 1474-2007. The granular type environmental water treatment agent according to 1.
  4.  前記組成物に清水を加えて造粒したのち、0.1~2.0mmの範囲に粒度を調整して粒状物の形態としたものであることを特徴とする請求項1または請求項2に記載の粒状型環境用水処理剤。 3. The composition according to claim 1 or 2, wherein the composition is granulated by adding fresh water and then adjusted to a particle size in a range of 0.1 to 2.0 mm to form a granular material. The particulate environmental water treatment agent as described.
  5.  有害物質を含む汚染水と、請求項1または請求項2に記載の粒状型環境用水処理剤とを接触させることを特徴とする有害物質に汚染された水の処理方法。 A method for treating water contaminated with harmful substances, comprising contacting contaminated water containing harmful substances with the particulate environmental water treatment agent according to claim 1 or 2.
  6.  前記汚染水が、有害物質を含む土壌、汚泥、石炭灰、焼却灰、煤塵、および産業廃棄物から選ばれる少なくとも一種に含まれるものであることを特徴とする請求項5に記載の有害物質に汚染された水の処理方法。 The harmful substance according to claim 5, wherein the contaminated water is contained in at least one selected from soil containing harmful substances, sludge, coal ash, incinerated ash, dust, and industrial waste. How to treat contaminated water.
  7.  前記粒状型環境用水処理剤を充填した充填層に、有害物質を含む汚染水を通過させて接触させることを特徴とする請求項5に記載の有害物質に汚染された水の処理方法。 The method for treating water contaminated with harmful substances according to claim 5, wherein contaminated water containing harmful substances is passed through and contacted with the packed bed filled with the particulate environmental water treatment agent.
PCT/JP2014/053502 2013-03-07 2014-02-14 Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same. WO2014136550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480012081.5A CN105008285B (en) 2013-03-07 2014-02-14 Particulate-type water-use for environment inorganic agent and the processing method using its water to being polluted by harmful substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-045960 2013-03-07
JP2013045960A JP5981863B2 (en) 2013-03-07 2013-03-07 Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same

Publications (1)

Publication Number Publication Date
WO2014136550A1 true WO2014136550A1 (en) 2014-09-12

Family

ID=51491075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053502 WO2014136550A1 (en) 2013-03-07 2014-02-14 Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same.

Country Status (3)

Country Link
JP (1) JP5981863B2 (en)
CN (1) CN105008285B (en)
WO (1) WO2014136550A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104998610B (en) * 2015-06-25 2018-04-20 广西大学 Molasses alcohol waste liquid modified active carclazyte granule adsorbent and its preparation method and application
CN107828378A (en) * 2017-10-30 2018-03-23 安徽铭能保温科技有限公司 A kind of compound Fugitive dust inhibiting agent and preparation method thereof
CN107876001A (en) * 2017-10-30 2018-04-06 安徽铭能保温科技有限公司 A kind of modified magnesia heavy metal removing agent and preparation method thereof
CN107805107A (en) * 2017-10-30 2018-03-16 安徽铭能保温科技有限公司 A kind of modified residual adsorption fertilizer of magnesia agriculture and preparation method thereof
CN107935064A (en) * 2017-10-30 2018-04-20 安徽铭能保温科技有限公司 A kind of brewery's residual water removes turbid inorganic agent and preparation method thereof
JP7465268B2 (en) * 2019-07-05 2024-04-10 太平洋セメント株式会社 Aquaculture materials and their manufacturing method
JP7370312B2 (en) 2020-12-28 2023-10-27 株式会社日本海水 Hazardous substance remover, method for producing a hazardous substance remover, and method for treating hazardous substances using a hazardous substance remover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041935A (en) * 2009-07-24 2011-03-03 Kobe Steel Ltd Treatment agent and treatment method for contaminated water containing heavy metals
JP2011110476A (en) * 2009-11-25 2011-06-09 Jfe Mineral Co Ltd Cleaning material
JP2012240017A (en) * 2011-05-23 2012-12-10 Nittetsu Kankyo Engineering Kk Treating material of harmful substance, and treating method of harmful substance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3836447B2 (en) * 2003-06-18 2006-10-25 松田技研工業株式会社 Contaminated soil insolubilizer
CN101863601A (en) * 2009-04-14 2010-10-20 株式会社安农津技研 Flocculation curing agent, composition thereof and stabilization improvement method of silt type soil
CN102351294B (en) * 2011-07-14 2014-01-08 中国科学院沈阳应用生态研究所 Method for treating arsenic in waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041935A (en) * 2009-07-24 2011-03-03 Kobe Steel Ltd Treatment agent and treatment method for contaminated water containing heavy metals
JP2011110476A (en) * 2009-11-25 2011-06-09 Jfe Mineral Co Ltd Cleaning material
JP2012240017A (en) * 2011-05-23 2012-12-10 Nittetsu Kankyo Engineering Kk Treating material of harmful substance, and treating method of harmful substance

Also Published As

Publication number Publication date
JP5981863B2 (en) 2016-08-31
CN105008285A (en) 2015-10-28
CN105008285B (en) 2017-03-29
JP2014171953A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5981863B2 (en) Granular environmental water treatment agent and method for treating water contaminated with harmful substances using the same
Mohammed et al. Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater
Taffarel et al. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites
Sounthararajah et al. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns
Sharma et al. Nano‐adsorbents for the removal of metallic pollutants from water and wastewater
JP5700651B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
Ok et al. Heavy metal adsorption by a formulated zeolite-Portland cement mixture
EP1328477B1 (en) Contact and adsorber granulates
JP6118571B2 (en) Treatment method of contaminated soil
JP5113975B2 (en) Contact and adsorbent granules
JP5968220B2 (en) Permeable porous composite material
Kumar et al. Removal of lead and copper metal ions in single and binary systems using biopolymer modified spinel ferrite
Lalley et al. Phosphate removal using modified Bayoxide® E33 adsorption media
EP1344564A2 (en) Mixtures of adsorbent materials
JP5268867B2 (en) Purification material
JP2012161797A (en) Contact body and adsorbent granules
AU2012215500B2 (en) Filtering medium for fluid purification
Basu et al. Arsenic (III) removal performances in the absence/presence of groundwater occurring ions of agglomerated Fe (III)–Al (III) mixed oxide nanoparticles
JP2009072773A (en) Adsorbent agent
US20120145640A1 (en) Method and composition to reduce the amounts of heavy metal in aqueous solution
JP2009137801A (en) New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
JP2011240325A (en) Agent for eliminating heavy metal ion and phosphate ion in wastewater, and method for eliminating heavy metal ion and phosphate ion using the same
Mwamulima et al. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media
JP5000700B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
Kamath et al. Application of ZnO nano rods for the batch adsorption of Cr (VI): a study of kinetics and isotherms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760095

Country of ref document: EP

Kind code of ref document: A1