JP2009137801A - New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water - Google Patents

New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water Download PDF

Info

Publication number
JP2009137801A
JP2009137801A JP2007316590A JP2007316590A JP2009137801A JP 2009137801 A JP2009137801 A JP 2009137801A JP 2007316590 A JP2007316590 A JP 2007316590A JP 2007316590 A JP2007316590 A JP 2007316590A JP 2009137801 A JP2009137801 A JP 2009137801A
Authority
JP
Japan
Prior art keywords
water
layered double
composite material
double hydroxide
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007316590A
Other languages
Japanese (ja)
Inventor
Hodaka Ikeda
穂高 池田
Kenichi Ito
健一 伊藤
Tsutomu Sato
努 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophia Co Ltd
Original Assignee
Sophia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophia Co Ltd filed Critical Sophia Co Ltd
Priority to JP2007316590A priority Critical patent/JP2009137801A/en
Publication of JP2009137801A publication Critical patent/JP2009137801A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a high-level purification by exhibiting a high-level adsorption ability to heavy metals contained in a contaminant or contaminated water without performing treatment such as a pretreatment for removing CO<SB>3</SB><SP>2-</SP>between the layers of a layered double hydroxide. <P>SOLUTION: A new material produces soluble divalent and trivalent cations when it is brought into contact with a component in water and spontaneously produces a layered double hydroxide [M<SP>2+</SP><SB>(1-x)</SB>M<SP>3+</SP><SB>x</SB>(OH)<SB>2</SB>]<SP>x+</SP>[A<SP>n-</SP><SB>x/n</SB>-yH<SB>2</SB>O]<SP>x-</SP>(M: cation, A: anion) in a pH range of 6-12.5. The divalent cation is preferably magnesium, manganese, calcium, nickel, cobalt, copper, zinc, or iron, or a combination thereof. The trivalent cation is preferably aluminum, manganese, iron, or cobalt, or a combination thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉱物の一種であり、重金属類を吸着する機能を有する層状複水酸化物に係わる新規材料、浄化方法、層状複水酸化物の生成方法、前記新規材料を含む複合材及びその製造方法、吸着材、浄化設備並びに汚染水の浄化方法に関する。   The present invention is a kind of mineral, a novel material relating to a layered double hydroxide having a function of adsorbing heavy metals, a purification method, a method for producing a layered double hydroxide, a composite material containing the novel material, and its production The present invention relates to a method, an adsorbent, a purification facility, and a purification method of contaminated water.

層状複水酸化物(Layered Double Hydroxide) は、代表的には天然鉱物Hydrotalcite:Mg6Al2CO3(OH)16・4H2Oがあり、一般式[M2+ (1-x)M3+ x(OH)2]x+ [An- x/n・yH2O]x-(M:陽イオン、A:n価の陰イオン)で表される。2価の陽イオンにOH-が六配位した八面体が平面状に配列した水酸化物層に、3価の陽イオンが置換した結晶構造をもつ。3価の陽イオンの置換量によって水酸化物層の正電荷量は決まり、この正電荷を中和するため層の間に陰イオンが存在している。層間の陰イオンはイオン交換可能であり、n価の陰イオンにはCO3 2-の他にSO4 2-、Cl-、Br-等で構成されることが知られている。層状複水酸化物はイオン交換による陰イオン吸着能を持つ無機層状物質として、各方面で利用されている。また、2価の陽イオンはMgの他にCa、Mn、Fe、Ni、Cu、Zn等、3価の陽イオンはAlの他にFe、Co、Mn、Cr、In等で構成されることも知られており、陰イオンだけでなく陽イオンについても、多様な種類で構成される。また、層状複水酸化物はその水酸化物層の端面に陽イオンを吸着することも可能である。 Layered Double Hydroxide is typically a natural mineral, Hydrotalcite: Mg 6 Al 2 CO 3 (OH) 16 · 4H 2 O, with the general formula [M 2+ (1-x) M 3 + x (OH) 2 ] x + [A n− x / n · yH 2 O] x− (M: cation, A: n-valent anion). It has a crystal structure in which a trivalent cation is substituted in a hydroxide layer in which octahedrons in which OH - is coordinated to divalent cations are arranged in a plane. The amount of positive charge of the hydroxide layer is determined by the amount of substitution of trivalent cations, and an anion exists between the layers to neutralize this positive charge. It is known that the anion between the layers can be ion-exchanged, and the n-valent anion is composed of SO 4 2− , Cl , Br − and the like in addition to CO 3 2− . Layered double hydroxides are used in various directions as inorganic layered substances having anion adsorption ability by ion exchange. In addition to Mg, the divalent cation is composed of Ca, Mn, Fe, Ni, Cu, Zn, etc. The trivalent cation is composed of Fe, Co, Mn, Cr, In, etc. in addition to Al. It is also known, and not only anions but also cations are composed of various types. The layered double hydroxide can also adsorb cations on the end face of the hydroxide layer.

層状複水酸化物の構造、吸着能、水処理等への利用について言及している公知文献として、非特許文献1、2がある。   Non-patent documents 1 and 2 are known documents that refer to the use of the layered double hydroxide structure, adsorption capacity, water treatment, and the like.

ハイドロタルサイトの性質と応用(宮田茂男:スメクタイト研究会会報, 第6巻, 第1号, p12-26, 1996.)Properties and applications of hydrotalcite (Shigeo Miyata: Bulletin of the smectite society, Vol. 6, No. 1, p12-26, 1996.) ハイドロタルサイトの水環境保全・浄化への応用(亀田知人・吉岡敏明・梅津良昭・奥脇昭嗣:The Chemical Times, 195, No.1, p10-16, 2005.)Application of hydrotalcite to water environment conservation and purification (Tomoto Kameda, Toshiaki Yoshioka, Yoshiaki Umezu, Akiyoshi Okwaki: The Chemical Times, 195, No.1, p10-16, 2005.)

上記の如く、層状複水酸化物は陰イオン吸着能を有することから吸着材としての利用が検討されているが、層間にCO3 2-を有する一般的な層状複水酸化物ではCO3 2-が他の陰イオンへの交換性が低いという欠点がある。そのため、実用に際して加熱・焼成、あるいは薬品処理等により、層間のCO3 2-を除くか、交換性の高いCl-等他の陰イオンへ置換することでこれを解決し、陰イオン交換吸着能の高い層状複水酸化物を作成し、利用する必要がある(非特許文献1、2参照)。 As described above, since the layered double hydroxide has anion adsorption ability, its use as an adsorbent has been studied. In general layered double hydroxides having CO 3 2- between layers, CO 3 2 - there is a disadvantage that the low exchange of the other anions. Therefore, heating and baking in practical use, or by chemical treatment or the like, or excluding CO 3 2- and interlayer, high exchangeable Cl - solves this by replacing the equal other anions, anion exchange adsorption capacity It is necessary to create and use a layered double hydroxide having a high thickness (see Non-Patent Documents 1 and 2).

しかし、層間のCO3 2-を除去或いは置換する前処理は材料の高コスト化を招くため、前記前処理を施すのは、層状複水酸化物を一部の高機能材料として利用する場合に限定されており、低コスト処理の要望が高い汚染土壌や汚染水の浄化分野では適用が難しい。そのため、前記前処理なしに、高い陰イオン吸着能を発現させる新規材料が切望されている。 However, the pretreatment that removes or replaces the CO 3 2− between layers leads to high cost of the material. Therefore, the pretreatment is performed when the layered double hydroxide is used as a part of the highly functional material. It is limited and difficult to apply in the field of purification of contaminated soil and contaminated water, where demand for low-cost treatment is high. Therefore, a novel material that exhibits high anion adsorption ability without the pretreatment is desired.

また、層状複水酸化物は粘土鉱物の一種で微細な粒子状となっているため、汚染土や汚染水に加えて混合することで浄化することは容易であるものの、例えばイオン交換樹脂の通水型浄化処理のように、所定の容器に充填し汚染水を通過させて汚染水の重金属類を吸着させる構成とすることは、微粒子の目詰まりが生じるため難しい。
また、汚染土壌の下層地盤及びその周囲に重金属類の吸着層を配置し、汚染土壌からの浸出水に含まれる重金属類を捕集して地下水汚染を防止する方法も考えられる。前記方法とする場合、吸着効果を有する浄化材料の活用が必須であるが、液状の浄化材料ではそれ自体の流亡があり、又、粉体の浄化材料では土壌間隙の目詰まりを生じて部分的に透水性を低下し、汚染土壌の浸出水が浄化材料の無い土壌間隙を伝ってしまうことがあるため、重金属類を吸着する効果が得られない。そのため、材料の流亡の虞が無いと共に透水性を有し、汚染水に安定接触して重金属類を効果的に吸着できる浄化用の材料が求められている。
In addition, layered double hydroxide is a kind of clay mineral and is in the form of fine particles, so it can be easily purified by mixing in addition to contaminated soil and water, but for example, ion exchange resin As in the water purification process, it is difficult to fill a predetermined container and allow the contaminated water to pass through to adsorb heavy metals of the contaminated water because clogging of fine particles occurs.
Another possible method is to arrange an adsorption layer of heavy metals on the lower ground of the contaminated soil and its surroundings to collect the heavy metals contained in the leachate from the contaminated soil and prevent groundwater contamination. In the case of the above method, it is essential to use a purification material having an adsorption effect. However, in the case of a liquid purification material, there is a runoff of itself, and in the case of a powder purification material, clogging of soil gaps occurs, resulting in partial clogging. Therefore, the effect of adsorbing heavy metals cannot be obtained because the permeability of the contaminated soil may be reduced and the leachate of the contaminated soil may travel through the soil gap without the purification material. Therefore, there is a need for a purification material that has no risk of material loss and has water permeability and can stably adsorb heavy metals by stably contacting contaminated water.

本発明は上記課題に鑑み提案するものであり、層状複水酸化物の層間のCO3 2-除去の前処理の様な処理をすることなく、汚染物や汚染水に含まれる重金属類に対する高度な吸着能を発揮し、高レベルの浄化を行うことができる新規材料、浄化方法、層状複水酸化物の生成方法、前記新規材料を含む複合材及びその製造方法、吸着材、浄化設備並びに汚染水の浄化方法を提供することを目的とする。 The present invention is proposed in view of the above-mentioned problems, and it is possible to achieve a high level of performance with respect to heavy metals contained in pollutants and contaminated water without performing treatment such as pretreatment for removing CO 3 2- between layers of layered double hydroxides. New material capable of exhibiting a high level of adsorption capacity and high-level purification, purification method, method for producing layered double hydroxide, composite material containing the new material and method for producing the same, adsorbent, purification equipment and contamination It aims at providing the purification method of water.

本発明の新規材料は、水との接触により、2価の陽イオンと3価の陽イオンとを生じ、pHが6〜12.5の範囲で陽イオンおよび陰イオンの吸着作用を有する層状複水酸化物[M2+ (1-x)M3+ x(OH)2]x+[An- x/n・yH2O]x-(M:陽イオン、A:陰イオン)を自発的に生成することを特徴とする。例えば2価の陽イオン:Mg2+、Mn2+、Ca2+、Ni2+、Co2+、Cu2+、Zn2+、Fe2+等、3価の陽イオン:Al3+、Mn3+、Co3+、Fe3+等、xの範囲:0.2≦x≦0.33とする層状複水酸化物[M2+ (1-x)M3+ x(OH)2]x+[An- x/n・yH2O]x-(M:陽イオン、A:陰イオン)を自発的に生成する新規材料とすると好適である。 The novel material of the present invention generates a divalent cation and a trivalent cation upon contact with water, and has a layered compound having an adsorption action of cation and anion within a pH range of 6 to 12.5. Spontaneously hydroxide [M 2+ (1-x) M 3+ x (OH) 2 ] x + [A n- x / n · yH 2 O] x- (M: cation, A: anion) It is characterized by producing | generating. For example, divalent cations: Mg 2+ , Mn 2+ , Ca 2+ , Ni 2+ , Co 2+ , Cu 2+ , Zn 2+ , Fe 2+, etc. Trivalent cation: Al 3+ , Mn 3+ , Co 3+ , Fe 3+, etc., x range: layered double hydroxide [M 2+ (1-x) M 3+ x (OH) 2 ] x + [A n- x / n · yH 2 O ] x- (M: a cation, a: anion) it is preferable that the new material that spontaneously generate.

また、本発明の新規材料は、前記2価の陽イオンがマグネシウム、マンガン、カルシウム、ニッケル、コバルト、銅、亜鉛若しくは鉄若しくはこれらを含む組み合わせであり、前記3価の陽イオンがアルミニウム、マンガン、鉄若しくはコバルト若しくはこれらを含む組み合わせが水との接触で生じることを特徴とする。新規材料を、2価の陽イオンを生じる成分としてマグネシウム、マンガン、カルシウム、ニッケル、コバルト、銅、亜鉛若しくは鉄の何れかと、3価の陽イオンを生じる成分としてアルミニウム、マンガン、鉄若しくはコバルトの何れかを含む混合物或いは化合物から構成し、水との接触によりpHが自動的にpH6〜12.5のアルカリ条件となるよう調整した層状複水酸化物の作用をもつ新規材料とする。
前記2価の陽イオンを生じる2価の陽イオン原料としては、例えば消石灰、生石灰、炭酸カルシウム、ケイ酸カルシウム、酸化マグネシウム、水酸化マグネシウム、塩化マンガン(II) 四水和物、二酸化マンガン、水酸化ニッケル、塩化ニッケル、塩化コバルト、硫酸コバルト、水酸化コバルト、炭酸コバルト、水酸化コバルト、一酸化コバルト、硫酸第一鉄、水酸化亜鉛、硫酸銅若しくは水酸化銅等、マグネシウム、マンガン、カルシウム、ニッケル、コバルト、銅、亜鉛及び鉄等の水酸化物、酸化物若しくは可溶性塩及びこれらを含む混合物、化合物及び単体を用いることが可能である。
前記3価の陽イオンを生じる3価の陽イオン原料としては、例えば水酸化アルミニウム、塩化アルミニウム、硫酸アルミニウム、二酸化マンガン、硫酸第一鉄、硫酸第二鉄、水酸化鉄、酸化鉄若しくは四三酸化コバルト等、アルミニウム、マンガン、鉄及びコバルト等の水酸化物、酸化物若しくは可溶性塩及びこれらを含む混合物、化合物及び単体を用いることが可能である。
Further, the novel material of the present invention is such that the divalent cation is magnesium, manganese, calcium, nickel, cobalt, copper, zinc or iron or a combination containing these, and the trivalent cation is aluminum, manganese, It is characterized in that iron, cobalt, or a combination containing these is produced upon contact with water. New material, any of magnesium, manganese, calcium, nickel, cobalt, copper, zinc, or iron as a component that generates a divalent cation, and any of aluminum, manganese, iron, or cobalt as a component that generates a trivalent cation A new material having the action of a layered double hydroxide adjusted to have an alkaline condition of pH 6 to 12.5 upon contact with water.
Examples of the divalent cation raw material that generates the divalent cation include slaked lime, quicklime, calcium carbonate, calcium silicate, magnesium oxide, magnesium hydroxide, manganese chloride tetrahydrate, manganese dioxide, and water. Nickel oxide, nickel chloride, cobalt chloride, cobalt sulfate, cobalt hydroxide, cobalt carbonate, cobalt hydroxide, cobalt monoxide, ferrous sulfate, zinc hydroxide, copper sulfate or copper hydroxide, magnesium, manganese, calcium, It is possible to use hydroxides, oxides or soluble salts such as nickel, cobalt, copper, zinc and iron, and mixtures, compounds and simple substances containing these.
Examples of the trivalent cation raw material that generates the trivalent cation include, for example, aluminum hydroxide, aluminum chloride, aluminum sulfate, manganese dioxide, ferrous sulfate, ferric sulfate, iron hydroxide, iron oxide, or four-three. It is possible to use hydroxides, oxides or soluble salts such as cobalt oxide, aluminum, manganese, iron and cobalt, and mixtures, compounds and simple substances containing these.

尚、前記2価の陽イオン原料及び前記3価の陽イオン原料については、新規材料中で目的の価数及びイオンの状態で在る必要は無く、水との接触により、2価の陽イオン及び3価の陽イオンが生じるものとする。
pHが6〜12.5に調整するpH調整剤としては、例えば消石灰、生石灰、炭酸カルシウム、ケイ酸カルシウム、ケイ酸ナトリウム、ケイ酸カリウム、酸化マグネシウム若しくは水酸化マグネシウム等、水酸化物、酸化物若しくは可溶性の塩及びこれらを含む混合物及び化合物を用いることが可能である。
また、前記2価の陽イオン原料、前記3価の陽イオン原料および前記pH調整剤については、水との接触により、pHが6〜12.5となる範囲において、前記2価の陽イオン原料と前記3価の陽イオン原料は任意の重量比の範囲で混合することができる。また、新規材料の使用時に接触する水及び汚染物や汚染水等が新規材料を構成する成分を含む場合は、その条件を鑑みて新規材料の成分を調整することが可能である。
The divalent cation raw material and the trivalent cation raw material do not need to be in the target valence and ion state in the new material, and can be divalent cation by contact with water. And trivalent cations.
Examples of the pH adjuster for adjusting the pH to 6 to 12.5 include slaked lime, quicklime, calcium carbonate, calcium silicate, sodium silicate, potassium silicate, magnesium oxide, magnesium hydroxide, hydroxide, oxide Alternatively, soluble salts and mixtures and compounds containing them can be used.
The divalent cation raw material, the trivalent cation raw material, and the pH adjuster are within the range where the pH is 6 to 12.5 by contact with water. And the trivalent cation raw material can be mixed in an arbitrary weight ratio range. Moreover, when the water which contacts at the time of use of a new material, contaminant, contaminated water, etc. contain the component which comprises a new material, it is possible to adjust the component of a new material in view of the conditions.

また、本発明の浄化方法は、本発明の新規材料を汚染物若しくは汚染水と接触させ、前記新規材料が前記層状複水酸化物を生成する過程における吸着作用若しくは生成後の吸着作用若しくはその双方により、前記汚染物若しくは汚染水中の重金属類を吸着することを特徴とする。例えば汚染物若しくは汚染水に前記新規材料を添加することにより、水との作用により浄化対象中で層状複水酸化物を生成し、汚染物においては溶出する重金属類の吸着による不溶化、汚染水においては含まれる重金属類の吸着による重金属類の濃度低減を図ることができる。   Further, the purification method of the present invention is a method in which the novel material of the present invention is brought into contact with contaminants or contaminated water, and the novel material adsorbs in the process of producing the layered double hydroxide or adsorbed after the production or both. To adsorb heavy metals in the pollutant or contaminated water. For example, by adding the above-mentioned new materials to pollutants or contaminated water, layered double hydroxides are produced in the purification target by the action of water, and in the contaminants, insolubilization due to adsorption of eluting heavy metals, Can reduce the concentration of heavy metals by adsorption of the contained heavy metals.

また、本発明の層状複水酸化物の生成方法は、本発明の新規材料を汚染物若しくは汚染水と接触させ、前記新規材料が前記層状複水酸化物を生成する際の吸着作用により、前記汚染物若しくは汚染水中の重金属類を吸着させながら、前記層状複水酸化物を生成することを特徴とする。   Further, the method for producing a layered double hydroxide of the present invention comprises contacting the novel material of the present invention with a contaminant or contaminated water, and the adsorbing action when the novel material produces the layered double hydroxide, The layered double hydroxide is produced while adsorbing contaminants or heavy metals in contaminated water.

また、本発明の複合材は、繊維状素材と、前記繊維状素材に坦持される本発明の新規材料とで構成され、透水性若しくは浸透性を有することを特徴とする。前記繊維状素材は、例えばCaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の繊維状素材等とする、又、例えば長さが10mm以上、太さが1,000μm未満、直毛状および巻き毛状の形状とする、又はその双方の構成を備えるものとすると好適であるが、本発明の趣旨の範囲内で適宜である。また、複合材の透水性若しくは浸透性の程度は、透水係数が10-5cm/s以上の高い透水性を有するものとすることが好ましい。 The composite material of the present invention is composed of a fibrous material and the novel material of the present invention supported on the fibrous material, and is characterized by having water permeability or permeability. The fibrous material is composed of, for example, component ratios of CaO: 0 to 50% (w / w), SiO 2 : 0 to 100% (w / w), Al 2 O 3 : 0 to 100% (w / w) A fibrous material having a diameter of less than 1,000 μm, etc., for example, a length of 10 mm or more, a thickness of less than 1,000 μm, a straight hair shape and a curly hair shape, or both. Although it is preferable, it is appropriate within the scope of the gist of the present invention. Further, the degree of water permeability or permeability of the composite material is preferably such that the water permeability has a high water permeability of 10 −5 cm / s or more.

また、本発明の複合材は、前記繊維状素材以外の坦持材を前記繊維状素材に代えて用いることも可能であり、斯様な坦持材としては、例えば活性炭、ゼオライト、珪藻土、パーライト、バーミキュライト、チタン、アルミナ、SUS、セラミックおよびシリカの多孔質無機材料、ポリスチレン、オレフィン、ポリエチレン、ポリプロピレン、ポリカーボネート、PMMA、四フッ化エチレン、メラミン、フェノール、ポリイミド、ポリスルフォンおよびホルムアルデヒドで構成される多孔質樹脂材料等を用いることが可能である。これらの坦持材によっても前記繊維状素材と同等の効果を奏する。
また、本発明の複合材の製造方法は、前記新規材料と、CaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の前記繊維状素材と、水とを、新規材料:繊維状素材:水=1〜5:1〜10:0〜10の重量比で混合して製造することを特徴とする。
Further, the composite material of the present invention can be used in place of the fibrous material instead of the fibrous material, such as activated carbon, zeolite, diatomaceous earth, pearlite. Porous material composed of, vermiculite, titanium, alumina, SUS, ceramic and silica porous inorganic materials, polystyrene, olefin, polyethylene, polypropylene, polycarbonate, PMMA, ethylene tetrafluoride, melamine, phenol, polyimide, polysulfone and formaldehyde It is possible to use a quality resin material or the like. These supporting materials also have the same effect as the fibrous material.
In addition, the method for producing a composite material of the present invention includes the novel material, CaO: 0 to 50% (w / w), SiO 2 : 0 to 100% (w / w), Al 2 O 3 : 0 to 100 % (W / w) of the fibrous material having a diameter of less than 1,000 μm and water, and a new material: fibrous material: water = 1-5: 1-10: 0-10 weight ratio It is characterized by being manufactured by mixing.

また、本発明の吸着材は、本発明の複合材が砂質土壌に5kg/m3以上の割合で略均一に混合されていることを特徴とする。 In addition, the adsorbent of the present invention is characterized in that the composite material of the present invention is mixed substantially uniformly in sandy soil at a rate of 5 kg / m 3 or more.

また、本発明の浄化設備は、不透水性で上面開放の箱状容器若しくは上下面開放の筒状容器と、前記箱状容器若しくは前記筒状容器に収容されて、上側に汚染土壌が配置される本発明の複合材又は本発明の吸着材を備えることを特徴とする。前記浄化設備は、箱状容器の下面若しくは側壁の一部、又は筒状容器の下側の流水部から、流れる水を集水する集水路を設ける構成としてもよい。   Further, the purification equipment of the present invention is stored in a water-impermeable box-shaped container with an open top surface or a cylindrical container with an open top and bottom surface, and the box-shaped container or the cylindrical container, and contaminated soil is arranged on the upper side. The composite material of the present invention or the adsorbent material of the present invention is provided. The said purification equipment is good also as a structure which provides the water collecting channel which collects the flowing water from the lower surface or part of side wall of a box-shaped container, or the flowing water part below a cylindrical container.

また、本発明の汚染水の浄化方法は、汚染水の流路上に本発明の複合材又は本発明の吸着材を配置し、前記複合材又は前記吸着材で重金属類陰イオンを吸着することを特徴とする。例えば汚染物の周辺の地盤や土木構造物等に本発明の複合材又は吸着材を配置して、汚染物からの浸出水である汚染水が複合材又は吸着材を通過するようにし、重金属類を新規材料に吸着させ、重金属類の汚染が地下水へ拡散することを防止できる。また、例えば複合材を浄化容器若しくは浄化槽に充填若しくは敷設して、前記浄化容器若しくは浄化槽内の複合材に重金属類を含む汚染水を通過および接触させ、前記重金属類を新規材料に吸着させ、その濃度を低減させて水質浄化を図ることができる。   The method for purifying contaminated water according to the present invention includes disposing the composite material of the present invention or the adsorbent material of the present invention on a flow path of contaminated water, and adsorbing heavy metal anions with the composite material or the adsorbent material. Features. For example, the composite material or adsorbent of the present invention is arranged on the ground or civil engineering structure around the pollutant so that the contaminated water that is leached from the pollutant passes through the composite material or adsorbent, and heavy metals Can be adsorbed by new materials, and heavy metal contamination can be prevented from diffusing into groundwater. Further, for example, a composite material is filled or laid in a purification container or a septic tank, and contaminated water containing heavy metals is allowed to pass through and come into contact with the composite material in the clarification container or septic tank, so that the heavy metals are adsorbed by a new material, Water concentration can be reduced by reducing the concentration.

尚、本明細書開示の発明には、各発明や各実施形態の構成の他に、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものも含まれる。また、本発明の複合材又は吸着材は、ヒ素、セレン、六価クロム、リン酸、アンチモン、鉛、カドミウム、亜鉛など重金属類の吸着する各所の用途等に使用可能である。   The invention disclosed in this specification includes, in addition to the configurations of each invention and each embodiment, those specified by changing these partial configurations to other configurations disclosed in this specification, or these configurations. To which other configurations disclosed in the present specification are added and specified, or those partial configurations deleted and specified to the extent that partial effects can be obtained are included. Moreover, the composite material or adsorbent of the present invention can be used for various applications where heavy metals such as arsenic, selenium, hexavalent chromium, phosphoric acid, antimony, lead, cadmium, and zinc are adsorbed.

本発明の新規材料等は、その生成プロセスを汚染物若しくは汚染水等で作用させることにより、対象の汚染物若しくは汚染水等に中に含まれるヒ素、六価クロム等の重金属陰イオンを容易に吸着することが出来る(図1参照)。また、重金属類を含む環境中で層状複水酸化物を形成するため、その生成過程で層状複水酸化物の水酸化物層の構成要素になり得る鉛やカドミウム等の2価及び3価の重金属陽イオンを層状複水酸化物の水酸化物層に吸着し取り込むことで浄化作用を発揮することが出来る。即ち、汚染物や汚染水に含まれる重金属類に対する高度な吸着能を発揮し、高レベルの浄化を行うことができる。更に、層間にCO3 2-が無い構造により、層状複水酸化物の層間のCO3 2-除去の前処理をする必要を無くし、低コスト化を図ることができる。 The novel materials of the present invention can easily generate heavy metal anions such as arsenic and hexavalent chromium contained in the target pollutant or contaminated water by causing the production process to act on the pollutant or polluted water. It can be adsorbed (see FIG. 1). In addition, in order to form a layered double hydroxide in an environment containing heavy metals, divalent and trivalent such as lead and cadmium that can be a component of the layered double hydroxide hydroxide layer in the production process The purification action can be exerted by adsorbing and taking in the heavy metal cation to the hydroxide layer of the layered double hydroxide. That is, a high level of purification can be performed by exhibiting a high adsorbability for heavy metals contained in contaminants and contaminated water. Further, the structure having no CO 3 2− between the layers eliminates the need for pretreatment for removing CO 3 2− between the layers of the layered double hydroxide, thereby reducing the cost.

本発明の複合材、吸着材等は、材料の流亡の虞がないと共に透水性を有し、汚染水に安定接触して重金属類を安定的に吸着できる。
また、複合材又は吸着材の繊維状素材の間に汚染水、若しくは汚染土壌の浸出水による汚染水を通過させる場合、持続的に通水しながら、重金属類の吸着作用を繊維状素材上で生じさせることができ、通水的な条件下で非常に効率的に重金属類を吸着することができる。例えば汚染土壌の下層地盤に複合材を混合し、汚染土壌からの浸出水を地盤中で前記複合材の存在部分を水道として通過させ、浸出水に含む重金属類を吸着して、汚染土壌からの重金属類の拡散防止による地下水保全を達成することとができる。
The composite material, adsorbent, and the like of the present invention have no fear of material loss and have water permeability, and can stably adsorb heavy metals by stably contacting contaminated water.
In addition, when contaminated water or contaminated water from leached water from contaminated soil is allowed to pass between the fibrous materials of the composite material or adsorbent material, the adsorbing action of heavy metals on the fibrous material while passing water continuously. And can adsorb heavy metals very efficiently under water-permeable conditions. For example, the composite material is mixed in the lower ground of the contaminated soil, the leachate from the contaminated soil is allowed to pass through the existing portion of the composite material as water in the ground, the heavy metals contained in the leachate are adsorbed, and It is possible to achieve groundwater conservation by preventing the diffusion of heavy metals.

層状複水酸化物層間のCO3 2-の影響なく重金属類を吸着することのできる、層状複水酸化物を自発的に生成する新規材料の実施形態と、新規材料を汚染物に添加して重金属類を吸着して不溶化する実施形態について、通常の層状複水酸化物との比較を含めて説明する。 An embodiment of a new material that spontaneously generates a layered double hydroxide capable of adsorbing heavy metals without the influence of CO 3 2- between the layered double hydroxide layers, and adding the new material to the contaminant An embodiment in which heavy metals are adsorbed and insolubilized will be described including a comparison with a normal layered double hydroxide.

〔新規材料の実施形態〕
本実施形態の新規材料は、可溶性アルミニウム塩と可溶性マグネシウム塩を重量比1:1で均一に混合してpHを10に調整した粉体の新規材料であり、前記新規材料は、水との接触により、成分中の可溶性の2価の陽イオンと3価の陽イオンとを溶出し、pH10で層状複水酸化物[M2+ (1-x)M3+ x(OH)2]x+[An- x/n・yH2O]x-(M:陽イオン、A:陰イオン)を自発的に生成する。
Embodiment of new material
The novel material of this embodiment is a novel powder material in which a soluble aluminum salt and a soluble magnesium salt are uniformly mixed at a weight ratio of 1: 1 to adjust the pH to 10, and the novel material is in contact with water. To elute soluble divalent cations and trivalent cations in the components, and the layered double hydroxide [M 2+ (1-x) M 3+ x (OH) 2 ] x + [ A n- x / n · yH 2 O] x- (M: positive ion, A: negative ion) is spontaneously generated.

そして、六価クロムとヒ素とホウ素を含む焼却灰を用い、前記可溶性アルミニウム塩と可溶性マグネシウム塩を重量比1:1で均一に混合してpHを10に調整した粉体の新規材料、および従来型層状複水酸化物の比較対照としてMg:Al=3:1型のハイドロタルサイト(Mg6Al2(OH)16CO3・4(H2O))を、それぞれ前記焼却灰に対して5%(w/w)を添加した。添加後は均一に混合して焼却灰の50%(w/w)の水分を加えて混練し、1日間の密閉養生後、風乾して、分析試料とした。分析試料は、土壌汚染対策法に基づく平成15年環境省告示第18号溶出試験を行なって検液のpHとICP-MSによる六価クロム、ヒ素、ホウ素の溶出量の分析を行なった。また、分析試料は粉末X線回折分析を行ない、鉱物組成を解析した。 A novel powder material in which insoluble ash containing hexavalent chromium, arsenic and boron is used, and the soluble aluminum salt and the soluble magnesium salt are uniformly mixed at a weight ratio of 1: 1 to adjust the pH to 10, and Mg: Al = 3: 1 type hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 · 4 (H 2 O)) as a comparative control of mold layered double hydroxide 5% (w / w) was added. After the addition, 50% (w / w) water of incinerated ash was uniformly mixed and kneaded. After sealed curing for 1 day, it was air-dried to obtain an analytical sample. The analysis sample was subjected to 2003 Ministry of the Environment Notification No. 18 dissolution test based on the Soil Contamination Countermeasures Law, and analyzed the pH of the test solution and the elution amount of hexavalent chromium, arsenic and boron by ICP-MS. In addition, the analysis sample was subjected to powder X-ray diffraction analysis to analyze the mineral composition.

溶出試験の結果を表1に示す。焼却灰はヒ素、ホウ素で環境基準値を超過しており、ハイドロタルサイト5%(w/w)添加による処理後も環境基準値を超過している。しかし、新規材料では検出限界または検出限界以下まで溶出量は低減しており、新規材料の添加による不溶化効果が認められる。粉末X線回折分析の結果を図2に示す。新規材料処理後の粉末X線回折線プロファイルには、処理前の焼却灰と比較して、11.8°付近と23.5°付近に焼却灰には無い明瞭な層状複水酸化物のピークが得られた。以上から、新規材料の添加により焼却灰中で層状複水酸化物が生成して重金属類を不溶化することが確認される。   The results of the dissolution test are shown in Table 1. Incineration ash exceeds the environmental standard values for arsenic and boron, and exceeds the environmental standard values even after treatment with 5% (w / w) hydrotalcite. However, the elution amount is reduced to the detection limit or below the detection limit in the new material, and the insolubilizing effect by adding the new material is recognized. The result of the powder X-ray diffraction analysis is shown in FIG. In the powder X-ray diffraction line profile after the treatment of the new material, clear lamellar double hydroxide peaks not found in the incineration ash were obtained at around 11.8 ° and around 23.5 °, compared to the incineration ash before the treatment. . From the above, it is confirmed that layered double hydroxides are generated in the incinerated ash by adding new materials and insolubilize heavy metals.

Figure 2009137801
Figure 2009137801

上記例は、新規材料とその使用方法として焼却灰へ加えることによるヒ素とホウ素の不溶化の実施例について説明したが、焼却灰と同様に汚染土壌や汚泥等の重金属を含む汚染物に対して同じ不溶化の処理が可能であり、吸着の対象物質としてはその他重金属類として、六価クロム、セレン、フッ素、鉛、カドミウム、亜鉛、等についても吸着して不溶化することが出来る。また、新規材料には水が触れることにより作用が発現することから、新規材料は同様に工場排水や泥水等の汚染水に対して適用することができる。   The above example explained an example of insolubilization of arsenic and boron by adding to incineration ash as a new material and its method of use, but it is the same for pollutants containing heavy metals such as contaminated soil and sludge as well as incineration ash It can be insolubilized, and other heavy metals such as hexavalent chromium, selenium, fluorine, lead, cadmium, zinc, etc. can be adsorbed and insolubilized as substances to be adsorbed. Moreover, since an effect | action expresses when water touches a new material, a new material can be similarly applied with respect to contaminated waters, such as a factory waste water and a muddy water.

〔複合材、吸着材及び浄化設備の実施形態〕
本発明について、新規材料を繊維状素材に担持させた透水性の高い複合材と、前記複合素材を用いる吸着材と、重金属類を吸着する前記複合材を用いる通水型浄化設備の実施形態に基づき説明する。
[Embodiments of composite material, adsorbent and purification equipment]
Regarding the present invention, it is an embodiment of a water-permeable purification facility using a composite material having a high water permeability supported by a fibrous material, an adsorbent using the composite material, and the composite material adsorbing heavy metals. This will be explained based on this.

本実施形態の複合材は、繊維状素材と、前記繊維状素材に坦持される新規材料とで構成されており、透水係数が10-5cm/s以上の透水性を有する。前記繊維状素材は、長さが約10mm以上、太さが約10μm未満、巻き毛状の形状である。前記複合材は、可溶性アルミニウム塩と可溶性マグネシウム塩を重量比1:3で均一に混合してpHを10に調整した粉体の新規材料を、成分としてCaO:約40%(w/w)、SiO2:約45%(w/w)、Al2O3:約15%(w/w)からなる直径10μm未満の無機質の繊維状素材に対して、新規材料:繊維状素材:水=2:2:1の重量比で混合して、作成されている。水は混合中に散水するように与えられた。新規材料は加水により僅かに反応して層状複水酸化物化が進むが、これに伴って生じる新規材料表面の水和反応により、新規材料表面が無機質の繊維状素材表面と電気的に引かれやすく、担持しやすくなっており、前記混合により、新規材料は繊維状素材の表面に坦持される。 The composite material of this embodiment is composed of a fibrous material and a new material carried on the fibrous material, and has a water permeability of 10 −5 cm / s or more. The fibrous material has a length of about 10 mm or more, a thickness of less than about 10 μm, and a curly shape. The composite material is a novel powder material in which a soluble aluminum salt and a soluble magnesium salt are uniformly mixed at a weight ratio of 1: 3 to adjust the pH to 10, CaO: about 40% (w / w) as a component, Compared to inorganic fibrous material with a diameter of less than 10 μm consisting of SiO 2 : about 45% (w / w) and Al 2 O 3 : about 15% (w / w), new material: fibrous material: water = 2 : 2: 1 mixed by weight. Water was given to sprinkle during mixing. The new material reacts slightly with water and proceeds into layered double hydroxides. The resulting hydration reaction on the surface of the new material makes it easier for the surface of the new material to be electrically attracted to the surface of the inorganic fibrous material. It becomes easy to carry, and the new material is carried on the surface of the fibrous material by the mixing.

更に、本実施形態の吸着材(吸着層)は、前記作成した複合材を砂質土壌に40kg/m3の割合で均一に混合し、厚さ0.2mに敷設したものとした。前記吸着層は、図3に示すように、不透水性で上面開放の箱状容器に収容し、浄化設備としている。前記浄化設備は、箱状容器の一つの側壁に設けられている流水部(側壁の上端に設けた複数箇所の流水切欠、側壁に穿設した流水孔、他の側壁より高さが低い側壁の上端面等)から流れる水を集水する集水溝を箱状容器に隣接する外側位置(吸着層に隣接する外側位置)に有し、前記集水溝が集水路を構成している。 Furthermore, the adsorbent (adsorption layer) of the present embodiment was prepared by uniformly mixing the prepared composite material in sandy soil at a rate of 40 kg / m 3 and laying it to a thickness of 0.2 m. As shown in FIG. 3, the adsorbing layer is housed in a water-impermeable, box-shaped container having an open top surface to form a purification facility. The purifying equipment includes a flowing water portion provided on one side wall of the box-shaped container (a plurality of flowing water notches provided at the upper end of the side wall, a flowing hole formed in the side wall, a side wall having a lower height than the other side walls. A water collecting groove for collecting water flowing from an upper end surface or the like is provided at an outer position adjacent to the box-shaped container (an outer position adjacent to the adsorption layer), and the water collecting groove constitutes a water collecting channel.

前記箱状容器に収容された吸着材の上側には汚染土壌が配置され、本実施形態では、自然的原因によりヒ素を含んだ汚染土壌を0.7mの高さにまで盛土した。前記汚染土壌の浸出水は下側の吸着層に流れ、前記浸出水のヒ素は、前記吸着層を通過することにより前記複合材で吸着される。前記吸着で浄化された浸出水は前記流水部を介して集水溝に導かれ、集水溝を流れることにより回収される。   On the upper side of the adsorbent housed in the box-shaped container, contaminated soil was disposed. In this embodiment, the contaminated soil containing arsenic was embanked to a height of 0.7 m due to natural causes. The leachate of the contaminated soil flows to the lower adsorption layer, and the arsenic of the leachate is adsorbed by the composite material by passing through the adsorption layer. The leachate purified by the adsorption is guided to the water collecting groove through the water flow portion, and is recovered by flowing through the water collecting groove.

ここで、図3の前記吸着材(吸着層)で浄化された水について、水素化物ICP発光分析装置によりヒ素濃度を分析した。また、比較対照として砂質土壌に前記複合材を加えずに敷設して汚染土壌を盛ったものを作成して比較した。分析の結果を図4に示す。汚染土壌の盛土の分析結果からヒ素は環境基準値の4倍前後で推移したが、新規材料或いは複合材を混合した吸着層を通過した水質は地下水の環境基準値0.01mg/L以下で推移し、重金属類であるヒ素の浄化、拡散防止の効果が確認された。   Here, the arsenic concentration of the water purified by the adsorbent (adsorption layer) in FIG. 3 was analyzed by a hydride ICP emission spectrometer. In addition, as a comparative control, a construction in which the soil was laid without adding the composite material to sandy soil was prepared and compared. The result of the analysis is shown in FIG. Based on the analysis results of the embankment of contaminated soil, arsenic changed around 4 times the environmental standard value, but the water quality that passed through the adsorption layer mixed with new materials or composites remained below the environmental standard value of 0.01 mg / L for groundwater. The effect of purifying and preventing diffusion of arsenic, which is a heavy metal, was confirmed.

上記実施形態では複合材とその使用方法として、自然的原因でヒ素を含む汚染土壌の下層に砂質土壌と混合して吸着層として敷設し、例えば汚染物質の地下水への拡散を防止する例について説明したが、本発明はこれに限定されるものではない。   In the above embodiment, as an example of the composite material and its method of use, it is mixed with sandy soil below the contaminated soil containing arsenic due to natural causes and laid as an adsorption layer, for example, preventing the diffusion of pollutants into the groundwater Although described, the present invention is not limited to this.

例えば複合材又は吸着材が吸着するその他の重金属類として、六価クロム、セレン、フッ素、鉛、カドミウム、亜鉛、等適宜であり、これらの物質についても上記と同様の方法で浄化することが可能である。また、複合材を吸着材(吸着層)とする場合の混合対象は砂質土壌だけではなく、その他の地盤や土木材料としてもよい。また、本発明の複合材は、土壌や土木材料への混合する場合以外にも、容器やピットに充填し、その中に汚染水を通過させることにより、排水や重金属を含む湧水等の汚染水に対して適用することができる。
また、上記実施形態に於ける繊維状材料に使用した新規材料は、可溶性アルミニウム塩と可溶性マグネシウム塩を重量比1:3で均一に混合してpH10に調整したものを使用したが、例えば、pHが層状複水酸化物の生成するpH6〜12.5の範囲であり、2価の陽イオンにマグネシウム、マンガン、カルシウム、ニッケル、コバルト、銅、亜鉛、鉄のいずれか、3価の陽イオンにアルミニウム、マンガン、鉄、コバルトのいずれか1つ以上、任意の比率で含まれるもの等とすることが可能である。
For example, hexavalent chromium, selenium, fluorine, lead, cadmium, zinc, etc. are appropriate as other heavy metals adsorbed by the composite material or adsorbent, and these substances can be purified by the same method as described above. It is. In addition, when the composite material is an adsorbent (adsorption layer), the mixing target is not limited to sandy soil, but may be other ground or civil engineering materials. In addition to mixing with soil and civil engineering materials, the composite material of the present invention fills containers and pits and allows polluted water to pass through the pollutant such as spring water containing drainage and heavy metals. Can be applied against water.
In addition, the new material used for the fibrous material in the above embodiment is a material in which a soluble aluminum salt and a soluble magnesium salt are uniformly mixed at a weight ratio of 1: 3 and adjusted to pH 10; Is in the range of pH 6 to 12.5 where the layered double hydroxide is formed, and divalent cation is magnesium, manganese, calcium, nickel, cobalt, copper, zinc, iron, trivalent cation. Any one or more of aluminum, manganese, iron, and cobalt can be included in any ratio.

また、繊維状素材に代えて透水性のある多孔質体の素材等を用いることが可能である。本発明の素材は、例えば無機質の素材(活性炭、ゼオライト、珪藻土、パーライト、バーミキュライト、チタン、アルミナ、SUS、セラミック及びシリカ等)とすることが可能であり、更に無機質の素材以外に、有機質の繊維状若しくは多孔質の素材(ポリスチレン、オレフィン、ポリエチレン、ポリプロピレン、ポリカーボネート、PMMA、四フッ化エチレン、メラミン、フェノール、ポリイミド、ポリスルフォンおよびホルムアルデヒド等)等としてもよい。   Moreover, it is possible to use a porous material having water permeability instead of the fibrous material. The material of the present invention can be made of, for example, an inorganic material (activated carbon, zeolite, diatomaceous earth, pearlite, vermiculite, titanium, alumina, SUS, ceramic, silica, etc.), and in addition to inorganic materials, organic fibers Or a porous material (polystyrene, olefin, polyethylene, polypropylene, polycarbonate, PMMA, ethylene tetrafluoride, melamine, phenol, polyimide, polysulfone, formaldehyde, or the like).

また、加水だけで新規材料を坦持できない場合には、新規材料を繊維状素材に坦持するための適宜の有機質のバインダー(でんぷん、あが、セルロース、ポリビニルアルコール、ポリビニルピロリドン、酢酸ビニル、アクリル、エチレンビニルアルコール、ウレタン樹脂、カルボキシメチルセルロース、塩ビ重合用懸濁剤、カルボン酸ビニル、酢酸ビニル、ポリビニルアルコールおよびこれらのエマルジョン等)若しくは無機質のバインダー(粘土、フェライト、珪藻土、炭酸カルシウム、カオリン、タルク、石膏、石灰、セメント等)を使用することが可能である。   In addition, when the new material cannot be supported only by water, an appropriate organic binder (starch, starch, cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, vinyl acetate, acrylic for supporting the new material on the fibrous material) , Ethylene vinyl alcohol, urethane resin, carboxymethyl cellulose, suspension agent for vinyl chloride polymerization, vinyl carboxylate, vinyl acetate, polyvinyl alcohol and emulsions thereof) or inorganic binder (clay, ferrite, diatomaceous earth, calcium carbonate, kaolin, talc, etc.) , Gypsum, lime, cement, etc.).

本発明は、例えば汚染水や汚染土壌の浄化及び汚染物質の拡散防止に利用することができる。   The present invention can be used, for example, for purification of contaminated water and soil and prevention of diffusion of pollutants.

層間にCO3 2-を含む従来型の層状複水酸化物と新規材料をそれぞれ汚染物若しくは汚染水中に投入した際の反応の概念図。A conceptual diagram of the reaction when a conventional layered double hydroxide containing CO 3 2− between layers and a new material are introduced into pollutants or contaminated water, respectively. 重金属を含む焼却灰に新規材料を加えて不溶化の処理をした前後の粉末X線回折分析プロファイル。X-ray powder diffraction analysis profiles before and after incineration by adding new materials to incineration ash containing heavy metals. 複合材を土壌に混合した吸着層を敷設してその上部に汚染土壌を盛った浄化設備の概要図。The schematic diagram of the purification equipment which laid the adsorption layer which mixed the composite material with the soil, and piled up the contaminated soil in the upper part. 吸着層を通過した浸出水と、吸着層を通過しない浸出水のヒ素濃度を比較するグラフ。The graph which compares the arsenic density | concentration of the leachate which passed the adsorption layer, and the leachate which does not pass the adsorption layer.

Claims (9)

水との接触により、2価の陽イオンと3価の陽イオンとを生じ、pHが6〜12.5の範囲で層状複水酸化物[M2+ (1-x)M3+ x(OH)2]x+[An- x/n・yH2O]x-(M:陽イオン、A:陰イオン)を自発的に生成することを特徴とする新規材料。 Contact with water produces a divalent cation and a trivalent cation, and a layered double hydroxide [M 2+ (1-x) M 3+ x ( OH) 2 ] x + [A n− x / n · yH 2 O] x− (M: cation, A: anion) is a novel material characterized by spontaneous generation. 前記2価の陽イオンがマグネシウム、マンガン、カルシウム、ニッケル、コバルト、銅、亜鉛若しくは鉄若しくはこれらを含む組み合わせであり、
前記3価の陽イオンがアルミニウム、マンガン、鉄若しくはコバルト若しくはこれらを含む組み合わせであることを特徴とする請求項1記載の新規材料。
The divalent cation is magnesium, manganese, calcium, nickel, cobalt, copper, zinc, iron, or a combination containing these,
The novel material according to claim 1, wherein the trivalent cation is aluminum, manganese, iron, cobalt, or a combination containing these.
請求項1又は2記載の新規材料を汚染物若しくは汚染水と接触させ、前記新規材料が前記層状複水酸化物を生成する過程における吸着作用若しくは生成後の吸着作用若しくはその双方により、前記汚染物若しくは汚染水中の重金属類を吸着することを特徴とする浄化方法。   The new material according to claim 1 or 2 is brought into contact with contaminants or contaminated water, and the contaminants are adsorbed in the process of producing the layered double hydroxide, or the adsorbing action after the production, or both. Or the purification method characterized by adsorb | sucking heavy metals in contaminated water. 請求項1又は2記載の新規材料を汚染物若しくは汚染水と接触させ、前記新規材料が前記層状複水酸化物を生成する際の吸着作用により、前記汚染物若しくは汚染水中の重金属類を吸着させながら、前記層状複水酸化物を生成することを特徴とする層状複水酸化物の生成方法。   The new material according to claim 1 or 2 is brought into contact with a contaminant or contaminated water, and the heavy metal in the contaminant or contaminated water is adsorbed by an adsorption action when the new material generates the layered double hydroxide. However, the method for producing a layered double hydroxide, wherein the layered double hydroxide is produced. 繊維状素材と、
前記繊維状素材に坦持される請求項1又は2記載の新規材料とで構成され、
透水性を有することを特徴とする複合材。
Fibrous material,
It is comprised with the novel material of Claim 1 or 2 carried by the said fibrous material,
A composite material having water permeability.
請求項5記載の複合材の製造方法であって、
前記新規材料と、CaO:0〜50%(w/w)、SiO2:0〜100%(w/w)、Al2O3:0〜100%(w/w)の成分比からなる直径1,000μm未満の前記繊維状素材と、水とを、新規材料:繊維状素材:水=1〜5:1〜10:0〜10の重量比で混合して製造することを特徴とする複合材の製造方法。
A method for producing a composite material according to claim 5,
Wherein the new materials, CaO: 0~50% (w / w), SiO 2: 0~100% (w / w), Al 2 O 3: diameter consisting of component ratio of 0~100% (w / w) A composite material produced by mixing the fibrous material of less than 1,000 μm and water at a weight ratio of novel material: fibrous material: water = 1 to 5: 1 to 10: 0 to 10 Manufacturing method.
請求項5記載の複合材が砂質土壌に5kg/m3以上の割合で略均一に混合されていることを特徴とする吸着材。 An adsorbent characterized in that the composite material according to claim 5 is mixed substantially uniformly in sandy soil at a rate of 5 kg / m 3 or more. 不透水性で上面開放の箱状容器若しくは上下面開放の筒状容器と、
前記箱状容器若しくは前記筒状容器に収容されて、上側に汚染土壌が配置される請求項5記載の複合材又は請求項7記載の吸着材を備えることを特徴とする浄化設備。
An impervious box-shaped container with an open top or a cylindrical container with an open top and bottom;
A purification equipment comprising the composite material according to claim 5 or the adsorbent according to claim 7, which is housed in the box-shaped container or the cylindrical container, and the contaminated soil is disposed on the upper side.
汚染水の流路上に請求項5記載の複合材若しくは請求項7記載の吸着材を配置し、前記複合材又は前記吸着材で重金属類を吸着することを特徴とする汚染水の浄化方法。   A method for purifying contaminated water, comprising disposing the composite material according to claim 5 or the adsorbent material according to claim 7 on a contaminated water flow path, and adsorbing heavy metals with the composite material or the adsorbent material.
JP2007316590A 2007-12-07 2007-12-07 New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water Withdrawn JP2009137801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316590A JP2009137801A (en) 2007-12-07 2007-12-07 New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316590A JP2009137801A (en) 2007-12-07 2007-12-07 New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water

Publications (1)

Publication Number Publication Date
JP2009137801A true JP2009137801A (en) 2009-06-25

Family

ID=40868831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316590A Withdrawn JP2009137801A (en) 2007-12-07 2007-12-07 New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water

Country Status (1)

Country Link
JP (1) JP2009137801A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973619A (en) * 2010-09-17 2011-02-16 昆明理工大学 Method for treating waste water from copper smelting by using modified ardealite
CN102976516A (en) * 2012-11-28 2013-03-20 常州大学 Method for simultaneously purifying electroplating wastewater and washing wastewater
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance
JP2013075260A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus for removing fluorine and harmful substance
JP2013177575A (en) * 2012-02-07 2013-09-09 Kobe Steel Ltd Treatment agent, and method for treating polluted water or polluted soil
JP2013184103A (en) * 2012-03-07 2013-09-19 Railway Technical Research Institute Embankment using banking material including harmful substance and embankment construction method
CN103920451A (en) * 2014-04-01 2014-07-16 合肥工业大学 Preparation method of hollow zinc-aluminum hydrotalcite micro-sphere and treatment method of methyl orange printing and dyeing wastewater
JP2018038953A (en) * 2016-09-07 2018-03-15 東洋紡株式会社 Anion adsorption sheet
CN111530415A (en) * 2020-04-23 2020-08-14 重庆交通大学 Iron-manganese-magnesium-loaded layered hydroxide composite semicoke and preparation method thereof
JP2021070028A (en) * 2021-01-04 2021-05-06 東洋紡株式会社 Anion adsorption sheet
CN115057483A (en) * 2022-05-23 2022-09-16 北京化工大学 Method for preparing layered metal hydroxide by recycling high-nickel ternary battery positive electrode material
CN115947362A (en) * 2022-12-27 2023-04-11 江苏永葆环保科技股份有限公司 Preparation method of scaling-free polyaluminum chloride

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973619A (en) * 2010-09-17 2011-02-16 昆明理工大学 Method for treating waste water from copper smelting by using modified ardealite
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance
JP2013075260A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus for removing fluorine and harmful substance
JP2013177575A (en) * 2012-02-07 2013-09-09 Kobe Steel Ltd Treatment agent, and method for treating polluted water or polluted soil
JP2013184103A (en) * 2012-03-07 2013-09-19 Railway Technical Research Institute Embankment using banking material including harmful substance and embankment construction method
CN102976516A (en) * 2012-11-28 2013-03-20 常州大学 Method for simultaneously purifying electroplating wastewater and washing wastewater
CN103920451A (en) * 2014-04-01 2014-07-16 合肥工业大学 Preparation method of hollow zinc-aluminum hydrotalcite micro-sphere and treatment method of methyl orange printing and dyeing wastewater
CN103920451B (en) * 2014-04-01 2016-08-31 合肥工业大学 The preparation method of a kind of zinc-aluminum hydrotalcite hollow sub-microsphere and the processing method of methyl orange system dyeing waste water
JP2018038953A (en) * 2016-09-07 2018-03-15 東洋紡株式会社 Anion adsorption sheet
JP7144917B2 (en) 2016-09-07 2022-09-30 東洋紡株式会社 Anion adsorption sheet
CN111530415A (en) * 2020-04-23 2020-08-14 重庆交通大学 Iron-manganese-magnesium-loaded layered hydroxide composite semicoke and preparation method thereof
JP2021070028A (en) * 2021-01-04 2021-05-06 東洋紡株式会社 Anion adsorption sheet
JP7163978B2 (en) 2021-01-04 2022-11-01 東洋紡株式会社 Anion adsorption sheet
CN115057483A (en) * 2022-05-23 2022-09-16 北京化工大学 Method for preparing layered metal hydroxide by recycling high-nickel ternary battery positive electrode material
CN115057483B (en) * 2022-05-23 2023-08-25 北京化工大学 Method for preparing layered metal hydroxide by recycling high-nickel ternary battery anode material
CN115947362A (en) * 2022-12-27 2023-04-11 江苏永葆环保科技股份有限公司 Preparation method of scaling-free polyaluminum chloride
CN115947362B (en) * 2022-12-27 2024-03-12 江苏永葆环保科技股份有限公司 Preparation method of scale-free polyaluminium chloride

Similar Documents

Publication Publication Date Title
JP2009137801A (en) New material, purification method, method for producing layered double hydroxide, composite material and method for producing the same, adsorbent, purification facility, and method for purifying contaminated water
Irannajad et al. Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review
Kundu et al. Adsorption characteristics of As (III) from aqueous solution on iron oxide coated cement (IOCC)
Abo Markeb et al. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer
Motsi Remediation of acid mine drainage using natural zeolite
Vu et al. Review of arsenic removal technologies for contaminated groundwaters.
Kang et al. Application of thermally treated crushed concrete granules for the removal of phosphate: a cheap adsorbent with high adsorption capacity
JP4870423B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
WO2014136550A1 (en) Particulate water treatment agent for environment and method for treating water polluted by harmful substances using same.
JP2007021350A (en) Removal method of toxic substance in exuded water from least controlled landfill site
JP2009279550A (en) Purifying device of contaminant in contaminated soil and cleaning method using purifying device
KR101344236B1 (en) Adsorbent for eliminating harmful ions using iron-loaded sludge and method for producing the same
Letina et al. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies
Jovanović et al. New approach: Waste materials as sorbents for arsenic removal from water
Jain et al. Arsenite oxidation and arsenic adsorption strategy using developed material from laterite and ferromanganese slag: electron paramagnetic resonance spectroscopy analysis
Mikyskova et al. Equilibrium, kinetic and thermodynamic study of Pb2+ removal from aqueous solution by waste brick dust
JP5236552B2 (en) Soil production method
KR20130087073A (en) A reactive barrier comprising a recycling aggregate and a purificating method of pollution materials using the same
JP5037950B2 (en) Water purification agent and method for producing the same
Holmes et al. Reuse of drinking water treatment waste for remediation of heavy metal contaminated groundwater
Shiriazar et al. Arsenate removal from aqueous solutions by Mg/Fe-LDH-modified biochar derived from apple tree residues
JP2013188688A (en) Soil purifying agent for purifying heavy metal-contaminated soil or ground, additive used therefor, and soil purification method
Choong et al. Fabrication of seashell-incorporated polyurethane for sustainable remediation of Fe (II)-contaminated acidic wastewater
Guérin et al. Removal of heavy metals from contaminated water using industrial wastes containing calcium and magnesium
Valencia-Trejo et al. EFFECT OF TEMPERATURE ON THE REMOVAL OF ARSENATE FROM AQUEOUS SOLUTIONS BY TITANIUM DIOXIDE NANOPARTICLES.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120418

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501