JP6091462B2 - Electric vehicle charging control device - Google Patents

Electric vehicle charging control device Download PDF

Info

Publication number
JP6091462B2
JP6091462B2 JP2014108152A JP2014108152A JP6091462B2 JP 6091462 B2 JP6091462 B2 JP 6091462B2 JP 2014108152 A JP2014108152 A JP 2014108152A JP 2014108152 A JP2014108152 A JP 2014108152A JP 6091462 B2 JP6091462 B2 JP 6091462B2
Authority
JP
Japan
Prior art keywords
electric vehicle
amount
regenerative braking
charge
downhill road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014108152A
Other languages
Japanese (ja)
Other versions
JP2015226342A (en
Inventor
卓永 山本
卓永 山本
進治 佐藤
進治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014108152A priority Critical patent/JP6091462B2/en
Publication of JP2015226342A publication Critical patent/JP2015226342A/en
Application granted granted Critical
Publication of JP6091462B2 publication Critical patent/JP6091462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Description

本発明は、蓄電装置から供給される電力により駆動される電動機の動力を用いて走行し、電動機による回生制動により制動力を付与するとともに、蓄電装置が所定の状態となっていて回生制動が禁止されている場合に摩擦制動力を付与する、電動車両の充電制御装置に関する。   The present invention travels using the power of an electric motor driven by electric power supplied from the power storage device, applies braking force by regenerative braking by the motor, and prohibits regenerative braking when the power storage device is in a predetermined state. The present invention relates to a charging control device for an electric vehicle, which applies a friction braking force when being applied.

走行動力として電動機を用いる電動車両が知られている。例えば、特許文献1において、電動車両のバッテリが満充電の場合に回生制動が制限されることから、回生制動から摩擦制動に切り替え、違和感のない制動力を得ることのできる電動車両の制動装置が提案されている。   An electric vehicle using an electric motor as traveling power is known. For example, in Patent Document 1, since regenerative braking is limited when the battery of an electric vehicle is fully charged, a braking device for an electric vehicle that can switch from regenerative braking to friction braking and obtain a braking force without a sense of incongruity is provided. Proposed.

特開平10−271605号公報JP-A-10-271605

ところで、例えば、図4(a)に示すように、坂の上に位置する自宅等の駐車場で電動車両を毎日満充電にすると、坂道を下る場合にすぐに減速G抜けが発生する。このため、摩擦制動により減速G抜けを回避した場合、ブレーキパッドの温度が上昇して減速力が低下し、また、ブレーキパッドの摩耗量が多くなってブレーキ耐久性が低下するという課題があった。また、SOC(State Of Charge:残容量)に単純に充電マージンを設定することも考えられるが、この場合、航続距離が短くなるという課題があった。   By the way, for example, as shown in FIG. 4A, when the electric vehicle is fully charged every day in a parking lot such as a house located on a hill, a deceleration G dropout occurs immediately when going down a hill. For this reason, when the deceleration G escape is avoided by friction braking, there is a problem that the brake pad temperature rises and the deceleration force decreases, and the brake pad wear amount increases and the brake durability decreases. . In addition, it is conceivable to simply set a charging margin in SOC (State Of Charge), but in this case, there is a problem that the cruising distance becomes short.

本発明は上記した課題を解決するためになされたものであり、ブレーキパッドの摩耗量を抑制してブレーキ耐久性の低下を防ぐ電動車両の充電制御装置を提供することを第1の目的とする。また航続距離が短くなることを防止した電動車両の充電制御装置を提供することを第2の目的とする。   The present invention has been made in order to solve the above-described problems, and a first object of the present invention is to provide a charge control device for an electric vehicle that suppresses the amount of wear of the brake pads and prevents a decrease in brake durability. . It is a second object of the present invention to provide a charging control device for an electric vehicle that prevents a cruising distance from being shortened.

請求項1に係る発明は、蓄電装置から供給される電力により駆動される電動機の動力を用いて走行し、前記電動機による回生制動により制動力を付与するとともに、前記蓄電装置が所定の状態となっていて前記回生制動が禁止されている場合に摩擦制動力を付与する電動車両の充電制御装置であって、前記電動車両が走行する降坂路の距離情報を取得する取得手段と、前記蓄電装置への充電量を制御する制御手段と、を備え、前記制御手段は、前記取得手段で取得した前記降坂路の距離に応じて前記充電量を抑制することを特徴とする。   The invention according to claim 1 travels using the power of an electric motor driven by electric power supplied from the power storage device, applies braking force by regenerative braking by the motor, and the power storage device is in a predetermined state. An electric vehicle charging control device that applies a friction braking force when the regenerative braking is prohibited, an acquisition unit that acquires distance information of a downhill road on which the electric vehicle travels, and the power storage device. Control means for controlling the charge amount of the vehicle, wherein the control means suppresses the charge amount according to the distance of the downhill road acquired by the acquisition means.

請求項2に係る発明は、請求項1記載の電動車両の充電制御装置において、前記取得手段は、前記降坂路の距離情報を地図情報から取得することを特徴とする。   According to a second aspect of the present invention, in the charging control device for an electric vehicle according to the first aspect, the acquisition unit acquires distance information of the downhill road from map information.

請求項3に係る発明は、請求項1記載の電動車両の充電制御装置において、前記制御手段は、前記取得手段が取得した前記降坂路が複数ある場合は、前記降坂路の距離が最も短い距離に応じて前記充電量を抑制することを特徴とする。   According to a third aspect of the present invention, in the charging control device for an electric vehicle according to the first aspect, when the control means has a plurality of downhill roads acquired by the acquisition means, the distance of the downhill road is the shortest distance. The charge amount is suppressed according to the above.

請求項4に係る発明は、請求項3記載の電動車両の充電制御装置において、前記制御手段は、前記電動車両が前記最も短い距離の降坂路でない降坂路を走行する場合は前記回生制動による充電量を抑制する制御を行うことを特徴とする。   According to a fourth aspect of the present invention, in the charging control device for an electric vehicle according to the third aspect, the control means performs charging by the regenerative braking when the electric vehicle travels on a downhill road that is not the shortest downhill road. Control which suppresses quantity is performed.

請求項5に係る発明は、請求項4記載の電動車両の充電制御装置において、前記制御手段は、シフトポジションBレンジで走行する場合、シフトポジションDレンジの回生制動量に徐々に近づける制御を行い、前記シフトポジションDレンジで走行する場合、前記回生制動量を徐々に0に近づける制御を行うことを特徴とする。   According to a fifth aspect of the present invention, in the charging control device for an electric vehicle according to the fourth aspect, when the control means travels in the shift position B range, the control means performs control to gradually approach the regenerative braking amount in the shift position D range. When traveling in the shift position D range, the regenerative braking amount is controlled to gradually approach zero.

本発明によれば、ブレーキパッドの摩耗量を抑制してブレーキ耐久性の低下を防ぎ、かつ、航続距離が短くなることを防止した電動車両の充電制御装置を提供することができる。   According to the present invention, it is possible to provide a charging control device for an electric vehicle that suppresses the wear amount of the brake pad to prevent a decrease in brake durability and prevents a cruising distance from being shortened.

本発明の実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of embodiment of this invention. 図1の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of FIG. 充電量制御の一例をグラフで説明した図である。It is the figure explaining an example of charge amount control with the graph. 自宅近傍の坂路を含む走行ルートを示した図である。It is the figure which showed the driving | running route containing the slope near home.

以下、本発明の実施の形態(以下、本実施形態という)を添付図に基づいて説明する。   Embodiments of the present invention (hereinafter referred to as “this embodiment”) will be described below with reference to the accompanying drawings.

(実施形態の構成)
図1は、本実施形態の電動車両の充電制御装置の構成を示すブロック図である。本実施形態の電動車両10は、蓄電装置22から供給される電力により駆動される電動機12の動力を用いて走行し、電動機12による回生制動により制動力を付与するとともに、蓄電装置22が所定の状態となっていて回生制動が禁止されている場合に摩擦制動力を付与する。このため、電動車両10は、動力を発生する電動機12を備え、電動機12の回転軸は、トランスミッション14等を介して車輪16に接続されている。そして、車輪16には制動力を付与する摩擦ブレーキ18が係合している。
(Configuration of the embodiment)
FIG. 1 is a block diagram showing a configuration of a charging control device for an electric vehicle according to the present embodiment. The electric vehicle 10 of the present embodiment travels using the power of the electric motor 12 driven by the electric power supplied from the power storage device 22, applies braking force by regenerative braking by the electric motor 12, and the power storage device 22 Friction braking force is applied when regenerative braking is prohibited in a state. For this reason, the electric vehicle 10 includes an electric motor 12 that generates power, and the rotating shaft of the electric motor 12 is connected to the wheels 16 via the transmission 14 and the like. A friction brake 18 that applies a braking force is engaged with the wheel 16.

電動機12には、3相の結線を介してインバータ20(電力変換装置)が接続され、インバータ20には、蓄電装置22が接続されるとともに、インバータ20を駆動制御して電動機12を制御するモータECU(Electronic Control Unit:電子制御装置)24が接続される。   The motor 12 is connected to an inverter 20 (power converter) via a three-phase connection, and the inverter 20 is connected to a power storage device 22, and a motor that controls the motor 12 by controlling the drive of the inverter 20. An ECU (Electronic Control Unit) 24 is connected.

蓄電装置22は、エネルギーストレージであり、リチウムイオン2次電池、ニッケル水素2次電池、又はキャパシタ等を利用することができる。蓄電装置22には、充放電電流を制御乃至制限する充放電回路60が内蔵されている。蓄電装置22には、充放電回路60の充放電電流を制御するとともに、蓄電装置22の充電状態であるSOC(State Of Charge:残容量)を検出する充電検出部261と、充電電流(回生量)を制御する充電量制御部262とを備えるバッテリECU26が接続されている。   The power storage device 22 is energy storage, and a lithium ion secondary battery, a nickel hydride secondary battery, a capacitor, or the like can be used. The power storage device 22 includes a charge / discharge circuit 60 that controls or limits the charge / discharge current. The power storage device 22 includes a charge detection unit 261 that controls a charge / discharge current of the charge / discharge circuit 60 and detects a state of charge (SOC) that is a charge state of the power storage device 22, and a charge current (regeneration amount). ) Is connected to a battery ECU 26 having a charge amount control unit 262 for controlling.

充電量制御部262は、後述するナビECU42から電動車両10が走行する降坂路の距離情報を取得すると、その降坂路の距離に応じて充電量を抑制する制御を行う。また、充電量制御部262は、降坂路が複数ある場合は、降坂路の距離が最も短い距離に応じて充電量を抑制する。また、充電量制御部262は、電動車両10が最も短い距離の降坂路でない降坂路を走行する場合は回生制動による充電量を抑制する制御を行なう。   When the charge amount control unit 262 acquires distance information of a downhill road on which the electric vehicle 10 travels from a navigation ECU 42 described later, the charge amount control unit 262 performs control to suppress the charge amount according to the distance of the downhill road. In addition, when there are a plurality of downhill roads, the charge amount control unit 262 suppresses the charge amount according to the distance with the shortest downhill road distance. In addition, the charge amount control unit 262 performs control to suppress the charge amount due to regenerative braking when the electric vehicle 10 travels on a downhill road that is not the shortest downhill road.

モータECU24は、満充電状態判定部241と、制動量制御部242とを含む。満充電状態判定部241は、降坂路走行中に蓄電装置22の充電状態SOCが満充電状態であるか否かを検出して移動量制御部242を制御する。移動量制御部242は、Bレンジで走行する場合、Dレンジの回生制動量に徐々に近づける制御を行い、Dレンジで走行する場合、回生制動量を徐々に0に近づける制御を行う。   Motor ECU 24 includes a fully charged state determination unit 241 and a braking amount control unit 242. Fully charged state determination unit 241 controls movement amount control unit 242 by detecting whether or not the charged state SOC of power storage device 22 is in a fully charged state during traveling downhill. The movement amount control unit 242 performs control to gradually approach the regenerative braking amount of the D range when traveling in the B range, and performs control to gradually approach the regenerative braking amount to 0 when traveling in the D range.

モータECU24には、アクセルペダル28の操作量が操作量センサ30により検出されたアクセル開度θと、ブレーキペダル32の操作量が操作量センサ34により検出されたブレーキ操作量Bと、シフトレバー36の操作位置がシフト位置センサ38により検出された駐車位置P(P位置)、後退位置R(R位置)、又は漸進位置D(D位置)の各シフト位置と、車速センサ40により検出された車速Vsと、電動機12を構成するレゾルバ等の回転数センサで検出されたモータ回転数Nm、及びモータ回転方向(前進方向、停止、後退方向)Md等がそれぞれ供給されている。   The motor ECU 24 includes an accelerator opening degree θ in which the operation amount of the accelerator pedal 28 is detected by the operation amount sensor 30, a brake operation amount B in which the operation amount of the brake pedal 32 is detected by the operation amount sensor 34, and a shift lever 36. The vehicle position detected by the vehicle speed sensor 40 and each shift position of the parking position P (P position), the reverse position R (R position), or the progressive position D (D position) detected by the shift position sensor 38. Vs, a motor rotation speed Nm detected by a rotation speed sensor such as a resolver constituting the electric motor 12, a motor rotation direction (forward direction, stop, reverse direction) Md, and the like are supplied.

モータECU24には、ナビゲーションECU(以下、単に、ナビECU42という)も接続され、ナビECU42から、自車両における地図上の位置、高度等の情報が供給され、坂路(登坂路/降坂路)走行の有無やその距離情報等が算出される。   The motor ECU 24 is also connected to a navigation ECU (hereinafter simply referred to as a navigation ECU 42), and is supplied with information such as the position on the map and the altitude of the host vehicle from the navigation ECU 42, and travels on a slope (uphill / downhill). Presence / absence and distance information thereof are calculated.

モータECU24には、さらにブレーキECU50が接続される。ブレーキECU50には、ブレーキペダル32の操作量センサ34からブレーキ操作量Bが供給され、液圧モジュレータ52を介して車輪16に対し摩擦制動力を付与する。   A brake ECU 50 is further connected to the motor ECU 24. The brake ECU 50 is supplied with a brake operation amount B from the operation amount sensor 34 of the brake pedal 32 and applies a friction braking force to the wheels 16 via the hydraulic pressure modulator 52.

一方、モータECU24は、電動機12の回生電力を、インバータ20を通じて蓄電装置22に回収させることで、車輪16に対して電動機12の回生制動により制動させる制動力を付与する。モータECU24とブレーキECU50とバッテリECU26は、回生制動による制動力と摩擦制動による制動力との協調制御を行う。   On the other hand, the motor ECU 24 applies a braking force for braking the wheels 16 by regenerative braking of the motor 12 by causing the power storage device 22 to collect the regenerative power of the motor 12 through the inverter 20. The motor ECU 24, the brake ECU 50, and the battery ECU 26 perform coordinated control of the braking force due to regenerative braking and the braking force due to friction braking.

なお、バッテリECU26、モータECU24及びブレーキECU50は、CAN(Control Area Network:車載LAN)等の通信ネットワークに係る図示しない通信線を通じて相互にデータを利用する等、通信可能に接続されている。   Note that the battery ECU 26, the motor ECU 24, and the brake ECU 50 are communicably connected, for example, using data mutually through a communication line (not shown) related to a communication network such as a CAN (Control Area Network: in-vehicle LAN).

したがって、ナビECU42は、「前記電動車両が走行する降坂路の距離情報を取得する取得手段」として機能し、バッテリECU26(充電量制御部262)とモータECU24(制動量制御部242)とが協働して動作することにより、「蓄電装置22への充電量を制御する制御手段」として機能する。例えば、ナビゲーションECU42が取得した降坂路が複数ある場合は、降坂路の距離が最も短い距離に応じて充電量を抑制し、最も短い距離の降坂路でない降坂路を走行する場合は回生制動による充電量を抑制する制御を行う。   Accordingly, the navigation ECU 42 functions as “acquisition means for acquiring distance information of a downhill road on which the electric vehicle travels”, and the battery ECU 26 (charge amount control unit 262) and the motor ECU 24 (braking amount control unit 242) cooperate. By operating and operating, it functions as “a control means for controlling the amount of charge to the power storage device 22”. For example, when there are a plurality of downhill roads acquired by the navigation ECU 42, the charging amount is suppressed according to the distance of the shortest downhill road, and when traveling on the downhill road that is not the shortest downhill road, charging by regenerative braking is performed. Control to suppress the amount.

また、モータECU24(制動量制御部242)は、「Bレンジで走行する場合、Dレンジの回生制動量に徐々に近づける制御を行い、Dレンジで走行する場合、回生制動量を徐々に0に近づける制御を行う」制御手段としても機能する。   Further, the motor ECU 24 (braking amount control unit 242) performs control to gradually approach the regenerative braking amount of the D range when traveling in the B range, and gradually decreases the regenerative braking amount to 0 when traveling in the D range. It also functions as a control means that performs a control to approach.

(実施形態の動作)
以下、図2のフローチャートを参照して本実施形態に係る電動車両の充電制御装置の動作について詳細に説明する。
(Operation of the embodiment)
Hereinafter, the operation of the charging control apparatus for an electric vehicle according to the present embodiment will be described in detail with reference to the flowchart of FIG.

ここでも図4(b)に示すように、坂の上に位置する自宅等の駐車場で電動車両10を毎日満充電にして、坂道を下る場合を想定する。まず、バッテリECU26の充電検出部261で充電開始が検出されると(ステップS101“YES”)、充電量制御部262は、モータECU24経由でナビゲーションECU42から、内蔵の地図情報を参照した現在地の高度と走行ルート情報を取得して最適なSOCを計算する(ステップS102)。ここでは、ルートBの坂の下で満充電になるように充電余裕を持たせる。   Here, as shown in FIG. 4B, it is assumed that the electric vehicle 10 is fully charged every day in a parking lot such as a home located on a hill and goes down a hill. First, when the charge detection unit 261 of the battery ECU 26 detects the start of charging (step S101 “YES”), the charge amount control unit 262 receives the altitude of the current location from the navigation ECU 42 via the motor ECU 24 with reference to the built-in map information. The travel route information is acquired and the optimum SOC is calculated (step S102). Here, a charging margin is provided so that the battery is fully charged under the route B.

すなわち、充電量制御部262は、図4(b)に示す降坂路を含む走行ルートの中で、回生による充電量が少ないルートB(走行距離が短い)を走行し、ルートBを降りきった場所で満充電状態になるようSOC(例えは95%)を計算する。そして、そのSOCと計算値が等しくなるまで(ステップS104“YES”)、回生制動による充電を継続して充電量の制御を行ない(ステップS103)、その結果、坂道を降りきった時点で充電検出部261が満充電状態を検出することができるようにしている。   That is, the charge amount control unit 262 travels on the route B (the travel distance is short) where the charge amount due to regeneration is small in the travel route including the downhill road shown in FIG. Calculate the SOC (eg 95%) so that it is fully charged at the location. Then, until the calculated value becomes equal to the SOC (“YES” at step S104), the charge amount is controlled by continuing the charge by regenerative braking (step S103). The unit 261 can detect the fully charged state.

一方、ルートBに比較して走行距離が長いルートAを走行した場合、モータECU24の制動量制御部242は、道路勾配と距離とにより回生制動量を抑制し、同じく、坂道を降りきった時点で満充電状態判定部241が満充電状態を検出することができるように制御している。図3に、そのための具体的な制動量の抑制制御の仕方が示されている。   On the other hand, when traveling on route A, which has a longer travel distance than route B, the braking amount control unit 242 of the motor ECU 24 suppresses the regenerative braking amount based on the road gradient and distance, and when the vehicle finishes on the hill. The full charge state determination unit 241 performs control so that the full charge state can be detected. FIG. 3 shows a specific braking amount suppression control method for that purpose.

図3には、アクセルペダル及びプレーキペダルが踏み込まれていない場合の制動特性図であり、横軸に車速を、縦軸に車体Gをそれぞれ目盛った制動特性図が示されている。図3によれば、横軸より上の象限が力行側であり、下の象限が摩擦側である。図3に示すように、前進レンジのDより減速度が高いBのシフトポジションで走行する場合、制動量制御部242は、矢印aに示すように、Dレンジの回生制動量に徐々に近づける制御を行なう、また、Dレンジで走行する場合、矢印bに示すように、回生制動量を徐々に0に近づけるような制御を行う。   FIG. 3 is a braking characteristic diagram when the accelerator pedal and the brake pedal are not depressed, and a braking characteristic diagram in which the vehicle speed is plotted on the horizontal axis and the vehicle body G is plotted on the vertical axis is shown. According to FIG. 3, the quadrant above the horizontal axis is the power running side, and the lower quadrant is the friction side. As shown in FIG. 3, when the vehicle travels at a B shift position where the deceleration is higher than D in the forward range, the braking amount control unit 242 performs control to gradually approach the regenerative braking amount in the D range, as indicated by an arrow a. When the vehicle travels in the D range, control is performed so that the regenerative braking amount gradually approaches 0 as shown by an arrow b.

このように、距離と勾配に応じて回生量を抑制することでブレーキの操作量を少なくでき、極端な減速G抜けと摩擦ブレーキの使用を回避している。   In this way, the amount of brake operation can be reduced by suppressing the regenerative amount in accordance with the distance and the gradient, and extreme deceleration G omission and the use of a friction brake are avoided.

(実施形態の効果)
以上説明のように本実施形態に係る電動車両の充電制御装置によれば、取得した降坂路の距離に応じて充電量を抑制することにより、例えば、降坂路の距離情報を地図情報から取得し、降坂路が複数ある場合は、降坂路の距離が最も短い距離に応じて充電量を抑制することにより、極端なG抜けを回避できて違和感なく運転でき、摩擦制動の機会を極力減らすことができるためブレーキ耐久性の低下を回避することができる。
(Effect of embodiment)
As described above, according to the charging control device for an electric vehicle according to the present embodiment, for example, the distance information of the downhill road is acquired from the map information by suppressing the charge amount according to the acquired distance of the downhill road. When there are multiple downhill roads, the amount of charge can be controlled according to the distance of the shortest downhill road, so that extreme G slippage can be avoided, driving without discomfort, and reducing friction braking opportunities as much as possible. Therefore, it is possible to avoid a decrease in brake durability.

また、電動車両10が最も短い距離の降坂路でない降坂路を走行する場合は回生制動による充電量を抑制する制御を行うことにより、通常通りの減速Gを回生制動により生成し、降坂路の途中で満充電になって摩擦ブレーキによる減速G抜けを回避してもブレーキ操作量を少なくできることからブレーキの摩耗量を抑えることができる。更に、回生制動量抑制のために、Bレンジで走行する場合、Dレンジの回生制動量に徐々に近づける制御を行い、Dレンジで走行する場合、回生制動量を徐々に0に近づける制御を行ない、距離と勾配により回生制動量を抑制することで、極端なG抜けを回避できて違和感なく運転でき、摩擦制動の機会を極力減らすことができるためブレーキ耐久性の低下を回避することができる。   In addition, when the electric vehicle 10 travels on a downhill road that is not the shortest downhill road, the normal deceleration G is generated by regenerative braking by controlling the amount of charge by regenerative braking, and the middle of the downhill road Thus, even if the fully charged state is avoided and the deceleration G missing due to the friction brake is avoided, the amount of brake operation can be reduced. Furthermore, in order to suppress the regenerative braking amount, when traveling in the B range, control is performed to gradually approach the regenerative braking amount in the D range, and when traveling in the D range, control is performed to gradually bring the regenerative braking amount closer to zero. By suppressing the regenerative braking amount based on the distance and the gradient, it is possible to avoid an extreme G loss and to operate without a sense of incongruity, and to reduce the friction braking opportunity as much as possible, thereby avoiding a decrease in brake durability.

なお、本実施形態に係る電動車両の充電制御装置によれば、モータECU24に制動量制御部242を実装し、バッテリECU26に充電量制御部262が実装された構成について説明したが、モータECU24,あるいはバッテリECU26のいずれか一方にそれらをともに実装し、あるいは、モータECU24とバッテリECU26を統合した新たなECUを設計し、その中に制動量制御部242と充電量制御部262とを実装してもよい。この場合、ECU間の通信が不要になるため、通信トラフイックが低減され、その分だけ処理速度が向上する。なお、ナビECU42以外にも高度を検出できる大気圧センサなどから高度の情報を得てもよい。   In addition, according to the charging control apparatus for an electric vehicle according to the present embodiment, the configuration in which the braking amount control unit 242 is mounted on the motor ECU 24 and the charging amount control unit 262 is mounted on the battery ECU 26 has been described. Alternatively, either of them is mounted on either one of the battery ECUs 26, or a new ECU that integrates the motor ECU 24 and the battery ECU 26 is designed, and the braking amount control unit 242 and the charge amount control unit 262 are mounted therein. Also good. In this case, since communication between ECUs becomes unnecessary, communication traffic is reduced, and the processing speed is improved accordingly. In addition to the navigation ECU 42, altitude information may be obtained from an atmospheric pressure sensor capable of detecting altitude.

本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。   The present invention is not limited to the above-described exemplary embodiments, and those skilled in the art will be able to easily modify the above-described exemplary embodiments to the extent included in the claims. .

10…電動車両、12電動機、22…蓄電装置、24…モータECU、26…バッテリECU、42…ナビゲーションECU、241…満充電状態判定部、242…制動量制御部、261…充電検出部、262…充電量制御部   DESCRIPTION OF SYMBOLS 10 ... Electric vehicle, 12 electric motor, 22 ... Power storage device, 24 ... Motor ECU, 26 ... Battery ECU, 42 ... Navigation ECU, 241 ... Fully charged state determination part, 242 ... Braking amount control part, 261 ... Charge detection part, 262 ... Charge amount control unit

Claims (4)

蓄電装置から供給される電力により駆動される電動機の動力を用いて走行し、前記電動機による回生制動により制動力を付与するとともに、前記蓄電装置が所定の状態となっていて前記回生制動が禁止されている場合に摩擦制動力を付与する電動車両の充電制御装置であって、
前記電動車両が走行する降坂路の距離情報を取得する取得手段と、
前記蓄電装置への充電量を制御する制御手段と、を備え、
前記制御手段は、
前記取得手段で取得した前記降坂路の距離に応じて前記充電量を抑制する際に、前記取得手段が取得した前記降坂路が複数ある場合は、前記降坂路の距離が最も短い距離に応じて前記充電量を抑制する
ことを特徴とする電動車両の充電制御装置。
The vehicle travels using the power of an electric motor driven by the electric power supplied from the power storage device, applies a braking force by regenerative braking by the motor, and the power storage device is in a predetermined state and the regenerative braking is prohibited. A charging control device for an electric vehicle that applies friction braking force when
Obtaining means for obtaining distance information of a downhill road on which the electric vehicle travels;
Control means for controlling the amount of charge to the power storage device,
The control means includes
When there are a plurality of downhill roads acquired by the acquisition unit when the charging amount is suppressed according to the downhill road distance acquired by the acquisition unit, the downhill road distance is the shortest distance. A charge control device for an electric vehicle, wherein the charge amount is suppressed .
前記取得手段は、
前記降坂路の距離情報を地図情報から取得することを特徴とする請求項1記載の電動車両の充電制御装置。
The acquisition means includes
The charging control device for an electric vehicle according to claim 1, wherein distance information of the downhill road is acquired from map information.
前記制御手段は、
前記電動車両が前記最も短い距離の降坂路でない降坂路を走行する場合、前記回生制動による充電量を抑制する制御を行うことを特徴とする請求項1又は2記載の電動車両の充電制御装置。
The control means includes
3. The charging control device for an electric vehicle according to claim 1, wherein when the electric vehicle travels on a downhill road that is not the shortest downhill road, a control for suppressing a charge amount by the regenerative braking is performed.
前記制御手段は、
シフトポジションBレンジで走行する場合、シフトポジションDレンジの回生制動量に徐々に近づける制御を行い、前記シフトポジションDレンジで走行する場合、前記回生制動量を徐々に0に近づける制御を行うことを特徴とする請求項記載の電動車両の充電制御装置。
The control means includes
When traveling in the shift position B range, control to gradually approach the regenerative braking amount in the shift position D range is performed. When traveling in the shift position D range, control to gradually bring the regenerative braking amount to 0 is performed. The charging control device for an electric vehicle according to claim 3 , wherein the charging control device is an electric vehicle.
JP2014108152A 2014-05-26 2014-05-26 Electric vehicle charging control device Active JP6091462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108152A JP6091462B2 (en) 2014-05-26 2014-05-26 Electric vehicle charging control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108152A JP6091462B2 (en) 2014-05-26 2014-05-26 Electric vehicle charging control device

Publications (2)

Publication Number Publication Date
JP2015226342A JP2015226342A (en) 2015-12-14
JP6091462B2 true JP6091462B2 (en) 2017-03-08

Family

ID=54842795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108152A Active JP6091462B2 (en) 2014-05-26 2014-05-26 Electric vehicle charging control device

Country Status (1)

Country Link
JP (1) JP6091462B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3536703B2 (en) * 1999-02-09 2004-06-14 株式会社日立製作所 Hybrid vehicle control method, hybrid vehicle control device, and hybrid vehicle
JP3374802B2 (en) * 1999-09-24 2003-02-10 株式会社日立製作所 Hybrid vehicle
JP2001169408A (en) * 1999-12-03 2001-06-22 Nissan Motor Co Ltd Controller for hybrid car
US8608255B2 (en) * 2006-04-14 2013-12-17 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
JP4719060B2 (en) * 2006-04-14 2011-07-06 トヨタ自動車株式会社 Vehicle and control method thereof
US7894967B2 (en) * 2007-05-30 2011-02-22 Ford Global Technologies Regenerative braking with hill descent control
JP2013005485A (en) * 2011-06-13 2013-01-07 Nissan Motor Co Ltd Charge control device of vehicle battery
WO2013098928A1 (en) * 2011-12-26 2013-07-04 パイオニア株式会社 Vehicle drive device
JP2013233051A (en) * 2012-05-01 2013-11-14 Toyota Motor Corp Regeneration control device for fuel cell vehicle

Also Published As

Publication number Publication date
JP2015226342A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
US10768635B2 (en) Hybrid electric vehicle and platooning control method therefor
JP6729142B2 (en) Driving force control method and driving force control device
WO2013084682A1 (en) Control device for motor vehicle and method for controlling same
JP6501069B2 (en) Vehicle regenerative control system
JP2015080977A (en) Travel control device of hybrid vehicle
JP6508346B2 (en) Regenerative brake control system
JP5790795B2 (en) Deceleration factor estimation device
JP2015073347A (en) Electric-vehicular travel control apparatus
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP6058564B2 (en) Electric vehicle braking control device
JP6091462B2 (en) Electric vehicle charging control device
CN111245305A (en) Motor control device, vehicle with the same, and method of controlling vehicle
JP6124123B2 (en) Regenerative brake control system
JP2017081353A (en) Electric car control device
JP6495793B2 (en) Control device and control method for electric vehicle
JP6657839B2 (en) Hybrid vehicle and control method thereof
JP2014213629A (en) Vehicle brake system
WO2022177491A1 (en) Method and control device for controlling regenerative braking in a vehicle
KR20190080329A (en) Hybrid vehicle and method of controlling thereof
WO2017086435A1 (en) Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle
JP6593045B2 (en) Hybrid vehicle and control method thereof
KR101500096B1 (en) Hybrid vehicle system
JP2017121146A (en) Control device for vehicle
JP2017087799A (en) Vehicle control apparatus
JP2016094095A (en) Brake control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150