JP7478163B2 - Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same - Google Patents

Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same Download PDF

Info

Publication number
JP7478163B2
JP7478163B2 JP2021553490A JP2021553490A JP7478163B2 JP 7478163 B2 JP7478163 B2 JP 7478163B2 JP 2021553490 A JP2021553490 A JP 2021553490A JP 2021553490 A JP2021553490 A JP 2021553490A JP 7478163 B2 JP7478163 B2 JP 7478163B2
Authority
JP
Japan
Prior art keywords
plating solution
activated carbon
molded body
filter
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021553490A
Other languages
Japanese (ja)
Other versions
JPWO2021085266A1 (en
Inventor
哲也 花本
寛枝 吉延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2021085266A1 publication Critical patent/JPWO2021085266A1/ja
Application granted granted Critical
Publication of JP7478163B2 publication Critical patent/JP7478163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2055Carbonaceous material
    • B01D39/2058Carbonaceous material the material being particulate
    • B01D39/2062Bonded, e.g. activated carbon blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は吸着フィルター、並びに、それを用いためっき液精製用フィルター、めっき液精製装置及びめっき液精製方法に関する。 The present invention relates to an adsorption filter, as well as a filter for purifying a plating solution using the same, a plating solution purification apparatus, and a plating solution purification method.

活性炭は各種汚染物質の吸着能に優れており、従来から家庭用、工業用を問わず種々の分野で吸着剤として使用されている。また、活性炭を含有するフィルターは、浄水用途に限らず液体の浄化に広く用いられており、例えば特許文献1には耐アルカリ性めっき液の浄化用に用いられる活性炭含有フィルターが開示されている。Activated carbon has excellent adsorption capacity for various pollutants and has been used as an adsorbent in various fields, both for household and industrial use. Filters containing activated carbon are also widely used for purifying liquids, not just for water purification. For example, Patent Document 1 discloses an activated carbon-containing filter used for purifying alkali-resistant plating solutions.

一方、めっき液には、様々な添加材が添加されており、電解めっきの際に添加材が徐々に分解して不純物となることが知られている。この不純物である分解生成物がめっき液中に増加すると、めっきの仕上がりに不具合を起こすため除去する必要がある。例えば、特許文献2には、活性炭含有フィルターを用いてめっき液から分解生成物を除去し、めっき液を再利用する方法が開示されている。On the other hand, various additives are added to plating solutions, and it is known that the additives gradually decompose during electrolytic plating and become impurities. If the decomposition products of these impurities increase in the plating solution, they will cause problems in the plating finish and must be removed. For example, Patent Document 2 discloses a method of using an activated carbon-containing filter to remove the decomposition products from the plating solution and reuse the plating solution.

めっき液中の分解生成物の除去の手段としては、前記特許文献2に記載されているように、活性炭等で分解生成物のみを除去し、めっき液を再利用する場合と、分解生成物及び添加剤を除去し、移し替えを行った後、めっき液を再利用する場合がある。As for the means for removing the decomposition products in the plating solution, as described in the above-mentioned Patent Document 2, there are two ways to do it: the decomposition products are removed using activated carbon or the like and the plating solution is reused, and the decomposition products and additives are removed, the plating solution is transferred, and then the plating solution is reused.

前者の方法では、処理を繰り返すことによって再利用するめっき液中の添加剤濃度が低減するという問題がある。一方、後者の方法では、めっき液を別の浴槽に移し替えることが必要となるため、最近では移し替えを行わずめっき液を生成し再利用する方法が主流となりつつある。しかし、この方法では、分解生成物及び添加剤を除去して、めっき液を再利用する場合に、分解生成物のみを選択的に除去する吸着剤を使用すると、分解生成物は除去できるものの、添加剤が残存してしまうことから、過剰な添加剤を投入することになり、めっき表面に不具合を起こし問題となる。 The former method has the problem that repeated treatment reduces the concentration of additives in the reused plating solution. On the other hand, the latter method requires transferring the plating solution to a different bath, so recently, a method of generating and reusing plating solution without transferring is becoming mainstream. However, with this method, when removing the decomposition products and additives and reusing the plating solution, if an adsorbent that selectively removes only the decomposition products is used, the decomposition products can be removed, but the additives will remain, resulting in the addition of excess additives, which causes problems with the plating surface.

また、分解生成物は比較的小さい分子であり、添加剤は高分子であることが多く、幅広い分子量の物質を同時に除去する必要がある。よって、高分子の吸着には優れるものの、低分子の吸着には不向きな吸着剤を使用すると、添加剤は除去できるが分解生成物が残存してしまい、めっき表面に不具合を起こすという問題もある。 In addition, decomposition products are relatively small molecules, and additives are often polymers, so it is necessary to remove substances with a wide range of molecular weights at the same time. Therefore, if an adsorbent that is good at adsorbing polymers but not suitable for adsorbing low molecules is used, the additives can be removed, but the decomposition products will remain, causing problems with the plating surface.

そこで、本発明は、めっき液中の分解生成物及び添加剤の両方を効率的に除去できる吸着フィルターを提供することを課題とする。Therefore, the objective of the present invention is to provide an adsorption filter that can efficiently remove both decomposition products and additives in the plating solution.

特開2012-61390号公報JP 2012-61390 A 特開2005-240108号公報JP 2005-240108 A

本発明の一局面に係る吸着フィルターは、活性炭を含む成型体を備える吸着フィルターであって、前記成型体を、不活性ガス中500℃で1時間熱処理をして得られる炭化物の比表面積が1500~2500m/gであること、並びに、前記炭化物が、BJH法メソ孔容積が0.1cm/g以上であり、かつ、MP法マイクロ孔容積が0.6cm/g以上である細孔を有することを特徴とする。 An adsorption filter according to one aspect of the present invention is an adsorption filter comprising a molded body containing activated carbon, characterized in that the molded body is heat-treated in an inert gas at 500°C for 1 hour to obtain a carbonized material having a specific surface area of 1500 to 2500 m2 /g, and that the carbonized material has pores with a BJH method mesopore volume of 0.1 cm3 /g or more and an MP method micropore volume of 0.6 cm3 /g or more.

図1は、本実施形態の吸着フィルターの成型体を調製するための型枠の斜視図である。FIG. 1 is a perspective view of a mold for preparing a molded body of the adsorption filter of this embodiment. 図2は、図1の型枠を用いて得られる本実施形態の成型体の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a molded body of this embodiment obtained using the mold frame of FIG. 図3は、成型体中の活性炭の比表面積等の測定の際の、サンプルの切り取り方を説明する図である。FIG. 3 is a diagram for explaining how to cut out a sample when measuring the specific surface area, etc., of the activated carbon in the molded body.

以下、本発明の実施形態について具体例などを参照して詳細に説明するが、本発明はこれらに限定されるものではない。 Below, the embodiments of the present invention are described in detail with reference to specific examples, but the present invention is not limited to these.

<吸着フィルター>
本実施形態の吸着フィルターは、上述の通り、活性炭を含む成型体を備える。そして、前記成型体を、不活性ガス中500℃で1時間熱処理をして得られる炭化物の比表面積が1500~2500m/gであること、並びに、前記炭化物が、BJH法メソ孔容積が0.1cm/g以上であり、かつ、MP法マイクロ孔容積が0.6cm/g以上である細孔を有することを特徴とする。
<Adsorption filter>
The adsorption filter of this embodiment includes a molded body containing activated carbon as described above, and is characterized in that the molded body is heat-treated in an inert gas at 500°C for 1 hour to obtain a carbonized material having a specific surface area of 1500 to 2500 m2 /g, and that the carbonized material has pores with a BJH method mesopore volume of 0.1 cm3 /g or more and an MP method micropore volume of 0.6 cm3 /g or more.

このような構成を有する吸着フィルターでめっき液を精製することによって、めっき液中の添加剤及び分解生成物の両方を効率良く除去でき、めっき液を清浄な状態に回復する事ができる。よって、本発明によれば、めっき液中の分解生成物及び添加剤の両方を効率的に除去できる吸着フィルターを提供することができる。 By purifying the plating solution with an adsorption filter having such a configuration, both the additives and decomposition products in the plating solution can be efficiently removed, and the plating solution can be restored to a clean state. Therefore, according to the present invention, it is possible to provide an adsorption filter that can efficiently remove both the decomposition products and additives in the plating solution.

本実施形態の吸着フィルターは、前記成型体を特定の熱処理に供し、得られる炭化物の性質で規定される。前記熱処理とは、活性炭を含む成型体を、不活性ガス中500℃で1時間熱処理することである。熱処理に使用する不活性ガスは特に限定されず、例えば、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガスを利用できる。熱処理に使用する加熱手段も500℃で1時間加熱可能な手段であれば特に限定はない。前記熱処理を経ることによって、成型体からバインダーなどが分解されてなくなり、得られる炭化物は、そのほとんどが成型体に含まれている活性炭となる。The adsorption filter of this embodiment is defined by the properties of the carbonized material obtained by subjecting the molded body to a specific heat treatment. The heat treatment is a heat treatment of the molded body containing activated carbon in an inert gas at 500°C for 1 hour. The inert gas used for the heat treatment is not particularly limited, and inert gases such as nitrogen gas, helium gas, and argon gas can be used. The heating means used for the heat treatment is also not particularly limited as long as it is capable of heating at 500°C for 1 hour. By undergoing the heat treatment, the binder and the like are decomposed and removed from the molded body, and the carbonized material obtained is mostly the activated carbon contained in the molded body.

本実施形態の吸着フィルターは、この炭化物の比表面積及び、前記炭化物が有する細孔が所定の範囲となっていることが重要である。 It is important that the specific surface area of the carbonized material and the pores possessed by the carbonized material in the adsorption filter of this embodiment are within a specified range.

なお、本実施形態において、前記炭化物の比表面積は窒素吸着等温線からBET法によって求められる。前記比表面積を1500m/g以上とすることで、高分子である添加剤の除去能力を確保することができ、より好ましくは1600m/g以上である。一方、前記比表面積を2500m/g以下とすることで活性炭の充填密度を上げられるためフィルター当たりの吸着容量を確保することができ、好ましくは2100m/g以下、より好ましくは2000m/g以下である。炭化物とした際の比表面積は、吸着フィルター中の活性炭の構成を反映しており、吸着フィルターにおける除去能力や充填状態を示す指標になる。 In this embodiment, the specific surface area of the carbonized material is determined by the BET method from the nitrogen adsorption isotherm. By making the specific surface area 1500 m 2 /g or more, the ability to remove polymeric additives can be ensured, and more preferably 1600 m 2 /g or more. On the other hand, by making the specific surface area 2500 m 2 /g or less, the packing density of the activated carbon can be increased, and therefore the adsorption capacity per filter can be ensured, and is preferably 2100 m 2 /g or less, more preferably 2000 m 2 /g or less. The specific surface area when made into a carbonized material reflects the composition of the activated carbon in the adsorption filter, and is an index indicating the removal ability and packing state of the adsorption filter.

また、本実施形態において、前記炭化物が有する細孔は、BJH法メソ孔容積及びMP法マイクロ孔容積によって規定され、それぞれ、BJH法メソ孔容積が0.1cm/g以上であり、かつ、MP法マイクロ孔容積が0.6cm/g以上である。前記細孔のBJH法メソ孔容積及びMP法マイクロ孔容積は、後述する実施例に記載の方法によって測定することができる。 In this embodiment, the pores of the carbonized material are defined by a BJH mesopore volume and an MP micropore volume, and the BJH mesopore volume is 0.1 cm3 /g or more and the MP micropore volume is 0.6 cm3 /g or more. The BJH mesopore volume and the MP micropore volume of the pores can be measured by the method described in the examples below.

前記炭化物の有する細孔のBJH法メソ孔容積が0.1cm/g以上とすることで、高分子である添加剤の除去能力を確保することができ、0.11cm/g以上であることがより好ましい。BJH法メソ孔容積の上限は特に限定されないが、成型体密度を高くできる等の理由から1.2cm/g以下であることが好ましく、1.0cm/g以下であることがより好ましい。MP法マイクロ孔容積が0.6cm/g以上であることで、分解生成物の除去能力を確保することができ、0.66cm/g以上であることがより好ましい。MP法マイクロ孔容積の上限は特に限定されないが、成型体密度を高くできる等の理由から1.50cm/g以下であることが好ましく、1.20cm/g以下であることがより好ましい。炭化物とした際のメソ孔容積は、吸着フィルター中の活性炭の構成を反映しており、吸着フィルターにおける高分子添加剤の除去能力や活性炭の充填状態を示す指標になる。同様に、マイクロ孔容積は、吸着フィルター中の活性炭の構成などを反映しており、吸着フィルターにおける分解生成物の除去能力や吸着フィルター中の活性炭の充填状態を示す指標になる。 By making the BJH method mesopore volume of the pores of the carbonized material 0.1 cm 3 /g or more, the ability to remove polymeric additives can be ensured, and it is more preferable that it is 0.11 cm 3 /g or more. The upper limit of the BJH method mesopore volume is not particularly limited, but it is preferably 1.2 cm 3 /g or less, and more preferably 1.0 cm 3 /g or less, for reasons such as the ability to increase the molded body density. By making the MP method micropore volume 0.6 cm 3 /g or more, the ability to remove decomposition products can be ensured, and it is more preferable that it is 0.66 cm 3 /g or more. The upper limit of the MP method micropore volume is not particularly limited, but it is preferably 1.50 cm 3 /g or less, and more preferably 1.20 cm 3 /g or less, for reasons such as the ability to increase the molded body density. The mesopore volume when made into a carbonized material reflects the composition of the activated carbon in the adsorption filter, and is an index showing the ability to remove polymeric additives in the adsorption filter and the packed state of the activated carbon. Similarly, the micropore volume reflects the composition of the activated carbon in the adsorption filter, and serves as an index showing the ability of the adsorption filter to remove decomposition products and the packing state of the activated carbon in the adsorption filter.

さらには、本実施形態の吸着フィルターにおいて、前記炭化物の体積粒度分布を測定した場合の標準偏差が70μm以上であることが好ましい。前記標準偏差が70μm以上であることにより、成型体の充填密度を高くすることができフィルターの吸着容量を高く保つことができるという利点がある。さらには、前記標準偏差は80μm以上であることが好ましい。上限値については、特に限定はされないが、活性炭の脱落が無く、形状を保持するというという観点から、300μm以下であることが好ましく、より好ましくは250μm以下であり、さらに好ましくは200μm以下である。前記標準偏差は、吸着フィルター中の活性炭の構成を反映しており、吸着フィルターの吸着容量や成型性の指標になり得る。Furthermore, in the adsorption filter of this embodiment, it is preferable that the standard deviation when the volume particle size distribution of the carbonized material is measured is 70 μm or more. By having the standard deviation of 70 μm or more, there is an advantage that the packing density of the molded body can be increased and the adsorption capacity of the filter can be maintained high. Furthermore, it is preferable that the standard deviation is 80 μm or more. There is no particular limit to the upper limit, but from the viewpoint of preventing the activated carbon from falling off and maintaining the shape, it is preferably 300 μm or less, more preferably 250 μm or less, and even more preferably 200 μm or less. The standard deviation reflects the composition of the activated carbon in the adsorption filter and can be an indicator of the adsorption capacity and moldability of the adsorption filter.

また、本実施形態の吸着フィルターにおいて、前記炭化物の体積基準の累計粒度分布における50%粒子径(D50)が120~450μmであることが好ましい。D50がこのような範囲にあることによって、通液抵抗を低くできるという利点がある。さらには、前記D50は130~420μmであることがより望ましい。前記D50は、吸着フィルター中の活性炭の構成を反映しており、吸着フィルターの通液抵抗などの性能を示す指標となり得る。 In addition, in the adsorption filter of this embodiment, it is preferable that the 50% particle size (D50) in the cumulative particle size distribution based on volume of the carbonized material is 120 to 450 μm. Having D50 in such a range has the advantage of being able to reduce the resistance to liquid passage. Furthermore, it is more preferable that the D50 is 130 to 420 μm. The D50 reflects the composition of the activated carbon in the adsorption filter, and can be an index of the performance of the adsorption filter, such as the resistance to liquid passage.

さらに、本実施形態の吸着フィルターにおいて、前記炭化物の体積基準の累計粒度分布における90%粒子径(D90)と10%粒子径(D10)との比、すなわち、D90/D10が5.0以上であることが好ましい。D90/D10がこのような範囲にあることによって、成型体の充填密度を高くすることができフィルターの吸着容量を高く保つことができるという利点がある。このため、前記D90/D10は7.0以上であることがより好ましく、10.0以上であることがさらに好ましい。上限値については、特に限定はされないが、活性炭の脱落が無く、形状を保持するというという観点から、D90/D10は20.0以下であることが好ましく、17.0以下であることがさらに好ましい。炭化物とした際のD90/D10は、吸着フィルター中の活性炭の構成を反映しており、吸着フィルターとした際の性能を直接的に示す指標になる。 Furthermore, in the adsorption filter of this embodiment, the ratio of the 90% particle size (D90) to the 10% particle size (D10) in the cumulative particle size distribution based on the volume of the carbonized material, i.e., D90/D10, is preferably 5.0 or more. By having D90/D10 in such a range, there is an advantage that the packing density of the molded body can be increased and the adsorption capacity of the filter can be maintained high. For this reason, it is more preferable that the D90/D10 is 7.0 or more, and even more preferable that it is 10.0 or more. There is no particular limit to the upper limit value, but from the viewpoint of not dropping off the activated carbon and maintaining the shape, D90/D10 is preferably 20.0 or less, and even more preferable that it is 17.0 or less. D90/D10 when made into a carbonized material reflects the composition of the activated carbon in the adsorption filter, and is an index that directly indicates the performance when made into an adsorption filter.

上述のD50、D90およびD10の数値は、レーザー回折・散乱法による粒度分布測定により測定した値であり、例えば、後述するマイクロトラック・ベル社製の湿式粒度分布測定装置(マイクロトラックMT3300EX II)などにより測定できる。The above-mentioned D50, D90 and D10 values are values measured by particle size distribution measurement using laser diffraction/scattering method, and can be measured, for example, using a wet particle size distribution measuring device (Microtrac MT3300EX II) manufactured by Microtrac Bell, which will be described later.

(活性炭)
本実施形態の吸着フィルターの成型体に含まれる活性炭は、当該活性炭を含む成型体の炭化物が上述したような特性を有する限り特に限定はなく、どのような活性炭でも使用可能である。
(Activated carbon)
The activated carbon contained in the molded body of the adsorption filter of this embodiment is not particularly limited as long as the carbonized material of the molded body containing the activated carbon has the above-mentioned characteristics, and any activated carbon can be used.

具体的には、例えば、炭素質材料に炭化および賦活の少なくとも一方を施すことによって得られる活性炭を使用することができる。 Specifically, for example, activated carbon obtained by subjecting a carbonaceous material to at least one of carbonization and activation can be used.

炭素質材料を炭化する場合は、通常、酸素または空気を遮断して、例えば400~800℃、好ましくは500~800℃、さらに好ましくは550~750℃程度で行うことができる。賦活法としては、ガス賦活法、薬品賦活法のいずれの賦活法も採用でき、両方を組み合わせてもよく、特に不純物の残留の少ないガス賦活法が好ましい。ガス賦活法は、炭化された炭素質材料を、通常、例えば、750~1100℃、好ましくは800~980℃、さらに好ましくは850~950℃程度で、賦活ガス(例えば、水蒸気、二酸化炭素ガス等)と反応させることにより行うことができる。賦活ガスは、作業の安全性および炭素質材料の反応性を考慮すると、水蒸気を10~40容量%含有する水蒸気含有ガスが好ましい。賦活時間および昇温速度は特に限定されず、選択する炭素質材料の種類、形状、サイズにより適宜選択できる。When carbonizing a carbonaceous material, oxygen or air is usually blocked and the process can be carried out at, for example, 400 to 800°C, preferably 500 to 800°C, and more preferably 550 to 750°C. As the activation method, either the gas activation method or the chemical activation method can be used, or both may be combined. In particular, the gas activation method, which leaves less impurities behind, is preferred. The gas activation method can be carried out by reacting the carbonized carbonaceous material with an activation gas (e.g., water vapor, carbon dioxide gas, etc.) at, for example, 750 to 1100°C, preferably 800 to 980°C, and more preferably 850 to 950°C. In consideration of the safety of the work and the reactivity of the carbonaceous material, the activation gas is preferably a water vapor-containing gas containing 10 to 40% by volume of water vapor. There are no particular limitations on the activation time and the heating rate, and they can be selected appropriately depending on the type, shape, and size of the carbonaceous material selected.

炭素質材料は、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂などの合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロースなどの天然繊維、レーヨンなどの再生繊維などの天然繊維由来の材料)などが挙げられる。これらの炭素質材料は、単独でまたは2種類以上組み合わせて使用できる。これらの炭素質材料のうち、上記の特性を有する成型体を得る観点からヤシ殻やフェノール樹脂が好ましく、メソ容積・マイクロ孔容積の双方を制御しやすいという観点からヤシ殻がより好ましい。 The carbonaceous material is not particularly limited, but examples thereof include plant-based carbonaceous materials (e.g., plant-derived materials such as wood, sawdust, charcoal, fruit shells such as coconut shells and walnut shells, fruit seeds, pulp manufacturing by-products, lignin, and blackstrap molasses), mineral-based carbonaceous materials (e.g., mineral-derived materials such as peat, lignite, brown coal, bituminous coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, and petroleum pitch), synthetic resin-based carbonaceous materials (e.g., synthetic resin-derived materials such as phenolic resins, polyvinylidene chloride, and acrylic resins), and natural fiber-based carbonaceous materials (e.g., natural fibers such as cellulose, and natural fiber-derived materials such as regenerated fibers such as rayon). These carbonaceous materials can be used alone or in combination of two or more types. Among these carbonaceous materials, coconut shells and phenolic resins are preferred from the viewpoint of obtaining a molded body having the above-mentioned characteristics, and coconut shells are more preferred from the viewpoint of easily controlling both the mesopore volume and the micropore volume.

賦活後の活性炭は、特にヤシ殻などの植物系炭素質材料や鉱物系炭素質材料を用いた場合、灰分や薬剤を除去するために洗浄してもよい。洗浄には酸が用いられ、酸としては洗浄効率の高い塩酸が好ましい。酸洗後は、十分に水で酸を洗い流す。 After activation, the activated carbon may be washed to remove ash and chemicals, especially when using plant-based carbonaceous materials such as coconut shells or mineral-based carbonaceous materials. An acid is used for washing, and hydrochloric acid is preferred as the acid because of its high cleaning efficiency. After pickling, the acid is thoroughly washed away with water.

本実施形態の活性炭の形状としては、粉末状、粒子状、繊維状(糸状、織り布(クロス)状、フェルト状)などのいずれの形状でもよく、用途によって適宜選択できるが、体積あたりの吸着性能の高い粒子状が好ましい。The shape of the activated carbon in this embodiment may be any of powder, particulate, fibrous (thread, woven cloth, felt), etc., and may be selected appropriately depending on the application, but a particulate shape with high adsorption performance per volume is preferred.

本実施形態で使用する活性炭の粒子径は、特には限定されないが、体積基準の累計粒度分布における50%粒子径(D50)が10~500μm程度であることが好ましく、12~450μm程度であることがより好ましく、13~400μm程度であることがさらに好ましい。活性炭がこのような範囲の粒子径であれば、活性炭の脱落が無く、形状を保持でき、低い通液抵抗でめっき液を再生できるという利点がある。本実施形態において、上記D50の数値は、上述の炭化物同様に、レーザー回折・散乱法により測定した値であり、例えば、日機装株式会社製の湿式粒度分布測定装置(マイクロトラックMT3300EX II)などにより測定できる。The particle size of the activated carbon used in this embodiment is not particularly limited, but the 50% particle size (D50) in the cumulative particle size distribution based on volume is preferably about 10 to 500 μm, more preferably about 12 to 450 μm, and even more preferably about 13 to 400 μm. If the activated carbon has a particle size in this range, there are advantages in that the activated carbon does not fall off, the shape can be maintained, and the plating solution can be regenerated with low resistance to liquid flow. In this embodiment, the above D50 value is a value measured by a laser diffraction/scattering method, as with the above-mentioned carbide, and can be measured, for example, by a wet particle size distribution measuring device (Microtrac MT3300EX II) manufactured by Nikkiso Co., Ltd.

本実施形態の吸着フィルターの成型体には、上述したような活性炭を1種または2種以上組み合わせて使用することができる。The molded adsorption filter of this embodiment can use one or a combination of two or more types of activated carbon as described above.

本実施形態の吸着フィルターが上述した特性(炭化物としての比表面積、メソ孔容積、マイクロ孔容積、及び、任意で満たすとよい特性として、体積粒度分布を測定した場合の標準偏差、D50、D90/D10)を有するようにするための手段をいくつか以下に例示する。例えば、上述した特性を満たすように、比較的平均粒子径(D50)の大きな活性炭を粉砕した粉末と粉砕前の活性炭を混合して用いる方法(例えば、粒状活性炭と粉末活性炭を混合する等)、種々のD50、比表面積、メソ孔容積、マイクロ孔容積を有する活性炭を複数混合して用いる方法、体積粒度分布が比較的大きな(D90/D10が例えば5.0以上)の活性炭を用いる方法などが挙げられる。ただし、得られる吸着フィルターが上述の特性を満たすものであれば、これらの方法に限定されない。 Some examples of means for making the adsorption filter of this embodiment have the above-mentioned characteristics (specific surface area as a carbonized material, mesopore volume, micropore volume, and, as optional characteristics that may be satisfied, standard deviation when measuring the volumetric particle size distribution, D50, D90/D10) are given below. For example, in order to satisfy the above-mentioned characteristics, a method of mixing activated carbon before crushing with a powder obtained by crushing activated carbon having a relatively large average particle size (D50) (e.g., mixing granular activated carbon with powdered activated carbon), a method of mixing activated carbon having various D50, specific surface area, mesopore volume, and micropore volume, a method of using activated carbon with a relatively large volumetric particle size distribution (D90/D10 is, for example, 5.0 or more), and the like can be mentioned. However, as long as the obtained adsorption filter satisfies the above-mentioned characteristics, it is not limited to these methods.

特に、前記成型体に含まれる活性炭が、比表面積が1700m/g以上の繊維状活性炭を5~20質量部含んでいることが好ましい。それにより、吸着速度を高めることができるという利点がある。繊維状活性炭の比表面積は、前記炭化物の比表面積と同様に、窒素吸着等温線からBET法によって求められる。活性炭中、前記繊維状活性炭の含有量が5質量部以上、20質量部以下であれば、フィルターの吸着能力を低下させることなく吸着速度を向上させることができる。前記繊維状活性炭のより好ましい比表面積の範囲は、1750m/g以上であり、上限は特にないが、除去能力という観点から2500m/g以下であることが望ましい。 In particular, it is preferable that the activated carbon contained in the molded body contains 5 to 20 parts by mass of fibrous activated carbon having a specific surface area of 1700 m 2 /g or more. This has the advantage of being able to increase the adsorption rate. The specific surface area of the fibrous activated carbon is determined by the BET method from the nitrogen adsorption isotherm, similar to the specific surface area of the carbonized material. If the content of the fibrous activated carbon in the activated carbon is 5 parts by mass or more and 20 parts by mass or less, the adsorption rate can be improved without decreasing the adsorption capacity of the filter. A more preferable range of the specific surface area of the fibrous activated carbon is 1750 m 2 /g or more, and although there is no particular upper limit, it is desirable that it is 2500 m 2 /g or less from the viewpoint of removal capacity.

(バインダー)
本実施形態の成型体は、活性炭に加えて、バインダーを含有していることが好ましい。バインダーとしては、ポリエチレン等の粉末バインダーや後述する繊維状バインダーを使用できるが、成型体の接着性を確保する観点から繊維状バインダーを含有することが好ましい。繊維状バインダーとしては、上述したような活性炭を絡めて賦形できるものであり、酸洗後の活性炭と混合を可能とし、フィルターを酸性のめっき液中で使用可能とするため耐酸性を有するものであれば、特に限定されず、合成品、天然品を問わず幅広く使用可能である。このような繊維状バインダーとしては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維、パルプなどが挙げられる。繊維状バインダーの繊維長は4mm以下であることが好ましい。
(binder)
The molded body of this embodiment preferably contains a binder in addition to activated carbon. As the binder, a powder binder such as polyethylene or a fibrous binder described later can be used, but it is preferable to contain a fibrous binder from the viewpoint of ensuring the adhesiveness of the molded body. The fibrous binder is not particularly limited as long as it can be shaped by entangling the activated carbon as described above, can be mixed with the activated carbon after pickling, and has acid resistance so that the filter can be used in an acidic plating solution, and can be widely used regardless of whether it is a synthetic product or a natural product. Examples of such fibrous binders include acrylic fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, cellulose fibers, nylon fibers, aramid fibers, and pulp. The fiber length of the fibrous binder is preferably 4 mm or less.

これらの繊維状のバインダーは2種以上を組み合わせて使用してもよい。特に好ましくは、ポリアクリロニトリル繊維またはセルロースパルプをバインダーとして使用することである。それにより、成型体密度および成型体強度をさらに上げ、性能低下を抑制することができる。These fibrous binders may be used in combination of two or more. It is particularly preferable to use polyacrylonitrile fiber or cellulose pulp as the binder. This can further increase the density and strength of the molded body and suppress performance degradation.

本実施形態において、繊維状の高分子バインダーの通水性は、CSF値で10~150mL程度である。本実施形態において、CSF値はJIS P 8121-2:2012(パルプ-ろ水度試験方法-第2部:カナダ標準ろ水度法)に準じて測定した値である。また、CSF値は、例えばバインダーをフィブリル化させることによって調整できる。In this embodiment, the water permeability of the fibrous polymer binder is about 10 to 150 mL in terms of CSF value. In this embodiment, the CSF value is a value measured in accordance with JIS P 8121-2:2012 (Pulp - Freeness test method - Part 2: Canadian standard freeness method). The CSF value can be adjusted, for example, by fibrillating the binder.

繊維状の高分子バインダーのCSF値が10mL未満となると、通液性が得られず、圧力損失も高くなるおそれがある。一方で、CSF値が150mLを超える場合は、粉末状の活性炭を十分に保持することができず、成型体の強度が低くなる上、吸着性能に劣る可能性がある。If the CSF value of the fibrous polymer binder is less than 10 mL, liquid permeability may not be achieved and pressure loss may increase. On the other hand, if the CSF value exceeds 150 mL, the powdered activated carbon may not be sufficiently retained, resulting in a molded body with low strength and poor adsorption performance.

本実施形態の成型体における活性炭と繊維状バインダーの混合割合は、めっき液中の分解生成物の吸着効果、成形性などの点から、好ましくは、活性炭100質量部に対し、繊維状バインダーを4.0~6.0質量部程度とする。繊維状バインダーの量が4.0質量部未満となると、十分な強度が得られずに成型体を成形できないおそれがある。また、繊維状バインダーの量が6.0質量部を超えると、吸着性能が低下するおそれがある。より好ましくは、繊維状バインダーを4.5~5.5質量部配合することが望ましい。The mixing ratio of activated carbon and fibrous binder in the molded body of this embodiment is preferably about 4.0 to 6.0 parts by mass of fibrous binder per 100 parts by mass of activated carbon, from the viewpoints of the adsorption effect of decomposition products in the plating solution, moldability, etc. If the amount of fibrous binder is less than 4.0 parts by mass, there is a risk that sufficient strength cannot be obtained and the molded body cannot be molded. Furthermore, if the amount of fibrous binder exceeds 6.0 parts by mass, there is a risk that the adsorption performance will decrease. More preferably, it is desirable to mix 4.5 to 5.5 parts by mass of fibrous binder.

本実施形態の吸着フィルターは、前記活性炭と、好ましくは、それに加えて前記繊維状バインダーを含む成型体を備える。吸着フィルターの形状、形態等は、その用途によって適宜設計することができる。通液に適した形状であることから、本実施形態の吸着フィルターは、前記活性炭と前記繊維状バインダーとに加え、さらに中芯を含有する円筒状フィルターであってもよい。円筒形状にすることによって、通水抵抗を低下することができ、さらに、均等に液体を通過させることができるといった利点がある。The adsorption filter of this embodiment comprises a molded body containing the activated carbon and, preferably, the fibrous binder. The shape, form, etc. of the adsorption filter can be designed appropriately depending on the application. Since the shape is suitable for passing liquid, the adsorption filter of this embodiment may be a cylindrical filter containing a core in addition to the activated carbon and the fibrous binder. The cylindrical shape has the advantage of reducing water resistance and allowing liquid to pass through evenly.

本実施形態で使用できる中芯としては、円筒状フィルターの中空部に挿入され、円筒状フィルターを補強できるものであれば特に限定されないが、例えば、トリカルパイプやネトロンパイプ、セラミックフィルターであることが好ましい。さらに、中芯の外周に不織布などを巻き付けて使用することもできる。The core that can be used in this embodiment is not particularly limited as long as it can be inserted into the hollow part of the cylindrical filter and reinforce the cylindrical filter, but for example, a trical pipe, a netron pipe, or a ceramic filter is preferable. Furthermore, a nonwoven fabric or the like can be wrapped around the outer periphery of the core.

本実施形態の吸着フィルターは、浄化用に使用されることが好ましく、特に、めっき液中の分解生成物及び添加剤の両方を効率的に除去できるため、めっき液精製用に使用されることが好ましい。The adsorption filter of this embodiment is preferably used for purification, and in particular, is preferably used for plating solution purification, since it can efficiently remove both decomposition products and additives in the plating solution.

よって、本実施形態には前記吸着フィルターを使用するめっき液精製用フィルターも包含される。本実施形態のめっき液精製用フィルターを、めっき液を収容するめっき液槽に浸漬することによってめっき液を精製するができる。めっき液を当該フィルターに循環させることにより、めっき液中の分解生成物及び添加剤の両方を吸着して除去することができるため、産業利用上、極めて有用である。 Therefore, this embodiment also includes a filter for purifying plating solution that uses the above-mentioned adsorption filter. The plating solution can be purified by immersing the filter for purifying plating solution of this embodiment in a plating solution tank that contains the plating solution. By circulating the plating solution through the filter, both the decomposition products and additives in the plating solution can be adsorbed and removed, making it extremely useful for industrial use.

<吸着フィルターの製造方法>
本実施形態の吸着フィルターが備える成型体の製造は、任意の方法で行われ、特に限定されない。効率よく製造できる点で、スラリー吸引方法が好ましい。
<Method of manufacturing the adsorption filter>
The molded body of the adsorption filter of this embodiment can be produced by any method, and is not particularly limited. The slurry suction method is preferred in terms of efficient production.

以下にその一例として、本実施形態の円筒形状の成型体の製造方法の詳細を説明するが、本発明はこれに限定されない。なお、以下、図面等も用いて説明するが、図面中の各符号はそれぞれ、1 型枠、2 芯体、3 吸引用孔、4,4’ フランジ、5 濾液排出口、6 成型体を示す。As an example, the manufacturing method of the cylindrical molded body of this embodiment will be described in detail below, but the present invention is not limited thereto. The following description will be given with reference to the drawings, in which the reference numerals indicate 1 mold frame, 2 core body, 3 suction hole, 4, 4' flanges, 5 filtrate outlet, and 6 molded body.

具体的には、例えば、円筒状の成型体は、粉末状活性炭および繊維状バインダーを水中に分散させスラリーを調製するスラリー調製工程と、スラリーを吸引しながら濾過して予備成型体を得る吸引濾過工程と、予備成型体を乾燥して乾燥した成型体を得る乾燥工程と、必要に応じて成型体の外表面を研削する研削工程とを含む製造方法により得られる。Specifically, for example, a cylindrical molded body can be obtained by a manufacturing method including a slurry preparation process in which powdered activated carbon and a fibrous binder are dispersed in water to prepare a slurry, a suction filtration process in which the slurry is filtered while being suctioned to obtain a preformed body, a drying process in which the preformed body is dried to obtain a dried molded body, and, if necessary, a grinding process in which the outer surface of the molded body is ground.

(スラリー調製工程)
本実施形態では、スラリー調製工程において、粉末状活性炭および繊維状バインダーを、例えば、活性炭100質量部に対し、繊維状バインダーを4.5~5.5質量部となるように、かつ、固形分濃度が4.0~6.0質量%(特に好ましくは4.5~5.5質量%)になるように、溶媒に分散させたスラリーを調製する。溶媒としては、特に限定はされないが、水等を用いることが好ましい。スラリーの固形分濃度が高すぎると、分散が不均一になり易く、成型体に斑が生じ易いという問題がある。一方、前記固形分濃度が低すぎると、成形時間が長くなり生産性が低下するだけではなく、成型体の密度が高くなり粒子状物質を捕捉することによる目詰りが発生しやすい。
(Slurry preparation process)
In this embodiment, in the slurry preparation step, a slurry is prepared by dispersing the powdered activated carbon and the fibrous binder in a solvent so that, for example, the fibrous binder is 4.5 to 5.5 parts by mass per 100 parts by mass of activated carbon, and the solid content concentration is 4.0 to 6.0% by mass (particularly preferably 4.5 to 5.5% by mass). The solvent is not particularly limited, but it is preferable to use water or the like. If the solid content concentration of the slurry is too high, there is a problem that the dispersion is likely to become non-uniform and the molded body is likely to become spotty. On the other hand, if the solid content concentration is too low, not only does the molding time increase and productivity decrease, but the density of the molded body increases and clogging due to the capture of particulate matter is likely to occur.

(吸引濾過工程)
次に、吸引濾過工程では、例えば、図1に示すような、芯体2の表面に多数の吸引用小孔3を有し、かつ両端にフランジ4、4’を取り付けた円筒状成型用の型枠1に、上述したような中芯を取り付け、容器に収容されたスラリー中に浸け、濾液排出口5から型枠1の内側から吸引しながら濾過することにより、スラリーを型枠1に付着させる。吸引方法としては、慣用の方法、例えば、吸引ポンプなどを用いて吸引する方法などを利用できる。予備成型体7は、型枠1に付着した状態で所定の直径に圧縮する。
(Suction filtration process)
Next, in the suction filtration step, for example, as shown in Fig. 1, a core as described above is attached to a cylindrical molding frame 1 having a large number of small suction holes 3 on the surface of a core body 2 and flanges 4, 4' attached to both ends, and the core is immersed in the slurry contained in a container, and the slurry is filtered while being sucked from the inside of the frame 1 through a filtrate discharge port 5, thereby attaching the slurry to the frame 1. As a suction method, a conventional method such as a method of sucking using a suction pump or the like can be used. The preform 7 is compressed to a predetermined diameter while attached to the frame 1.

(乾燥工程)
吸引濾過工程により予備成型体7を生成した後は、型枠1の両端のフランジ4、4’を取り外し、芯体2を抜き取ることにより、中空円筒形状の予備成型体7を得ることができる。乾燥工程では、型枠1から取り外した予備成型体7を、乾燥機などで乾燥することにより、図2に示す成型体6(本実施形態の成型体)を得ることができる。
(Drying process)
After the preform 7 is produced by the suction filtration step, the flanges 4, 4' at both ends of the mold 1 are removed, and the core 2 is pulled out to obtain the preform 7 having a hollow cylindrical shape. In the drying step, the preform 7 removed from the mold 1 is dried in a dryer or the like to obtain the molded body 6 (the molded body of this embodiment) shown in Fig. 2.

乾燥温度は、例えば、100~150℃(特に110~130℃)程度であり、乾燥時間は、例えば、4~24時間(特に8~16時間)程度である。乾燥温度が高すぎると、繊維状バインダーが変質したり、溶融したりして濾過性能が低下したり成型体6の強度が低下し易い。乾燥温度が低すぎると、乾燥時間が長時間になったり、乾燥が不十分になったりするおそれがある。The drying temperature is, for example, about 100 to 150°C (particularly 110 to 130°C), and the drying time is, for example, about 4 to 24 hours (particularly 8 to 16 hours). If the drying temperature is too high, the fibrous binder may be altered or melted, which may lead to a decrease in filtration performance and a decrease in the strength of the molded body 6. If the drying temperature is too low, the drying time may be long or the drying may be insufficient.

(研削工程)
必要に応じて、乾燥工程の後、フィルターの外径をさらに調整したり、外周面の凹凸を減少させたりするために、研削工程を行うこともできる。本実施形態で使用する研削手段は、乾燥した成型体6の外表面を研削(又は研磨)できれば、特に限定されず、慣用の研削方法を利用できるが、研削の均一性の点から、成型体6自体を回転させて研削する研削機を用いる方法が好ましい。
(Grinding process)
If necessary, after the drying step, a grinding step can be performed to further adjust the outer diameter of the filter or to reduce unevenness on the outer peripheral surface. The grinding means used in this embodiment is not particularly limited as long as it can grind (or polish) the outer surface of the dried molded body 6, and a conventional grinding method can be used, but from the viewpoint of grinding uniformity, a method using a grinding machine that rotates and grinds the molded body 6 itself is preferred.

なお、研削工程は、研削機を用いた方法に限定されず、例えば、回転軸に固定した成型体6に対して、固定した平板状の砥石で研削してもよい。この方法では、発生する研削滓が研削面に堆積し易いため、エアブローしながら研削するのが効果的である。The grinding process is not limited to the method using a grinding machine, and may be performed, for example, by grinding the molded body 6 fixed to a rotating shaft with a fixed flat grinding wheel. In this method, the generated grinding swarf tends to accumulate on the grinding surface, so it is effective to grind while blowing air.

このようにして得られる成型体を本実施形態の吸着フィルターとして使用できる。例えば、成型体を上記の製造方法によって製造したのち、用途等に応じて、整形、乾燥後、所望の大きさおよび形状に切断して吸着フィルターを得ることができる。さらに必要に応じて、先端部分にキャップを装着したり、表面に不織布を装着させてもよい。The molded body thus obtained can be used as the adsorption filter of this embodiment. For example, after producing the molded body by the above-mentioned production method, it can be shaped and dried depending on the application, and then cut into the desired size and shape to obtain an adsorption filter. Furthermore, if necessary, a cap can be attached to the tip portion, or a nonwoven fabric can be attached to the surface.

本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。As described above, this specification discloses various aspects of the technology, the main technologies of which are summarized below.

すなわち、本発明の一局面に係る吸着フィルターは、活性炭を含む成型体を備える吸着フィルターであって、前記成型体を、不活性ガス中500℃で1時間熱処理をして得られる炭化物の比表面積が1500~2500m/gであること、並びに、前記炭化物が、BJH法メソ孔容積が0.1cm/g以上であり、かつ、MP法マイクロ孔容積が0.6cm/g以上である細孔を有することを特徴とする。 That is, an adsorption filter according to one aspect of the present invention is an adsorption filter comprising a molded body containing activated carbon, characterized in that the molded body is heat-treated in an inert gas at 500°C for 1 hour to obtain a carbonized material having a specific surface area of 1500 to 2500 m2 /g, and that the carbonized material has pores with a BJH method mesopore volume of 0.1 cm3 /g or more and an MP method micropore volume of 0.6 cm3 /g or more.

このような構成により、めっき液中の分解生成物及び添加剤の両方を効率的に除去できる吸着フィルターを提供することができる。 With this configuration, it is possible to provide an adsorption filter that can efficiently remove both decomposition products and additives in the plating solution.

また、前記炭化物の比表面積が1500~2100m/gであることがより好ましく、それにより上述した効果をより確実に得ることができると考えられる。 It is more preferable that the specific surface area of the carbonized material is 1500 to 2100 m 2 /g, which is believed to enable the above-mentioned effects to be obtained more reliably.

前記吸着フィルターにおいて、前記炭化物の体積粒度分布を測定した場合の標準偏差が70μm以上であることが好ましい。それにより、成型体の充填密度を高くすることができフィルターの吸着容量を高く保つことができるという利点がある。In the adsorption filter, it is preferable that the standard deviation of the volume particle size distribution of the carbonized material is 70 μm or more. This has the advantage that the packing density of the molded body can be increased and the adsorption capacity of the filter can be maintained high.

また、前記炭化物のD50が120~450μmであることが好ましい。さらに、前記炭化物のD90とD10の比(D90/D10)が、5.0以上であることが好ましい。それにより、成型体の充填密度を高くすることができフィルターの吸着容量を高く保つことができるという利点がある。It is also preferable that the D50 of the carbonized material is 120 to 450 μm. Furthermore, it is preferable that the ratio of D90 to D10 (D90/D10) of the carbonized material is 5.0 or more. This has the advantage that the packing density of the molded body can be increased and the adsorption capacity of the filter can be maintained high.

また、前記吸着フィルターにおいて、前記成型体に含まれる活性炭が、比表面積が1700m/g以上の繊維状活性炭を5~20質量部含むことが好ましい。それにより、吸着速度を高めることができるという利点がある。 In the adsorption filter, it is preferable that the activated carbon contained in the molded body contains 5 to 20 parts by mass of fibrous activated carbon having a specific surface area of 1700 m 2 /g or more, which has the advantage of enabling the adsorption rate to be increased.

前記吸着フィルターが、前記成型体がさらに繊維状バインダーを含むことが好ましい。それにより、最小限のバインダー量で形状を保持できることができることから、活性炭の吸着性能を最大限に発揮できるという利点がある。It is preferable that the adsorption filter further contains a fibrous binder in the molded body. This has the advantage that the shape can be maintained with a minimum amount of binder, thereby maximizing the adsorption performance of the activated carbon.

さらに、本発明には、前記吸着フィルターからなる、めっき液精製用吸着フィルターも包含される。 Furthermore, the present invention also includes an adsorption filter for purifying plating solution, which comprises the above-mentioned adsorption filter.

以下、実施例に基づいて本発明をより詳細に説明する。しかし、本発明は、以下の実施例により何ら制限されるものではない。The present invention will be described in more detail below with reference to examples. However, the present invention is not limited in any way by the following examples.

まず、各実施例および比較例で調製した活性炭や吸着フィルターの製法と評価方法について説明する。 First, we will explain the manufacturing methods and evaluation methods for the activated carbon and adsorption filters prepared in each example and comparative example.

[活性炭A~
株式会社クラレ製「クラレコールGW-H32/60」を流動炉で850~950℃で水蒸気賦活し、比表面積が約1700m/gになるように賦活時間を調整した。賦活したサンプルをJIS標準篩にて30~60Meshとなるよう篩い分け、粒状活性炭Aを得た。
[Activated carbon A to H ]
"Kuraray Coal GW-H32/60" manufactured by Kuraray Co., Ltd. was activated with steam at 850 to 950°C in a fluidized bed furnace, and the activation time was adjusted so that the specific surface area was about 1700 m2 /g. The activated sample was sieved with a JIS standard sieve to obtain 30 to 60 Mesh granular activated carbon A.

株式会社クラレ製「クラレコールGW-H32/60」を流動炉で850~950℃で水蒸気賦活し、比表面積が約2200m/gになるように時間を調整した。賦活したサンプルをIS標準篩にて30~60Meshとなるよう篩い分け、粒状活性炭Bを得た。 "Kuraray Coal GW-H32/60" manufactured by Kuraray Co., Ltd. was activated with steam at 850 to 950°C in a fluidized bed furnace, and the time was adjusted so that the specific surface area would be about 2200 m 2 /g. The activated sample was sieved with an IS standard sieve to obtain 30 to 60 Mesh granular activated carbon B.

アルカリ土類金属が4g/kgのヤシ殻活炭100gを賦活温度920℃比表面積が約2100m/gになるよう賦活時間を調整した。賦活ガスの組成はCO分圧が10%、HO分圧が30%で、その他のガスはN2である。得られた活性炭を1mol/Lの塩酸水溶液で洗浄し水洗した後、乾燥して粒状活性炭Cを得た。 100 g of coconut shell activated carbon with an alkaline earth metal content of 4 g/kg was activated at a temperature of 920° C. The activation time was adjusted so that the specific surface area was approximately 2100 m 2 /g. The activation gas had a CO 2 partial pressure of 10%, an H 2 O partial pressure of 30%, and other gases of N 2 . The activated carbon obtained was washed with a 1 mol/L aqueous hydrochloric acid solution, washed with water, and then dried to obtain granular activated carbon C.

フェノール系樹脂繊維(群栄化学工業社製KT-2800)を、980℃のLPG燃焼ガス中で処理して、繊維状活性炭D、Eを得た。Phenolic resin fiber (KT-2800 manufactured by Gun-ei Chemical Industry Co., Ltd.) was treated in LPG combustion gas at 980°C to obtain fibrous activated carbons D and E.

400℃~600℃で炭化されたヤシ殻チャーを900~950℃で水蒸気賦活した。賦活時間は、比表面積が約1000m/gになるように調整した。得られた活性炭を1mol/Lの塩酸水溶液で洗浄し水洗、乾燥した後、JIS標準篩にて30~60Meshとなるよう篩い分け、粒状活性炭FおよびGを得た。 Coconut shell char carbonized at 400°C to 600°C was activated with steam at 900°C to 950°C. The activation time was adjusted so that the specific surface area was about 1000 m2 /g. The obtained activated carbon was washed with 1 mol/L hydrochloric acid solution, washed with water, dried, and then sieved with a JIS standard sieve to 30 to 60 Mesh to obtain granular activated carbons F and G.

炭素質原料を瀝青炭とし、650℃で乾留することで乾留品を得た。得られた乾留品を水蒸気分圧15%、二酸化炭素分圧11%、窒素分圧74%の混合ガスを、ガスの全圧1気圧で炉内に供給し、880℃の条件で賦活し比表面積が約1450m/gになるように調整した。得られた活性炭を1mol/Lの塩酸水溶液で洗浄し水洗、乾燥した後、JIS標準篩にて10~30Meshとなるよう篩い分け、粒状活性炭Hを得た。 Bituminous coal was used as the carbonaceous raw material, and a carbonized product was obtained by carbonization at 650° C. The obtained carbonized product was supplied to a furnace with a mixed gas of 15% water vapor partial pressure, 11% carbon dioxide partial pressure, and 74% nitrogen partial pressure at a total gas pressure of 1 atmosphere, and activated at 880° C. to adjust the specific surface area to about 1450 m 2 /g. The obtained activated carbon was washed with a 1 mol/L hydrochloric acid aqueous solution, washed with water, dried, and then sieved with a JIS standard sieve to 10 to 30 Mesh to obtain granular activated carbon H.

上記で得た活性炭A~Hを表1にまとめる。 The activated carbons A to H obtained above are summarized in Table 1.

Figure 0007478163000001
Figure 0007478163000001

[活性炭I~O]
上記で得られた粒状活性炭A、B、Cを、ボールミルで粉砕し、表2に示す粉末活性炭I、J、Lをそれぞれ得た。また、上記で得られた活性炭Cをボールミルで粉砕した後、JIS標準篩で上網80Mesh、下網325Meshで篩分級し、粉末活性炭Kを得た。さらに上記得られた活性炭F、Gをボールミルで粉砕した後、風力分級により、それぞれ粉末活性炭M、Nを得た。さらに、上記で得られた活性炭Hをボールミルで粉砕した後、JIS標準篩で上網80Mesh、下網325Meshで篩分級することにより、粉末活性炭Oを得た。
[Activated carbon I to O]
The granular activated carbons A, B, and C obtained above were pulverized in a ball mill to obtain powdered activated carbons I, J, and L shown in Table 2. The activated carbon C obtained above was pulverized in a ball mill and then sieved using a JIS standard sieve with an upper mesh of 80 Mesh and a lower mesh of 325 Mesh to obtain powdered activated carbon K. The activated carbons F and G obtained above were pulverized in a ball mill and then air-classified to obtain powdered activated carbons M and N, respectively. The activated carbon H obtained above was pulverized in a ball mill and then sieved using a JIS standard sieve with an upper mesh of 80 Mesh and a lower mesh of 325 Mesh to obtain powdered activated carbon O.

上記の二次加工により得た粉末活性炭I~Oを表2にまとめる。 The powdered activated carbons I to O obtained by the above secondary processing are summarized in Table 2.

Figure 0007478163000002
Figure 0007478163000002

(繊維状バインダー)
繊維状バインダーとしては、日本エクスラン工業株式会社製「フィブリル化アクリルパルプBi-PUL/F」(実施例1~7および比較例1~4)及び三井化学株式会社製高密度ポリエチレン粉末「ミペロンMX-220」(実施例8)を用いた。
(fibrous binder)
As the fibrous binder, "Fibrillated acrylic pulp Bi-PUL/F" manufactured by Nippon Exlan Kogyo Co., Ltd. (Examples 1 to 7 and Comparative Examples 1 to 4) and high-density polyethylene powder "Mipelon MX-220" manufactured by Mitsui Chemicals, Inc. (Example 8) were used.

[成型体の製造]
(実施例1~7及び比較例1~4)
上記で得られた各粒状活性炭及び各粉末活性炭を、活性合計2.0kgに対し繊維状バインダー(日本エクスラン工業株式会社製「フィブリル化アクリルパルプBi-PUL/F」(CSF=55ml))を固形分で0.1kgを水道水に撹拌して分散させ、30Lのスラリーを得た。
[Production of Molded Body]
(Examples 1 to 7 and Comparative Examples 1 to 4)
Each of the granular activated carbons and powdered activated carbons obtained above was dispersed in tap water by stirring in an amount of 2.0 kg of activated carbon in total and 0.1 kg of a fibrous binder ("Fibrillated acrylic pulp Bi-PUL/F" (CSF = 55 ml) manufactured by Nippon Exlan Kogyo Co., Ltd.) in terms of solid content to obtain 30 L of a slurry.

繊維状活性炭については、小型ビーターに水道水100Lに対し繊維状活性炭を1kgと前記繊維状バインダーを固形分で0.05kg投入し、成型体密度が0.22g/mlになるまで叩解した。叩解後のスラリーから作製した叩解密度測定用成型体の密度は、次のようにして測定した。まず、図1に示すような、多数の吸引用小孔を設けた二重管状の型で、吸引用小孔径3mmφ、ピッチ5mmの中軸に300メッシュの金網を巻きつけ、中軸径18mmφ、外径40mmφ、外径鍔間隔50mmの金型を使用し、中心部からスラリーを吸引することによって円筒型の成型体を作製し、乾燥後の重量と寸法から成型体密度を測定した(叩解密度測定)。For the fibrous activated carbon, 1 kg of fibrous activated carbon and 0.05 kg of the fibrous binder in solids were added to 100 L of tap water in a small beater, and the mixture was beaten until the molded body density was 0.22 g/ml. The density of the molded body for measuring the beaten density, which was made from the beaten slurry, was measured as follows. First, a cylindrical molded body was produced by sucking the slurry from the center using a double-tube mold with many small suction holes as shown in Figure 1, with a 300-mesh wire net wrapped around the center axis with a suction hole diameter of 3 mmφ and a pitch of 5 mm, and a mold with a center axis diameter of 18 mmφ, an outer diameter of 40 mmφ, and an outer diameter flange spacing of 50 mm. The molded body density was measured from the weight and dimensions after drying (beaten density measurement).

なお、各活性炭については、粒状活性炭、粉末活性炭及び繊維状活性炭が、下記表3に示す比率(重量比)となるようにして、上記で得た各スラリーを混合して使用し、フィルターを作製した。上記繊維状バインダーの配合量は、成型体用スラリー中の固形分100質量部に対し約5質量部であった。より具体的には、例えば、実施例4では、活性炭Aを1600g、活性炭Iを200g量り取った。そして、まず、繊維状バインダーを固形分で90g予め容器の中で水に分散させておき、叩解済みの繊維状活性炭スラリー20L(繊維状活性炭200g相当)を加え撹拌し、更に活性炭AとIを加え、良く撹拌し、更に水を加えて、スラリー量を30Lにし、当該スラリーを用いてフィルターを得た。For each activated carbon, the granular activated carbon, powdered activated carbon, and fibrous activated carbon were mixed and used in the ratio (weight ratio) shown in Table 3 below to prepare a filter. The amount of the fibrous binder was about 5 parts by mass per 100 parts by mass of solids in the molded body slurry. More specifically, for example, in Example 4, 1600 g of activated carbon A and 200 g of activated carbon I were weighed out. Then, first, 90 g of the fibrous binder was dispersed in water in a container in advance, 20 L of beaten fibrous activated carbon slurry (equivalent to 200 g of fibrous activated carbon) was added and stirred, activated carbon A and I were further added, stirred well, and water was further added to make the slurry amount 30 L, and the slurry was used to obtain a filter.

このような混合スラリーを用いて、図1に示すような、成型用金型(多数の吸引用小孔を設けた管状の金型)で、外径63mmφ、中軸径30mmφ、外径間隔245mmの金型に、アサヒ繊維工業株式会社製「MFフィルター」(目開き30μm、内径30mmφ、外径33mmφ、長さ245mm)を装着し、スラリーを金型外径より約2mm大きい約65mmφまで吸引した。その後、金型と同じ外径(63mmφ)となるまで回転させながら板で押さえて圧縮して成型(転動成型)し、金型から外して乾燥させ、円筒状の成型体を完成した。 Using this mixed slurry, a molding die (a tubular die with many small suction holes) as shown in Fig. 1 was used, and an "MF filter" (mesh size 30 μm, inner diameter 30 mmφ, outer diameter 33 mmφ, length 245 mm) manufactured by Asahi Textile Industries Co., Ltd. was attached to the die having an outer diameter of 63 mmφ, a center shaft diameter of 30 mmφ, and an outer diameter flange interval of 245 mm, and the slurry was sucked up to about 65 mmφ, which is about 2 mm larger than the outer diameter of the die. After that, the slurry was compressed and molded (rolling molding) by pressing it with a plate while rotating until it had the same outer diameter as the die (63 mmφ), and then it was removed from the die and dried to complete a cylindrical molded body.

乾燥後、成型体外周に不織布(ユニチカ株式会社製スパンボンド不織布「エルベスT0703WDO」)を1重に巻き付け、更に、厚さ2mmの発泡ポリエチレンシートを外径63mmφ、内径30mmφのドーナツ状に打ち抜いたパッキンを、ホットメルト接着剤で成型体両端に接着し、長さを250mmに調整し、実施例1~7及び比較例1~3の吸着フィルターを得た。After drying, a single layer of nonwoven fabric (Spunbond nonwoven fabric "ELVES T0703WDO" manufactured by Unitika Ltd.) was wrapped around the outer circumference of the molded body, and then packings punched out of a 2 mm thick foamed polyethylene sheet into a doughnut shape with an outer diameter of 63 mmφ and an inner diameter of 30 mmφ were attached to both ends of the molded body with hot melt adhesive and the length was adjusted to 250 mm, thereby obtaining the adsorption filters of Examples 1 to 7 and Comparative Examples 1 to 3.

(実施例8)
上記で得られた粒状活性炭A及び粉末活性炭Iを表3に示す比率(76:9)に混合した活性炭計1.7kgに対し、粉末バインダー(三井化学株式会社製高密度ポリエチレン粉末「ミペロンMX-220」を0.3kg加え、宝工機株式会社製マイクロスピードミキサー「MS-25型」に投入し2分間攪拌した。上記粉末バインダーの配合量は、混合物中の固形分85質量部に対し15質量部であった。
(Example 8)
0.3 kg of powder binder (high density polyethylene powder "Mipelon MX-220" manufactured by Mitsui Chemicals, Inc.) was added to 1.7 kg of activated carbon in total, which was a mixture of the granular activated carbon A and powdered activated carbon I obtained above in the ratio (76:9) shown in Table 3, and the mixture was charged into a micro speed mixer "MS-25 type" manufactured by Takara Koki Co., Ltd. and stirred for 2 minutes. The blending amount of the powder binder was 15 parts by mass with respect to 85 parts by mass of the solid content in the mixture.

次に、得られた混合物を、片側に蓋をした内径63mmφ、中芯径33mmφ、高さ300mmの筒状ステンレス製金型に少しずつ木槌で振動を与えながら充填し、開放側に蓋をして内容物を固定した。金型に充填された混合物を、金型ごと160℃の乾燥機に投入し、120分間加熱した後、50℃以下まで放冷した。蓋を外して、成型物を壊さないよう金型から成型物を抜き出し、得られた成型物を切断し、外径63mmφ、内径33mmφ、高さ280mmの乾式成型体を作製した。得られた成型体の両端をノコギリで切断し、高さを245mmとした。内径側にアサヒ繊維工業株式会社製「MFフィルター」(目開き30μm、内径30mmφ、外径33mmφ、長さ245mm)を挿入し、成型体外周に不織布(ユニチカ株式会社製スパンボンド不織布「エルベスT0703WDO」)を1重に巻き付け、更に、厚さ2mmの発泡ポリエチレンシートを外径63mmφ、内径30mmφのドーナツ状に打ち抜いたパッキンを、ホットメルト接着剤で成型体両端に接着し、長さを250mmに調整し、実施例8の吸着フィルターを得た。Next, the mixture obtained was gradually filled into a cylindrical stainless steel mold with an inner diameter of 63 mmφ, a center diameter of 33 mmφ, and a height of 300 mm, covered on one side, while vibrating it with a wooden mallet, and the open side was covered to fix the contents. The mixture filled into the mold was placed in a dryer at 160°C together with the mold, heated for 120 minutes, and then allowed to cool to 50°C or less. The lid was removed, and the molded product was removed from the mold without breaking it, and the obtained molded product was cut to produce a dry molded product with an outer diameter of 63 mmφ, an inner diameter of 33 mmφ, and a height of 280 mm. Both ends of the obtained molded product were cut with a saw to a height of 245 mm. An "MF filter" manufactured by Asahi Textile Industry Co., Ltd. (mesh size 30 μm, inner diameter 30 mmφ, outer diameter 33 mmφ, length 245 mm) was inserted into the inner diameter side, and a single layer of nonwoven fabric (spunbond nonwoven fabric "Elves T0703WDO" manufactured by Unitika Ltd.) was wrapped around the outer circumference of the molded body. Furthermore, packings punched out of a 2 mm thick foamed polyethylene sheet into a doughnut shape with an outer diameter of 63 mmφ and an inner diameter of 30 mmφ were bonded to both ends of the molded body with a hot melt adhesive and the length was adjusted to 250 mm, thereby obtaining the adsorption filter of Example 8.

[成型体の炭化物の作製]
得られた各実施例および比較例における、外周不織布およびパッキンを取り付ける前の成型体を、長さ方向で端面から115mmの位置から任意に図3に示すようにカッターナイフで約6m分切り取った。切り取ったサンプルを、坩堝に入れ、窒素雰囲気中500℃で1時間加熱した後、室温まで窒素雰囲気中で冷却したものを、比表面積、細孔分布および粒度分布測定用サンプルとした。
[Preparation of carbide of molded body]
The obtained molded bodies in each of the Examples and Comparative Examples before the attachment of the peripheral nonwoven fabric and the packing were arbitrarily cut out by about 6 mm lengthwise from a position 115 mm from the end face with a cutter knife as shown in Fig. 3. The cut sample was placed in a crucible and heated at 500°C in a nitrogen atmosphere for 1 hour, and then cooled to room temperature in a nitrogen atmosphere to prepare a sample for measuring the specific surface area, pore distribution, and particle size distribution.

[炭化物の比表面積、細孔直径、細孔容積の測定]
(比表面積)
まず、マイクロトラック・ベル株式会社製の高精度全自動ガス吸着装置「BELSORP-mini」を使用し、炭素質材料を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける炭素質材料の窒素吸脱着等温線を測定した。上記方法により得られた吸着等温線からBET式により多点法による解析を行い、得られた曲線の相対圧P/P0=0.01~0.1の領域での直線から比表面積を算出した。
[Measurement of specific surface area, pore diameter, and pore volume of carbonized material]
(Specific surface area)
First, a carbonaceous material was heated at 300° C. for 3 hours under a nitrogen flow (nitrogen flow rate: 50 mL/min) using a high-precision fully automatic gas adsorption apparatus "BELSORP-mini" manufactured by Microtrac-Bell Corporation, and then the nitrogen adsorption/desorption isotherm of the carbonaceous material was measured at 77 K. Analysis was performed by the multipoint method using the BET equation from the adsorption isotherm obtained by the above method, and the specific surface area was calculated from the straight line in the region of the relative pressure P/P0 = 0.01 to 0.1 of the obtained curve.

(全細孔容積・平均細孔径)
上記方法により得られた吸着等温線における相対圧P/P0=0.99における窒素吸着量からGurvish法により全細孔容積を算出した。平均細孔径に関しては、全細孔容積および先に記載したBET法から求めた比表面積より、下記式に基づいて算出した。平均細孔径(nm)=全細孔容積(cm/g)/比表面積(m/g)×4000
(Total pore volume/average pore diameter)
The total pore volume was calculated by the Gurvish method from the nitrogen adsorption amount at a relative pressure P/P0=0.99 in the adsorption isotherm obtained by the above method. The average pore diameter was calculated based on the total pore volume and the specific surface area obtained by the BET method described above, according to the following formula: Average pore diameter (nm)=total pore volume ( cm3 /g)/specific surface area ( m2 /g)×4000

(MP法によるマイクロ孔細孔容積測定)
上記方法により得られた吸着等温線に対し、MP法を適用し、マイクロ孔の細孔容積を算出した。なお、MP法での解析にあたってはマイクロトラック・ベル株式会社から提供されたt法解析用標準等温線「NGCB-BEL.t」を用いた。
(Micropore volume measurement by MP method)
The MP method was applied to the adsorption isotherm obtained by the above method to calculate the pore volume of the micropores. For the analysis by the MP method, the standard isotherm for t method analysis "NGCB-BEL.t" provided by Microtrack-Bel Co., Ltd. was used.

(BJH法によるメソ孔細孔容積測定)
上記方法により得られた吸着等温線に対し、BJH法を適用し、メソ孔の細孔容積を算出した。なお、BJH法での解析にあたってはマイクロトラック・ベル株式会社から提供された基準曲線「NGCB-BEL.t」を用いた。
(Mesopore volume measurement by BJH method)
The pore volume of mesopores was calculated by applying the BJH method to the adsorption isotherm obtained by the above method. Note that, for the analysis by the BJH method, the standard curve "NGCB-BEL.t" provided by Microtrac-BEL Co., Ltd. was used.

(粒度の測定)
炭化物の粒度(D10、D50、D90)は、以下に説明するレーザー回折測定法により測定した。すなわち、測定対象である活性炭を界面活性剤と共にイオン交換水中に入れ、超音波振動を与え均一分散液を作製し、粒子径分布測定装置(マイクロトラック・ベル社製「Microtrac MT3300EX-II」)を用いて測定した。界面活性剤には、和光純薬工業株式会社製の「ポリオキシエチレン(10)オクチルフェニルーテル」を用いた。分析条件を以下に示す。
(Measurement of particle size)
The particle sizes (D10, D50, D90) of the charcoal were measured by the laser diffraction measurement method described below. That is, the activated carbon to be measured was placed in ion-exchanged water together with a surfactant, and ultrasonic vibration was applied to prepare a uniform dispersion, which was then measured using a particle size distribution measuring device (Microtrac MT3300EX-II manufactured by Microtrac-Bell). As the surfactant, "Polyoxyethylene (10) octylphenyl ether " manufactured by Wako Pure Chemical Industries, Ltd. was used. The analysis conditions are shown below.

(分析条件)
測定回数:3回の平均値
測定時間:30秒
分布表示:体積
粒径区分:標準
計算モード:MT3000II
溶媒名:WATER
測定上限:2000μm、測定下限:0.021μm
残分比:0.00
通過分比:0.00
残分比設定:無効
粒子透過性:吸収
粒子屈折率:N/A
粒子形状:N/A
溶媒屈折率:1.333
DV値:0.0882
透過率(TR):0.800~0.930
拡張フィルター:無効
流速:70%
超音波出力:40W
超音波時間:180秒
(Analysis conditions)
Number of measurements: Average value of 3 measurements Measurement time: 30 seconds Distribution display: Volume particle size classification: Standard Calculation mode: MT3000II
Solvent name: WATER
Upper limit of measurement: 2000 μm, lower limit of measurement: 0.021 μm
Residual ratio: 0.00
Passing ratio: 0.00
Residual ratio setting: Ineffective particle transmittance: Absorbing particle Refractive index: N/A
Particle shape: N/A
Solvent refractive index: 1.333
DV value: 0.0882
Transmittance (TR): 0.800 to 0.930
Extended filter: Invalid Flow rate: 70%
Ultrasonic output: 40W
Ultrasonic time: 180 seconds

(標準偏差の測定)
上記で得られた粒度分布の標準偏差は、マイクロトラック粒度分布測定装置で測定された際の、要約データとして算出されるSD値である。
(Measurement of standard deviation)
The standard deviation of the particle size distribution obtained above is an SD value calculated as summary data when measured using a Microtrack particle size distribution measuring device.

SD=(d84%-d16%)/2
(式中、d84%:累積カーブが84%となる点の粒子径(μm)、d16%:累計カーブが16%となる点の粒子径(μm)を示す。)
SD = (d84% - d16%) / 2
(In the formula, d84% is the particle diameter (μm) at the point where the cumulative curve is 84%, and d16% is the particle diameter (μm) at the point where the cumulative curve is 16%.)

以上の結果を、表3にまとめる。 The above results are summarized in Table 3.

Figure 0007478163000003
Figure 0007478163000003

次に、実施例および比較例の吸着フィルターの性能を以下の試験で評価した。Next, the performance of the adsorption filters of the examples and comparative examples was evaluated by the following tests.

[ポリエチレングリコール(PEG)除去性能判定]
PEG除去性能判定は、フィルターのめっき液から分解生成物を除去する性能を判定する目的で行った。PEG除去性能判定試験では、めっき液をイオン交換水で、めっき液に添加する添加剤(高分子有機化合物)をポリエチレングリコール20,000(PEG20000)及びポリエチレングリコール10,000(PEG10,000)で、めっき液中の添加剤から生成する分解生成物(低分子有機化合物)をポリエチレングリコール4,000(PEG4,000)及びポリエチレングリコール400(PEG400)で、それぞれ代用した。
[Polyethylene glycol (PEG) removal performance evaluation]
The PEG removal performance evaluation was carried out for the purpose of evaluating the filter's ability to remove decomposition products from the plating solution. In the PEG removal performance evaluation test, the plating solution was replaced with ion-exchanged water, the additives (high molecular weight organic compounds) added to the plating solution were replaced with polyethylene glycol 20,000 (PEG 20000) and polyethylene glycol 10,000 (PEG 10,000), and the decomposition products (low molecular weight organic compounds) generated from the additives in the plating solution were replaced with polyethylene glycol 4,000 (PEG 4,000) and polyethylene glycol 400 (PEG 400).

PEG水溶液は、イオン交換水にTOC濃度が約1,650mg/Lとなるように上記それぞれのPEGをイオン交換水に添加して、4種類の原水をそれぞれ5L作製した。 The PEG aqueous solutions were prepared by adding each of the above PEGs to ion-exchanged water so that the TOC concentration in the ion-exchanged water was approximately 1,650 mg/L, and 5 L of each of the four types of raw water was produced.

各実施例および比較例で得られた吸着フィルターに、上記フィルター作製時に使用したものと同じ不織布を巻き付け、厚み16.3mmにカットした円筒状成型体の両端に、厚さ2mmの発泡ポリエチレンシートを外径63mmφ、内径30mmφのドーナツ状に打ち抜いたパッキンをホットメルトで接着し評価試験用サンプルとした。The adsorption filters obtained in each of the Examples and Comparative Examples were wrapped in the same nonwoven fabric as that used in producing the above filters, and cut to a thickness of 16.3 mm into cylindrical molded bodies. Gaskets made by punching out a 2 mm thick foamed polyethylene sheet into a doughnut shape with an outer diameter of 63 mmφ and an inner diameter of 30 mmφ were attached to both ends with hot melt to prepare evaluation test samples.

内径70mmφで成型体の両端をリブでシールできる構造とした自作のカラムに、上記評価試験用サンプルをセットし、上記で得た4種の原液(PEG水溶液)を、20℃、0.5L/分の流速で試料に循環通液し、3時間後のTOC濃度を測定し、原液からの除去率を算出した。分解生成物及び添加剤全てを除去することが好ましい為、分解生成物及び添加剤相当のPEG400~PEG20,000は、いずれも除去率23%以上を合格(○)とし、いずれかが23%未満であれば不合格(×)と評価した。The above evaluation test sample was placed in a homemade column with an inner diameter of 70 mmφ and a structure that allows both ends of the molded body to be sealed with ribs, and the four types of stock solutions (PEG aqueous solutions) obtained above were circulated through the sample at 20°C and a flow rate of 0.5 L/min. The TOC concentration after 3 hours was measured and the removal rate from the stock solution was calculated. Since it is preferable to remove all decomposition products and additives, for PEG400 to PEG20,000, which correspond to decomposition products and additives, a removal rate of 23% or more was evaluated as pass (○), and if any of them was less than 23%, it was evaluated as fail (×).

送液ポンプとしては、マト科学株式会社製のデジタルポンプ「07522-20」を使用し、TOC濃度測定は、株式会社島津製作所製の全有機炭素計「TOC-Lcsh ASI-L」を使用して行った。 A digital pump "07522-20" manufactured by Yamato Scientific Co., Ltd. was used as the liquid delivery pump, and a total organic carbon meter "TOC-Lcsh ASI-L" manufactured by Shimadzu Corporation was used for the TOC concentration measurement.

[めっき仕上がり判定]
上記評価用サンプルをユーザーに配布し、当該サンプルで精製した硫酸銅めっき液を用いて実施しためっきの仕上がりについて判定してもらった。評価基準は、何ら問題がなければ○、使用可能と判断すれば△、使用できなければ×と評価してもらった。
[Plating finish judgment]
The above evaluation samples were distributed to users, and the users were asked to judge the finish of plating performed using the copper sulfate plating solution refined from the samples. The evaluation criteria were as follows: ◯ if there were no problems, △ if it was judged usable, and × if it was unusable.

以上の評価結果を、それぞれ表4に示す。The above evaluation results are shown in Table 4.

Figure 0007478163000004
Figure 0007478163000004

(考察)
以上、表4からも明らかなように、実施例の吸着フィルターでは、PEG除去性能においては、添加剤(高分子有機化合物)と分解生成物(低分子有機化合物)の両方を除去できることが示された。また、めっき仕上がり判定においてもいずれの実施例のフィルターを使用しても良好な結果となった。
(Discussion)
As is clear from Table 4, the adsorption filters of the Examples were shown to be capable of removing both additives (high molecular weight organic compounds) and decomposition products (low molecular weight organic compounds) in terms of PEG removal performance. In addition, good results were obtained in the plating finish evaluation regardless of which filter of the Examples was used.

一方、フィルターが備える成型体の炭化物が本発明の規定を満たしていなかった比較例では、分解生成物(低分子有機化合物)の除去はできたもの、添加剤(高分子有機化合物)については十分に除去できないことが確認された。さらに、めっき仕上がり判定でも実施例より劣る結果となった。 On the other hand, in the comparative example in which the carbonized material of the molded body of the filter did not satisfy the requirements of the present invention, it was confirmed that although the decomposition products (low molecular weight organic compounds) could be removed, the additives (high molecular weight organic compounds) could not be sufficiently removed. Furthermore, the plating finish was also inferior to that of the examples.

この出願は、2019年11月1日に出願された日本国特許出願特願2019-199678を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2019-199678 filed on November 1, 2019, the contents of which are incorporated herein by reference.

本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。In order to express the present invention, the present invention has been properly and sufficiently described above through the embodiments with reference to specific examples, etc., but it should be recognized that a person skilled in the art can easily change and/or improve the above-mentioned embodiments. Therefore, as long as the changes or improvements made by a person skilled in the art are not at a level that deviates from the scope of the claims described in the claims, the changes or improvements are interpreted as being included in the scope of the claims.

本発明は、吸着材、吸着フィルター、めっき液精製等の技術分野において、広範な産業上の利用可能性を有する。


The present invention has wide industrial applicability in technical fields such as adsorbents, adsorption filters, and plating solution purification.


Claims (9)

活性炭を含む成型体を備えるめっき液精製用吸着フィルターであって、
前記成型体を、不活性ガス中500℃で1時間熱処理をして得られる炭化物の比表面積が1500~2500m/gであること、並びに、
前記炭化物が、BJH法メソ孔容積が0.1cm/g以上であり、かつ、MP法マイクロ孔容積が0.6cm/g以上である細孔を有することを特徴とする、めっき液精製用吸着フィルター。
An adsorption filter for purifying a plating solution , comprising a molded body containing activated carbon,
The molded body is heat-treated in an inert gas at 500° C. for 1 hour to obtain a carbonized product having a specific surface area of 1500 to 2500 m 2 /g; and
The adsorption filter for purifying a plating solution , wherein the carbonized material has pores having a BJH method mesopore volume of 0.1 cm 3 /g or more and an MP method micropore volume of 0.6 cm 3 /g or more.
前記炭化物の比表面積が1500~2100m/gである、請求項1に記載のめっき液精製用吸着フィルター。 2. The adsorptive filter for purifying a plating solution according to claim 1, wherein the specific surface area of the carbonized material is 1500 to 2100 m 2 /g. 前記炭化物の体積粒度分布を測定した場合の標準偏差が70μm以上である、請求項1または2記載のめっき液精製用吸着フィルター。 3. The adsorptive filter for purifying a plating solution according to claim 1, wherein the standard deviation of the volumetric particle size distribution of the charcoal is 70 μm or more. 前記炭化物のD50が120~450μmである、請求項1~3のいずれかに記載のめっき液精製用吸着フィルター。 The adsorptive filter for purifying a plating solution according to any one of claims 1 to 3, wherein the carbonized material has a D50 of 120 to 450 µm. 前記炭化物のD90とD10の比(D90/D10)が、5.0以上である、請求項1~4のいずれかに記載のめっき液精製用吸着フィルター。 The adsorptive filter for purifying a plating solution according to any one of claims 1 to 4, wherein the ratio of D90 to D10 (D90/D10) of the carbonized material is 5.0 or more. 前記成型体に含まれる活性炭が、比表面積が1700m/g以上の繊維状活性炭を5~20質量部含む、請求項1~5のいずれかに記載のめっき液精製用吸着フィルター。 6. The adsorptive filter for refining a plating solution according to claim 1, wherein the activated carbon contained in the molded body contains 5 to 20 parts by mass of fibrous activated carbon having a specific surface area of 1700 m 2 /g or more. 前記成型体がさらに繊維状バインダーを含む、請求項1~6のいずれかに記載のめっき液精製用吸着フィルター。 The adsorption filter for refining a plating solution according to any one of claims 1 to 6, wherein the molded body further comprises a fibrous binder. 請求項1~7のいずれかに記載のめっき液精製用吸着フィルターを備える、めっき液精製装置。 A plating solution purification apparatus comprising the adsorption filter for purifying a plating solution according to any one of claims 1 to 7. 処理対象液を、請求項1~7のいずれかに記載のめっき液精製用吸着フィルターに通過させる工程を有する、めっき液精製方法。 A method for purifying a plating solution, comprising a step of passing a solution to be treated through the adsorption filter for purifying a plating solution according to any one of claims 1 to 7.
JP2021553490A 2019-11-01 2020-10-21 Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same Active JP7478163B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019199678 2019-11-01
JP2019199678 2019-11-01
PCT/JP2020/039543 WO2021085266A1 (en) 2019-11-01 2020-10-21 Adsorption filter, filter for plating solution purification using same, plating solution purification device and plating solution purification method

Publications (2)

Publication Number Publication Date
JPWO2021085266A1 JPWO2021085266A1 (en) 2021-05-06
JP7478163B2 true JP7478163B2 (en) 2024-05-02

Family

ID=75715078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021553490A Active JP7478163B2 (en) 2019-11-01 2020-10-21 Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same

Country Status (5)

Country Link
JP (1) JP7478163B2 (en)
KR (1) KR20220089695A (en)
CN (1) CN114502273A (en)
TW (1) TW202131996A (en)
WO (1) WO2021085266A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7538928B1 (en) 2023-09-14 2024-08-22 宇部マテリアルズ株式会社 PFAS adsorbent and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255310A (en) 2010-06-09 2011-12-22 Osaka Gas Chem Kk Molded adsorption body and water purification material
JP2012061390A (en) 2010-09-14 2012-03-29 Futamura Chemical Co Ltd Filter for purification
WO2016002668A1 (en) 2014-07-03 2016-01-07 東レ株式会社 Porous carbon material and method for manufacturing porous carbon material
JP2016182602A (en) 2011-02-10 2016-10-20 ソニー株式会社 Air purification device, filter for purifying air, water purification device, and cartridge for purifying water
JP2017178697A (en) 2016-03-30 2017-10-05 株式会社Lixil Granulated active carbon
CN105084572B (en) 2015-09-14 2018-02-13 广东正业科技股份有限公司 A kind of activated carbon fibrous composite and preparation method thereof and a kind of active carbon fabric composite filter element
JP2018528327A (en) 2015-09-25 2018-09-27 マクダーミッド エンソン インコーポレイテッド Flexible color adjustment for dark Cr (III) plating
JP2019064869A (en) 2017-09-29 2019-04-25 株式会社Lixil Granulated active carbon and production method thereof
WO2020138051A1 (en) 2018-12-27 2020-07-02 株式会社クラレ Plating solution purification filter and plating solution purification adsorbent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846201B2 (en) 2004-02-26 2011-12-28 株式会社荏原製作所 Plating apparatus and plating method
GB0506278D0 (en) * 2005-03-29 2005-05-04 British American Tobacco Co Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials
JP2012167030A (en) * 2011-02-10 2012-09-06 Sony Corp Cholesterol level-lowering agent, triglyceride level-lowering agent, blood sugar level-lowering agent, cholesterol adsorbent, adsorbent, triglyceride adsorbent, health food, health supplement, food with nutrient function, food for specified health use, quasi-drug, and pharmaceutical drug
AR088255A1 (en) * 2011-10-07 2014-05-21 Teijin Pharma Ltd ADSORBENTS FOR ORAL ADMINISTRATION
JP6450352B2 (en) * 2016-09-26 2019-01-09 デクセリアルズ株式会社 Porous carbon material, method for producing the same, and catalyst for synthesis reaction
CN108423678A (en) * 2018-04-17 2018-08-21 华南农业大学 A kind of multistage porous carbon materials of superhigh specific surface area and the preparation method and application thereof
CN109595708B (en) * 2018-12-10 2020-08-14 哈尔滨商业大学 Microwave-enhanced photocatalytic oxidation air conditioning system taking in-situ synchronous regulation and control of activated carbon fiber as carrier

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255310A (en) 2010-06-09 2011-12-22 Osaka Gas Chem Kk Molded adsorption body and water purification material
JP2012061390A (en) 2010-09-14 2012-03-29 Futamura Chemical Co Ltd Filter for purification
JP2016182602A (en) 2011-02-10 2016-10-20 ソニー株式会社 Air purification device, filter for purifying air, water purification device, and cartridge for purifying water
WO2016002668A1 (en) 2014-07-03 2016-01-07 東レ株式会社 Porous carbon material and method for manufacturing porous carbon material
CN105084572B (en) 2015-09-14 2018-02-13 广东正业科技股份有限公司 A kind of activated carbon fibrous composite and preparation method thereof and a kind of active carbon fabric composite filter element
JP2018528327A (en) 2015-09-25 2018-09-27 マクダーミッド エンソン インコーポレイテッド Flexible color adjustment for dark Cr (III) plating
JP2017178697A (en) 2016-03-30 2017-10-05 株式会社Lixil Granulated active carbon
JP2019064869A (en) 2017-09-29 2019-04-25 株式会社Lixil Granulated active carbon and production method thereof
WO2020138051A1 (en) 2018-12-27 2020-07-02 株式会社クラレ Plating solution purification filter and plating solution purification adsorbent

Also Published As

Publication number Publication date
WO2021085266A1 (en) 2021-05-06
TW202131996A (en) 2021-09-01
KR20220089695A (en) 2022-06-28
JPWO2021085266A1 (en) 2021-05-06
CN114502273A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
JP6596015B2 (en) Adsorption filter
CN111511466B (en) Adsorption filter
JP6902588B2 (en) Adsorption filter
JP7356458B2 (en) Water purification filter and water purifier using it
JP7478163B2 (en) Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same
JP2021176634A (en) Filters for plating solution purification and absorbent for purifying plating solution
JP7555521B2 (en) Adsorption Filter
JP7180036B2 (en) adsorption filter
WO2023008437A1 (en) Water purification filter and water purifier
TW202346215A (en) adsorption filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240419

R150 Certificate of patent or registration of utility model

Ref document number: 7478163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150