WO2013098928A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2013098928A1
WO2013098928A1 PCT/JP2011/080132 JP2011080132W WO2013098928A1 WO 2013098928 A1 WO2013098928 A1 WO 2013098928A1 JP 2011080132 W JP2011080132 W JP 2011080132W WO 2013098928 A1 WO2013098928 A1 WO 2013098928A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
amount
vehicle
power transmission
Prior art date
Application number
PCT/JP2011/080132
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 北野
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/080132 priority Critical patent/WO2013098928A1/en
Priority to JP2013551068A priority patent/JP5822951B2/en
Publication of WO2013098928A1 publication Critical patent/WO2013098928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle drive device that supplies power to a vehicle motor to drive the vehicle.
  • utilization of this invention is not restricted to the vehicle drive device mentioned above.
  • an electric vehicle that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
  • the first technology has a structure in which a spiral portion is provided in the electrical wiring between the vehicle body and the wheel, and this spiral portion is supported by a link provided between the vehicle body and the accelerator.
  • the electric wiring is prevented from drooping and can follow the operation such as the vertical stroke of the wheel (for example, see Patent Document 1 below).
  • the second technology is related to the wiring structure of the in-wheel motor, and the wiring from the stator coil is connected to the wiring connection part of the terminal board and is electrically integrated for each phase.
  • the third technology is that the vehicle has an inverter, a motor, and a speed reducer on the side closer to the wheel. Thereby, the size of the loop of the high-frequency current path is reduced to suppress the generation of radiation noise caused by the high-frequency current (see, for example, Patent Document 3 below).
  • the fourth technology has a configuration in which the electric wire from the vehicle body to the motor is wound in a spiral shape around the kingpin center line Ki of the suspension.
  • the part wound in a spiral shape is wound or unwound around the center line of the kingpin, preventing the hindrance of the steering by the electric wire, improving the steerability, and the durability of the electric wire (For example, refer to Patent Document 4 below).
  • the fifth technology is related to the connection of electric wires (power supply cables) that feed power from the vehicle to the wheel motor, and a connection terminal box is provided on the downstream side in the wheel rotation direction when the vehicle moves forward.
  • the sixth technology is related to the support structure for the electric power supplied from the vehicle to the wheel motor.
  • the electric cable (three-phase high-voltage cable) is encased in a sheath and supported by the cable support member.
  • the support portion is configured to be installed on the vehicle body so as to be movable in any direction such as the front-rear direction, the width direction, and the height direction of the vehicle body.
  • Patent Documents 1 to 6 are all separated into a vehicle-side inverter and a wheel-side motor, a power cable that allows a high-voltage large current to flow between the inverter and the wheels. Is required.
  • This high-voltage, high-current power cable is subjected to a bending load due to wheel rotation by steering, etc., but because of its large diameter, the durability of the cable is reduced and the steering performance cannot be improved.
  • since there is a thick power cable in the wheel space between the vehicle and the wheel it is difficult to wire so as not to interfere with the suspension, and mud, dust, rain, snow, etc. are likely to adhere and deteriorate. Because it is easy, maintenance such as replacement takes time.
  • a vehicle drive device is connected to a first storage battery that stores DC power acquired from an external power source, and the first storage battery, and the DC power is converted to AC power.
  • a first converter that has a first converter that converts the AC power into power, a power transmission antenna that wirelessly transmits the AC power, a power reception antenna that wirelessly receives the AC power transmitted by the power transmission antenna, and the AC power as DC
  • First power receiving means having a second converter for converting to electric power; an in-wheel motor that is mounted on a wheel hub and drives the wheel; and DC power that is provided on the wheel and received by the first power receiving means
  • a second storage battery for storing the battery, an inverter provided on the wheel for converting the DC power of the second storage battery into AC power, and controlling the rotational drive of the in-wheel motor Dynamic control means, power supply control means for controlling wireless power supply from the first power transmission means to the first power reception means, monitoring means for monitoring the amount of charge stored in the second storage battery
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment.
  • FIG. 3 is a diagram illustrating a circuit example of the inverter.
  • FIG. 4 is a diagram illustrating a circuit example of the bidirectional chopper.
  • FIG. 5 is a diagram showing an outline of power transmission between batteries.
  • FIG. 6 is a flowchart showing the entire control content related to power transmission.
  • FIG. 7 is a flowchart showing the control content of the power running torque control.
  • FIG. 8 is a flowchart showing the control content of the regenerative torque control.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment.
  • FIG. 3 is a diagram illustrating a circuit
  • FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment.
  • FIG. 10 is a chart showing torque command values during power running.
  • FIG. 11 is a chart showing torque command values during regeneration.
  • FIG. 12 is a chart showing torque command values when the pedal is released.
  • FIG. 13 is a chart showing a motor efficiency map.
  • FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low.
  • FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • FIG. 16 is a diagram showing an outline of another power transmission between batteries.
  • FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • FIG. 16 is a diagram showing an outline of another power transmission
  • FIG. 17 is a flowchart illustrating another example of a wireless power transmission control procedure.
  • FIG. 18A is a diagram of a structure example of a wheel and a power transmission antenna (part 1).
  • FIG. 18-2 is a diagram of a structure example of a wheel and a power transmission antenna (part 2).
  • FIG. 19A is a diagram of an example of a moving structure of the power transmission antenna (part 1).
  • FIG. 19-2 is a diagram illustrating an example of a moving structure of the power transmission antenna (part 2).
  • FIG. 20 is a block diagram showing a configuration of antenna position control when a position detector is used.
  • FIG. 21 is a block diagram showing a circuit configuration of the antenna position control unit shown in FIG. FIG.
  • FIG. 22 is a diagram illustrating a power transmission system between the vehicle and each wheel.
  • FIG. 23 is a chart showing an example of changes in power consumption and regenerative power during vehicle travel.
  • FIG. 24 is a diagram showing an outline of power transmission to a plurality of second batteries and motors.
  • FIG. 25 is a diagram illustrating a change state of transmitted power.
  • FIG. 26 is a diagram illustrating a change state of the power consumption of the motor.
  • FIG. 27 is a diagram illustrating changes in the amount of power consumed by the motor and the amount of remaining power in the second battery.
  • FIG. 28 is a flowchart showing an overall procedure of power transmission prediction.
  • FIG. 29 is a flowchart illustrating a detailed procedure of the prediction process (processing example 1).
  • FIG. 30 is a diagram illustrating an example of a change state of the gradient resistance and the rolling resistance.
  • FIG. 31 is a chart showing changes in transmission efficiency of the power transmission antenna during turning.
  • FIG. 32 is a diagram for explaining the vertical stroke amount of the wheel.
  • FIG. 33 is a chart showing the displacement amount by road condition.
  • FIG. 34 is a chart showing a change state of the remaining amount of the second battery.
  • FIG. 35 is a flowchart showing an outline of the processing contents of the optimum charging plan.
  • FIG. 36 is a chart showing the relationship between the remaining amount and the charge upper limit value.
  • FIG. 37 is a chart for explaining a wireless charging OFF period.
  • FIG. 38 is a flowchart showing the processing content of the wireless charging control.
  • FIG. 31 is a chart showing changes in transmission efficiency of the power transmission antenna during turning.
  • FIG. 32 is a diagram for explaining the vertical stroke amount of the wheel.
  • FIG. 33 is a chart showing the displacement amount by road condition.
  • FIG. 39 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overcharge.
  • FIG. 40 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overdischarge.
  • FIG. 41 is a flowchart showing a detailed procedure of prediction processing (processing example 2).
  • FIG. 42 is a flowchart showing an outline of the processing content of the optimum charging / discharging plan.
  • FIG. 43 is a chart showing the relationship between the remaining amount and the charging upper and lower limit values.
  • FIG. 44 is a chart for explaining the wireless charging period and the wireless discharging period.
  • FIG. 45 is a flowchart showing the processing content of wireless charging / discharging control.
  • FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted.
  • the vehicle 100 is a four-wheel drive vehicle having left and right front wheels FL and FR and left and right rear wheels RL and RR.
  • the hubs of these four wheels FL, FR, RL, RR are provided with in-wheel type motor units M1 to M4, respectively, and are driven independently.
  • Each of the motor units M1 to M4 is provided with an inverter circuit (described later) for driving the motor, a second battery, and the like.
  • Each inverter circuit is provided with motor units M1 to M4 based on the control of the controller (ECU) 101. To drive. Various information is input to this controller 101, and as a result of torque distribution, motors (in-wheel motors) provided in the motor units M1 to M4 are driven.
  • Input to the controller 101 includes the following.
  • a steering angle is input from the handle 102.
  • the accelerator pedal 103 From the accelerator pedal 103, the total torque command value is input.
  • a brake amount is input from the brake pedal 104.
  • a shift brake amount is input from the shift brake 105.
  • Select positions such as R, N, and D are input from the selector 106.
  • the motor units M1 to M4 of the wheels FL, FR, RL, and RR are provided with sensors that detect the rotational speed V, and the rotational speeds Vfl, Vfr, and RR of the wheels FL, FR, RL, and RR are provided. Vrl and Vrr are input to the controller 101.
  • the vehicle 100 is provided with an acceleration sensor and a yaw rate sensor (not shown), and the detected acceleration and yaw rate are input to the controller 101.
  • the controller 101 drives each wheel FL, FR, RL, RR based on the above input.
  • the control signals S1 to S4 for driving are appropriately torque-distributed for each wheel FL, FR, RL, and RR, and supplied to the motor units M1 to M4.
  • the vehicle 100 is equipped with a battery and supplies power to the entire vehicle 100.
  • the battery is provided on the vehicle side, and is provided between the first storage battery (first battery) 111 that stores DC power acquired from an external power source outside the vehicle, and the motor units M1 to M4. It consists of the 2nd storage battery (2nd battery) to which electric power is transmitted. Motor units M1 to M4 of each wheel FL, FR, RL, RR are driven by the electric power stored in the second battery.
  • secondary batteries such as nickel metal hydride and lithium ion, fuel cells, and the like are applied.
  • An electric double layer capacitor may be used instead of the battery.
  • L1 to L4 are power supply lines.
  • This regeneration refers to power generation using the back electromotive force generated in the motor by relaxing the operation of the brake pedal 104 by the driver who drives the vehicle 100 and the depression of the accelerator pedal 103 during traveling.
  • the voltage converter includes a first converter (DC-AC converter) 121 (121a to 121d) provided on the vehicle side and an AC-DC converter (described later) provided in each of the wheel side motor units M1 to M4. ).
  • Power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) for wirelessly transmitting power are provided on the vehicle side and the wheel side.
  • the controller 101 controls the supply of the power sources L1 to L4 that can be supplied from the first battery 111 on the vehicle side to the motor units M1 to M4 for each wheel by the control signals S11 to S14.
  • DC power is converted into AC power by the DC-AC converter 121 (121a to 121d) on the vehicle side.
  • power is wirelessly transmitted to the motor units M1 to M4 on the wheel side by the pair of power transmission antennas 122 (122a to 122d) and 123 (123a to 123d).
  • AC power is converted into DC power by an AC-DC converter provided in the wheel side motor units M1 to M4, and then supplied to the second battery.
  • Inverters 203 (203a to 203d) to be described later drive the motors of the motor units M1 to M4 using the electric power stored in the second battery.
  • FIG. 2 is a block diagram showing the configuration of the vehicle drive device.
  • the vehicle drive device 200 supplies power to the motor to drive the motor. Further, power transmission between the first battery 111 and the second battery 212a is controlled according to the traveling state of the vehicle 100 and the like.
  • a first battery 111 is provided on the vehicle 100 side, and is connected to the DC-AC converter 121a via the power line L1.
  • the DC-AC converter 121a converts DC power into AC power and outputs the AC power to the power transmission antenna (power transmission antenna) 122a.
  • the wheel side motor unit M1 is provided with a power transmission antenna (power receiving antenna) 123a paired with the power transmission antenna 122a.
  • the power transmission antenna 123a receives the power transmitted from the vehicle-side power transmission antenna 122a.
  • a wound coil can be used for these power transmission antennas 122a and 123a, and power can be transmitted between the vehicle 100 and the wheel motor unit M1 in a non-contact manner.
  • the power received by the power transmission antenna 123a is converted into DC power by the second converter (AC-DC converter) 201a and output to the bidirectional chopper 202a.
  • the bidirectional chopper 202a is a circuit for performing power transmission in both directions (forward direction or reverse direction).
  • the output of the bidirectional chopper 202a is output to the second battery 212a.
  • the power of the first battery 111 on the vehicle side is supplied to the second battery 212a on the wheel side (in the positive direction) and stored in the second battery 212a, and the motor M in the motor unit M1 is connected via the inverter 203a. To drive the motor M.
  • the bidirectional chopper 202a to AC-DC converter 201a to power transmission antenna 123a to power transmission antenna 122a to Power can be transmitted via the path (power supply line L1) from the DC-AC converter 121a to the first battery 111 (reverse direction).
  • power can be stored in the first battery 111 via the second battery 212a.
  • the AC-DC converter 201a and the DC-AC converter 121a are both bidirectional. In this case, the AC-DC converter 201a performs DC-AC conversion, and the DC-AC converter 121a is AC-DC. Perform DC conversion. Further, 123a is a power transmission antenna, and 122a is a power reception antenna.
  • the controller 101 provided in the vehicle 100 includes a power supply control unit (remaining amount control unit) 221 that controls power supply to the power receiving unit, and a drive control unit (torque control unit) 222 that controls rotational driving of the wheels. Yes.
  • the remaining amount control unit 221 controls power supply to the second battery 212a.
  • the remaining amount control unit 221 detects the battery amounts (remaining battery amounts) of the first battery 111 and the second battery 212a. For example, when the remaining battery amount of the second battery 212a decreases, DC-AC conversion is performed. Power is transmitted from the vehicle 100 to the wheel motor unit M1 to the unit 121a and the AC-DC converter 201a via the control signal S11. At this time, the bidirectional chopper 202a performs power transmission in the positive direction from the vehicle 100 to the motor unit M1 by the control signal S11.
  • the remaining amount control unit 221 also uses the control signal S11 when performing power transmission in the reverse direction from the motor unit M1 to the vehicle side during regeneration of the motor M.
  • the presence / absence of transmission is controlled for the bidirectional chopper 202a.
  • power transmission from the second battery 212a toward the first battery is not performed.
  • the direction of power transmission is switched from the second battery 212a to the first battery 111.
  • the torque control unit 222 distributes the torque of all torque command values for each wheel FL, FR, RL, RR according to the running state.
  • the torque distribution value for the inverter 203a is output by the control signal S1a.
  • the motor unit M1 outputs the current value and voltage value of the second battery 212a to the controller 101 as a signal S1b, and outputs the rotation speed of the motor M to the controller 101 as a signal S1c.
  • control signals S1a to S1c and S11 are transmitted via a control line wired between the vehicle 100 and the motor unit M1 on the wheel side. Since these control signals S1a to S1c and S11 only need to be able to transmit data, a thin line can be used as a control line, and it is not necessary to use a thick line that performs large-capacity power transmission. There is no reduction.
  • FIG. 3 is a diagram illustrating an example of an inverter circuit.
  • the inverter 203a converts the DC power supplied from the second battery 212a into the three-phase AC power of the motor M.
  • a diode 301 and a driving transistor 302 are provided in each of the U, V, and W phases ⁇ , and a sine wave whose voltage and frequency are controlled by PWM modulation is generated and supplied to each phase of the motor M. Rotating drive.
  • FIG. 4 is a diagram illustrating a circuit example of a bidirectional chopper.
  • the bidirectional chopper 202 a includes a primary side half bridge circuit 401, a secondary side half bridge circuit 402, and a reactor 403.
  • the primary half bridge circuit 401 includes a switching element 404 connected to the AC-DC converter 201a and a diode 405.
  • the secondary half bridge circuit 402 includes a switching element 406 connected to the second battery 212a and a diode 407.
  • the reactor 403 is connected between the primary side and the secondary side. Under the control of the switching elements 404 and 406, forward power transmission from the primary side to the secondary side or reverse power transmission from the secondary side to the primary side can be performed via the reactor 403.
  • the motor M is supplied by supplying DC power from the vehicle 100 side. Can be driven. At this time, the supply of DC power between the vehicle 100 and the wheel motor unit M1 does not require a large current. This is because the electric power stored in the second battery 212a is used for driving the motor, and the amount of electric power necessary for outputting a large torque is stored in the second battery 212a with some margin. Just keep it. Therefore, if electric power transmission between the first battery 111 and the second battery 212a is continuously performed, it is not necessary to pass a large current. For this reason, the power transmission antennas 122a and 123a are provided in the vehicle 100 and the motor unit M1 of the wheel, respectively, so that non-contact wireless power transmission can be performed.
  • FIG. 5 is a diagram showing an outline of power transmission between batteries.
  • four motor units M1 to M4 are provided, and the first battery 111 having a relatively large capacity for driving the motors M of the four motor units M1 to M4 is used.
  • the second battery 212a provided in each of the motor units M1 (and M2 to M4) only needs to drive a single motor M, can be used with a relatively small capacity, and can reduce the weight.
  • the power transmission between the first battery 111 and the second battery 212a is such that the remaining amount (current value B1) of the second battery 212a in the motor unit M1 always approaches the target remaining amount value BS (Set). Control. This control is performed by the remaining amount control unit 221 of the controller 101.
  • the target remaining amount value BS is set to a predetermined value between the charging upper limit value BU (Upper) and the charging lower limit value BL (Lower).
  • RL (Lower) is a difference between the current value B1 and the charging lower limit value BL, and is a capacity that can be used by the second battery 212a.
  • the power transmission direction is bidirectional, that is, the forward direction and the reverse direction.
  • the positive direction is the direction from the first battery 111 to the second battery 212a.
  • the reverse direction is the direction from the second battery 212 a to the first battery 111.
  • the controller 101 basically has 1. Power transmission in the positive direction is performed during power running control. Power running control is performed, for example, when the depression of the accelerator pedal 103 is detected. 2. Power transmission in the reverse direction is performed during regenerative control. The regeneration control is performed, for example, when the depression of the brake pedal 104 is detected.
  • the controller 101 controls the regenerative power at the time of regeneration so that the current charging value B1 does not exceed the charging upper limit value BU of the second battery 212a. Further, the power running power during power running is controlled so that the current charge value B1 does not fall below the charge lower limit value BL of the second battery 212a.
  • FIG. 6 is a flowchart showing the entire control content related to power transmission. The process of power transmission and torque control performed by the controller 101 is shown. First, the controller 101 detects the current traveling speed with the sensors of the motor units M1 to M4. Further, depression of the accelerator pedal 103 and the brake pedal 104 is detected (step S701).
  • step S702 the combination of the current traveling state and the control mode is specified (step S702). as mentioned above, 1.
  • power running control is specified. 2.
  • regeneration control is specified. other than this, 3.
  • the power running control is specified. In this case, the pseudo creep torque described later is controlled. 4).
  • regeneration control is specified. In this case, a pseudo engine brake, which will be described later, is controlled. 5.
  • depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is medium (not fast and not slow), it is specified that there is no control (coasting operation).
  • step S703 it is determined which control mode is used (step S703).
  • step S703 power running control
  • step S704 power running torque control
  • step S706 When the control mode is regenerative control (step S703: regenerative), regenerative torque control is performed (step S705), and the process proceeds to step S706. If the control mode is coasting (step S703: coasting), no control is performed and the process proceeds to step S706.
  • step S706 the above-described wireless power transmission control is performed (step S706), and the process ends.
  • the controller 101 performs the above processes continuously over time.
  • FIG. 7 is a flowchart showing the control content of the power running torque control. The detailed control content of power running torque control shown to step S704 of FIG. 6 is shown.
  • the controller 101 detects each value of the second battery 212 (212a to 212d, where 212b to 212d indicate the second batteries of the motor units M2 to M4, respectively) provided in the motor units M1 to M4 ( Step S801).
  • the charging lower limit value of the second battery 212 (212a to 212d) is BL, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4.
  • the current values B1 to B4 of the second batteries 212a to 212d of the motor units M1 to M4 are always different depending on the driving state of the motor M.
  • torque distribution values T1 to T4 to each wheel are determined based on the depression amount of the accelerator pedal 103 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed.
  • the necessary powering powers W1 to W4 are calculated by the method (step S802).
  • capacitance RL which can use the electric power of the 2nd battery 212 is calculated (step S803).
  • the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively
  • Usable capacities RL1 to RL4 current values B1 to B4—charge lower limit BL Calculated by
  • step S804 the power running powers W1 to W4 required by the motor units M1 to M4 are compared with the capacities RL1 to RL4 usable in the second battery 212 (212a to 212d) calculated in step S803 (step S804).
  • step S804: Yes when the power running power W1 to W4 required for each motor unit M1 to M4 exceeds the capacity RL1 to RL4 usable by the corresponding second battery 212 (212a to 212d) (step S804: Yes), The torque distribution value of each wheel is recalculated so that the power running power is less than the usable capacities RL1 to RL4 (step S805). That is, when torque distribution is performed on all torque command values, the torque distribution value to the motor unit of the second battery 212 having a small remaining amount is decreased, and the torque distribution values of other motor units are also decreased at that ratio.
  • step S804 if the power running power W1 to W4 necessary for each of the motor units M1 to M4 is within the capacity RL1 to RL4 that can be used by the corresponding second battery 212 (212a to 212d) in step S804 (No in step S804).
  • the process of step S805 is not performed, and the process proceeds to step S806.
  • step S806 power running torque control is performed using the torque distribution values for the motor units M1 to M4 (step S806), and the process ends.
  • FIG. 8 is a flowchart showing the control content of the regenerative torque control. The detailed control content of regenerative torque control shown to step S705 of FIG. 6 is shown.
  • the motor M generates electric power.
  • the controller 101 detects each value of the second battery 212 (212a to 212d) provided in each of the motor units M1 to M4 (step S901).
  • the upper limit of charge of the second battery 212 is BU
  • the current value (remaining amount) is B1 to B4
  • the current voltage is V1 to V4.
  • torque distribution values T1 to T4 for each wheel are determined based on the depression amount of the brake pedal 104 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed.
  • the regenerative power W1 to W4 is calculated by the method (step S902).
  • step S903 the capacity
  • the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
  • Regenerative capacities RU1 to RU4 charge upper limit value BU ⁇ current values B1 to B4 Calculated by
  • step S904 the regenerative power W1 to W4 in each of the motor units M1 to M4 is compared with the capacity RU that can be regenerated by the second battery 212 (212a to 212d) calculated in step S903 (step S904).
  • the regenerative power W1 to W4 of each motor unit M1 to M4 exceeds the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) (step S904: Yes)
  • the regenerative power The torque distribution value of each wheel is recalculated so that becomes less than the capacity RU1 to RU4 that can be regenerated (step S905). That is, when all torque command values are torque-distributed, the torque distribution value to the motor unit of the second battery 212 having a large remaining amount is decreased, and the torque distribution values of the other motor units are also decreased at that ratio.
  • step S904 if the regenerative power W1 to W4 of each motor unit M1 to M4 is within the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) in step S904 (step S904: No), step S904 is performed. The process proceeds to step S906 without performing the process of S905.
  • step S906 regenerative torque control is performed using the torque distribution values for the motor units M1 to M4 (step S906), and the process ends.
  • FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment.
  • power transmission to the second battery 212a provided in the motor unit M1 will be described as an example.
  • similar processing is performed for the second batteries 212b to 212d provided in the other motor units M2 to M4. Good.
  • the controller 101 detects each value of the second battery 212a (step S1001).
  • the target remaining amount of the second battery 212a is BS
  • the current value (remaining amount) is B1
  • the current voltage is V1.
  • the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
  • an upper limit value Cmax at which electric power can be transmitted and electric power D to be transmitted are calculated by the following formula (step S1002).
  • the electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1.
  • the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
  • the power value of power transmission is determined (step S1003).
  • the power value of power transmission is performed by using the smaller one of the absolute value
  • step S1004 if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1003: No), the processing of step S1004 is not performed and the power D to be transmitted is used as it is. The process proceeds to S1005.
  • step S1005 the differential capacity D is transmitted from the first battery 111 to the second battery 212a via the wireless power line L1. If the value of D is negative, it is during regeneration, and power is transmitted from the second battery 212a to the first battery 111 via the wireless power line L1 (step S1005).
  • FIG. 10 is a chart showing torque command values during power running. The relationship between the power running torque command value (vertical axis) and the depression amount (horizontal axis) of the accelerator pedal 103 is shown. As shown in the figure, the torque control unit 222 of the controller 101 does not control the amount of depression of the accelerator pedal 103 and the total torque command value at the time of power running in a proportional linear relationship, but the amount of depression of the accelerator pedal 103. On the other hand, a power running torque command value is output with a curve that gradually changes. Further, the power running torque command value at the time of backward movement is set to be gentler than that at the time of forward movement of the vehicle 100.
  • FIG. 11 is a chart showing torque command values during regeneration. The relationship of the regenerative torque command value (vertical axis) with respect to the depression amount (horizontal axis) of the brake pedal 104 is shown. As shown in the figure, the controller 101 controls the regenerative torque command value to have a substantially linear relationship with respect to the depression amount of the brake pedal 104. Further, the regenerative torque command value at the time of reverse movement is set so as to change more gently than at the time of forward movement of the vehicle.
  • FIG. 12 is a chart showing torque command values when the pedal is released. When neither the accelerator pedal 103 nor the brake pedal 104 is depressed, the controller 101 changes the torque command value according to the vehicle speed as shown in the figure.
  • pseudo creep torque is generated as positive (+) torque.
  • a pseudo engine brake is generated as a negative ( ⁇ ) torque.
  • the pseudo engine brake is applied when the vehicle speed is about 40 km / h or higher, and the largest torque value is applied when the vehicle speed is about 60 km / h. At a speed of about 60 km / h or more, a small torque value is gradually applied.
  • the coasting operation is performed with the torque command value set to zero.
  • the characteristics of the torque command value with respect to the vehicle speed may be changed for each switched mode.
  • the pseudo creep torque value is reduced in the eco mode compared to the normal mode, and the pseudo engine brake has a large negative torque value.
  • FIG. 13 is a chart showing a motor efficiency map.
  • the efficiency map 1400 shows the rotational speed-torque characteristics of the motor M, with the horizontal axis representing the rotational speed and the vertical axis representing the torque.
  • an efficiency map 1400 of the illustrated four quadrant is stored in advance.
  • the first to fourth quadrants of the efficiency map 1400 are respectively 1. Forward running: A state where the accelerator pedal is being depressed while moving forward. 2. Reverse power running: A state where the accelerator pedal is depressed during reverse. Reverse regeneration: State where the brake pedal is depressed during reverse. Normal regenerative regeneration: A state in which the brake pedal is depressed during forward travel.
  • the torque control unit 222 of the controller 101 calculates the total torque command amount from the depression amount of the accelerator pedal 103 and the brake pedal 104.
  • the total torque value is distributed to a torque distribution value T for each motor M of each wheel by a predetermined torque distribution.
  • the controller 101 detects the rotational speeds Vfl, Vfr, Vrl, Vrr by the sensors of the motor units M1 to M4 while the vehicle 100 is traveling.
  • the rotation speed is described as ⁇ .
  • the controller 101 refers to the efficiency map 1400 for the motor M, and obtains the efficiency ⁇ from the torque T and the rotational speed ⁇ .
  • the controller 101 estimates the power consumption at the time of power running, and the regenerative power at the time of regeneration from the following formula
  • Power efficiency ⁇ (T ⁇ ⁇ ) / (V ⁇ I)
  • Regeneration efficiency ⁇ (V ⁇ I) / (T ⁇ ⁇ ) (V and I are the voltage and current of the motor M or the voltage and current of the inverter 203)
  • V ⁇ I corresponds to the power consumption of the motor M during power running and the regenerative power W during regeneration.
  • the controller 101 obtains the current value and the usable or regenerative power for the second battery 212 (212a to 212d). Then, the available or regenerative power is compared with the calculated power consumption (regenerative power), and the torque distribution value for the motor M is corrected so as to be within the range.
  • the efficiency map 1400 the power consumption (regenerative power) of the motor M can be determined more accurately. As a result, it is possible to accurately estimate the amount of power required during power transmission (power D to be transmitted), accurately calculate the amount of power during power transmission, and perform efficient power transmission. Become.
  • the efficiency map 1400 is not limited to acquiring in advance.
  • the efficiency map 1400 may be created while the vehicle 100 is traveling.
  • the controller 101 includes an efficiency map generation unit, acquires the power consumption and the rotation speed of the motor M during traveling, and generates the efficiency map 1400 described above.
  • the configuration may be such that the efficiency map 1400 acquired in advance is updated.
  • Detects the torque value from the current I flowing through the motor M
  • Detects the rotational speed of the wheel by a rotational position sensor such as a resolver
  • Detects the current and voltage by a current sensor and a voltage sensor provided between the second battery 212a and the inverter 203a
  • the controller 101 can update the efficiency map 1400 stored in the storage unit at any time during traveling of the vehicle 100 by the above detection and calculation.
  • FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low.
  • the total torque command value is input as 100 [Nm] to the controller 101 by, for example, depressing the accelerator pedal 103.
  • the remaining amount of the battery of the second battery 212 (corresponding to 212b) provided in the motor unit M2 of the left front wheel FL is reduced, and the motor M of the left front wheel FL becomes 16%.
  • [Nm] can be output.
  • the torque of the left front wheel FL is simply lowered, the driving force of the left and right front wheels becomes unbalanced, which causes an effect that the direction of travel of the vehicle 100 changes.
  • the torque controller 222 of the controller 101 redistributes the torque as shown in FIG. That is, the torque is distributed to the left and right front wheels so that the same torque 16 [Nm] is obtained. Further, in order to make the left and right rear wheels the same ratio corresponding to the ratio (4/5) in which the torque of the front wheels is changed from 20 [Nm] to 16 [Nm]], 30 [Nm] to 24 [Nm] Change the torque to]. In this case, the total torque value is changed from 100 [Nm] to 80 [Nm].
  • the cooperative brake is a brake that generates a necessary braking force by combining a regenerative brake by the motor M and a mechanical brake by hydraulic control.
  • a regenerative brake by the motor M
  • a mechanical brake by hydraulic control.
  • a method of always using a regenerative brake and a mechanical brake at a predetermined ratio a method of using a regenerative brake up to a predetermined braking amount, and using a mechanical brake when a predetermined braking amount is exceeded,
  • a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount is a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount.
  • FIG. 15-1 is a diagram illustrating the control characteristics of the cooperative brake used in the embodiment.
  • the horizontal axis is speed, and the vertical axis is braking torque.
  • the motor M has a low rotation speed when the speed is low. Accordingly, as shown in the figure, when such a speed is low, the back electromotive force is also small, and thus a large regenerative brake cannot be obtained.
  • the controller 101 of the embodiment not only the regenerative brake of the motor M but also the coordinated brake control for obtaining the insufficient braking torque that cannot be obtained by the regenerative brake by the mechanical brake is performed.
  • the braking torque of the mechanical brake has a characteristic opposite to that of the regenerative brake, and increases as the speed decreases and decreases as the speed increases. Thereby, the braking torque value corresponding to the depression amount of the brake pedal 104 is obtained by the braking force of both the regenerative brake and the mechanical brake.
  • the controller 101 reduces the ratio of the regenerative brake braking torque in the same manner as at the low speed, thereby reducing the mechanical type. Cooperative brake control is performed so as to obtain a required braking torque by increasing the ratio of the braking torque by the brake.
  • FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment.
  • the ratio of the braking torque by the regenerative brake is gradually reduced, and conversely, the ratio by the mechanical brake is increased.
  • the braking torque is generated not only by the regenerative braking by the motor M but also by the cooperative braking control using the mechanical brake together, the necessary braking torque can be generated over a wide range of speeds, and the vehicle 100 can be safely driven. To be able to do that. Even when the second battery 212 cannot be charged due to a change in the charge capacity of the second battery 212, the necessary braking torque can be obtained.
  • FIG. 16 is a diagram showing an outline of another power transmission between batteries.
  • two items are added to each item regarding the battery amount of the second battery 212a. These are the wireless discharge execution determination value BJ + (plus) and the wireless charge execution determination value BJ- (minus).
  • the wireless discharge execution determination value BJ + is set between the target remaining amount value BS of the second battery 212a and the charge upper limit value BU.
  • the wireless charging execution determination value BJ- is set between the target remaining amount value BS and the charging lower limit value BL.
  • FIG. 17 is a flowchart showing another example of a wireless power transmission control procedure.
  • the controller 101 detects each value of the second battery 212a (step S1701).
  • the target remaining amount of the second battery 212a is BS
  • the current value (remaining amount) is B1
  • the current voltage is V1.
  • the maximum current of the wireless power supply line L1 for the motor unit M is Amax.
  • This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
  • the upper limit side wireless discharge execution judgment value BJ + and the lower limit side wireless charging execution judgment value BJ- are used.
  • step S1702 it is determined whether the current value B1 of the second battery 212a is less than the lower limit wireless charging execution determination value BJ ⁇ (step S1702). If the current value B1 of the second battery 212a is less than the lower limit side wireless charging execution determination value BJ ⁇ (step S1702: Yes), a value obtained by subtracting the current value B1 from the lower limit side wireless charging execution determination value BJ ⁇ is transmitted. It is assumed that the power D is desired (step S1703).
  • step S1704 if the current value B1 of the second battery 212a exceeds the lower limit side wireless charge execution determination value BJ- (step S1702: No), the current value B1 of the second battery 212a is the upper limit side wireless discharge execution determination value. It is determined whether or not BJ + is exceeded (step S1704). If the current value B1 of the second battery 212a exceeds the upper limit side wireless discharge execution determination value BJ + (step S1704: Yes), it is desired to transmit a value obtained by subtracting the current value B1 from the upper limit side wireless discharge execution determination value BJ +. The power is D (step S1705). If the current value B1 of the second battery 212a is less than the upper limit wireless discharge execution determination value BJ + (step S1704: No), the process ends.
  • the electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1.
  • the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
  • the power value of power transmission is determined (step S1707).
  • the power value of power transmission is performed by using the smaller one of the absolute value
  • step S1707 if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1707: No), the processing of step S1708 is not performed and the power D to be transmitted is used as it is. The process moves to S1709.
  • step S1709 the differential capacity D is wirelessly transmitted from the first battery 111 to the second battery 212a. If the value of D is negative, power is transmitted wirelessly from the second battery 212a to the first battery 111 (step S1709).
  • the wireless power transmission amount is set such that the current value approaches the wireless charging execution determination value or the wireless discharge execution determination value. This makes it difficult to approach the charge upper limit value and the charge lower limit value, thereby reducing the need for power running torque and regenerative torque limitation to prevent overcharge and overdischarge.
  • FIG. 18A is a structural example in which the power transmission antenna is provided perpendicular to the ground.
  • a wheel 1800 of the vehicle 100 is formed by attaching a tire 1802 to a wheel 1801.
  • a motor (inner motor) M is provided inside the wheel 1801.
  • Suspension 1803 is provided between the wheel 1801 and the vehicle 100, and the suspension 1803 absorbs the vertical stroke of the wheel 1800 (tire 1802) due to road surface unevenness.
  • the inverter 203, the second battery 212, the power transmission antenna 123, and the receiving circuit (including the AC-DC converter 201 and the bidirectional chopper 202) 1810 are provided on the wheel 1800 side.
  • a power transmission antenna 122 and a transmission circuit (including a DC-AC conversion unit 121) 1811 are provided so as to face the power transmission antenna 123.
  • the surfaces of the pair of power transmission antennas 122 and 123 are provided perpendicular to the ground.
  • Fig. 18-2 shows a structural example in which the power transmission antenna is provided horizontally with respect to the ground.
  • a pair of power transmission antennas 122 and 123 are provided horizontally above the ground at the upper position of the wheel 1800.
  • the center does not shift between the pair of power transmission antennas 122 and 123, but the distance between the power transmission antenna 122 and the rod 123 changes.
  • the wireless power transmission efficiency changes.
  • one of the pair of power transmission antennas 122 and 123 (for example, the power transmission antenna 122 on the vehicle 100 side) is moved in the same direction (up and down) corresponding to the vertical stroke amount of the wheel 1800. By doing so, power transmission is performed while maintaining a state of good transmission efficiency.
  • FIGS. 19A and 19B are diagrams illustrating examples of the moving structure of the power transmission antenna.
  • FIG. 19A illustrates a structure in which the power transmission antenna 122 is movable in the vertical direction in the structural example in which the power transmission antenna illustrated in FIG. 18A is provided perpendicular to the ground.
  • the power transmission antenna 122 can be moved up and down by an actuator (or a motor such as a servo motor or a stepping motor) 1901.
  • the pair of power transmission antennas 122 and 123 is provided with a position detector 1902 for detecting the position of mutual displacement.
  • the position detector 1902 includes, for example, a light emitting unit 1902a such as an LED or a laser on the wheel 1800 side, and a light receiving unit 1902b that receives light from the light emitting unit 1902a on the vehicle 100 side.
  • a light emitting unit 1902a such as an LED or a laser on the wheel 1800 side
  • a light receiving unit 1902b that receives light from the light emitting unit 1902a on the vehicle 100 side.
  • difference state of a pair of electric power transmission antennas 122 and 122 can be detected.
  • it is set as the structure which measures the distance to the ground by providing a distance sensor, and detects the mutual shift
  • FIG. 19-2 shows a structure in which the power transmission antenna 122 is movable in the vertical direction in the structural example in which the power transmission antenna shown in FIG. 18-2 is provided horizontally with respect to the ground.
  • the power transmission antenna 122 can be moved up and down by an actuator 1901.
  • the pair of power transmission antennas 122 and 123 is provided with a position detector 1902 for detecting the position of mutual displacement.
  • the position detector 1902 is configured to detect a vertical shift between the pair of power transmission antennas 122 and 123 using a distance sensor, for example.
  • the position detector 1902 is configured by providing a light emitting unit 1902a such as an LED or a laser on the wheel 1800 side and a light receiving unit 1902b for receiving the light of the light emitting unit 1902a on the vehicle 100 side, for example. Thereby, the mutual shift
  • FIG. 20 is a block diagram showing a configuration of antenna position control when a position detector is used.
  • the configuration relating to the antenna position control is provided as one function of the remaining amount control unit 221 of the controller 101.
  • a distance sensor is used as the position detector 1902, this distance sensor is arrange
  • the antenna position control unit 2001 has a position detector (distance caused by unevenness of the road surface when the vehicle 100 is running with respect to a position command corresponding to the initial position (for example, a reference vertical stroke position) such as when stopping on a flat ground. Sensor) 1902.
  • the control calculation unit 2002 detects this deviation and operates an actuator (or servo motor or the like) 1901 via the drive circuit 2003.
  • the operation direction of the actuator 1901 is a direction in which the deviation of the center between the pair of power transmission antennas 122 and 123 is eliminated. For example, when the wheel 1800 performs a stroke operation in the upward direction, the actuator 1901 moves in the same upward direction.
  • the position detector 1902 can detect that the deviation (center deviation) has been reduced, and the actuator 1901 can be held at a position where the deviation is always zero.
  • the feedback loop can always control the pair of power transmission antennas 122 and 123 to be at the same center position, and the power transmission efficiency can always be kept in a good state.
  • FIG. 21 is a block diagram showing a circuit configuration of the antenna position control unit shown in FIG.
  • the control calculation unit 2002 of the antenna position control unit 2001 illustrated in FIG. 20 can use one function of the controller 101.
  • the output of the position detector (distance sensor) 1902 is captured by the controller (CPU) 101, a drive signal is generated by a drive circuit 2003 provided near the actuator 1901, the actuator (M) 1901 is driven, and the power transmission antenna 122 is connected. Move.
  • the position detector 1902 another light detection sensor may be used, and a position shift between the pair of power transmission antennas 122 and 123 may be detected by the light detection sensor.
  • the active suspension system is mounted on the vehicle 100, road surface unevenness and vehicle body movement are detected by sensors, and the controller 101 can control the vibration of the road surface of the vehicle 100 by controlling the damper of each wheel, The cornering stability can be obtained.
  • the position detector described above can also use a sensor used in an active suspension system.
  • FIG. 22 is a diagram showing a power transmission system between the vehicle and each wheel.
  • the controller 101 includes a power transmission antenna 122 (122a) between a first battery 111 provided in the vehicle 100 and a second battery 212 (212a to 212d) provided in each wheel 1800 (FR, FL, RR, RL). To 122d) and 123 (123a to 123d) are controlled.
  • a navigation device 2300 mounted on the vehicle 100 is connected to the controller 101.
  • the vehicle 100 is provided with not only the first battery 111 but also the plurality of second batteries 212 (212a to 212d) for each wheel 1800, a plurality of electric power supplies to one vehicle 100 is not possible. There will be a buffer. Thereby, the plurality of second batteries 212 can increase the degree of freedom of power transmission, such as supplying power to each other via the first battery 111.
  • the navigation device 2300 collects a travel history and map information (road information) based on a travel plan when the vehicle 100 travels to a destination, and outputs information such as a travel route with a short time and distance. Based on the road information on the travel route, the controller 101 predicts the transition of power consumed when the vehicle 100 moves to the destination.
  • a travel history and map information road information
  • map information road information
  • FIG. 23 is a chart showing an example of changes in power consumption and regenerative power during vehicle travel.
  • the motor M consumes power (powering power) according to the road conditions (curve, slope, stop / start, etc.) on the travel route.
  • the motor M generates electric power (regenerative power) by the brake operation at the time of stop (regenerative power).
  • the regenerative power is generated continuously for a long time as well.
  • FIG. 24 is a diagram showing an outline of power transmission to a plurality of second batteries and motors.
  • the power PA between the first battery 111 and the second battery 212a, the power PB between the second battery 212a and the motor M1, and the capacity of the second battery 212a are 40 Wh. It is assumed that the remaining amount B1 of the second battery 212a is 12 Wh.
  • the controller 101 When the power PA between the first battery 111 and the second battery 212a is 0 kW to 1 kW, the controller 101 performs control not to return the power regenerated by the motor M1 to the main (first battery 111) side. In the case of ⁇ 1 kW to 1 kW, control is performed to return the electric power regenerated by the motor M1 to the main (first battery 111) side.
  • the electric power PB between the second battery 212a and the motor M1 has a range of ⁇ 4 kW to 4 kW.
  • FIG. 25 is a diagram showing a change state of transmitted power.
  • the electric power PA and PB corresponding to the change for every time shown in FIG. 23 is shown.
  • the range of electric power PA transmitted between the 1st battery 111 and the 2nd battery 212a is small, and the range of electric power PB transmitted between the 2nd battery 212a and the motor M1 is set large.
  • the power transmitted between the vehicle 100 and the wheels 1800 can be reduced, so that relatively low-power wireless power transmission using the power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) can be performed.
  • FIG. (B) shows the change in power PC as the difference between power PB and power PA.
  • This power PC corresponds to the power charged in the second battery 212a of FIG. (C) shows a change in the remaining amount of the second battery 212a. Since the second battery 212a plays a buffering role with respect to the power change, the maximum power supply power (1 kW) supplied to the second battery 212a is greater than the maximum instantaneous power (4 kW) that needs to be supplied to the motor M1. Can be small.
  • FIG. 26 is a diagram showing a change state of the power consumption of the motor.
  • the negative side is regenerative power generated by the motor M1.
  • the motor M1 consumes and regenerates 4 kW as the maximum instantaneous power.
  • the maximum supply power of the power PB supplied from the second battery 212a to the motor M1 can be set to about 0.8 to 1 kW.
  • FIG. 27 is a diagram showing changes in the power consumption of the motor and the remaining amount of power stored in the second battery.
  • the remaining amount change of the second battery 212a at the maximum supply power (0.8 to 1 kW) is shown.
  • the capacity of the second battery 212a (EC) is 40 Wh
  • the initial power amount (current value B1) is 20 Wh.
  • the figure shows that the charging of the second battery 212a proceeds when the integrated power consumption does not increase at time T1 and T2 due to signal stoppage or the like. Further, as shown in the figure, it is shown that when the maximum supply power is set to 0.8 to 1 kW, it can be accommodated within the capacity range of the second battery 212a. Note that transmission control is performed so that the remaining amount (current value B1) of the second battery 212a falls within the range between the charging upper limit value BU and the charging lower limit value BL based on power transmission prediction described later.
  • FIG. 28 is a flowchart showing an overall procedure of power transmission prediction. The illustrated process is executed by the power supply control unit (remaining amount control unit) 221 of the controller 101.
  • road information and the like of the planned route of the vehicle 100 is acquired from the navigation device 2300, and the power consumption (see FIG. 27) and power consumption of the motor M (M1 to M4) over time when the vehicle 100 travels to the destination.
  • the transmission efficiency of the transmission antennas 122 and 123 and the power supplied (regenerated) to the second battery 212 are predicted (step S2801).
  • an optimal charging plan for necessary power transmission (charging power, see FIG. 27) is created for the second battery 212 (212a to 212d) (step S2802).
  • the maximum supply power (0.8 to 1 kW) corresponding to the power consumption of the motor M is set.
  • the maximum power supply is not limited to any one, but can be varied according to the power consumption of the motor M1.
  • the remaining battery power (current value B1) is within the range between the charging upper limit value BU and the charging lower limit value BL to prevent overcharging and the like and to charge without excess or deficiency. Control transmission.
  • power supply to the second battery 212 is switched ON / OFF. When power supply is necessary, the power is turned on. When power supply is not necessary, the power is switched off. Thereafter, normal traveling of the vehicle 100 is started (step S2803).
  • FIG. 29 is a flowchart showing a detailed procedure of the prediction process.
  • This process is power transmission prediction at the time of power running, and shows details of the process in step S2801 of FIG.
  • the planned route of the vehicle 100 is acquired from the navigation device 2300, and a section up to a certain distance on the planned route is set (step S2901). Thereafter, the planned route is divided into a plurality of sections, and the following processing is performed for each section.
  • the road alignment (curve / gradient, etc.), travel speed (statutory speed), and traffic jam situation of the section are acquired from the navigation device 2300, and the time-series speed profile of the vehicle 100 (change in speed over time) is obtained from these.
  • (State) is predicted (created) (step S2902).
  • a power consumption profile of the motor M is predicted (created) from the speed profile by power consumption prediction (step S2903).
  • the power consumption prediction is obtained by calculation using a travel resistance, an efficiency map, and the like of the vehicle 100 described later.
  • step S2904 the positional deviation between the power transmission antennas 122 and 123 is estimated from the road alignment (curve / gradient etc.) of the section, and a transmission efficiency profile is predicted (created) (step S2904).
  • vehicle 100 passes a curve
  • wheel 1800 turns
  • the center between power transmission antennas 122 and 123 shifts, and the transmission efficiency changes.
  • the processing in step S2904 is not executed when the power transmission antenna 122 is moved by the actuator 1901 as described above with reference to FIGS. 19A, 19B, and the like to eliminate the deviation of the center position. You can also
  • Driving force [rho: air density
  • C D C D value
  • A front projected area
  • .mu.r rolling resistance coefficient
  • m vehicle weight
  • g gravitational acceleration
  • Ri Internal resistance
  • the internal resistance is a resistance component other than air resistance, rolling resistance, gradient resistance, and acceleration resistance, including mechanical loss of the drive system, and is assumed to be a known one here.
  • FIG. 30 is a diagram illustrating an example of a change state of the gradient angle and the rolling resistance coefficient.
  • A shows the change of the gradient angle for every time, and gradient resistance changes when the vehicle 100 is climbing up and down.
  • (B) shows the change of the rolling resistance coefficient, and the resistance that the tire of the wheel 1800 receives during running changes. It occurs due to changes in tire air pressure or road surface conditions.
  • the travel distance x (t) [m] of the planned route is calculated from the above speed profile v (t) [m / s]
  • ⁇ m (T, ⁇ ) is an efficiency ⁇ corresponding to the torque T in the efficiency map 1400 described above.
  • FIG. 31 is a chart showing a change in transmission efficiency of the power transmission antenna during turning.
  • the transmission efficiency ⁇ t between the pair of power transmission antennas 122 and 123 becomes maximum when the center is 0 (the direction of the vehicle 100 coincides with the direction of the wheels 1800).
  • the transmission efficiency ⁇ t decreases as the steering angle ⁇ increases. This occurs in both the vertical type and the horizontal type shown in FIGS. 18-1 and 18-2.
  • FIG. 32 is a diagram for explaining the vertical stroke amount of the wheel.
  • the wheels 1800 move up and down with respect to the vehicle 100, and the front wheel suspension is extended and the rear wheel suspension is contracted compared to traveling on flat ground.
  • the vertical stroke amount ⁇ varies.
  • the vertical stroke amount effective value ⁇ rms is also generated when passing through the road unevenness. As the vertical stroke amount ⁇ and the vertical stroke amount effective value ⁇ rms increase, the transmission efficiency ⁇ t decreases with substantially the same characteristics as in FIG.
  • FIG. 33 is a chart showing the amount of displacement by road condition.
  • the steering angle ⁇ becomes 0 during traveling on a straight road, but the steering angle ⁇ increases according to the curvature radius R during traveling on a curve.
  • the vertical stroke amount ⁇ increases according to the gradient ⁇ .
  • the vertical stroke amount effective value ⁇ rms is small in a place where there is little unevenness on the road, and the vertical stroke amount ⁇ corresponding to the unevenness occurs when passing through a place where there are many unevennesses.
  • the transmission efficiency profile ⁇ (t) is represented by the steering angle and the vertical stroke amount as in the following equation.
  • the remaining power storage profile is obtained by subtracting the cumulative amount of power PB consumed by the motor M or the like from the cumulative amount of power supplied to the second battery 212 as time passes, as in the following equation.
  • PA is the supplied power [W], and is a constant here.
  • FIG. 34 is a chart showing a change state of the remaining amount of the second battery. The transition of the predicted value of the capacity of the second battery 212 (EC) with the passage of time indicated by the above-described remaining power storage profile is shown.
  • FIG. 35 is a flowchart showing an outline of the processing contents of the optimum charging plan.
  • the processing content of step S2802 is described. As described above, this process is performed by the controller 101 (power supply control means (remaining amount control unit) 221). In this process, an optimal charging plan is created so that the remaining power storage amount (current value B1) of the second battery 212 is within the reference range (step S3501), and based on this optimal charging plan when the vehicle 100 starts to travel. Wireless charging is started (step S3502).
  • the above-described charge upper limit BU and charge lower limit BL see FIGS. 5 and 16 can be set.
  • step S3502 details of the optimum charging plan shown in step S3502 will be described.
  • the margin of the second battery 212 is 5%
  • the charging upper limit value BU is set to 95% of the maximum capacity ECmax
  • the charging lower limit value BL is set to 5%.
  • a plan for turning off wireless charging at a time when the remaining amount of the second battery 212 is predicted to exceed the wireless discharge execution determination value BJ + (for example, 90%) set in correspondence with the charging upper limit value BU is created.
  • a wireless charging execution determination value BJ ⁇ (for example, 10%) is also set corresponding to the charging lower limit value BL.
  • the controller 101 power supply control means 221 has an amount corresponding to the capacity of 20%.
  • the suspension period T during which wireless charging is turned off is obtained based on the following equation.
  • FIG. 36 is a chart showing the relationship between the remaining amount and the charging upper limit value
  • FIG. 37 is a chart explaining the wireless charging OFF period.
  • (a) of FIG. 36 it is assumed that a time t0 when the remaining amount of the second battery 212 is predicted to exceed the charging upper limit value BU has occurred.
  • the rest period T is set retroactively based on the time t0.
  • the wireless charging for the second battery is turned off only during the suspension period T.
  • FIG. 36B it is possible to prevent an overcharge state exceeding at least the charge upper limit value BU at the time t0.
  • the remaining amount at time t0 can be 70%.
  • FIG. 38 is a flowchart showing the processing content of power supply control.
  • the controller 101 power supply control means 221) first starts in the normal travel mode, and executes the following processing when it is in a state where it can travel with the power ON (step S3801: No). If the power is off (step S3801: YES), the process is terminated.
  • the remaining amount (current value B1) of each of the second batteries 212 (212a to 212d) is detected (step S3802). For example, the remaining amount can be detected based on the current voltage V (V1 to V4).
  • step S3804 If wireless charging is in progress (step S3804: YES), the normal mode is switched to the optimal distribution mode that avoids overcharging of the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S3805). . If wireless charging is not in progress (step S3804: NO), wireless charging is stopped (step S3806), and the process returns to step S3802.
  • step S3803 if the remaining amount of any of the second batteries 212 (212a to 212d) is less than the wireless discharge execution determination value BJ + (step S3803: No), the second battery 212 (212a) To 212d) is determined whether it is less than or equal to the wireless charging execution determination value BJ ⁇ (step S3807). If the remaining amount of any of the second batteries 212 (212a to 212d) is not less than or equal to the wireless charging execution determination value BJ ⁇ (step S3807: No), the wireless charging is continued (step S3808), and the process returns to step S3802.
  • step S3809 it is determined whether wireless charging is being performed.
  • step S3809 If wireless charging is in progress (step S3809: YES), the normal mode is switched to the optimal distribution mode that avoids overdischarge to the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S3810). . If wireless charging is not in progress (step S3809: NO), wireless charging is resumed (step S3811), and the process returns to step S3802.
  • FIG. 39 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overcharge.
  • the detailed processing content of step S3805 of FIG. 38 is shown.
  • a command for driving force or braking force is received from the vehicle 100 (step S3901).
  • the driving force command is the total torque command value input to the controller 101 by operating the accelerator pedal 103
  • the braking force command is the brake amount input by operating the brake pedal 104.
  • step S3902 driving force
  • step S3903 total driving force
  • step S3903 total driving force
  • step S3903 total driving force
  • step S3904 braking force
  • step S3904 the braking force distribution to the front and rear wheels 1800 of the vehicle 100 is optimized while the total driving force (total torque value) remains fixed.
  • the torque distribution value of the wheel 1800 that is overcharged is made lower than the distribution values of the other wheels 1800.
  • the distribution of the driving force and the braking force corresponds to the torque redistribution performed by the drive control means (torque control unit) 222 of the controller 101 (see FIG. 14 and the like).
  • step S3903 or step S3904 the power supply control unit 221 of the controller 101 detects the remaining amount of the second battery 212 (212a to 212d) again (step S3905). Then, it is determined whether the remaining amount of the second battery 212 (212a to 212d) of each motor M (M1 to M4) is equal to or greater than the wireless discharge execution determination value BJ + (step S3906). When the remaining amount of all the second batteries 212 (212a to 212d) is equal to or less than the wireless discharge execution determination value BJ + (step S3906: Yes), the normal driving mode (FIG. 38) is returned, but any of the second batteries If the remaining amount 212 (212a to 212d) exceeds the wireless discharge execution determination value BJ + (step S3906: NO), the process returns to step S3902.
  • FIG. 40 is a flowchart showing the processing contents of the optimal distribution mode for avoiding overdischarge. The detailed processing content of step S3810 of FIG. 38 is shown.
  • a command for driving force or braking force is received from the vehicle 100 (step S4001).
  • step S4002 driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4003 total driving force
  • step S4004 braking force
  • step S4003 or step S4004 the power supply control means 221 of the controller 101 detects the remaining amount of the second battery 212 (212a to 212d) again (step S4005). Then, it is determined whether the remaining amount of the second battery 212 (212a to 212d) of each motor M (M1 to M4) is equal to or greater than the wireless charging execution determination value BJ ⁇ (step S4006). When the remaining amount of all the second batteries 212 (212a to 212d) is equal to or higher than the wireless charging execution determination value BJ- (step S4006: Yes), the process returns to the normal travel mode (FIG. 38). If the remaining amount of the battery 212 (212a to 212d) is less than the wireless charging execution determination value BJ ⁇ (step S4006: No), the process returns to step S4002.
  • the power transmission plan capable of efficiently performing wireless charging of the second battery up to the destination is optimized. Will be able to.
  • any of the plurality of second batteries can prevent overcharge and overdischarge.
  • FIG. 41 is a flowchart showing a detailed procedure of the prediction process. This process is power transmission prediction during power running and regeneration, and shows details of the process in step S2801 of FIG.
  • the power transmission system in this case has the same configuration as that in FIG. 2, and wireless charging is performed from the vehicle 100 (first battery 111) to the wheel 1800 (second battery 212) side, and the wheel 1800 (second battery 212). ) To the vehicle 100 (first battery 111) side, the case where wireless discharge is performed can be switched and transmitted.
  • the power transmission system is not limited to this, and for the power transmission antennas 122 and 123 provided in each system of the power supply lines L1 to L4, a system dedicated to the wireless charging side and a system dedicated to the wireless discharging side are connected to the power supply lines L1 to L4. Each can be provided independently.
  • the planned route of the vehicle 100 is acquired from the navigation device 2300, and a section up to a certain distance on the planned route is set (step S4101). Thereafter, the planned route is divided into a plurality of sections, and the following processing is performed for each section.
  • the road alignment (curve / gradient, etc.), travel speed (statutory speed), and traffic congestion status of the section are acquired, and the speed profile of the vehicle 100 (change in speed over time) is thereby obtained.
  • Predict (create) (step S4102).
  • a consumption / regenerative power profile of the motor M is predicted (created) from the speed profile by power consumption prediction (step S4103).
  • Consumption / regenerative power prediction is obtained by calculation using the running resistance, efficiency map, and the like of the vehicle 100 as described in the first processing example.
  • the positional deviation between the power transmission antennas 122 and 123 is estimated from the road alignment (curve / gradient etc.) of the section, and a transmission efficiency profile is predicted (created) (step S4104).
  • FIG. 42 is a flowchart showing an outline of the processing contents of the optimum charge / discharge plan.
  • the processing content of step S2802 is described.
  • an optimal charging plan and an optimal discharging plan are created so that the remaining amount of electricity stored in the second battery 212 (current value B1) is within the reference range (step S4201), and this optimal charging is performed when the vehicle 100 starts to travel.
  • Wireless charging / discharging is started based on the plan and the optimum discharge plan (step S4202).
  • step S4202 Details of the optimum charging plan shown in step S4202 will be described. Similarly to the description in the processing example 1, it is assumed that the remaining amount EC (t) (the current value B1) reaches 90% at a certain time t0. At this time, assuming that the remaining amount of the second battery 212 is planned to be lower by, for example, 20% than the predicted value, the controller 101 (power supply control means 221) has an amount corresponding to the capacity of 20%. Then, the suspension period T in which the wireless charging is turned off is obtained in the same manner as in the first processing example.
  • a wireless discharge period T2 corresponding to a capacity of 20% where the remaining amount is equal to or less than the charging lower limit BL is obtained by the following formula.
  • FIG. 43 is a chart showing the relationship between the remaining amount and the charging upper and lower limit values
  • FIG. 44 is a chart explaining the wireless charging period and the wireless discharging period.
  • (a) of FIG. 43 it is assumed that a time t0 when the remaining amount of the second battery 212 is predicted to exceed the charging upper limit value BU has occurred.
  • the rest period T is set retroactively based on the time t0.
  • the wireless charging for the second battery is turned off only during the suspension period T.
  • FIG. 43 (b) it is possible to prevent an overcharge state exceeding at least the charge upper limit value BU at the time t0.
  • the remaining amount at time t0 can be 70%.
  • the capacity during the suspension period T is 5% of the charging lower limit BL.
  • a time tL occurs as follows.
  • the radio discharge time T2 is set based on the timing t0 based on the above formula.
  • FIG. 43 (c) it is possible to prevent an overdischarge state at least below the charging lower limit value BL at the time tL.
  • FIG. 45 is a flowchart showing the processing content of wireless charging / discharging control.
  • the controller 101 power supply control means 221) first starts in the normal travel mode, and executes the following processing when it is in a state where it can travel with the power on (step S4501: No). If the power is off (step S4501: Yes), the process ends.
  • step S4502 the remaining amount (current value B1) of each of the second batteries 212 (212a to 212d) is monitored (step S4502).
  • step S4503 it is determined whether the remaining amount of the second battery 212 (any one of 212a to 212d) of a certain motor M (any one of M1 to M4) is equal to or greater than the wireless discharge execution judgment value BJ + (see FIG. 16) (step). S4503). If the remaining amount of any of the second batteries 212 (212a to 212d) is equal to or greater than the wireless discharge execution determination value BJ + (step S4503: Yes), it is determined whether wireless charging is in progress (step S4504).
  • step S4504 wireless charging is stopped (step S4505), and the process returns to step S4502.
  • wireless charging is not in progress (step S4504: No)
  • step S4506 it is determined whether wireless discharge is in progress (step S4506). If wireless discharge is in progress (step S4506: Yes), the normal mode is switched to the optimal distribution mode that avoids overcharging of the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S4507). . If the wireless discharge is not in progress (step S4506: No), the wireless discharge is resumed (step S4508), and the process returns to step S4502.
  • step S4503 when the remaining amount of any of the second batteries 212 (212a to 212d) is less than the wireless discharge execution determination value BJ + (step S4503: No), the second battery 212 (212a) To 212d) is determined whether or not the remaining amount is less than or equal to the wireless charging execution determination value BJ ⁇ (step S4509). If the remaining amount of any of the second batteries 212 (212a to 212d) is not less than or equal to the wireless charging execution determination value BJ ⁇ (step S4509: No), the wireless charging is continued (step S4510), and the process returns to step S4502.
  • step S4511 it is determined whether wireless discharge is in progress (step S4511).
  • step S4511: YES wireless charging is stopped (step S4512), and the process returns to step S4502.
  • step S4511: No wireless discharge is not in progress (step S4511). If wireless charging is in progress (step S4513: Yes), the normal mode is switched to the optimal distribution mode that avoids overdischarge to the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S4514). . If wireless charging is not in progress (step S4513: No), wireless charging is resumed (step S4515), and the process returns to step S4502.
  • the power transmission plan can efficiently perform wireless charging and wireless discharging of the second battery up to the destination. Can be optimized.
  • any of the plurality of second batteries can prevent overcharge and overdischarge.
  • a battery is provided for each of the vehicle and the wheel, and power is transmitted between the vehicle and the wheel by non-contact radio.
  • the power transmission between the batteries is controlled so that the capacity of the second battery on the wheel side always approaches the target remaining amount value. As a result, stable power can be supplied to the motor at all times.
  • power transmission using the power transmission antenna is controlled according to the vertical stroke of the wheel, power transmission can be performed with good transmission efficiency, and power transmission can be made more efficient.
  • the power consumed or regenerated by road gradients and curves, etc. and the transmission efficiency of the power transmission antenna are estimated in advance. Will be able to. This makes it possible to predict the power consumed or regenerated on the planned route before the vehicle travels, and correspondingly wireless charging so as to prevent the second battery from being overcharged and overdischarged. And you will be able to plan wireless discharge.
  • the torque distribution for the motor of the corresponding wheel is increased and the torque distribution of the other wheel is lowered, while when the second battery is predicted to be overdischarged,
  • the torque distribution of the plurality of wheels is changed to control the power consumption of the second battery. This prevents overcharge and overdischarge of all the second batteries provided in the vehicle, and enables stable running.
  • the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Abstract

This vehicle drive device is equipped with: a first battery (111) for storing direct-current power; a power transmission means having power transmission antennas for wirelessly transmitting the electric power of the first battery; a power reception means for wirelessly receiving the electric power; motors (M) that are mounted on respective wheel hubs; second batteries (212a) that are provided on the respective wheels and that are for storing the direct-current power received by the power reception means; inverters (203a); a torque control unit (222) for controlling rotational drive of the motors; a remaining amount control unit (221) for controlling the wireless transmission of the electric power from the transmission means to the reception means; a monitoring means for monitoring the amounts of electric power stored in the second batteries; an acquisition means for obtaining route information that indicates a planned traveling route of the vehicle, road alignment information, traveling resistance change information that indicates a change in traveling resistance on the planned traveling route, and an in-wheel motor efficiency map; and a computation means for , on the basis of the obtained information, computing stored power amount change information that indicates a change in the amount of electric power stored in the second batteries. The remaining amount control unit regulates the amount of electric power to be supplied from the transmission means to the reception means such that the stored power amount indicated by the stored power amount change information falls within a predetermined range.

Description

車両駆動装置Vehicle drive device
 この発明は、車両のモータへ電源を供給し車両を駆動する車両駆動装置に関する。ただし、この発明の利用は、上述した車両駆動装置には限られない。 The present invention relates to a vehicle drive device that supplies power to a vehicle motor to drive the vehicle. However, utilization of this invention is not restricted to the vehicle drive device mentioned above.
 従来、移動体である電気自動車(EV)にモータを設け、車輪を駆動する構成において、モータを車輪に設けるインホイールモータ構造とし、このモータに対する電源を車両から供給するものとして、下記の各技術が開示されている。 Conventionally, an electric vehicle (EV) that is a moving body is provided with a motor and a wheel is driven, and an in-wheel motor structure is provided in which the motor is provided on the wheel. Is disclosed.
 一つ目の技術は、車体と車輪との間の電気配線に螺旋部を設け、この螺旋部を車体とアクセルとの間に設けられたリンクに支持させる構造としている。これにより、電気配線の垂れ下がりを防止し、車輪の上下ストローク等の動作に追従できるようにしたものである(たとえば、下記特許文献1参照。)。 The first technology has a structure in which a spiral portion is provided in the electrical wiring between the vehicle body and the wheel, and this spiral portion is supported by a link provided between the vehicle body and the accelerator. As a result, the electric wiring is prevented from drooping and can follow the operation such as the vertical stroke of the wheel (for example, see Patent Document 1 below).
 二つ目の技術は、インホイールモータの配線構造にかかり、ターミナル基板の配線接続部にステータコイルからの配線を接続して各相ごとに電気的に集約する構成としている。これにより、コスト低減と組付作業を容易化でき、ステータの側方に設置位置が制約される結線用ユニットを用いず、インホイールモータの車幅方向の縮小化を達成している(たとえば、下記特許文献2参照。)。 The second technology is related to the wiring structure of the in-wheel motor, and the wiring from the stator coil is connected to the wiring connection part of the terminal board and is electrically integrated for each phase. Thereby, cost reduction and assembly work can be facilitated, and reduction of the in-wheel motor in the vehicle width direction is achieved without using a connection unit whose installation position is restricted to the side of the stator (for example, (See Patent Document 2 below.)
 三つ目の技術は、車両には、車輪(ホイール)に近い側に、インバータ、モータ、減速機を配置している。これにより、高周波電流の経路のループの大きさを小さくして高周波電流に起因する放射ノイズの発生を抑制している(たとえば、下記特許文献3参照。)。 The third technology is that the vehicle has an inverter, a motor, and a speed reducer on the side closer to the wheel. Thereby, the size of the loop of the high-frequency current path is reduced to suppress the generation of radiation noise caused by the high-frequency current (see, for example, Patent Document 3 below).
 四つ目の技術は、車体からモータへの電線をサスペンションのキングピン中心線Kiを中心として渦巻き状に巻いた構成としている。これにより、ホイールの転舵時に渦巻き状に巻かれた部分がキングピン中心線を中心として巻き取られまたは巻き戻され、電線による転舵の妨げを防止して転舵性を高め、電線の耐久性を確保している(たとえば、下記特許文献4参照。)。 The fourth technology has a configuration in which the electric wire from the vehicle body to the motor is wound in a spiral shape around the kingpin center line Ki of the suspension. As a result, when the wheel is steered, the part wound in a spiral shape is wound or unwound around the center line of the kingpin, preventing the hindrance of the steering by the electric wire, improving the steerability, and the durability of the electric wire (For example, refer to Patent Document 4 below).
 五つ目の技術は、車両から車輪のモータへ給電する電線(給電ケーブル)の接続にかかり、車両前進時のホイールの回転方向の下流側に接続端子箱を設けた構成としている。これにより、ホイールの内周面に異物が固着した状態で車両が前進した場合に、異物が給電ケーブルよりも先に端子箱に衝突して粉砕され、給電ケーブルの損傷を抑制している(たとえば、下記特許文献5参照。)。 The fifth technology is related to the connection of electric wires (power supply cables) that feed power from the vehicle to the wheel motor, and a connection terminal box is provided on the downstream side in the wheel rotation direction when the vehicle moves forward. As a result, when the vehicle moves forward in a state where foreign matter is fixed to the inner peripheral surface of the wheel, the foreign matter collides with the terminal box before the power supply cable and is crushed, thereby suppressing damage to the power supply cable (for example, , See Patent Document 5 below).
 六つ目の技術は、車両から車輪のモータへ給電する電線の支持構造にかかり、電線(三相高圧ケーブル)を一括してシースで内包してケーブル支持部材で支持し、このケーブル支持部材の支持部を車体の前後方向、幅方向および高さ方向等の任意の方向に移動可能となるように車体に設置した構成としている。これにより、車輪が凸凹路を転動するときや運転者により操舵されるときなど、モータと電源側との直線距離が変化しても、三相高圧ケーブルが支持部と共に車体の前後方向、幅方向および高さ方向に移動し、三相高圧ケーブルの撓み部分が変形することでインホイールモータとバッテリ側との直線距離の変化が吸収されて三相高圧ケーブルの耐久性を向上させている(たとえば、下記特許文献6参照。)。 The sixth technology is related to the support structure for the electric power supplied from the vehicle to the wheel motor. The electric cable (three-phase high-voltage cable) is encased in a sheath and supported by the cable support member. The support portion is configured to be installed on the vehicle body so as to be movable in any direction such as the front-rear direction, the width direction, and the height direction of the vehicle body. As a result, even if the linear distance between the motor and the power source changes, such as when the wheel rolls on a bumpy road or is steered by the driver, the three-phase high-voltage cable and the support section The three-phase high-voltage cable is moved in the direction and height direction, and the change in the linear distance between the in-wheel motor and the battery is absorbed by the deformed portion of the three-phase high-voltage cable, thereby improving the durability of the three-phase high-voltage cable ( For example, see Patent Document 6 below.)
特開2001-301472号公報JP 2001-301472 A 特開2004-120909号公報JP 2004-120909 A 特開2005-29086号公報Japanese Patent Laying-Open No. 2005-29086 特開2006-62388号公報JP 2006-62388 A 特開2009-96429号公報JP 2009-96429 A 特開2010-221902号公報JP 2010-221902 A
 しかしながら、上記の特許文献1~6に記載の技術は、いずれも車両側のインバータと、車輪側のモータとに分離されているため、インバータと車輪の間に高電圧の大電流が流せる電源ケーブルが必要となる。 However, since the techniques described in Patent Documents 1 to 6 are all separated into a vehicle-side inverter and a wheel-side motor, a power cable that allows a high-voltage large current to flow between the inverter and the wheels. Is required.
 この高電圧大電流の電源ケーブルには、操舵による車輪の回転等により撓みの負荷がかかるが、径が太いためケーブルの耐久性を低下させるとともに、操舵性を高めることができない。また、車両と車輪との間のホイールスペースに太い電源ケーブルが存在するため、サスペンションと干渉しないように配線することが困難であるとともに、泥や粉塵、雨や雪等が付着しやすく、劣化しやすいため、交換等のメンテナンスに手間がかかる。 This high-voltage, high-current power cable is subjected to a bending load due to wheel rotation by steering, etc., but because of its large diameter, the durability of the cable is reduced and the steering performance cannot be improved. In addition, since there is a thick power cable in the wheel space between the vehicle and the wheel, it is difficult to wire so as not to interfere with the suspension, and mud, dust, rain, snow, etc. are likely to adhere and deteriorate. Because it is easy, maintenance such as replacement takes time.
 上述した課題を解決し、目的を達成するため、この発明にかかる車両駆動装置は、外部電源より取得した直流電力を蓄える第1蓄電池と、前記第1蓄電池に接続され、前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナとを有する第1送電手段と、前記送電アンテナにより送電された前記交流電力を無線受電する受電アンテナと、当該交流電力を直流電力へ変換する第2変換器とを有する第1受電手段と、車輪のハブに装着され、当該車輪を駆動するインホイールモータと、前記車輪に設けられ、前記第1受電手段により受電した直流電力を蓄える第2蓄電池と、前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、前記インホイールモータの回転駆動を制御する駆動制御手段と、前記第1送電手段より前記第1受電手段への無線給電を制御する給電制御手段と、前記第2蓄電池の蓄電量を監視する監視手段と、車両の走行予定経路を示す経路情報、当該走行予定経路における車両進行方向の道路線形情報、当該走行予定経路の走行抵抗の変化を示す走行抵抗変化情報、および、前記インホイールモータの効率マップを取得する取得手段と、前記蓄電量、前記経路情報、前記道路線形情報、前記走行抵抗変化情報、および前記効率マップに基づいて、前記第2蓄電池の蓄電量の変化を示す蓄電量変化情報を算出する算出手段と、を備え、前記給電制御手段は、前記蓄電量変化情報の蓄電量が所定範囲内に収まるように前記第1送電手段より前記第1受電手段への無線給電を行う給電量を調整することを特徴とする。 In order to solve the above-described problems and achieve the object, a vehicle drive device according to the present invention is connected to a first storage battery that stores DC power acquired from an external power source, and the first storage battery, and the DC power is converted to AC power. A first converter that has a first converter that converts the AC power into power, a power transmission antenna that wirelessly transmits the AC power, a power reception antenna that wirelessly receives the AC power transmitted by the power transmission antenna, and the AC power as DC First power receiving means having a second converter for converting to electric power; an in-wheel motor that is mounted on a wheel hub and drives the wheel; and DC power that is provided on the wheel and received by the first power receiving means A second storage battery for storing the battery, an inverter provided on the wheel for converting the DC power of the second storage battery into AC power, and controlling the rotational drive of the in-wheel motor Dynamic control means, power supply control means for controlling wireless power supply from the first power transmission means to the first power reception means, monitoring means for monitoring the amount of charge stored in the second storage battery, and a route indicating a planned travel route of the vehicle Information, road linear information in the traveling direction of the vehicle in the planned travel route, travel resistance change information indicating a change in travel resistance of the planned travel route, and an acquisition means for acquiring an efficiency map of the in-wheel motor; Calculation means for calculating storage amount change information indicating a change in storage amount of the second storage battery based on the route information, the road alignment information, the running resistance change information, and the efficiency map, and The power supply control means adjusts the power supply amount for performing wireless power supply from the first power transmission means to the first power reception means so that the power storage amount of the power storage amount change information is within a predetermined range. To.
図1は、実施の形態にかかる車両駆動装置が搭載された車両の構成を示す概要図である。FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted. 図2は、実施の形態にかかる車両駆動装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the vehicle drive device according to the embodiment. 図3は、インバータの回路例を示す図である。FIG. 3 is a diagram illustrating a circuit example of the inverter. 図4は、双方向チョッパの回路例を示す図である。FIG. 4 is a diagram illustrating a circuit example of the bidirectional chopper. 図5は、バッテリ間の電力伝送の概要を示す図である。FIG. 5 is a diagram showing an outline of power transmission between batteries. 図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。FIG. 6 is a flowchart showing the entire control content related to power transmission. 図7は、力行トルク制御の制御内容を示すフローチャートである。FIG. 7 is a flowchart showing the control content of the power running torque control. 図8は、回生トルク制御の制御内容を示すフローチャートである。FIG. 8 is a flowchart showing the control content of the regenerative torque control. 図9は、実施の形態にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment. 図10は、力行時のトルク指令値を示す図表である。FIG. 10 is a chart showing torque command values during power running. 図11は、回生時のトルク指令値を示す図表である。FIG. 11 is a chart showing torque command values during regeneration. 図12は、ペダルを離したときのトルク指令値を示す図表である。FIG. 12 is a chart showing torque command values when the pedal is released. 図13は、モータ効率マップを示す図表である。FIG. 13 is a chart showing a motor efficiency map. 図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low. 図15-1は、実施の形態で用いる協調ブレーキの制御特性を示す図である。FIG. 15A is a diagram illustrating a control characteristic of the cooperative brake used in the embodiment. 図15-2は、実施の形態で用いる協調ブレーキの他の制御特性を示す図である。FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment. 図16は、バッテリ間の他の電力伝送の概要を示す図である。FIG. 16 is a diagram showing an outline of another power transmission between batteries. 図17は、無線による電力伝送の制御手順の他の例を示すフローチャートである。FIG. 17 is a flowchart illustrating another example of a wireless power transmission control procedure. 図18-1は、車輪および電力伝送アンテナの構造例を示す図である(その1)。FIG. 18A is a diagram of a structure example of a wheel and a power transmission antenna (part 1). 図18-2は、車輪および電力伝送アンテナの構造例を示す図である(その2)。FIG. 18-2 is a diagram of a structure example of a wheel and a power transmission antenna (part 2). 図19-1は、電力伝送アンテナの移動構造例を示す図である(その1)。FIG. 19A is a diagram of an example of a moving structure of the power transmission antenna (part 1). 図19-2は、電力伝送アンテナの移動構造例を示す図である(その2)。FIG. 19-2 is a diagram illustrating an example of a moving structure of the power transmission antenna (part 2). 図20は、位置検出器を用いた場合のアンテナ位置制御の構成を示すブロック図である。FIG. 20 is a block diagram showing a configuration of antenna position control when a position detector is used. 図21は、図20に示したアンテナ位置制御部の回路構成を示すブロック図である。FIG. 21 is a block diagram showing a circuit configuration of the antenna position control unit shown in FIG. 図22は、車両と各車輪との間の電力伝送の系統を示す図である。FIG. 22 is a diagram illustrating a power transmission system between the vehicle and each wheel. 図23は、車両走行時の消費電力および回生電力の推移の例を示す図表である。FIG. 23 is a chart showing an example of changes in power consumption and regenerative power during vehicle travel. 図24は、複数の第2バッテリおよびモータに対する電力伝送の概要を示す図である。FIG. 24 is a diagram showing an outline of power transmission to a plurality of second batteries and motors. 図25は、伝送する電力の変化状態を示す図である。FIG. 25 is a diagram illustrating a change state of transmitted power. 図26は、モータの消費電力の変化状態を示す図である。FIG. 26 is a diagram illustrating a change state of the power consumption of the motor. 図27は、モータの消費電力量および第2バッテリの蓄電残量の変化を示す図である。FIG. 27 is a diagram illustrating changes in the amount of power consumed by the motor and the amount of remaining power in the second battery. 図28は、電力伝送予測の全体手順を示すフローチャートである。FIG. 28 is a flowchart showing an overall procedure of power transmission prediction. 図29は、予測処理の詳細な手順を示すフローチャートである(処理例1)。FIG. 29 is a flowchart illustrating a detailed procedure of the prediction process (processing example 1). 図30は、勾配抵抗および転がり抵抗の変化状態の例を示す図である。FIG. 30 is a diagram illustrating an example of a change state of the gradient resistance and the rolling resistance. 図31は、旋回時の電力伝送アンテナの伝送効率の変化を示す図表である。FIG. 31 is a chart showing changes in transmission efficiency of the power transmission antenna during turning. 図32は、車輪の上下ストローク量を説明する図である。FIG. 32 is a diagram for explaining the vertical stroke amount of the wheel. 図33は、道路状態別の変位量を示す図表である。FIG. 33 is a chart showing the displacement amount by road condition. 図34は、第2バッテリの残量の変化状態を示す図表である。FIG. 34 is a chart showing a change state of the remaining amount of the second battery. 図35は、最適充電計画の処理内容の概要を示すフローチャートである。FIG. 35 is a flowchart showing an outline of the processing contents of the optimum charging plan. 図36は、残量と充電上限値の関係を示す図表である。FIG. 36 is a chart showing the relationship between the remaining amount and the charge upper limit value. 図37は、無線充電のOFF期間を説明する図表である。FIG. 37 is a chart for explaining a wireless charging OFF period. 図38は、無線充電制御の処理内容を示すフローチャートである。FIG. 38 is a flowchart showing the processing content of the wireless charging control. 図39は、過充電回避の最適配分モードの処理内容を示すフローチャートである。FIG. 39 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overcharge. 図40は、過放電回避の最適配分モードの処理内容を示すフローチャートである。FIG. 40 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overdischarge. 図41は、予測処理の詳細な手順を示すフローチャートである(処理例2)。FIG. 41 is a flowchart showing a detailed procedure of prediction processing (processing example 2). 図42は、最適充放電計画の処理内容の概要を示すフローチャートである。FIG. 42 is a flowchart showing an outline of the processing content of the optimum charging / discharging plan. 図43は、残量と充電上限・下限値の関係を示す図表である。FIG. 43 is a chart showing the relationship between the remaining amount and the charging upper and lower limit values. 図44は、無線充電期間と無線放電期間を説明する図表である。FIG. 44 is a chart for explaining the wireless charging period and the wireless discharging period. 図45は、無線充電・無線放電制御の処理内容を示すフローチャートである。FIG. 45 is a flowchart showing the processing content of wireless charging / discharging control.
 以下に添付図面を参照して、この発明にかかる車両駆動装置の好適な実施の形態を詳細に説明する。以下の説明では、各車輪にモータを備えたインホイール型の構成を例に説明する。この実施の形態では、モータ駆動の電力を無線により非接触に車両から車輪に電力伝送する構成である。 Hereinafter, preferred embodiments of a vehicle drive apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the following description, an in-wheel type configuration in which a motor is provided for each wheel will be described as an example. In this embodiment, the motor-driven power is transmitted from the vehicle to the wheels in a non-contact manner by radio.
(車両の構成)
 図1は、実施の形態にかかる車両駆動装置が搭載された車両の構成を示す概要図である。車両100は、左右の前車輪FL,FRと、左右の後車輪RL,RRを有する4輪駆動車である。これら四つの各車輪FL,FR,RL,RRのハブには、それぞれインホイール型のモータユニットM1~M4が設けられ、独立に駆動される。
(Vehicle configuration)
FIG. 1 is a schematic diagram illustrating a configuration of a vehicle on which the vehicle drive device according to the embodiment is mounted. The vehicle 100 is a four-wheel drive vehicle having left and right front wheels FL and FR and left and right rear wheels RL and RR. The hubs of these four wheels FL, FR, RL, RR are provided with in-wheel type motor units M1 to M4, respectively, and are driven independently.
 これらモータユニットM1~M4には、それぞれモータ駆動用のインバータ回路(後述する)と、第2バッテリ等が設けられ、各インバータ回路はコントローラ(ECU)101の制御に基づき、モータユニットM1~M4を駆動する。このコントローラ101には各種情報が入力され、トルク配分された結果、各モータユニットM1~M4に設けられたモータ(インホイールモータ)を駆動する。 Each of the motor units M1 to M4 is provided with an inverter circuit (described later) for driving the motor, a second battery, and the like. Each inverter circuit is provided with motor units M1 to M4 based on the control of the controller (ECU) 101. To drive. Various information is input to this controller 101, and as a result of torque distribution, motors (in-wheel motors) provided in the motor units M1 to M4 are driven.
 コントローラ101に対する入力としては、以下がある。ハンドル102からは操舵角が入力される。アクセルペダル103からは、全トルク指令値が入力される。ブレーキペダル104からはブレーキ量が入力される。シフトブレーキ105からはシフトブレーキ量が入力される。セレクタ106からはR,N,D等のセレクトポジションが入力される。 Input to the controller 101 includes the following. A steering angle is input from the handle 102. From the accelerator pedal 103, the total torque command value is input. A brake amount is input from the brake pedal 104. A shift brake amount is input from the shift brake 105. Select positions such as R, N, and D are input from the selector 106.
 また、各車輪FL,FR,RL,RRのモータユニットM1~M4には、それぞれ回転速度Vを検出するセンサが設けられており、各車輪FL,FR,RL,RRの回転速度Vfl,Vfr,Vrl,Vrrがコントローラ101に入力される。 The motor units M1 to M4 of the wheels FL, FR, RL, and RR are provided with sensors that detect the rotational speed V, and the rotational speeds Vfl, Vfr, and RR of the wheels FL, FR, RL, and RR are provided. Vrl and Vrr are input to the controller 101.
 このほか、車両100には、加速度センサとヨーレートセンサ(不図示)が設けられ、検出した加速度およびヨーレートがコントローラ101に入力される。 In addition, the vehicle 100 is provided with an acceleration sensor and a yaw rate sensor (not shown), and the detected acceleration and yaw rate are input to the controller 101.
 コントローラ101は、上記の入力に基づき、各車輪FL,FR,RL,RRを駆動する。駆動のための制御信号S1~S4は、各車輪FL,FR,RL,RRごとに適切にトルク配分され、各モータユニットM1~M4に供給される。 The controller 101 drives each wheel FL, FR, RL, RR based on the above input. The control signals S1 to S4 for driving are appropriately torque-distributed for each wheel FL, FR, RL, and RR, and supplied to the motor units M1 to M4.
 また、車両100には、バッテリが搭載され、車両100全体に対して電源供給する。バッテリは、車両側に設けられ、車両外部の外部電源より取得した直流電力を蓄える第1蓄電池(第1バッテリ)111と、モータユニットM1~M4内部に設けられ、第1バッテリ111との間で電力伝送される第2蓄電池(第2バッテリ)とからなる。各車輪FL,FR,RL,RRのモータユニットM1~M4は、第2バッテリに蓄電された電力により駆動される。これらバッテリとしては、ニッケル水素、リチウムイオン等の二次電池や燃料電池などが適用される。また、バッテリの代わりに電気二重層キャパシタを用いてもよい。図中L1~L4が電源ラインである。 In addition, the vehicle 100 is equipped with a battery and supplies power to the entire vehicle 100. The battery is provided on the vehicle side, and is provided between the first storage battery (first battery) 111 that stores DC power acquired from an external power source outside the vehicle, and the motor units M1 to M4. It consists of the 2nd storage battery (2nd battery) to which electric power is transmitted. Motor units M1 to M4 of each wheel FL, FR, RL, RR are driven by the electric power stored in the second battery. As these batteries, secondary batteries such as nickel metal hydride and lithium ion, fuel cells, and the like are applied. An electric double layer capacitor may be used instead of the battery. In the figure, L1 to L4 are power supply lines.
 なお、回生時には、モータへの電源供給(力行)のときとは逆に、モータユニットM1~M4によって発生した電力をバッテリ側に供給する。この回生とは、車両100を運転するドライバによるブレーキペダル104の操作や、走行中にアクセルペダル103の踏み込みを緩和することによって、モータに発生する逆起電力を用いた発電を示す。 In addition, at the time of regeneration, the power generated by the motor units M1 to M4 is supplied to the battery side, contrary to the power supply (power running) to the motor. This regeneration refers to power generation using the back electromotive force generated in the motor by relaxing the operation of the brake pedal 104 by the driver who drives the vehicle 100 and the depression of the accelerator pedal 103 during traveling.
 車両側および車輪側(モータユニットM1~M4)の電源ラインL1~L4上には、それぞれ電圧変換部が設けられる。この電圧変換部は、車両側に設けられる第1変換器(DC-AC変換部)121(121a~121d)と、車輪側各モータユニットM1~M4内部に設けられるAC-DC変換部(後述する)によって構成される。車両側と車輪側には、電力を無線送電するための電力伝送アンテナ122(122a~122d)、123(123a~123d)が設けられる。 On the vehicle side and the wheel side (motor units M1 to M4), voltage converters are provided on the power supply lines L1 to L4, respectively. The voltage converter includes a first converter (DC-AC converter) 121 (121a to 121d) provided on the vehicle side and an AC-DC converter (described later) provided in each of the wheel side motor units M1 to M4. ). Power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) for wirelessly transmitting power are provided on the vehicle side and the wheel side.
 そして、コントローラ101は、車両側の第1バッテリ111から供給可能な電源ラインL1~L4の各電源を、制御信号S11~S14により、車輪別のモータユニットM1~M4に供給制御する。この際、電源ラインL1~L4の電源は、車両側のDC-AC変換部121(121a~121d)により直流電力が交流電力に変換される。そして、一対の電力伝送アンテナ122(122a~122d)、123(123a~123d)により、車輪側のモータユニットM1~M4に無線送電される。 Then, the controller 101 controls the supply of the power sources L1 to L4 that can be supplied from the first battery 111 on the vehicle side to the motor units M1 to M4 for each wheel by the control signals S11 to S14. At this time, as for the power sources of the power supply lines L1 to L4, DC power is converted into AC power by the DC-AC converter 121 (121a to 121d) on the vehicle side. Then, power is wirelessly transmitted to the motor units M1 to M4 on the wheel side by the pair of power transmission antennas 122 (122a to 122d) and 123 (123a to 123d).
 そして、車輪側のモータユニットM1~M4に設けられるAC-DC変換部により交流電力が直流電力に変換された後、第2バッテリに供給される。第2バッテリに蓄電された電力を用いて、後述するインバータ203(203a~203d)は、モータユニットM1~M4のモータを駆動する。 Then, AC power is converted into DC power by an AC-DC converter provided in the wheel side motor units M1 to M4, and then supplied to the second battery. Inverters 203 (203a to 203d) to be described later drive the motors of the motor units M1 to M4 using the electric power stored in the second battery.
 なお、上記モータユニットM1~M4のモータの回生時には、車輪側のモータユニットM1~M4から車両側(第1バッテリ111)に向けて電力を無線送電することができる。 Note that, during regeneration of the motors of the motor units M1 to M4, electric power can be wirelessly transmitted from the wheel side motor units M1 to M4 toward the vehicle side (first battery 111).
(車両駆動装置の構成)
 図2は、車両駆動装置の構成を示すブロック図である。車両駆動装置200は、モータへ電源を供給してモータを駆動する。また、車両100の走行状態等により、第1バッテリ111と第2バッテリ212a間での電力伝送を制御する。
(Configuration of vehicle drive device)
FIG. 2 is a block diagram showing the configuration of the vehicle drive device. The vehicle drive device 200 supplies power to the motor to drive the motor. Further, power transmission between the first battery 111 and the second battery 212a is controlled according to the traveling state of the vehicle 100 and the like.
 以下、車両100と、モータユニットM1間の電源ラインL1上の構成について説明することとし、図中添え字「a」は、電源ラインL1およびモータユニットM1に対応していることを示す。なお、他の電源ラインL2~L4についても同様の構成であり、説明は省略する。 Hereinafter, the configuration on the power supply line L1 between the vehicle 100 and the motor unit M1 will be described, and the subscript “a” in the drawing indicates that it corresponds to the power supply line L1 and the motor unit M1. The other power supply lines L2 to L4 have the same configuration and will not be described.
 はじめに、電源ラインL1について、車両100から車輪側のモータユニットM1側への電源を供給する各構成について説明する。車両100側には、第1バッテリ111が設けられ、電源ラインL1を介してDC-AC変換部121aに接続されている。DC-AC変換部121aは、直流電力を交流電力に変換し、電力伝送アンテナ(送電アンテナ)122aに出力する。 First, each configuration for supplying power from the vehicle 100 to the motor unit M1 on the wheel side of the power supply line L1 will be described. A first battery 111 is provided on the vehicle 100 side, and is connected to the DC-AC converter 121a via the power line L1. The DC-AC converter 121a converts DC power into AC power and outputs the AC power to the power transmission antenna (power transmission antenna) 122a.
 車輪側のモータユニットM1には、電力伝送アンテナ122aと対の電力伝送アンテナ(受電アンテナ)123aが設けられる。この電力伝送アンテナ123aは、車両側の電力伝送アンテナ122aから送電された電力を受電する。これら電力伝送アンテナ122a,123aには、たとえば、巻回されたコイルを用いることができ、車両100と車輪のモータユニットM1との間を非接触で電力伝送できる。 The wheel side motor unit M1 is provided with a power transmission antenna (power receiving antenna) 123a paired with the power transmission antenna 122a. The power transmission antenna 123a receives the power transmitted from the vehicle-side power transmission antenna 122a. For example, a wound coil can be used for these power transmission antennas 122a and 123a, and power can be transmitted between the vehicle 100 and the wheel motor unit M1 in a non-contact manner.
 電力伝送アンテナ123aで受電した電力は、第2変換器(AC-DC変換部)201aにより交流電力が直流電力に変換され、双方向チョッパ202aに出力される。双方向チョッパ202aは、双方向(正方向あるいは逆方向)への電力伝送を行うための回路である。 The power received by the power transmission antenna 123a is converted into DC power by the second converter (AC-DC converter) 201a and output to the bidirectional chopper 202a. The bidirectional chopper 202a is a circuit for performing power transmission in both directions (forward direction or reverse direction).
 双方向チョッパ202aの出力は、第2バッテリ212aに出力される。これにより、車両側の第1バッテリ111の電源を車輪側の第2バッテリ212aに供給し(正方向)、第2バッテリ212aに蓄電されるとともに、インバータ203aを介してモータユニットM1内のモータMに供給され、モータMを駆動させる。 The output of the bidirectional chopper 202a is output to the second battery 212a. As a result, the power of the first battery 111 on the vehicle side is supplied to the second battery 212a on the wheel side (in the positive direction) and stored in the second battery 212a, and the motor M in the motor unit M1 is connected via the inverter 203a. To drive the motor M.
 モータMの回生時には、モータMで発生した電力がインバータ203aを介して第2バッテリ212aに供給されるとともに、双方向チョッパ202a~AC-DC変換部201a~電力伝送アンテナ123a~電力伝送アンテナ122a~DC-AC変換部121a~第1バッテリ111の経路(電源ラインL1)を介して電力伝送することができる(逆方向)。これにより、第2バッテリ212aを介して第1バッテリ111への蓄電を行うことができる。なお、AC-DC変換部201aとDC-AC変換部121aは共に双方向であるため、この場合は、AC-DC変換部201aはDC-AC変換を行い、DC-AC変換部121aはAC-DC変換を行う。また、123aは送電アンテナとなり、122aは受電アンテナとなる。 During regeneration of the motor M, electric power generated by the motor M is supplied to the second battery 212a via the inverter 203a, and the bidirectional chopper 202a to AC-DC converter 201a to power transmission antenna 123a to power transmission antenna 122a to Power can be transmitted via the path (power supply line L1) from the DC-AC converter 121a to the first battery 111 (reverse direction). As a result, power can be stored in the first battery 111 via the second battery 212a. The AC-DC converter 201a and the DC-AC converter 121a are both bidirectional. In this case, the AC-DC converter 201a performs DC-AC conversion, and the DC-AC converter 121a is AC-DC. Perform DC conversion. Further, 123a is a power transmission antenna, and 122a is a power reception antenna.
 車両100に設けられるコントローラ101は、受電手段への給電を制御する給電制御手段(残量制御部)221と、車輪の回転駆動を制御する駆動制御手段(トルク制御部)222とを有している。残量制御部221は、第2バッテリ212aに対する電源供給を制御する。第1バッテリ111および第2バッテリ212aのバッテリ量(バッテリ残量)は、残量制御部221が検出しており、たとえば、第2バッテリ212aのバッテリ残量が少なくなったときには、DC-AC変換部121a、AC-DC変換部201aに対し、車両100から車輪のモータユニットM1に対する電力伝送を制御信号S11を介して行う。この際、制御信号S11により双方向チョッパ202aは、車両100からモータユニットM1へ向う正方向の電力伝送を行う。 The controller 101 provided in the vehicle 100 includes a power supply control unit (remaining amount control unit) 221 that controls power supply to the power receiving unit, and a drive control unit (torque control unit) 222 that controls rotational driving of the wheels. Yes. The remaining amount control unit 221 controls power supply to the second battery 212a. The remaining amount control unit 221 detects the battery amounts (remaining battery amounts) of the first battery 111 and the second battery 212a. For example, when the remaining battery amount of the second battery 212a decreases, DC-AC conversion is performed. Power is transmitted from the vehicle 100 to the wheel motor unit M1 to the unit 121a and the AC-DC converter 201a via the control signal S11. At this time, the bidirectional chopper 202a performs power transmission in the positive direction from the vehicle 100 to the motor unit M1 by the control signal S11.
 一方、残量制御部221は、モータMの回生時に、モータユニットM1から車両側へ向う逆方向の電力伝送を行う場合についても、制御信号S11を用いて行う。この場合、双方向チョッパ202aに対しては、伝送の有無を制御する。伝送を行わない制御時には、第2バッテリ212aから第1バッテリ方向への電力伝送は行わない。伝送を行う制御時には、電力伝送の方向を第2バッテリ212aから第1バッテリ111の方向に切り替える。 On the other hand, the remaining amount control unit 221 also uses the control signal S11 when performing power transmission in the reverse direction from the motor unit M1 to the vehicle side during regeneration of the motor M. In this case, the presence / absence of transmission is controlled for the bidirectional chopper 202a. During control without transmission, power transmission from the second battery 212a toward the first battery is not performed. At the time of control for transmission, the direction of power transmission is switched from the second battery 212a to the first battery 111.
 トルク制御部222は、全トルク指令値を走行状態に応じて各車輪FL,FR,RL,RRごとにトルク配分する。図示の右前輪FRのモータユニットM1に対しては、インバータ203aに対するトルク配分値を制御信号S1aで出力することにより行う。 The torque control unit 222 distributes the torque of all torque command values for each wheel FL, FR, RL, RR according to the running state. For the motor unit M1 of the right front wheel FR shown in the figure, the torque distribution value for the inverter 203a is output by the control signal S1a.
 また、モータユニットM1は、第2バッテリ212aの電流値および電圧値を信号S1bとしてコントローラ101に出力し、モータMの回転速度を信号S1cとしてコントローラ101に出力する。 The motor unit M1 outputs the current value and voltage value of the second battery 212a to the controller 101 as a signal S1b, and outputs the rotation speed of the motor M to the controller 101 as a signal S1c.
 これら制御信号S1a~S1cと、S11は、車両100と車輪側のモータユニットM1との間で有線接続された制御線を介して伝送させる。これら制御信号S1a~S1cと、S11については、データ送信できればよいため、制御線に細線を用いることができ、大容量の電力伝送を行うような太線を用いる必要はないため、車輪の操舵性を低下させることがない。 These control signals S1a to S1c and S11 are transmitted via a control line wired between the vehicle 100 and the motor unit M1 on the wheel side. Since these control signals S1a to S1c and S11 only need to be able to transmit data, a thin line can be used as a control line, and it is not necessary to use a thick line that performs large-capacity power transmission. There is no reduction.
 図3は、インバータの回路例を示す図である。インバータ203aは、第2バッテリ212aから供給される直流電力をモータMの3相交流電力に変換する。U,V,Wの各相±にそれぞれダイオード301と、駆動トランジスタ302とを設け、PWM変調により、電圧と周波数を制御した正弦波を生成してモータMの各相に供給してモータMを回転駆動する。 FIG. 3 is a diagram illustrating an example of an inverter circuit. The inverter 203a converts the DC power supplied from the second battery 212a into the three-phase AC power of the motor M. A diode 301 and a driving transistor 302 are provided in each of the U, V, and W phases ±, and a sine wave whose voltage and frequency are controlled by PWM modulation is generated and supplied to each phase of the motor M. Rotating drive.
 図4は、双方向チョッパの回路例を示す図である。双方向チョッパ202aは、一次側ハーフブリッジ回路401と、二次側ハーフブリッジ回路402と、リアクトル403とを備えている。一次側ハーフブリッジ回路401は、AC-DC変換部201aに接続されるスイッチング素子404と、ダイオード405を有している。二次側ハーフブリッジ回路402は、第2バッテリ212aに接続されるスイッチング素子406と、ダイオード407とを有している。リアクトル403は、一次側と二次側との間に接続されている。そして、スイッチング素子404,406の制御により、リアクトル403を介して一次側から二次側への正方向の電力伝送、あるいは二次側から一次側への逆方向の電力伝送を行うことができる。 FIG. 4 is a diagram illustrating a circuit example of a bidirectional chopper. The bidirectional chopper 202 a includes a primary side half bridge circuit 401, a secondary side half bridge circuit 402, and a reactor 403. The primary half bridge circuit 401 includes a switching element 404 connected to the AC-DC converter 201a and a diode 405. The secondary half bridge circuit 402 includes a switching element 406 connected to the second battery 212a and a diode 407. The reactor 403 is connected between the primary side and the secondary side. Under the control of the switching elements 404 and 406, forward power transmission from the primary side to the secondary side or reverse power transmission from the secondary side to the primary side can be performed via the reactor 403.
 上記構成により、車両100側に第1バッテリ111を設け、インバータ203aと第2バッテリ212aをモータユニットM1に内蔵して設けているため、DCの電源を車両100側から供給することにより、モータMを駆動することができる。この際、車両100と車輪のモータユニットM1との間におけるDC電力の供給は、大電流を必要としない。これは、モータの駆動には、第2バッテリ212aに蓄電されている電力を用いるためであり、大きなトルクを出力する際に必要な電力量を多少の余裕を持って第2バッテリ212aに蓄電しておけばよい。したがって、第1バッテリ111と第2バッテリ212aの間の電力伝送を連続的に行うようにしておけば、大電流を流さなくても済むのである。このため、車両100と、車輪のモータユニットM1にそれぞれ電力伝送アンテナ122a,123aを設け、非接触な無線による電力伝送を行うことができる。 With the above configuration, since the first battery 111 is provided on the vehicle 100 side and the inverter 203a and the second battery 212a are provided in the motor unit M1, the motor M is supplied by supplying DC power from the vehicle 100 side. Can be driven. At this time, the supply of DC power between the vehicle 100 and the wheel motor unit M1 does not require a large current. This is because the electric power stored in the second battery 212a is used for driving the motor, and the amount of electric power necessary for outputting a large torque is stored in the second battery 212a with some margin. Just keep it. Therefore, if electric power transmission between the first battery 111 and the second battery 212a is continuously performed, it is not necessary to pass a large current. For this reason, the power transmission antennas 122a and 123a are provided in the vehicle 100 and the motor unit M1 of the wheel, respectively, so that non-contact wireless power transmission can be performed.
(バッテリ間の電力伝送の概要)
 図5は、バッテリ間の電力伝送の概要を示す図である。4輪駆動の場合、四つのモータユニットM1~M4を有し、第1バッテリ111は、これら四つのモータユニットM1~M4のモータMを駆動する比較的大きな容量を有するものを用いる。一方、モータユニットM1(およびM2~M4)にそれぞれ設ける第2バッテリ212aは、単一のモータMを駆動すればよく、比較的小容量のものを用いることができ、重量を軽量化できる。
(Outline of power transfer between batteries)
FIG. 5 is a diagram showing an outline of power transmission between batteries. In the case of four-wheel drive, four motor units M1 to M4 are provided, and the first battery 111 having a relatively large capacity for driving the motors M of the four motor units M1 to M4 is used. On the other hand, the second battery 212a provided in each of the motor units M1 (and M2 to M4) only needs to drive a single motor M, can be used with a relatively small capacity, and can reduce the weight.
 第1バッテリ111と、第2バッテリ212aとの間における電力伝送は、モータユニットM1内の第2バッテリ212aの残量(現在値B1)が、常に目標残量値BS(Set)に近づくように制御する。この制御は、上記コントローラ101の残量制御部221が行う。目標残量値BSは、充電上限値BU(Upper)と充電下限値BL(Lower)との間の所定値に設定される。図中RL(Lower)は、現在値B1と充電下限値BLとの差分であり、第2バッテリ212aで使用可能な容量である。 The power transmission between the first battery 111 and the second battery 212a is such that the remaining amount (current value B1) of the second battery 212a in the motor unit M1 always approaches the target remaining amount value BS (Set). Control. This control is performed by the remaining amount control unit 221 of the controller 101. The target remaining amount value BS is set to a predetermined value between the charging upper limit value BU (Upper) and the charging lower limit value BL (Lower). In the figure, RL (Lower) is a difference between the current value B1 and the charging lower limit value BL, and is a capacity that can be used by the second battery 212a.
 電力の伝送方向は、上述したように双方向、すなわち正方向と逆方向がある。正方向は、第1バッテリ111→第2バッテリ212aの方向である。逆方向は、第2バッテリ212a→第1バッテリ111の方向である。 As described above, the power transmission direction is bidirectional, that is, the forward direction and the reverse direction. The positive direction is the direction from the first battery 111 to the second battery 212a. The reverse direction is the direction from the second battery 212 a to the first battery 111.
 コントローラ101は、基本的には、
1.正方向への電力伝送は、力行制御時に行う。力行制御は、たとえば、アクセルペダル103の踏み込みを検出したときに行う。
2.逆方向への電力伝送は、回生制御時に行う。回生制御は、たとえば、ブレーキペダル104の踏み込みを検出したときに行う。
The controller 101 basically has
1. Power transmission in the positive direction is performed during power running control. Power running control is performed, for example, when the depression of the accelerator pedal 103 is detected.
2. Power transmission in the reverse direction is performed during regenerative control. The regeneration control is performed, for example, when the depression of the brake pedal 104 is detected.
 そして、コントローラ101(残量制御部221およびトルク制御部222)は、充電の現在値B1が第2バッテリ212aの充電上限値BUを超えないように、回生時の回生電力を制御する。また、充電の現在値B1が第2バッテリ212aの充電下限値BLを下回らないように、力行時の力行電力を制御する。 The controller 101 (the remaining amount control unit 221 and the torque control unit 222) controls the regenerative power at the time of regeneration so that the current charging value B1 does not exceed the charging upper limit value BU of the second battery 212a. Further, the power running power during power running is controlled so that the current charge value B1 does not fall below the charge lower limit value BL of the second battery 212a.
(電力伝送の制御内容)
 図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。コントローラ101が行う電力伝送とトルク制御の処理について示している。はじめに、コントローラ101は、モータユニットM1~M4のセンサにより、現在の走行速度を検出する。また、アクセルペダル103とブレーキペダル104の踏み込みを検出する(ステップS701)。
(Contents of power transmission control)
FIG. 6 is a flowchart showing the entire control content related to power transmission. The process of power transmission and torque control performed by the controller 101 is shown. First, the controller 101 detects the current traveling speed with the sensors of the motor units M1 to M4. Further, depression of the accelerator pedal 103 and the brake pedal 104 is detected (step S701).
 そして、現在の走行状態と制御形態の組み合わせを特定する(ステップS702)。上記のように、
1.アクセルペダル103の踏み込みを検出したときには、力行制御と特定する。
2.ブレーキペダル104の踏み込みを検出したときには、回生制御と特定する。このほか、
3.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が遅い場合には、力行制御と特定する。この場合、後述する擬似クリープトルクの制御を行う。
4.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が速い場合には、回生制御と特定する。この場合、後述する擬似エンジンブレーキの制御を行う。
5.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が中程度(速くなく、また遅くない速度)の場合には、制御なし(惰行運転)と特定する。
Then, the combination of the current traveling state and the control mode is specified (step S702). as mentioned above,
1. When depression of the accelerator pedal 103 is detected, power running control is specified.
2. When depression of the brake pedal 104 is detected, regeneration control is specified. other than this,
3. When the depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is low, the power running control is specified. In this case, the pseudo creep torque described later is controlled.
4). When depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is high, regeneration control is specified. In this case, a pseudo engine brake, which will be described later, is controlled.
5. When depression of the accelerator pedal 103 and the brake pedal 104 is not detected and the speed of the vehicle 100 is medium (not fast and not slow), it is specified that there is no control (coasting operation).
 つぎに、制御形態がいずれであるかを判断する(ステップS703)。制御形態が力行制御のときには(ステップS703:力行)、力行トルク制御を行い(ステップS704)、ステップS706に移行する。制御形態が回生制御のときには(ステップS703:回生)、回生トルク制御を行い(ステップS705)、ステップS706に移行する。制御形態が惰行の場合には(ステップS703:惰行)、特に制御を行わず、ステップS706に移行する。 Next, it is determined which control mode is used (step S703). When the control mode is power running control (step S703: power running), power running torque control is performed (step S704), and the process proceeds to step S706. When the control mode is regenerative control (step S703: regenerative), regenerative torque control is performed (step S705), and the process proceeds to step S706. If the control mode is coasting (step S703: coasting), no control is performed and the process proceeds to step S706.
 つぎに、ステップS706では、上述した無線による電力伝送制御を行い(ステップS706)、処理を終了する。コントローラ101は、上記の各処理を経時的に連続して行う。 Next, in step S706, the above-described wireless power transmission control is performed (step S706), and the process ends. The controller 101 performs the above processes continuously over time.
(力行トルク制御について)
 図7は、力行トルク制御の制御内容を示すフローチャートである。図6のステップS704に示した力行トルク制御の詳細な制御内容を示している。はじめに、コントローラ101は、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d:ただし212b~212dはモータユニットM2~M4の第2バッテリを指し不図示)の各値を検出する(ステップS801)。
(About power running torque control)
FIG. 7 is a flowchart showing the control content of the power running torque control. The detailed control content of power running torque control shown to step S704 of FIG. 6 is shown. First, the controller 101 detects each value of the second battery 212 (212a to 212d, where 212b to 212d indicate the second batteries of the motor units M2 to M4, respectively) provided in the motor units M1 to M4 ( Step S801).
 第2バッテリ212(212a~212d)の充電下限値はBLとし、現在値(残量)はB1~B4とし、現在の電圧はV1~V4とする。モータユニットM1~M4の第2バッテリ212a~212dは、モータMの駆動状態に対応してそれぞれ現在値B1~B4が異なり常に変動する。 The charging lower limit value of the second battery 212 (212a to 212d) is BL, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4. The current values B1 to B4 of the second batteries 212a to 212d of the motor units M1 to M4 are always different depending on the driving state of the motor M.
 つぎに、アクセルペダル103の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1~M4)へのトルク配分値T1~T4を決定し、後述するモータ効率マップを用いた電力推定方法により、必要な力行電力W1~W4を算出する(ステップS802)。 Next, torque distribution values T1 to T4 to each wheel (each motor unit M1 to M4) are determined based on the depression amount of the accelerator pedal 103 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed. The necessary powering powers W1 to W4 are calculated by the method (step S802).
 つぎに、第2バッテリ212の電力使用可能な容量RLを算出する(ステップS803)。具体的には、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)について、
 使用可能な容量RL1~RL4=現在値B1~B4-充電下限値BL
により算出する。
Next, the capacity | capacitance RL which can use the electric power of the 2nd battery 212 is calculated (step S803). Specifically, the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
Usable capacities RL1 to RL4 = current values B1 to B4—charge lower limit BL
Calculated by
 つぎに、各モータユニットM1~M4で必要な力行電力W1~W4と、ステップS803で算出した第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4とを比較する(ステップS804)。この結果、各モータユニットM1~M4で必要な力行電力W1~W4が対応する第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4を超えた場合には(ステップS804:Yes)、力行電力が使用可能な容量RL1~RL4以下となるように、各車輪のトルク配分値を再計算する(ステップS805)。すなわち、全トルク指令値をトルク配分する際に、残量が少ない第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。 Next, the power running powers W1 to W4 required by the motor units M1 to M4 are compared with the capacities RL1 to RL4 usable in the second battery 212 (212a to 212d) calculated in step S803 (step S804). As a result, when the power running power W1 to W4 required for each motor unit M1 to M4 exceeds the capacity RL1 to RL4 usable by the corresponding second battery 212 (212a to 212d) (step S804: Yes), The torque distribution value of each wheel is recalculated so that the power running power is less than the usable capacities RL1 to RL4 (step S805). That is, when torque distribution is performed on all torque command values, the torque distribution value to the motor unit of the second battery 212 having a small remaining amount is decreased, and the torque distribution values of other motor units are also decreased at that ratio.
 一方、ステップS804で各モータユニットM1~M4で必要な力行電力W1~W4が対応する第2バッテリ212(212a~212d)で使用可能な容量RL1~RL4に収まっていれば(ステップS804:No)、ステップS805の処理を行わず、ステップS806に移行する。 On the other hand, if the power running power W1 to W4 necessary for each of the motor units M1 to M4 is within the capacity RL1 to RL4 that can be used by the corresponding second battery 212 (212a to 212d) in step S804 (No in step S804). The process of step S805 is not performed, and the process proceeds to step S806.
 そして、ステップS806では、各モータユニットM1~M4に対するトルク配分値を用いて、力行トルク制御を行い(ステップS806)、処理を終了する。 In step S806, power running torque control is performed using the torque distribution values for the motor units M1 to M4 (step S806), and the process ends.
(回生トルク制御について)
 図8は、回生トルク制御の制御内容を示すフローチャートである。図6のステップS705に示した回生トルク制御の詳細な制御内容を示している。回生時には、モータMが電力を発生する。はじめに、コントローラ101は、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)の各値を検出する(ステップS901)。第2バッテリ212の充電上限値はBUとし、現在値(残量)はB1~B4とし、現在の電圧はV1~V4とする。
(Regenerative torque control)
FIG. 8 is a flowchart showing the control content of the regenerative torque control. The detailed control content of regenerative torque control shown to step S705 of FIG. 6 is shown. During regeneration, the motor M generates electric power. First, the controller 101 detects each value of the second battery 212 (212a to 212d) provided in each of the motor units M1 to M4 (step S901). The upper limit of charge of the second battery 212 is BU, the current value (remaining amount) is B1 to B4, and the current voltage is V1 to V4.
 つぎに、ブレーキペダル104の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1~M4)へのトルク配分値T1~T4を決定し、後述するモータ効率マップを用いた電力推定方法により、回生電力W1~W4を算出する(ステップS902)。 Next, torque distribution values T1 to T4 for each wheel (each motor unit M1 to M4) are determined based on the depression amount of the brake pedal 104 and a predetermined torque distribution value, and power estimation using a motor efficiency map described later is performed. The regenerative power W1 to W4 is calculated by the method (step S902).
 つぎに、第2バッテリ212の電力回生可能な容量RUを算出する(ステップS903)。具体的には、モータユニットM1~M4にそれぞれ設けられる第2バッテリ212(212a~212d)について、
 回生可能な容量RU1~RU4=充電上限値BU-現在値B1~B4
により算出する。
Next, the capacity | capacitance RU in which electric power regeneration of the 2nd battery 212 is possible is calculated (step S903). Specifically, the second batteries 212 (212a to 212d) provided in the motor units M1 to M4, respectively,
Regenerative capacities RU1 to RU4 = charge upper limit value BU−current values B1 to B4
Calculated by
 つぎに、各モータユニットM1~M4での回生電力W1~W4と、ステップS903で算出した第2バッテリ212(212a~212d)で回生可能な容量RUとを比較する(ステップS904)。この結果、各モータユニットM1~M4の回生電力W1~W4が対応する第2バッテリ212(212a~212d)で回生可能な容量RU1~RU4を超えた場合には(ステップS904:Yes)、回生電力が回生可能な容量RU1~RU4以下となるように、各車輪のトルク配分値を再計算する(ステップS905)。すなわち、全トルク指令値をトルク配分する際に、残量が多い第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。 Next, the regenerative power W1 to W4 in each of the motor units M1 to M4 is compared with the capacity RU that can be regenerated by the second battery 212 (212a to 212d) calculated in step S903 (step S904). As a result, when the regenerative power W1 to W4 of each motor unit M1 to M4 exceeds the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) (step S904: Yes), the regenerative power The torque distribution value of each wheel is recalculated so that becomes less than the capacity RU1 to RU4 that can be regenerated (step S905). That is, when all torque command values are torque-distributed, the torque distribution value to the motor unit of the second battery 212 having a large remaining amount is decreased, and the torque distribution values of the other motor units are also decreased at that ratio.
 一方、ステップS904で各モータユニットM1~M4の回生電力W1~W4が対応する第2バッテリ212(212a~212d)で回生可能な容量RU1~RU4に収まっていれば(ステップS904:No)、ステップS905の処理を行わず、ステップS906に移行する。 On the other hand, if the regenerative power W1 to W4 of each motor unit M1 to M4 is within the capacity RU1 to RU4 that can be regenerated by the corresponding second battery 212 (212a to 212d) in step S904 (step S904: No), step S904 is performed. The process proceeds to step S906 without performing the process of S905.
 そして、ステップS906では、各モータユニットM1~M4に対するトルク配分値を用いて、回生トルク制御を行い(ステップS906)、処理を終了する。 In step S906, regenerative torque control is performed using the torque distribution values for the motor units M1 to M4 (step S906), and the process ends.
(電力伝送の制御手順)
 つぎに、上述した無線による電力伝送の制御手順について説明する。図9は、実施の形態にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。図9の説明では、モータユニットM1に設けられる第2バッテリ212aに対する電力伝送を例に説明するが、他のモータユニットM2~M4に設けられる第2バッテリ212b~212dについても同様の処理を行えばよい。
(Power transmission control procedure)
Next, the above-described wireless power transmission control procedure will be described. FIG. 9 is a flowchart illustrating an example of a wireless power transmission control procedure according to the embodiment. In the description of FIG. 9, power transmission to the second battery 212a provided in the motor unit M1 will be described as an example. However, if similar processing is performed for the second batteries 212b to 212d provided in the other motor units M2 to M4. Good.
 はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS1001)。第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。 First, the controller 101 detects each value of the second battery 212a (step S1001). The target remaining amount of the second battery 212a is BS, the current value (remaining amount) is B1, and the current voltage is V1. Further, the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like.
 つぎに、電力伝送可能な上限値Cmaxと、伝送したい電力Dとを下記式により算出する(ステップS1002)。
 電力伝送可能な上限値Cmax=電源ラインL1の最大電流Amax×現在の電圧V1
 伝送したい電力D=BS-B1
Next, an upper limit value Cmax at which electric power can be transmitted and electric power D to be transmitted are calculated by the following formula (step S1002).
Upper limit Cmax at which power can be transmitted = maximum current Amax of power supply line L1 × current voltage V1
Power to be transmitted D = BS-B1
 上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。 The electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1. For example, during power running, the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
 つぎに、電力伝送の電力値を決定する(ステップS1003)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS1003:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値-Cmaxを伝送する電力Dとして決定する(ステップS1004)。 Next, the power value of power transmission is determined (step S1003). The power value of power transmission is performed by using the smaller one of the absolute value | D | of the power D desired to be transmitted and the upper limit Cmax capable of power transmission. For this reason, if the absolute value of the power D to be transmitted exceeds the upper limit value Cmax capable of power transmission (step S1003: Yes), the power for transmitting the upper limit value Cmax capable of power transmission when the power D to be transmitted is positive. Determine as D. When the power D to be transmitted is negative, an upper limit value −Cmax that allows power transmission is determined as the power D to be transmitted (step S1004).
 一方、ステップS1004において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS1003:No)、ステップS1004の処理を行わず、伝送したい電力Dをそのまま用い、ステップS1005に移行する。 On the other hand, in step S1004, if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1003: No), the processing of step S1004 is not performed and the power D to be transmitted is used as it is. The process proceeds to S1005.
 そして、ステップS1005では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線の電源ラインL1を介して電力伝送する。Dの値が負の場合には、回生時であるため、第2バッテリ212aから第1バッテリ111に無線の電源ラインL1を介して電力伝送する(ステップS1005)。 In step S1005, the differential capacity D is transmitted from the first battery 111 to the second battery 212a via the wireless power line L1. If the value of D is negative, it is during regeneration, and power is transmitted from the second battery 212a to the first battery 111 via the wireless power line L1 (step S1005).
(力行トルク指令値について)
 図10は、力行時のトルク指令値を示す図表である。アクセルペダル103の踏み込み量(横軸)に対する力行トルク指令値(縦軸)の関係を示している。コントローラ101のトルク制御部222は、図示のように、これらアクセルペダル103の踏み込み量と、力行時の全トルク指令値とは、比例する直線関係で制御するのではなく、アクセルペダル103の踏み込み量に対してはじめはなだらかに変化する曲線を有して力行トルク指令値を出力する。また、車両100の前進時に比べて後退時の力行トルク指令値は、さらになだらかとなるよう設定している。
(About power running torque command value)
FIG. 10 is a chart showing torque command values during power running. The relationship between the power running torque command value (vertical axis) and the depression amount (horizontal axis) of the accelerator pedal 103 is shown. As shown in the figure, the torque control unit 222 of the controller 101 does not control the amount of depression of the accelerator pedal 103 and the total torque command value at the time of power running in a proportional linear relationship, but the amount of depression of the accelerator pedal 103. On the other hand, a power running torque command value is output with a curve that gradually changes. Further, the power running torque command value at the time of backward movement is set to be gentler than that at the time of forward movement of the vehicle 100.
(回生トルク指令値について)
 図11は、回生時のトルク指令値を示す図表である。ブレーキペダル104の踏み込み量(横軸)に対する回生トルク指令値(縦軸)の関係を示している。コントローラ101は、図示のように、ブレーキペダル104の踏み込み量に対し、回生トルク指令値は、ほぼ直線関係となるよう制御している。また、車両の前進時に比べて後退時の回生トルク指令値は、なだらかに変化するよう設定している。
(Regenerative torque command value)
FIG. 11 is a chart showing torque command values during regeneration. The relationship of the regenerative torque command value (vertical axis) with respect to the depression amount (horizontal axis) of the brake pedal 104 is shown. As shown in the figure, the controller 101 controls the regenerative torque command value to have a substantially linear relationship with respect to the depression amount of the brake pedal 104. Further, the regenerative torque command value at the time of reverse movement is set so as to change more gently than at the time of forward movement of the vehicle.
(擬似クリープトルクと擬似エンジンブレーキについて)
 図12は、ペダルを離したときのトルク指令値を示す図表である。コントローラ101は、アクセルペダル103もブレーキペダル104も踏まれない場合、図示のように、車速に応じてトルク指令値を変えている。
(About pseudo creep torque and pseudo engine brake)
FIG. 12 is a chart showing torque command values when the pedal is released. When neither the accelerator pedal 103 nor the brake pedal 104 is depressed, the controller 101 changes the torque command value according to the vehicle speed as shown in the figure.
 そして、車速が遅い場合は、プラス(+)のトルクとして擬似クリープトルクを生成する。車速が速い場合は、マイナス(-)のトルクとして擬似エンジンブレーキを生成する。図示の例では、車速が40km/h程度以上で擬似エンジンブレーキをかけ、60km/h程度が最も大きなトルク値をかけるようになっている。60km/h程度以上の速度では、次第に小さなトルク値をかけるようになっている。車速が中程度の場合は(図中Nの速度領域)、トルク指令値をゼロにして惰行運転する。 And when the vehicle speed is slow, pseudo creep torque is generated as positive (+) torque. When the vehicle speed is high, a pseudo engine brake is generated as a negative (−) torque. In the illustrated example, the pseudo engine brake is applied when the vehicle speed is about 40 km / h or higher, and the largest torque value is applied when the vehicle speed is about 60 km / h. At a speed of about 60 km / h or more, a small torque value is gradually applied. When the vehicle speed is medium (N speed range in the figure), the coasting operation is performed with the torque command value set to zero.
 また、通常モードとエコモードとを切り替えるように構成した場合、切り替えたモード別に、車速に対するトルク指令値の特性を変えてもよい。図示の例では、通常モードに比べてエコモード時には、擬似クリープトルク値を少なくし、擬似エンジンブレーキは、マイナスの大きなトルク値としている。 Further, when the normal mode and the eco mode are switched, the characteristics of the torque command value with respect to the vehicle speed may be changed for each switched mode. In the illustrated example, the pseudo creep torque value is reduced in the eco mode compared to the normal mode, and the pseudo engine brake has a large negative torque value.
(モータ効率マップを用いたモータの電力推定)
 つぎに、モータ効率マップを用いたモータMの消費電力(回生電力)推定について説明する。図13は、モータ効率マップを示す図表である。効率マップ1400は、モータMの回転速度-トルク特性を示すものであり、横軸は回転速度、縦軸はトルクである。コントローラ101の記憶部には、図示の4象限の効率マップ1400をあらかじめ格納しておく。
(Motor power estimation using motor efficiency map)
Next, power consumption (regenerative power) estimation of the motor M using the motor efficiency map will be described. FIG. 13 is a chart showing a motor efficiency map. The efficiency map 1400 shows the rotational speed-torque characteristics of the motor M, with the horizontal axis representing the rotational speed and the vertical axis representing the torque. In the storage unit of the controller 101, an efficiency map 1400 of the illustrated four quadrant is stored in advance.
 効率マップ1400の第1~第4象限は、それぞれ、
1.正転力行:前進中にアクセルペダルを踏んでいる状態
2.逆転力行:後退中にアクセルペダルを踏んでいる状態
3.逆転回生:後退中にブレーキペダルを踏んでいる状態
4.正転回生:前進中にブレーキペダルを踏んでいる状態
である。
The first to fourth quadrants of the efficiency map 1400 are respectively
1. Forward running: A state where the accelerator pedal is being depressed while moving forward. 2. Reverse power running: A state where the accelerator pedal is depressed during reverse. Reverse regeneration: State where the brake pedal is depressed during reverse. Normal regenerative regeneration: A state in which the brake pedal is depressed during forward travel.
 コントローラ101のトルク制御部222は、アクセルペダル103やブレーキペダル104の踏み込み量から、全トルク指令量を算出する。そして、この全トルク値を所定のトルク配分によって、各車輪のモータMごとのトルク配分値Tに配分する。 The torque control unit 222 of the controller 101 calculates the total torque command amount from the depression amount of the accelerator pedal 103 and the brake pedal 104. The total torque value is distributed to a torque distribution value T for each motor M of each wheel by a predetermined torque distribution.
 また、コントローラ101は、車両100の走行中、各モータユニットM1~M4のセンサにより回転速度Vfl,Vfr,Vrl,Vrrを検出する。ここでは、回転速度をωとして説明する。そして、コントローラ101は、モータMについて、効率マップ1400を参照し、トルクTと回転速度ωから効率ηを得る。 Further, the controller 101 detects the rotational speeds Vfl, Vfr, Vrl, Vrr by the sensors of the motor units M1 to M4 while the vehicle 100 is traveling. Here, the rotation speed is described as ω. Then, the controller 101 refers to the efficiency map 1400 for the motor M, and obtains the efficiency η from the torque T and the rotational speed ω.
 そして、コントローラ101は、以下の式から、力行時の消費電力と、回生時の回生電力をそれぞれ推定する。
・力行時
 効率η=(T・ω)/(V・I)
・回生時
 効率η=(V・I)/(T・ω)
 (V,Iは、モータMの電圧と電流、あるいはインバータ203の電圧と電流)
And the controller 101 estimates the power consumption at the time of power running, and the regenerative power at the time of regeneration from the following formula | equation, respectively.
・ Power efficiency η = (T ・ ω) / (V ・ I)
・ Regeneration efficiency η = (V ・ I) / (T ・ ω)
(V and I are the voltage and current of the motor M or the voltage and current of the inverter 203)
 上記の(V・I)がモータMの力行時の消費電力、および回生時の回生電力Wに相当する。コントローラ101は、上述したように、第2バッテリ212(212a~212d)について、現在値と、使用可能あるいは回生可能な電力を求める。そして、使用可能あるいは回生可能な電力と、算出した上記消費電力(回生電力)とを比較し、範囲内に収まるように、モータMに対するトルク配分値を修正する。 The above (V · I) corresponds to the power consumption of the motor M during power running and the regenerative power W during regeneration. As described above, the controller 101 obtains the current value and the usable or regenerative power for the second battery 212 (212a to 212d). Then, the available or regenerative power is compared with the calculated power consumption (regenerative power), and the torque distribution value for the motor M is corrected so as to be within the range.
 そして、効率マップ1400を用いることにより、より正確にモータMの消費電力(回生電力)を判断できるようになる。これにより、電力伝送時における必要な電力量(伝送したい電力D)を精度よく推定することができ、電力伝送時の電力量を正確に算出でき、効率的な電力伝送を行うことができるようになる。 And by using the efficiency map 1400, the power consumption (regenerative power) of the motor M can be determined more accurately. As a result, it is possible to accurately estimate the amount of power required during power transmission (power D to be transmitted), accurately calculate the amount of power during power transmission, and perform efficient power transmission. Become.
 効率マップ1400は、あらかじめ取得しておくに限らない。たとえば、車両100の走行中に効率マップ1400を作成してもよい。コントローラ101は、効率マップ生成部を備え、走行時にモータMの消費電力と、回転数とを取得して、上記の効率マップ1400を生成する。 The efficiency map 1400 is not limited to acquiring in advance. For example, the efficiency map 1400 may be created while the vehicle 100 is traveling. The controller 101 includes an efficiency map generation unit, acquires the power consumption and the rotation speed of the motor M during traveling, and generates the efficiency map 1400 described above.
 このほか、あらかじめ取得した効率マップ1400を更新する構成とすることもできる。この際、
・モータMに流れる電流Iからトルク値を検出
・レゾルバ等の回転位置センサにより車輪の回転速度を検出
・第2バッテリ212aとインバータ203a間に設けた電流センサおよび電圧センサにより電流と電圧を検出し、電力を算出
 コントローラ101は、上記の検出および算出によって、車両100の走行時に、記憶部に格納した効率マップ1400を随時更新していくことができる。
In addition, the configuration may be such that the efficiency map 1400 acquired in advance is updated. On this occasion,
・ Detects the torque value from the current I flowing through the motor M ・ Detects the rotational speed of the wheel by a rotational position sensor such as a resolver ・ Detects the current and voltage by a current sensor and a voltage sensor provided between the second battery 212a and the inverter 203a Calculation of Electric Power The controller 101 can update the efficiency map 1400 stored in the storage unit at any time during traveling of the vehicle 100 by the above detection and calculation.
(トルク配分例)
 つぎに、各車輪のモータMに対するトルク配分値の再配分例について説明する。図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。コントローラ101に対し、たとえば、アクセルペダル103の踏み込みにより、全トルク指令値が100[Nm]として入力された場合を例に説明する。
(Example of torque distribution)
Next, an example of redistribution of the torque distribution value for the motor M of each wheel will be described. FIG. 14 is a diagram illustrating an example of torque redistribution when the remaining battery level is low. An example will be described in which the total torque command value is input as 100 [Nm] to the controller 101 by, for example, depressing the accelerator pedal 103.
 図14中の(a)に示すように、仮に、コントローラ101のトルク制御部222が、トルク配分値として、左右の前輪を20[Nm]、左右の後輪を30[Nm]にトルク配分としたとする。 As shown in (a) of FIG. 14, suppose that the torque control unit 222 of the controller 101 assigns torque distribution values to 20 [Nm] for the left and right front wheels and 30 [Nm] for the left and right rear wheels. Suppose that
 ここで、図14の(b)に示すように、左前輪FLのモータユニットM2に設けられた第2バッテリ212(212bに相当)のバッテリ残量が少なくなり、左前輪FLのモータMで16[Nm]しか出力できなくなったとする。これに対応して単に左前輪FLだけのトルクを下げてしまうと、左右の前輪の駆動力がアンバランスになり、車両100の進行の向きが変わるという影響が生じる。 Here, as shown in FIG. 14B, the remaining amount of the battery of the second battery 212 (corresponding to 212b) provided in the motor unit M2 of the left front wheel FL is reduced, and the motor M of the left front wheel FL becomes 16%. Assume that only [Nm] can be output. Correspondingly, if the torque of the left front wheel FL is simply lowered, the driving force of the left and right front wheels becomes unbalanced, which causes an effect that the direction of travel of the vehicle 100 changes.
 このため、コントローラ101のトルク制御部222は、図14(c)に示すように、トルクの再配分を行う。すなわち、左右の前輪に対し、同じトルク16[Nm]となるようトルク配分する。また、前輪のトルクを20[Nm]から16[Nm」]に変更した割合(4/5)に対応して左右の後輪についても、同じ割合にするため、30[Nm]から24[Nm]にトルクを変更する。この場合、全トルク値は、100[Nm]から80[Nm]に変更されることになる。 For this reason, the torque controller 222 of the controller 101 redistributes the torque as shown in FIG. That is, the torque is distributed to the left and right front wheels so that the same torque 16 [Nm] is obtained. Further, in order to make the left and right rear wheels the same ratio corresponding to the ratio (4/5) in which the torque of the front wheels is changed from 20 [Nm] to 16 [Nm]], 30 [Nm] to 24 [Nm] Change the torque to]. In this case, the total torque value is changed from 100 [Nm] to 80 [Nm].
 上記説明では、第2バッテリ212の残量が少なくなることに基づくトルクの再配分について説明したが、バッテリ212が満充電に近い場合に、車両100の制動時(ブレーキ時)についても、同様に行う。ただし、この場合、制動力としてモータMの回生ブレーキだけでは足りなくなるため、この不足分の制動力は機械式ブレーキを併用する必要がある。 In the above description, the torque redistribution based on the fact that the remaining amount of the second battery 212 is reduced has been described. However, when the battery 212 is nearly fully charged, the same applies to the braking of the vehicle 100 (during braking). Do. However, in this case, only the regenerative brake of the motor M is not sufficient as the braking force, so this insufficient braking force needs to be used in combination with a mechanical brake.
(協調ブレーキについて)
 協調ブレーキとは、モータMによる回生ブレーキと、油圧制御による機械式ブレーキとを組み合わせて、必要な制動力を生成するブレーキである。回生ブレーキと機械式ブレーキの組み合わせについては、各種方法がある。
(About cooperative brake)
The cooperative brake is a brake that generates a necessary braking force by combining a regenerative brake by the motor M and a mechanical brake by hydraulic control. There are various methods for combining a regenerative brake and a mechanical brake.
 たとえば、常に、回生ブレーキと機械式ブレーキとを所定の比率でいずれも使用する方法、所定の制動量までは回生ブレーキを使用し、所定の制動量以上となると機械式ブレーキを加えて用いる方法、所定の制動量までは機械式ブレーキを使用し、所定の制動量以上となると回生ブレーキを加えて用いる方法、等がある。 For example, a method of always using a regenerative brake and a mechanical brake at a predetermined ratio, a method of using a regenerative brake up to a predetermined braking amount, and using a mechanical brake when a predetermined braking amount is exceeded, There is a method of using a mechanical brake up to a predetermined braking amount and using a regenerative brake when the braking amount exceeds a predetermined braking amount.
 図15-1は、実施の形態で用いる協調ブレーキの制御特性を示す図である。横軸は速度、縦軸は制動トルクである。モータMは、速度が低いとき回転数が小さい。したがって、図示のように、このような速度が低いときには逆起電力も小さくなるため、大きな回生ブレーキを得ることができない。 FIG. 15-1 is a diagram illustrating the control characteristics of the cooperative brake used in the embodiment. The horizontal axis is speed, and the vertical axis is braking torque. The motor M has a low rotation speed when the speed is low. Accordingly, as shown in the figure, when such a speed is low, the back electromotive force is also small, and thus a large regenerative brake cannot be obtained.
 したがって、実施の形態のコントローラ101では、モータMの回生ブレーキだけではなく、回生ブレーキでは得られない不足分の制動トルクを機械式ブレーキにより得る協調ブレーキ制御を行うようにしている。図示の例では、機械式ブレーキの制動トルクは、回生ブレーキと逆の特性を有し、速度が低いほど大きく、速度が高くなるにつれて減少させている。これにより、ブレーキペダル104の踏み込み量に対応した制動トルク値を、回生ブレーキと機械式ブレーキ双方の制動力により得る。 Therefore, in the controller 101 of the embodiment, not only the regenerative brake of the motor M but also the coordinated brake control for obtaining the insufficient braking torque that cannot be obtained by the regenerative brake by the mechanical brake is performed. In the example shown in the figure, the braking torque of the mechanical brake has a characteristic opposite to that of the regenerative brake, and increases as the speed decreases and decreases as the speed increases. Thereby, the braking torque value corresponding to the depression amount of the brake pedal 104 is obtained by the braking force of both the regenerative brake and the mechanical brake.
 また、第2バッテリ212の現在値が満充電に近くなって大きな回生ブレーキをかけることができない場合、コントローラ101は、低速時と同じように、回生ブレーキの制動トルクの割合を小さくし、機械式ブレーキによる制動トルクの割合を大きくして、必要な制動トルクを得るよう協調ブレーキ制御を行う。 Further, when the current value of the second battery 212 is close to full charge and a large regenerative brake cannot be applied, the controller 101 reduces the ratio of the regenerative brake braking torque in the same manner as at the low speed, thereby reducing the mechanical type. Cooperative brake control is performed so as to obtain a required braking torque by increasing the ratio of the braking torque by the brake.
 図15-2は、実施の形態で用いる協調ブレーキの他の制御特性を示す図である。図示の例では、回生ブレーキによって発生する電力が充電できなくなった時点で、次第に回生ブレーキによる制動トルクの割合を小さくし、逆に機械式ブレーキによる割合を大きくさせている。 FIG. 15-2 is a diagram illustrating another control characteristic of the cooperative brake used in the embodiment. In the illustrated example, when the electric power generated by the regenerative brake can no longer be charged, the ratio of the braking torque by the regenerative brake is gradually reduced, and conversely, the ratio by the mechanical brake is increased.
 以上説明したように、制動トルクをモータMによる回生ブレーキだけではなく、機械式ブレーキを併用する協調ブレーキ制御により、広範囲な速度にわたり必要な制動トルクを発生させることができ、車両100の走行を安全に行うことができるようになる。そして、第2バッテリ212の充電容量の変化により、第2バッテリ212に充電できないような状態が生じたときであっても、必要な制動トルクを得ることができるようになる。 As described above, the braking torque is generated not only by the regenerative braking by the motor M but also by the cooperative braking control using the mechanical brake together, the necessary braking torque can be generated over a wide range of speeds, and the vehicle 100 can be safely driven. To be able to do that. Even when the second battery 212 cannot be charged due to a change in the charge capacity of the second battery 212, the necessary braking torque can be obtained.
(電力伝送の他の制御手順)
 図16は、バッテリ間の他の電力伝送の概要を示す図である。この例では、第2バッテリ212aのバッテリ量についての各項目に二つの項目を加えている。これらは、無線放電実施判断値BJ+(プラス)と、無線充電実施判断値BJ-(マイナス)である。
(Other control procedures for power transmission)
FIG. 16 is a diagram showing an outline of another power transmission between batteries. In this example, two items are added to each item regarding the battery amount of the second battery 212a. These are the wireless discharge execution determination value BJ + (plus) and the wireless charge execution determination value BJ- (minus).
 無線放電実施判断値BJ+は、第2バッテリ212aの目標残量値BSと充電上限値BUとの間に設定する。また、無線充電実施判断値BJ-は、目標残量値BSと充電下限値BLとの間に設定する。 The wireless discharge execution determination value BJ + is set between the target remaining amount value BS of the second battery 212a and the charge upper limit value BU. The wireless charging execution determination value BJ- is set between the target remaining amount value BS and the charging lower limit value BL.
 図17は、無線による電力伝送の制御手順の他の例を示すフローチャートである。はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS1701)。図16に示したように、第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。また、上限側の無線放電実施判断値BJ+と、下限側の無線充電実施判断値BJ-とを用いる。 FIG. 17 is a flowchart showing another example of a wireless power transmission control procedure. First, the controller 101 detects each value of the second battery 212a (step S1701). As shown in FIG. 16, the target remaining amount of the second battery 212a is BS, the current value (remaining amount) is B1, and the current voltage is V1. Further, the maximum current of the wireless power supply line L1 for the motor unit M is Amax. This maximum current Amax has different allowable values (current allowable values) depending on the coils of the power transmission antennas 122a and 123a for wireless transmission provided on the power supply line L1, the driver IC, and the like. The upper limit side wireless discharge execution judgment value BJ + and the lower limit side wireless charging execution judgment value BJ- are used.
 つぎに、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-未満であるか判断する(ステップS1702)。第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-未満であれば(ステップS1702:Yes)、下限側の無線充電実施判断値BJ-から現在値B1を引いた値を伝送したい電力Dとする(ステップS1703)。 Next, it is determined whether the current value B1 of the second battery 212a is less than the lower limit wireless charging execution determination value BJ− (step S1702). If the current value B1 of the second battery 212a is less than the lower limit side wireless charging execution determination value BJ− (step S1702: Yes), a value obtained by subtracting the current value B1 from the lower limit side wireless charging execution determination value BJ− is transmitted. It is assumed that the power D is desired (step S1703).
 一方、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ-を超えていれば(ステップS1702:No)、第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えているか判断する(ステップS1704)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えていれば(ステップS1704:Yes)、上限側の無線放電実施判断値BJ+から現在値B1を引いた値を伝送したい電力Dとする(ステップS1705)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+未満であれば(ステップS1704:No)、処理を終了する。 On the other hand, if the current value B1 of the second battery 212a exceeds the lower limit side wireless charge execution determination value BJ- (step S1702: No), the current value B1 of the second battery 212a is the upper limit side wireless discharge execution determination value. It is determined whether or not BJ + is exceeded (step S1704). If the current value B1 of the second battery 212a exceeds the upper limit side wireless discharge execution determination value BJ + (step S1704: Yes), it is desired to transmit a value obtained by subtracting the current value B1 from the upper limit side wireless discharge execution determination value BJ +. The power is D (step S1705). If the current value B1 of the second battery 212a is less than the upper limit wireless discharge execution determination value BJ + (step S1704: No), the process ends.
 上記の処理により、第2バッテリ212aの現在値が、上限側の無線放電実施判断値よりも大きい場合、あるいは下限の無線充電実施判断値よりも小さい場合は、現在値との差分のみの電力を無線により電力伝送させるようにする。 When the current value of the second battery 212a is larger than the upper limit side wireless discharge execution determination value or smaller than the lower limit wireless charge execution determination value by the above processing, only the power difference from the current value is obtained. Power is transmitted wirelessly.
 上記ステップS1703,ステップS1705の処理後、電力伝送可能な上限値Cmaxを下記式により算出する(ステップS1706)。
 電力伝送可能な上限値Cmax=無線により電力伝送できる最大電流Amax×現在の電圧V1
After the processing of step S1703 and step S1705, the upper limit Cmax that allows power transmission is calculated by the following equation (step S1706).
Upper limit value Cmax at which power can be transmitted = maximum current Amax at which power can be transmitted wirelessly × current voltage V1
 上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。 The electric power D to be transmitted is electric power to be transmitted between the first battery 111 and the second battery 212a on the power supply line L1. For example, during power running, the electric power is required to drive the motor M in the positive direction from the first battery 111 to the second battery 212a corresponding to the assigned torque distribution value. At the time of regeneration, this corresponds to the power to transmit the line power to the first battery 111.
 つぎに、電力伝送の電力値を決定する(ステップS1707)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS1707:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値-Cmaxを伝送する電力Dとして決定する(ステップS1708)。 Next, the power value of power transmission is determined (step S1707). The power value of power transmission is performed by using the smaller one of the absolute value | D | of the power D desired to be transmitted and the upper limit Cmax capable of power transmission. For this reason, if the absolute value of the power D to be transmitted exceeds the upper limit value Cmax capable of power transmission (step S1707: Yes), the power for transmitting the upper limit value Cmax capable of power transmission when the power D to be transmitted is positive. Determine as D. If the power D to be transmitted is negative, an upper limit value −Cmax that allows power transmission is determined as the power D to be transmitted (step S1708).
 一方、ステップS1707において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS1707:No)、ステップS1708の処理を行わず、伝送したい電力Dをそのまま用い、ステップS1709に移行する。 On the other hand, in step S1707, if the absolute value of power D to be transmitted does not exceed the upper limit Cmax at which power can be transmitted (step S1707: No), the processing of step S1708 is not performed and the power D to be transmitted is used as it is. The process moves to S1709.
 そして、ステップS1709では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線により電力伝送する。Dの値が負の場合には、第2バッテリ212aから第1バッテリ111に無線により電力伝送する(ステップS1709)。 In step S1709, the differential capacity D is wirelessly transmitted from the first battery 111 to the second battery 212a. If the value of D is negative, power is transmitted wirelessly from the second battery 212a to the first battery 111 (step S1709).
 上記の電力伝送の制御処理によれば、無線による電力損失が無視できない場合、現在値が無線充電実施判断値を超えたときのみ、非接触充電による電力伝送を実施している。これにより、無線による電力伝送量は、現在値が無線充電実施判断値あるいは無線放電実施判断値に近づくようにする。これにより、充電上限値と充電下限値に近づきにくくできるため、過充電や過放電を防止するための力行トルクや回生トルク制限の必要性が少なくなる。 According to the above power transmission control process, when wireless power loss cannot be ignored, power transmission by non-contact charging is performed only when the current value exceeds the wireless charging execution determination value. As a result, the wireless power transmission amount is set such that the current value approaches the wireless charging execution determination value or the wireless discharge execution determination value. This makes it difficult to approach the charge upper limit value and the charge lower limit value, thereby reducing the need for power running torque and regenerative torque limitation to prevent overcharge and overdischarge.
(車輪および電力伝送アンテナの構造例)
 図18-1,図18-2は、それぞれ車輪および電力伝送アンテナの構造例を示す図である。図18-1は、電力伝送アンテナを地面に対し垂直に設けた構造例である。車両100の車輪1800は、ホイール1801にタイヤ1802が装着されてなる。ホイール1801内部には、モータ(インナーモータ)Mが設けられる。
(Example of wheel and power transmission antenna structure)
18A and 18B are diagrams illustrating structural examples of the wheel and the power transmission antenna, respectively. FIG. 18A is a structural example in which the power transmission antenna is provided perpendicular to the ground. A wheel 1800 of the vehicle 100 is formed by attaching a tire 1802 to a wheel 1801. A motor (inner motor) M is provided inside the wheel 1801.
 ホイール1801と、車両100との間には、サスペンション1803が上下に設けられ、路面の凹凸による車輪1800(タイヤ1802)の上下ストロークをサスペンション1803が吸収する。 Suspension 1803 is provided between the wheel 1801 and the vehicle 100, and the suspension 1803 absorbs the vertical stroke of the wheel 1800 (tire 1802) due to road surface unevenness.
 そして、車輪1800側には、上述したインバータ203と、第2バッテリ212と、電力伝送アンテナ123と、受信回路(AC-DC変換部201,双方向チョッパ202を含む)1810が設けられる。車両100側には、電力伝送アンテナ123と対向するように電力伝送アンテナ122と送信回路(DC-AC変換部121を含む)1811が設けられる。これら一対の電力伝送アンテナ122,123の面は、地面に対し垂直に設けられている。 Further, on the wheel 1800 side, the inverter 203, the second battery 212, the power transmission antenna 123, and the receiving circuit (including the AC-DC converter 201 and the bidirectional chopper 202) 1810 are provided. On the vehicle 100 side, a power transmission antenna 122 and a transmission circuit (including a DC-AC conversion unit 121) 1811 are provided so as to face the power transmission antenna 123. The surfaces of the pair of power transmission antennas 122 and 123 are provided perpendicular to the ground.
 上記構成において、路面の凹凸による車輪1800の上下ストロークが大きいと、一対の電力伝送アンテナ122,123の中心がずれ、無線による電力伝送の効率が低下する。このため、車輪1800の上下ストローク量を検出し、後述するように、車輪1800の上下ストローク量に応じて電力伝送アンテナ122を上下方向に移動させ、中心のずれをなくす。 In the above configuration, when the vertical stroke of the wheel 1800 due to road surface unevenness is large, the center of the pair of power transmission antennas 122 and 123 is shifted, and the efficiency of wireless power transmission is reduced. For this reason, the vertical stroke amount of the wheel 1800 is detected, and the power transmission antenna 122 is moved in the vertical direction according to the vertical stroke amount of the wheel 1800, as will be described later, to eliminate the center deviation.
 図18-2は、電力伝送アンテナを地面に対し水平に設けた構造例である。図示の例では、車輪1800の上部位置に地面に対し水平に一対の電力伝送アンテナ122,123を設けている。この図に示す例では、車輪1800が上下にストローク動作しても、一対の電力伝送アンテナ122,123間は、中心のずれは生じないが、電力伝送アンテナ122, 123間の距離が変化するため、無線による電力伝送効率が変化する。 Fig. 18-2 shows a structural example in which the power transmission antenna is provided horizontally with respect to the ground. In the example shown in the figure, a pair of power transmission antennas 122 and 123 are provided horizontally above the ground at the upper position of the wheel 1800. In the example shown in this figure, even if the wheel 1800 is moved up and down, the center does not shift between the pair of power transmission antennas 122 and 123, but the distance between the power transmission antenna 122 and the rod 123 changes. The wireless power transmission efficiency changes.
 このため、この実施の形態では、車輪1800の上下ストローク量に対応して一対の電力伝送アンテナ122,123のうち一方(たとえば、車両100側の電力伝送アンテナ122)を同方向(上下)に移動させることにより、伝送効率がよい状態を保ち電力伝送を行うようにする。 For this reason, in this embodiment, one of the pair of power transmission antennas 122 and 123 (for example, the power transmission antenna 122 on the vehicle 100 side) is moved in the same direction (up and down) corresponding to the vertical stroke amount of the wheel 1800. By doing so, power transmission is performed while maintaining a state of good transmission efficiency.
 図19-1,図19-2は、それぞれ電力伝送アンテナの移動構造例を示す図である。図19-1は、図18-1に示した電力伝送アンテナを地面に対し垂直に設けた構造例において、電力伝送アンテナ122を上下方向に移動自在にする構造を示している。この図に示すように、電力伝送アンテナ122は、アクチュエータ(あるいはサーボモータやステッピングモータ等のモータ)1901により上下移動可能である。また、一対の電力伝送アンテナ122,123には、相互のずれの位置を検出するための位置検出器1902が設けられている。 FIGS. 19A and 19B are diagrams illustrating examples of the moving structure of the power transmission antenna. FIG. 19A illustrates a structure in which the power transmission antenna 122 is movable in the vertical direction in the structural example in which the power transmission antenna illustrated in FIG. 18A is provided perpendicular to the ground. As shown in this figure, the power transmission antenna 122 can be moved up and down by an actuator (or a motor such as a servo motor or a stepping motor) 1901. The pair of power transmission antennas 122 and 123 is provided with a position detector 1902 for detecting the position of mutual displacement.
 位置検出器1902は、たとえば、車輪1800側にLEDやレーザ等の発光部1902aを設け、車両100側に発光部1902aの光を受光する受光部1902bを設けて構成する。これにより、一対の電力伝送アンテナ122, 123の相互のずれの状態を検出できる。あるいは、距離センサを設けて地面までの距離を測定し、一対の電力伝送アンテナ122, 123の相互のずれの状態を検出する構成とする。 The position detector 1902 includes, for example, a light emitting unit 1902a such as an LED or a laser on the wheel 1800 side, and a light receiving unit 1902b that receives light from the light emitting unit 1902a on the vehicle 100 side. Thereby, the mutual shift | offset | difference state of a pair of electric power transmission antennas 122 and 122 can be detected. Or it is set as the structure which measures the distance to the ground by providing a distance sensor, and detects the mutual shift | offset | difference state of a pair of electric power transmission antennas 122 and 123.
 図19-2は、図18-2に示した電力伝送アンテナを地面に対し水平に設けた構造例において、電力伝送アンテナ122を上下方向に移動自在にする構造を示している。この構造例では、電力伝送アンテナ122は、アクチュエータ1901により上下移動可能とする。また、一対の電力伝送アンテナ122,123には、相互のずれの位置を検出するための位置検出器1902を設ける。 FIG. 19-2 shows a structure in which the power transmission antenna 122 is movable in the vertical direction in the structural example in which the power transmission antenna shown in FIG. 18-2 is provided horizontally with respect to the ground. In this structural example, the power transmission antenna 122 can be moved up and down by an actuator 1901. The pair of power transmission antennas 122 and 123 is provided with a position detector 1902 for detecting the position of mutual displacement.
 位置検出器1902は、たとえば、距離センサを用いて一対の電力伝送アンテナ122,123間の上下方向のずれを検出する構成とする。 The position detector 1902 is configured to detect a vertical shift between the pair of power transmission antennas 122 and 123 using a distance sensor, for example.
 そして、位置検出器1902は、たとえば、車輪1800側にLEDやレーザ等の発光部1902aを設け、車両100側に発光部1902aの光を受光する受光部1902bを設けて構成する。これにより、一対の電力伝送アンテナ122,123の相互のずれの状態を検出できる。 The position detector 1902 is configured by providing a light emitting unit 1902a such as an LED or a laser on the wheel 1800 side and a light receiving unit 1902b for receiving the light of the light emitting unit 1902a on the vehicle 100 side, for example. Thereby, the mutual shift | offset | difference state of a pair of electric power transmission antennas 122 and 123 is detectable.
(アンテナ位置制御の構成例)
 図20は、位置検出器を用いた場合のアンテナ位置制御の構成を示すブロック図である。このアンテナ位置制御にかかる構成は、コントローラ101の残量制御部221の一機能として設けられる。そして、この構成例1では、位置検出器1902として距離センサを用い、この距離センサを車両100側に配置し、車輪1800側の電力伝送アンテナ123との間の距離を測定する。
(Configuration example of antenna position control)
FIG. 20 is a block diagram showing a configuration of antenna position control when a position detector is used. The configuration relating to the antenna position control is provided as one function of the remaining amount control unit 221 of the controller 101. And in this structural example 1, a distance sensor is used as the position detector 1902, this distance sensor is arrange | positioned at the vehicle 100 side, and the distance between the electric power transmission antenna 123 by the wheel 1800 side is measured.
 アンテナ位置制御部2001は、平地での停止時等、当初(たとえば基準の上下ストローク位置)に対応した位置指令に対し、車両100の走行時における路面の凹凸に起因する偏差が位置検出器(距離センサ)1902から入力される。制御演算部2002は、この偏差分を検出し、駆動回路2003を介してアクチュエータ(あるいはサーボモータ等)1901を動作させる。この際、アクチュエータ1901の動作方向は、一対の電力伝送アンテナ122,123の中心のずれを解消する方向であり、たとえば、車輪1800が上方向にストローク動作したときには、アクチュエータ1901を同じ上方向に移動させる。 The antenna position control unit 2001 has a position detector (distance caused by unevenness of the road surface when the vehicle 100 is running with respect to a position command corresponding to the initial position (for example, a reference vertical stroke position) such as when stopping on a flat ground. Sensor) 1902. The control calculation unit 2002 detects this deviation and operates an actuator (or servo motor or the like) 1901 via the drive circuit 2003. At this time, the operation direction of the actuator 1901 is a direction in which the deviation of the center between the pair of power transmission antennas 122 and 123 is eliminated. For example, when the wheel 1800 performs a stroke operation in the upward direction, the actuator 1901 moves in the same upward direction. Let
 この結果、位置検出器1902では、偏差(中心のずれ)を少なくできたことを検出できるようになり、常に偏差が0となった位置でアクチュエータ1901を保持させることができるようになる。このように、フィードバックループにより、常に、一対の電力伝送アンテナ122,123を同じ中心位置となるよう制御することができ、電力の伝送効率を常に良好な状態に保つことができるようになる。 As a result, the position detector 1902 can detect that the deviation (center deviation) has been reduced, and the actuator 1901 can be held at a position where the deviation is always zero. In this way, the feedback loop can always control the pair of power transmission antennas 122 and 123 to be at the same center position, and the power transmission efficiency can always be kept in a good state.
 図21は、図20に示したアンテナ位置制御部の回路構成を示すブロック図である。図20に示したアンテナ位置制御部2001の制御演算部2002は、コントローラ101の一機能を用いることができる。位置検出器(距離センサ)1902の出力をコントローラ(CPU)101で取り込み、アクチュエータ1901近傍に設けた駆動回路2003により駆動信号を生成して、アクチュエータ(M)1901を駆動し、電力伝送アンテナ122を移動させる。 FIG. 21 is a block diagram showing a circuit configuration of the antenna position control unit shown in FIG. The control calculation unit 2002 of the antenna position control unit 2001 illustrated in FIG. 20 can use one function of the controller 101. The output of the position detector (distance sensor) 1902 is captured by the controller (CPU) 101, a drive signal is generated by a drive circuit 2003 provided near the actuator 1901, the actuator (M) 1901 is driven, and the power transmission antenna 122 is connected. Move.
 位置検出器1902としては、他に光検出センサを用い、この光検出センサにより一対の電力伝送アンテナ122,123間の位置ずれを検出する構成とすることもできる。また、車両100にアクティブサスペンションシステムが搭載されている場合、路面の凹凸や車体の動きをセンサで検出し、コントローラ101が各車輪のダンパーを制御して車両100の路面変化の振動を吸収でき、コーナリングの安定性を得ることができるようになっている。上述した位置検出器は、アクティブサスペンションシステムに用いられているセンサを利用することもできる。 As the position detector 1902, another light detection sensor may be used, and a position shift between the pair of power transmission antennas 122 and 123 may be detected by the light detection sensor. In addition, when the active suspension system is mounted on the vehicle 100, road surface unevenness and vehicle body movement are detected by sensors, and the controller 101 can control the vibration of the road surface of the vehicle 100 by controlling the damper of each wheel, The cornering stability can be obtained. The position detector described above can also use a sensor used in an active suspension system.
(電力伝送制御予測について)
 つぎに、上記無線による電力伝送の構成を用い、車両100の走行計画に基づき電力伝送制御を予測する構成について説明する。車両100の走行前の状態で、車両100が目的地まで移動する際に消費する電力の推移を予測することにより、電力伝送制御を計画的、かつ効率的に行うことができるようになる。
(About power transmission control prediction)
Next, a configuration for predicting power transmission control based on a travel plan of the vehicle 100 using the above-described configuration of wireless power transmission will be described. By predicting the transition of the power consumed when the vehicle 100 moves to the destination in a state before the vehicle 100 travels, the power transmission control can be performed systematically and efficiently.
 図22は、車両と各車輪との間の電力伝送の系統を示す図である。コントローラ101は、車両100に設けられる第1バッテリ111と、各車輪1800(FR,FL,RR,RL)に設けられる第2バッテリ212(212a~212d)との間で、電力伝送アンテナ122(122a~122d)、123(123a~123d)を介しての電力伝送を制御する。このコントローラ101には、車両100に搭載されるナビゲーション装置2300が接続されている。 FIG. 22 is a diagram showing a power transmission system between the vehicle and each wheel. The controller 101 includes a power transmission antenna 122 (122a) between a first battery 111 provided in the vehicle 100 and a second battery 212 (212a to 212d) provided in each wheel 1800 (FR, FL, RR, RL). To 122d) and 123 (123a to 123d) are controlled. A navigation device 2300 mounted on the vehicle 100 is connected to the controller 101.
 このように、車両100には、第1バッテリ111だけではなく、各車輪1800ごとに複数の第2バッテリ212(212a~212d)を設けているため、1台の車両100に複数の電力供給なバッファが存在することとなる。これにより、複数の第2バッテリ212は、第1バッテリ111を介して相互に電力を供給するなど、電力伝送の自由度を増やすことができるようになる。 Thus, since the vehicle 100 is provided with not only the first battery 111 but also the plurality of second batteries 212 (212a to 212d) for each wheel 1800, a plurality of electric power supplies to one vehicle 100 is not possible. There will be a buffer. Thereby, the plurality of second batteries 212 can increase the degree of freedom of power transmission, such as supplying power to each other via the first battery 111.
 ナビゲーション装置2300は、車両100が目的地に走行する際の走行計画に基づき、走行履歴や地図情報(道路情報)を収集し、時間や距離が短い走行経路等の情報を出力する。コントローラ101は、この走行経路上の道路情報に基づき、車両100が目的地まで移動する際に消費する電力の推移を予測する。 The navigation device 2300 collects a travel history and map information (road information) based on a travel plan when the vehicle 100 travels to a destination, and outputs information such as a travel route with a short time and distance. Based on the road information on the travel route, the controller 101 predicts the transition of power consumed when the vehicle 100 moves to the destination.
 図23は、車両走行時の消費電力および回生電力の推移の例を示す図表である。図示のように、車両100の走行時には、走行経路上の道路状態(カーブや傾斜、停止発進等)に応じてモータM(M1~M4)が電力を消費する(力行パワー)。また、時期T1、T2では、停止時のブレーキ操作によってモータM(M1~M4)が電力(回生電力)を発生させる(回生パワー)。また、図示のように、時期T3に示す長時間にわたる下り坂では、回生パワーも同様に長時間にわたり継続して発生することになる。 FIG. 23 is a chart showing an example of changes in power consumption and regenerative power during vehicle travel. As shown in the figure, when the vehicle 100 travels, the motor M (M1 to M4) consumes power (powering power) according to the road conditions (curve, slope, stop / start, etc.) on the travel route. Further, at times T1 and T2, the motor M (M1 to M4) generates electric power (regenerative power) by the brake operation at the time of stop (regenerative power). Further, as shown in the figure, on the downhill for a long time indicated at time T3, the regenerative power is generated continuously for a long time as well.
 図24は、複数の第2バッテリおよびモータに対する電力伝送の概要を示す図である。第1バッテリ111と第2バッテリ212a間の電力PA、第2バッテリ212aとモータM1間の電力PB、第2バッテリ212aの容量が40Whとする。なお、第2バッテリ212aの残量B1は12Whであるとする。 FIG. 24 is a diagram showing an outline of power transmission to a plurality of second batteries and motors. The power PA between the first battery 111 and the second battery 212a, the power PB between the second battery 212a and the motor M1, and the capacity of the second battery 212a are 40 Wh. It is assumed that the remaining amount B1 of the second battery 212a is 12 Wh.
 コントローラ101は、第1バッテリ111と第2バッテリ212a間の電力PAが0kW~1kWの場合、モータM1により回生された電力をメイン(第1バッテリ111)側に戻さない制御を行い、電力PAが-1kW~1kWの場合、モータM1により回生された電力をメイン(第1バッテリ111)側に戻す制御を行う。これに対し、第2バッテリ212aとモータM1間の電力PBは、-4kW~4kWの範囲を有する。 When the power PA between the first battery 111 and the second battery 212a is 0 kW to 1 kW, the controller 101 performs control not to return the power regenerated by the motor M1 to the main (first battery 111) side. In the case of −1 kW to 1 kW, control is performed to return the electric power regenerated by the motor M1 to the main (first battery 111) side. On the other hand, the electric power PB between the second battery 212a and the motor M1 has a range of −4 kW to 4 kW.
 図25は、伝送する電力の変化状態を示す図である。図23に示した時間ごとの変化に対応した電力PA,PBを示している。(a)に示すように、第1バッテリ111と第2バッテリ212a間で伝送する電力PAの範囲は小さく、第2バッテリ212aとモータM1間で伝送する電力PBの範囲を大きく設定している。これにより、車両100と車輪1800間で伝送する電力を小さくできるため、電力伝送アンテナ122(122a~122d)、123(123a~123d)を用いた比較的小電力な無線による電力伝送が行える。 FIG. 25 is a diagram showing a change state of transmitted power. The electric power PA and PB corresponding to the change for every time shown in FIG. 23 is shown. As shown to (a), the range of electric power PA transmitted between the 1st battery 111 and the 2nd battery 212a is small, and the range of electric power PB transmitted between the 2nd battery 212a and the motor M1 is set large. As a result, the power transmitted between the vehicle 100 and the wheels 1800 can be reduced, so that relatively low-power wireless power transmission using the power transmission antennas 122 (122a to 122d) and 123 (123a to 123d) can be performed.
 (b)は電力PBと電力PAの差分の電力PCの変化を示している。この電力PCは、図24の第2バッテリ212aに充電される電力に相当する。(c)は第2バッテリ212aの残量変化を示している。第2バッテリ212aは、電力変化に対して緩衝的な役割を果たすため、第2バッテリ212aに供給する最大給電電力(1kW)を、モータM1に対して供給が必要な最大瞬時電力(4kW)より小さくすることができる。 (B) shows the change in power PC as the difference between power PB and power PA. This power PC corresponds to the power charged in the second battery 212a of FIG. (C) shows a change in the remaining amount of the second battery 212a. Since the second battery 212a plays a buffering role with respect to the power change, the maximum power supply power (1 kW) supplied to the second battery 212a is greater than the maximum instantaneous power (4 kW) that needs to be supplied to the motor M1. Can be small.
 図26は、モータの消費電力の変化状態を示す図である。マイナス側はモータM1が発生する回生電力である。図示のように、モータM1が最大瞬間電力として4kWを消費および回生する。これに対し、第2バッテリ212aがモータM1に供給する電力PBの最大供給電力は0.8~1kW程度に設定できる。 FIG. 26 is a diagram showing a change state of the power consumption of the motor. The negative side is regenerative power generated by the motor M1. As illustrated, the motor M1 consumes and regenerates 4 kW as the maximum instantaneous power. On the other hand, the maximum supply power of the power PB supplied from the second battery 212a to the motor M1 can be set to about 0.8 to 1 kW.
 図27は、モータの消費電力量および第2バッテリの蓄電残量の変化を示す図である。モータM1にそれぞれ最大供給電力(0.8~1kW)で電力を供給することにより、モータM1の消費電力量の変化に対応する電力を供給できる。 FIG. 27 is a diagram showing changes in the power consumption of the motor and the remaining amount of power stored in the second battery. By supplying power to the motor M1 with the maximum supply power (0.8 to 1 kW), it is possible to supply power corresponding to the change in the power consumption of the motor M1.
 また、図の下部には、それぞれ最大供給電力(0.8~1kW)における第2バッテリ212aの残量変化を示している。この図では、第2バッテリ212a(EC)の容量が40Whであり、初期電力量(現在値B1)が20Whであったとする。 In the lower part of the figure, the remaining amount change of the second battery 212a at the maximum supply power (0.8 to 1 kW) is shown. In this figure, it is assumed that the capacity of the second battery 212a (EC) is 40 Wh, and the initial power amount (current value B1) is 20 Wh.
 図には、時期T1,T2において信号停止等により積算の消費電力量が増加しないとき、第2バッテリ212aの充電が進むことが示されている。また、図示のように、最大供給電力が0.8~1kWと設定したとき、第2バッテリ212aの容量の範囲内に収めることができることが示されている。なお、後述する電力伝送予測により、第2バッテリ212aの残量(現在値B1)が充電上限値BUおよび充電下限値BLの範囲内となるよう伝送制御される。 The figure shows that the charging of the second battery 212a proceeds when the integrated power consumption does not increase at time T1 and T2 due to signal stoppage or the like. Further, as shown in the figure, it is shown that when the maximum supply power is set to 0.8 to 1 kW, it can be accommodated within the capacity range of the second battery 212a. Note that transmission control is performed so that the remaining amount (current value B1) of the second battery 212a falls within the range between the charging upper limit value BU and the charging lower limit value BL based on power transmission prediction described later.
(電力伝送予測の処理手順について:処理例1)
 つぎに、電力伝送予測の処理手順について説明する。図28は、電力伝送予測の全体手順を示すフローチャートである。図示の処理は、コントローラ101の給電制御手段(残量制御部)221が実行する。
(Processing procedure for power transmission prediction: Processing example 1)
Next, a processing procedure for power transmission prediction will be described. FIG. 28 is a flowchart showing an overall procedure of power transmission prediction. The illustrated process is executed by the power supply control unit (remaining amount control unit) 221 of the controller 101.
 はじめに、ナビゲーション装置2300から車両100の予定経路の道路情報等を取得し、目的地までの車両100の走行時における時間経過ごとのモータM(M1~M4)の消費電力(図27参照)、電力伝送アンテナ122,123の伝送効率、第2バッテリ212に対して給電(回生)する電力を予測する(ステップS2801)。 First, road information and the like of the planned route of the vehicle 100 is acquired from the navigation device 2300, and the power consumption (see FIG. 27) and power consumption of the motor M (M1 to M4) over time when the vehicle 100 travels to the destination. The transmission efficiency of the transmission antennas 122 and 123 and the power supplied (regenerated) to the second battery 212 are predicted (step S2801).
 そして、第2バッテリ212(212a~212d)に対して必要な電力伝送(充電電力、図27参照)の最適充電計画を作成する(ステップS2802)。ここでは、たとえば、モータMの消費電力に対応した最大供給電力(0.8~1kW)を設定する。最大供給電力はいずれかに固定するに限らず、モータM1の消費電力に応じて可変することもできる。 Then, an optimal charging plan for necessary power transmission (charging power, see FIG. 27) is created for the second battery 212 (212a to 212d) (step S2802). Here, for example, the maximum supply power (0.8 to 1 kW) corresponding to the power consumption of the motor M is set. The maximum power supply is not limited to any one, but can be varied according to the power consumption of the motor M1.
 そして、図27等に示したように、第2バッテリ212の残量(現在値B1)が充電上限値BUおよび充電下限値BLの範囲内で過充電等を防ぎ過不足なく充電するための電力伝送の制御を行う。最も簡単な例では、後述するように、第2バッテリ212に対する給電をON/OFFで切り替える。給電が必要な場合にONとし、給電が不要な場合には、OFFに切り替える。この後、車両100の通常走行を開始する(ステップS2803)。 Then, as shown in FIG. 27 and the like, the remaining battery power (current value B1) is within the range between the charging upper limit value BU and the charging lower limit value BL to prevent overcharging and the like and to charge without excess or deficiency. Control transmission. In the simplest example, as described later, power supply to the second battery 212 is switched ON / OFF. When power supply is necessary, the power is turned on. When power supply is not necessary, the power is switched off. Thereafter, normal traveling of the vehicle 100 is started (step S2803).
 図29は、予測処理の詳細な手順を示すフローチャートである。この処理は、力行時における電力伝送予測であり、図28のステップS2801の処理の詳細を示している。はじめに、ナビゲーション装置2300から車両100の予定経路を取得し、予定経路上のある距離までの区間を設定する(ステップS2901)。この後、予定経路を複数の区間に区切り各区間ごとに以下の処理を行う。 FIG. 29 is a flowchart showing a detailed procedure of the prediction process. This process is power transmission prediction at the time of power running, and shows details of the process in step S2801 of FIG. First, the planned route of the vehicle 100 is acquired from the navigation device 2300, and a section up to a certain distance on the planned route is set (step S2901). Thereafter, the planned route is divided into a plurality of sections, and the following processing is performed for each section.
 まず、ナビゲーション装置2300から、区間の道路線形(カーブ/勾配等)、走行速度(法定速度とする)、渋滞状況を取得し、これらにより車両100の時系列な速度プロファイル(時間ごとの速度の変化状態)を予測(作成)する(ステップS2902)。つぎに、消費電力予測により、速度プロファイルからモータMの消費電力プロファイルを予測(作成)する(ステップS2903)。消費電力予測は、後述する車両100の走行抵抗、効率マップ等を用いた算出により得る。 First, the road alignment (curve / gradient, etc.), travel speed (statutory speed), and traffic jam situation of the section are acquired from the navigation device 2300, and the time-series speed profile of the vehicle 100 (change in speed over time) is obtained from these. (State) is predicted (created) (step S2902). Next, a power consumption profile of the motor M is predicted (created) from the speed profile by power consumption prediction (step S2903). The power consumption prediction is obtained by calculation using a travel resistance, an efficiency map, and the like of the vehicle 100 described later.
 つぎに、区間の道路線形(カーブ/勾配等)から電力伝送アンテナ122,123間の位置ずれを推定し、伝送効率プロファイルを予測(作成)する(ステップS2904)。上述したように、車両100はカーブの通過時に車輪1800が旋回し、電力伝送アンテナ122,123間の中心がずれて伝送効率が変化する。このステップS2904の処理は、図19-1,図19-2等を用いて上述したような、電力伝送アンテナ122をアクチュエータ1901で移動させ、中心位置のずれを解消する構成とした場合、実行しないこともできる。 Next, the positional deviation between the power transmission antennas 122 and 123 is estimated from the road alignment (curve / gradient etc.) of the section, and a transmission efficiency profile is predicted (created) (step S2904). As described above, when vehicle 100 passes a curve, wheel 1800 turns, the center between power transmission antennas 122 and 123 shifts, and the transmission efficiency changes. The processing in step S2904 is not executed when the power transmission antenna 122 is moved by the actuator 1901 as described above with reference to FIGS. 19A, 19B, and the like to eliminate the deviation of the center position. You can also
 そして、第2バッテリ212の残量(現在値B1)が基準範囲(充電上限値BUおよび充電下限値BL)外になると、給電を自動的に停止/あるいは再開する伝送を行うと仮定し、上記の消費電力プロファイルと伝送効率プロファイルから蓄電残量プロファイルを予測(作成)する(ステップS2905)。 When the remaining amount (current value B1) of the second battery 212 is outside the reference range (charging upper limit value BU and charging lower limit value BL), it is assumed that transmission is performed to automatically stop / restart power feeding, and A remaining power profile is predicted (created) from the power consumption profile and the transmission efficiency profile (step S2905).
(走行抵抗、速度プロファイルについて)
 上記の走行抵抗は、下記式で表される。
 走行抵抗Fdr(t)[N]=空気抵抗+転がり抵抗+勾配抵抗+加速抵抗+内部抵抗
 =1/2・ρCDAv(t)2+μr(x)mg+mgsinθ(x)+m(dv(t)/dt)+Ri
 (Fd:駆動力、ρ:空気密度、CD:CD値、A:前面投影面積、μr:転がり抵抗係数、m:車重、g:重力加速度、Ri:内部抵抗)
なお、内部抵抗とは、駆動系の機械損失を含む、空気抵抗、転がり抵抗、勾配抵抗、加速抵抗以外の抵抗成分のことであり、ここでは既知のものであると仮定している。
(About running resistance and speed profile)
The running resistance is represented by the following formula.
Travel resistance Fdr (t) [N] = air resistance + rolling resistance + gradient resistance + acceleration resistance + internal resistance = 1/2 · ρC D Av (t) 2 + μr (x) mg + mgsinθ (x) + m (dv (t) / Dt) + Ri
(Fd: driving force, [rho: air density, C D: C D value, A: front projected area, .mu.r: rolling resistance coefficient, m: vehicle weight, g: gravitational acceleration, Ri: Internal resistance)
The internal resistance is a resistance component other than air resistance, rolling resistance, gradient resistance, and acceleration resistance, including mechanical loss of the drive system, and is assumed to be a known one here.
 図30は、勾配角および転がり抵抗係数の変化状態の例を示す図である。(a)は時間ごとの勾配角の変化を示し、車両100の登坂時および降坂時にそれぞれ勾配抵抗が変化する。(b)は転がり抵抗係数の変化を示し、車輪1800のタイヤが走行時に受ける抵抗が変化する。タイヤ空気圧変化や路面状態変化等により生じる。 FIG. 30 is a diagram illustrating an example of a change state of the gradient angle and the rolling resistance coefficient. (A) shows the change of the gradient angle for every time, and gradient resistance changes when the vehicle 100 is climbing up and down. (B) shows the change of the rolling resistance coefficient, and the resistance that the tire of the wheel 1800 receives during running changes. It occurs due to changes in tire air pressure or road surface conditions.
 予定経路の走行距離x(t)[m]は、上記の速度プロファイルv(t)[m/s]から、 The travel distance x (t) [m] of the planned route is calculated from the above speed profile v (t) [m / s]
Figure JPOXMLDOC01-appb-M000001
で示される。
Figure JPOXMLDOC01-appb-M000001
Indicated by
 上記の消費電力プロファイル[W]は、Pc(t)=(Fdr(t)・v(t))/(ηm(T(t),ω(t))で示される。 The above power consumption profile [W] is represented by Pc (t) = (Fdr (t) · v (t)) / (ηm (T (t), ω (t)).
 ω(t)は、車輪1800の角速度[rad/s]であり、
 ω(t)=v(t)/r
で示される。
 トルクT[N]は、
 T(t)=J・((dω(t))/dt)+r・Fdr(t)
で示される。
 (J:車輪イナーシャ、r:タイヤ半径)
ω (t) is the angular velocity [rad / s] of the wheel 1800,
ω (t) = v (t) / r
Indicated by
Torque T [N] is
T (t) = J · ((dω (t)) / dt) + r · Fdr (t)
Indicated by
(J: Wheel inertia, r: Tire radius)
 ηm(T,ω)は、上記の効率マップ1400のトルクTに対応した効率ηである。 Ηm (T, ω) is an efficiency η corresponding to the torque T in the efficiency map 1400 described above.
(伝送効率の変化について)
 上記の図18-1および図18-2で説明したように、車両100は、カーブ走行時にはハンドル操作により車輪1800が旋回し、一対の電力伝送アンテナ122,123の中心にずれが生じ、伝送効率が変化する。以下の説明では、電力伝送アンテナ122,123の位置が固定された構成におけるアンテナ位置ずれについて説明する(なお、図19-1等に示したように電力伝送アンテナ122が可動とされ、位置ずれを低減させる構成においても、位置ずれを完全になくすことはできないため、同様に適用することもできる)。
(About changes in transmission efficiency)
As described above with reference to FIGS. 18A and 18B, when the vehicle 100 is traveling on a curve, the wheel 1800 is turned by a steering wheel operation, and the center of the pair of power transmission antennas 122 and 123 is displaced, resulting in transmission efficiency Changes. In the following description, the antenna position deviation in the configuration in which the positions of the power transmission antennas 122 and 123 are fixed will be described (note that the power transmission antenna 122 is movable as shown in FIG. Even in the configuration to be reduced, since the positional deviation cannot be completely eliminated, it can be similarly applied).
 図31は、旋回時の電力伝送アンテナの伝送効率の変化を示す図表である。一対の電力伝送アンテナ122,123間での伝送効率ηtは図示のように、0中心(車両100の向きと車輪1800の向きが一致)のとき最大となる。そして、車両100が曲率半径Rのカーブを通過する際、ハンドル(ステアリング)角δを有して旋回したとき、このステアリング角δが大きいほど伝送効率ηtが低下する。これは図18-1および図18-2に示した垂直型、水平型のいずれにおいても生じる。 FIG. 31 is a chart showing a change in transmission efficiency of the power transmission antenna during turning. As shown in the figure, the transmission efficiency ηt between the pair of power transmission antennas 122 and 123 becomes maximum when the center is 0 (the direction of the vehicle 100 coincides with the direction of the wheels 1800). When the vehicle 100 passes a curve with a radius of curvature R and turns with a steering wheel (steering) angle δ, the transmission efficiency ηt decreases as the steering angle δ increases. This occurs in both the vertical type and the horizontal type shown in FIGS. 18-1 and 18-2.
 図32は、車輪の上下ストローク量を説明する図である。(a)に示すように車両100が勾配角θで登坂するとき、車両100に対して車輪1800が上下に移動し、平地走行と比較して、前輪サスペンションは伸び、後輪サスペンションは縮むため、それぞれ上下ストローク量ξが変化する。また、(b)に示すように道路の凹凸を通過するときにおいても、上下ストローク量実効値ξrmsが生じる。上下ストローク量ξや上下ストローク量実効値ξrmsが多くなるほど図31とほぼ同様の特性を有して、伝送効率ηtが低下する。 FIG. 32 is a diagram for explaining the vertical stroke amount of the wheel. When the vehicle 100 ascends at a gradient angle θ as shown in (a), the wheels 1800 move up and down with respect to the vehicle 100, and the front wheel suspension is extended and the rear wheel suspension is contracted compared to traveling on flat ground. The vertical stroke amount ξ varies. Further, as shown in (b), the vertical stroke amount effective value ξrms is also generated when passing through the road unevenness. As the vertical stroke amount ξ and the vertical stroke amount effective value ξrms increase, the transmission efficiency ηt decreases with substantially the same characteristics as in FIG.
 図33は、道路状態別の変位量を示す図表である。(a)に示すように、直線道路を走行中には、ステアリング角δは0となるが、カーブ走行中には曲率半径Rに応じてステアリング角δが大きくなる。(b)に示すように、登坂中あるいは降坂中においては、勾配θに応じて上下ストローク量ξが大きくなる。(c)に示すように、道路の凹凸が少ない場所では上下ストローク量実効値ξrmsが少なく、凹凸が多い場所を通過するときには凹凸に対応した上下ストローク量ξが生じる。 FIG. 33 is a chart showing the amount of displacement by road condition. As shown in (a), the steering angle δ becomes 0 during traveling on a straight road, but the steering angle δ increases according to the curvature radius R during traveling on a curve. As shown in (b), during uphill or downhill, the vertical stroke amount ξ increases according to the gradient θ. As shown in (c), the vertical stroke amount effective value ξrms is small in a place where there is little unevenness on the road, and the vertical stroke amount ξ corresponding to the unevenness occurs when passing through a place where there are many unevennesses.
(伝送効率プロファイルについて)
 伝送効率プロファイルη(t)は、下記式のように、ステアリング角と上下ストローク量により示される。
(About transmission efficiency profile)
The transmission efficiency profile η (t) is represented by the steering angle and the vertical stroke amount as in the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
(蓄電残量プロファイルについて)
 蓄電残量プロファイルは下記式のように、時間経過ごとに、第2バッテリ212に対する供給電力の累積量からモータM等による消費電力PBの累積量を引くことで得られる。PAは供給電力[W]であり、ここでは定数としている。
(About the remaining charge profile)
The remaining power storage profile is obtained by subtracting the cumulative amount of power PB consumed by the motor M or the like from the cumulative amount of power supplied to the second battery 212 as time passes, as in the following equation. PA is the supplied power [W], and is a constant here.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図34は、第2バッテリの残量の変化状態を示す図表である。上記の蓄電残量プロファイルが示す、時間経過ごとの第2バッテリ212(EC)の容量の予測値の推移を示している。 FIG. 34 is a chart showing a change state of the remaining amount of the second battery. The transition of the predicted value of the capacity of the second battery 212 (EC) with the passage of time indicated by the above-described remaining power storage profile is shown.
 図35は、最適充電計画の処理内容の概要を示すフローチャートである。上記ステップS2802の処理内容を記載してある。この処理は上述したように、コントローラ101(給電制御手段(残量制御部)221)が行う。この処理では、第2バッテリ212の蓄電残量(現在値B1)が基準範囲内に収まるように最適充電計画を作成し(ステップS3501)、車両100の走行開始時に、この最適充電計画に基づいた無線充電を開始する(ステップS3502)。この基準範囲は、たとえば、上述した充電上限値BUと充電下限値BL(図5,図16参照)を設定できる。 FIG. 35 is a flowchart showing an outline of the processing contents of the optimum charging plan. The processing content of step S2802 is described. As described above, this process is performed by the controller 101 (power supply control means (remaining amount control unit) 221). In this process, an optimal charging plan is created so that the remaining power storage amount (current value B1) of the second battery 212 is within the reference range (step S3501), and based on this optimal charging plan when the vehicle 100 starts to travel. Wireless charging is started (step S3502). For this reference range, for example, the above-described charge upper limit BU and charge lower limit BL (see FIGS. 5 and 16) can be set.
 つぎに、ステップS3502に示した最適充電計画の詳細について説明する。ここでは、第2バッテリ212のマージンを5%とし充電上限値BUを最大容量ECmaxの95%、充電下限値BLを5%に設定したとする。そして、第2バッテリ212の残量がこの充電上限値BUに対応して設定された無線放電実施判断値BJ+(たとえば90%)を超えると予測された時期に無線充電をOFFにする計画を作成する。なお、充電下限値BLに対応して無線充電実施判断値BJ-(たとえば10%)についても設定しておく。 Next, details of the optimum charging plan shown in step S3502 will be described. Here, it is assumed that the margin of the second battery 212 is 5%, the charging upper limit value BU is set to 95% of the maximum capacity ECmax, and the charging lower limit value BL is set to 5%. Then, a plan for turning off wireless charging at a time when the remaining amount of the second battery 212 is predicted to exceed the wireless discharge execution determination value BJ + (for example, 90%) set in correspondence with the charging upper limit value BU is created. To do. A wireless charging execution determination value BJ− (for example, 10%) is also set corresponding to the charging lower limit value BL.
 たとえば、ある時期t0に残量EC(t)(上記の現在値B1)が90%に達するとする。EC(t0)=0.9ECmax
 このとき、第2バッテリ212の残量が予測値よりも、たとえば20%だけ下回るようにしておく計画であるとすると、コントローラ101(給電制御手段221)は、この容量20%に相当する分だけ、無線充電をOFFにする休止期間Tを下記式に基づき求める。
For example, it is assumed that the remaining amount EC (t) (the above current value B1) reaches 90% at a certain time t0. EC (t0) = 0.9ECmax
At this time, assuming that the remaining amount of the second battery 212 is planned to be lower by, for example, 20% than the predicted value, the controller 101 (power supply control means 221) has an amount corresponding to the capacity of 20%. The suspension period T during which wireless charging is turned off is obtained based on the following equation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図36は、残量と充電上限値の関係を示す図表、図37は、無線充電のOFF期間を説明する図表である。図36の(a)に示すように、第2バッテリ212の残量がこの充電上限値BUを超えると予測された時期t0が生じたとする。この場合、図37の(a)に示すように、時期t0を基準に遡り、休止期間Tを設定する。そして、図37の(b)に示すように、この休止期間Tだけ第2バッテリに対する無線充電をOFFにする。これにより、図36の(b)に示すように、時期t0では少なくとも充電上限値BUを超えた過充電の状態となることを防ぐことができるようになる。この図の例では、時期t0の残量は70%にすることができる。 FIG. 36 is a chart showing the relationship between the remaining amount and the charging upper limit value, and FIG. 37 is a chart explaining the wireless charging OFF period. As shown in (a) of FIG. 36, it is assumed that a time t0 when the remaining amount of the second battery 212 is predicted to exceed the charging upper limit value BU has occurred. In this case, as shown in (a) of FIG. 37, the rest period T is set retroactively based on the time t0. Then, as shown in (b) of FIG. 37, the wireless charging for the second battery is turned off only during the suspension period T. As a result, as shown in FIG. 36B, it is possible to prevent an overcharge state exceeding at least the charge upper limit value BU at the time t0. In the example of this figure, the remaining amount at time t0 can be 70%.
(最適充電計画にしたがった給電制御処理)
 以下の説明では、処理例1により作成された最適充電計画にしたがった給電制御処理の処理内容について説明する。図38は、給電制御の処理内容を示すフローチャートである。コントローラ101(給電制御手段221)は、はじめに通常走行モードで起動し、電源ONで走行可能な状態のとき(ステップS3801:No)、以下の処理を実行する。電源OFFの場合には(ステップS3801:Yes)、処理を終了する。
(Power supply control processing according to the optimal charging plan)
In the following description, the processing content of the power supply control process according to the optimum charging plan created by the processing example 1 will be described. FIG. 38 is a flowchart showing the processing content of power supply control. The controller 101 (power supply control means 221) first starts in the normal travel mode, and executes the following processing when it is in a state where it can travel with the power ON (step S3801: No). If the power is off (step S3801: YES), the process is terminated.
 つぎに、第2バッテリ212(212a~212d)それぞれの残量(現在値B1)を検出する(ステップS3802)。たとえば、残量は現在の電圧V(V1~V4)に基づき検出できる。つぎに、あるモータM(M1~M4のいずれか)の第2バッテリ212(212a~212dのいずれか)の残量が無線放電実施判断値BJ+(図16参照)以上であるか判断する(ステップS3803)。いずれかの第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+以上の場合には(ステップS3803:Yes)、無線充電中であるか判断する(ステップS3804)。 Next, the remaining amount (current value B1) of each of the second batteries 212 (212a to 212d) is detected (step S3802). For example, the remaining amount can be detected based on the current voltage V (V1 to V4). Next, it is determined whether the remaining amount of the second battery 212 (any one of 212a to 212d) of a certain motor M (any one of M1 to M4) is equal to or greater than the wireless discharge execution judgment value BJ + (see FIG. 16) (step). S3803). If the remaining amount of any of the second batteries 212 (212a to 212d) is equal to or greater than the wireless discharge execution determination value BJ + (step S3803: Yes), it is determined whether wireless charging is in progress (step S3804).
 無線充電中であれば(ステップS3804:Yes)、通常モードから第2バッテリ212(212a~212d)に対する過充電を回避する最適配分モードに切り替え、この最適配分モードによる処理を実行する(ステップS3805)。無線充電中でなければ(ステップS3804:No)、無線充電を停止し(ステップS3806)、ステップS3802に戻る。 If wireless charging is in progress (step S3804: YES), the normal mode is switched to the optimal distribution mode that avoids overcharging of the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S3805). . If wireless charging is not in progress (step S3804: NO), wireless charging is stopped (step S3806), and the process returns to step S3802.
 また、ステップS3803において、いずれかの第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+未満の場合には(ステップS3803:No)、つぎに、この第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下であるか判断する(ステップS3807)。いずれかの第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下でなければ(ステップS3807:No)、無線充電を継続し(ステップS3808)、ステップS3802に戻る。 In step S3803, if the remaining amount of any of the second batteries 212 (212a to 212d) is less than the wireless discharge execution determination value BJ + (step S3803: No), the second battery 212 (212a) To 212d) is determined whether it is less than or equal to the wireless charging execution determination value BJ− (step S3807). If the remaining amount of any of the second batteries 212 (212a to 212d) is not less than or equal to the wireless charging execution determination value BJ− (step S3807: No), the wireless charging is continued (step S3808), and the process returns to step S3802.
 一方、いずれかの第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下であれば(ステップS3807:Yes)、無線充電中であるか判断する(ステップS3809)。 On the other hand, if the remaining amount of any of the second batteries 212 (212a to 212d) is equal to or less than the wireless charging execution determination value BJ− (step S3807: Yes), it is determined whether wireless charging is being performed (step S3809).
 無線充電中であれば(ステップS3809:Yes)、通常モードから第2バッテリ212(212a~212d)に対する過放電を回避する最適配分モードに切り替え、この最適配分モードによる処理を実行する(ステップS3810)。無線充電中でなければ(ステップS3809:No)、無線充電を再開し(ステップS3811)、ステップS3802に戻る。 If wireless charging is in progress (step S3809: YES), the normal mode is switched to the optimal distribution mode that avoids overdischarge to the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S3810). . If wireless charging is not in progress (step S3809: NO), wireless charging is resumed (step S3811), and the process returns to step S3802.
 図39は、過充電回避の最適配分モードの処理内容を示すフローチャートである。図38のステップS3805の詳細な処理内容を示す。はじめに、車両100から駆動力あるいは制動力の指令を受信する(ステップS3901)。たとえば、駆動力の指令はアクセルペダル103の操作によりコントローラ101へ入力される全トルク指令値であり、制動力の指令はブレーキペダル104の操作により入力されるブレーキ量である。 FIG. 39 is a flowchart showing the processing contents of the optimum distribution mode for avoiding overcharge. The detailed processing content of step S3805 of FIG. 38 is shown. First, a command for driving force or braking force is received from the vehicle 100 (step S3901). For example, the driving force command is the total torque command value input to the controller 101 by operating the accelerator pedal 103, and the braking force command is the brake amount input by operating the brake pedal 104.
 車両100から駆動力の指令を受信したときには(ステップS3902:駆動力)、全駆動力(全トルク値)は固定のまま、車両100の前後の車輪1800に対する駆動力配分を最適化する(ステップS3903)。過充電となる車輪1800のトルク配分値を他の車輪1800の配分値より高くする。一方、車両100から制動力の指令を受信したときには(ステップS3902:制動力)、全駆動力(全トルク値)は固定のまま、車両100の前後の車輪1800に対する制動力配分を最適化する(ステップS3904)。過充電となる車輪1800のトルク配分値を他の車輪1800の配分値より低くする。これら駆動力および制動力の配分は、コントローラ101の駆動制御手段(トルク制御部)222が行うトルク再配分に相当する(図14等参照)。 When a driving force command is received from the vehicle 100 (step S3902: driving force), the driving force distribution to the front and rear wheels 1800 of the vehicle 100 is optimized while the total driving force (total torque value) remains fixed (step S3903). ). The torque distribution value of the wheel 1800 that is overcharged is made higher than the distribution values of the other wheels 1800. On the other hand, when a braking force command is received from the vehicle 100 (step S3902: braking force), the braking force distribution to the front and rear wheels 1800 of the vehicle 100 is optimized while the total driving force (total torque value) remains fixed ( Step S3904). The torque distribution value of the wheel 1800 that is overcharged is made lower than the distribution values of the other wheels 1800. The distribution of the driving force and the braking force corresponds to the torque redistribution performed by the drive control means (torque control unit) 222 of the controller 101 (see FIG. 14 and the like).
 ステップS3903,あるいはステップS3904の実行後、コントローラ101の給電制御手段221は、再度、第2バッテリ212(212a~212d)の残量を検出する(ステップS3905)。そして、各モータM(M1~M4)の第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+以上であるか判断する(ステップS3906)。全ての第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+以下の場合には(ステップS3906:Yes)、通常走行モード(図38)に戻るが、いずれかの第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+を超えている場合には(ステップS3906:No)、ステップS3902に戻る。 After step S3903 or step S3904 is executed, the power supply control unit 221 of the controller 101 detects the remaining amount of the second battery 212 (212a to 212d) again (step S3905). Then, it is determined whether the remaining amount of the second battery 212 (212a to 212d) of each motor M (M1 to M4) is equal to or greater than the wireless discharge execution determination value BJ + (step S3906). When the remaining amount of all the second batteries 212 (212a to 212d) is equal to or less than the wireless discharge execution determination value BJ + (step S3906: Yes), the normal driving mode (FIG. 38) is returned, but any of the second batteries If the remaining amount 212 (212a to 212d) exceeds the wireless discharge execution determination value BJ + (step S3906: NO), the process returns to step S3902.
 図40は、過放電回避の最適配分モードの処理内容を示すフローチャートである。図38のステップS3810の詳細な処理内容を示す。はじめに、車両100から駆動力あるいは制動力の指令を受信する(ステップS4001)。 FIG. 40 is a flowchart showing the processing contents of the optimal distribution mode for avoiding overdischarge. The detailed processing content of step S3810 of FIG. 38 is shown. First, a command for driving force or braking force is received from the vehicle 100 (step S4001).
 車両100から駆動力の指令を受信したときには(ステップS4002:駆動力)、全駆動力(全トルク値)は固定のまま、車両100の前後の車輪1800に対する駆動力配分を最適化する(ステップS4003)。過放電となる車輪1800のトルク配分値を他の車輪1800の配分値より低くする。一方、車両100から制動力の指令を受信したときには(ステップS4002:制動力)、全駆動力(全トルク値)は固定のまま、車両100の前後の車輪1800に対する制動力配分を最適化する(ステップS4004)。過放電となる車輪1800のトルク配分値を他の車輪1800の配分値より高くする。 When a driving force command is received from the vehicle 100 (step S4002: driving force), the driving force distribution to the front and rear wheels 1800 of the vehicle 100 is optimized while the total driving force (total torque value) remains fixed (step S4003). ). The torque distribution value of the wheel 1800 that causes overdischarge is set lower than the distribution values of the other wheels 1800. On the other hand, when a braking force command is received from the vehicle 100 (step S4002: braking force), the braking force distribution to the front and rear wheels 1800 of the vehicle 100 is optimized while the total driving force (total torque value) remains fixed (step S4002: braking force). Step S4004). The torque distribution value of the wheel 1800 that causes overdischarge is set higher than the distribution values of the other wheels 1800.
 ステップS4003,あるいはステップS4004の実行後、コントローラ101の給電制御手段221は、再度、第2バッテリ212(212a~212d)の残量を検出する(ステップS4005)。そして、各モータM(M1~M4)の第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以上であるか判断する(ステップS4006)。全ての第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以上の場合には(ステップS4006:Yes)、通常走行モード(図38)に戻るが、いずれかの第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-未満であれば(ステップS4006:No)、ステップS4002に戻る。 After step S4003 or step S4004 is executed, the power supply control means 221 of the controller 101 detects the remaining amount of the second battery 212 (212a to 212d) again (step S4005). Then, it is determined whether the remaining amount of the second battery 212 (212a to 212d) of each motor M (M1 to M4) is equal to or greater than the wireless charging execution determination value BJ− (step S4006). When the remaining amount of all the second batteries 212 (212a to 212d) is equal to or higher than the wireless charging execution determination value BJ- (step S4006: Yes), the process returns to the normal travel mode (FIG. 38). If the remaining amount of the battery 212 (212a to 212d) is less than the wireless charging execution determination value BJ− (step S4006: No), the process returns to step S4002.
 上記の処理によれば、車両の予定経路の情報を収集し、消費電力を予測することにより、目的地に至るまで第2バッテリに対する無線充電を効率的に行える電力伝送の計画を最適化することができるようになる。また、複数の第2バッテリのいずれも過充電および過放電を防止できる。 According to the above processing, by collecting information on the planned route of the vehicle and predicting power consumption, the power transmission plan capable of efficiently performing wireless charging of the second battery up to the destination is optimized. Will be able to. In addition, any of the plurality of second batteries can prevent overcharge and overdischarge.
(電力伝送予測の処理手順について:処理例2)
 つぎに、力行時および回生時の電力伝送予測の処理手順について説明する。この電力伝送予測処理においても、基本処理は、図28に示したと同様である。図41は、予測処理の詳細な手順を示すフローチャートである。この処理は、力行時および回生時における電力伝送予測であり、図28のステップS2801の処理の詳細を示している。
(Processing procedure for power transmission prediction: Processing example 2)
Next, the power transmission prediction processing procedure during power running and regeneration will be described. In this power transmission prediction process, the basic process is the same as that shown in FIG. FIG. 41 is a flowchart showing a detailed procedure of the prediction process. This process is power transmission prediction during power running and regeneration, and shows details of the process in step S2801 of FIG.
 この場合の電力伝送の系統は、図2と同様の構成とし、車両100(第1バッテリ111)から車輪1800(第2バッテリ212)側に無線充電を行う場合と、車輪1800(第2バッテリ212)から車両100(第1バッテリ111)側に無線放電を行う場合とを切り替えて伝送できる。 The power transmission system in this case has the same configuration as that in FIG. 2, and wireless charging is performed from the vehicle 100 (first battery 111) to the wheel 1800 (second battery 212) side, and the wheel 1800 (second battery 212). ) To the vehicle 100 (first battery 111) side, the case where wireless discharge is performed can be switched and transmitted.
 電力伝送の系統はこれに限らず、電源ラインL1~L4の各系統に設ける電力伝送アンテナ122,123について、無線充電側専用の系統と、無線放電側専用の系統とを電源ラインL1~L4にそれぞれ独立して設ける構成にもできる。 The power transmission system is not limited to this, and for the power transmission antennas 122 and 123 provided in each system of the power supply lines L1 to L4, a system dedicated to the wireless charging side and a system dedicated to the wireless discharging side are connected to the power supply lines L1 to L4. Each can be provided independently.
 はじめに、ナビゲーション装置2300から車両100の予定経路を取得し、予定経路上のある距離までの区間を設定する(ステップS4101)。この後、予定経路を複数の区間に区切り各区間ごとに以下の処理を行う。 First, the planned route of the vehicle 100 is acquired from the navigation device 2300, and a section up to a certain distance on the planned route is set (step S4101). Thereafter, the planned route is divided into a plurality of sections, and the following processing is performed for each section.
 まず、ナビゲーション装置2300から、区間の道路線形(カーブ/勾配等)、走行速度(法定速度とする)、渋滞状況を取得し、これらにより車両100の速度プロファイル(時間ごとの速度の変化状態)を予測(作成)する(ステップS4102)。つぎに、消費電力予測により、速度プロファイルからモータMの消費・回生電力プロファイルを予測(作成)する(ステップS4103)。消費・回生電力予測は、上記処理例1での説明と同様に、車両100の走行抵抗、効率マップ等を用いた算出により得る。 First, from the navigation device 2300, the road alignment (curve / gradient, etc.), travel speed (statutory speed), and traffic congestion status of the section are acquired, and the speed profile of the vehicle 100 (change in speed over time) is thereby obtained. Predict (create) (step S4102). Next, a consumption / regenerative power profile of the motor M is predicted (created) from the speed profile by power consumption prediction (step S4103). Consumption / regenerative power prediction is obtained by calculation using the running resistance, efficiency map, and the like of the vehicle 100 as described in the first processing example.
 つぎに、区間の道路線形(カーブ/勾配等)から電力伝送アンテナ122,123間の位置ずれを推定し、伝送効率プロファイルを予測(作成)する(ステップS4104)。 Next, the positional deviation between the power transmission antennas 122 and 123 is estimated from the road alignment (curve / gradient etc.) of the section, and a transmission efficiency profile is predicted (created) (step S4104).
 そして、第2バッテリ212の残量(現在値B1)が基準範囲(充電上限値BUおよび充電下限値BL)外になると、無線充電および無線放電を自動的に停止/あるいは再開する伝送を行うと仮定し、消費・回生電力プロファイルと伝送効率プロファイルから蓄電残量プロファイルを予測(作成)する(ステップS4105)。 When the remaining amount (current value B1) of the second battery 212 is out of the reference range (charging upper limit value BU and charging lower limit value BL), transmission that automatically stops / restarts wireless charging and discharging is performed. Assume that a remaining power storage profile is predicted (created) from the consumption / regenerative power profile and the transmission efficiency profile (step S4105).
 図42は、最適充放電計画の処理内容の概要を示すフローチャートである。上記ステップS2802の処理内容を記載してある。この処理では、第2バッテリ212の蓄電残量(現在値B1)が基準範囲内に収まるように最適充電計画および最適放電計画を作成し(ステップS4201)、車両100の走行開始時に、この最適充電計画および最適放電計画に基づいた無線充放電を開始する(ステップS4202)。 FIG. 42 is a flowchart showing an outline of the processing contents of the optimum charge / discharge plan. The processing content of step S2802 is described. In this process, an optimal charging plan and an optimal discharging plan are created so that the remaining amount of electricity stored in the second battery 212 (current value B1) is within the reference range (step S4201), and this optimal charging is performed when the vehicle 100 starts to travel. Wireless charging / discharging is started based on the plan and the optimum discharge plan (step S4202).
 上記のステップS4202に示した最適充電計画の詳細について説明する。上記処理例1での説明と同様に、たとえば、ある時期t0に残量EC(t)(上記の現在値B1)が90%に達するとする。このとき、第2バッテリ212の残量が予測値よりも、たとえば20%だけ下回るようにしておく計画であるとすると、コントローラ101(給電制御手段221)は、この容量20%に相当する分だけ、無線充電をOFFにする休止期間Tを上記処理例1と同様に求める。 Details of the optimum charging plan shown in step S4202 will be described. Similarly to the description in the processing example 1, it is assumed that the remaining amount EC (t) (the current value B1) reaches 90% at a certain time t0. At this time, assuming that the remaining amount of the second battery 212 is planned to be lower by, for example, 20% than the predicted value, the controller 101 (power supply control means 221) has an amount corresponding to the capacity of 20%. Then, the suspension period T in which the wireless charging is turned off is obtained in the same manner as in the first processing example.
 しかし、第2バッテリ212の残量が無線充電の休止期間Tを設定したことにより、この休止期間Tの期間中に容量が充電下限値BLの5%以下になってしまう場合がある。この処理例2では、残量が充電下限値BL以下となる容量20%に相当する分だけの無線放電期間T2を下記式により求める。 However, since the remaining amount of the second battery 212 sets the wireless charging suspension period T, the capacity may become 5% or less of the charging lower limit value BL during the suspension period T. In this processing example 2, a wireless discharge period T2 corresponding to a capacity of 20% where the remaining amount is equal to or less than the charging lower limit BL is obtained by the following formula.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図43は、残量と充電上限・下限値の関係を示す図表、図44は、無線充電期間と無線放電期間を説明する図表である。図43の(a)に示すように、第2バッテリ212の残量がこの充電上限値BUを超えると予測された時期t0が生じたとする。この場合、図44の(a)に示すように、時期t0を基準に遡り、休止期間Tを設定する。そして、図44の(b)に示すように、この休止期間Tだけ第2バッテリに対する無線充電をOFFにする。これにより、図43の(b)に示すように、時期t0では少なくとも充電上限値BUを超えた過充電の状態となることを防ぐことができるようになる。この図の例では、時期t0の残量は70%にすることができる。 FIG. 43 is a chart showing the relationship between the remaining amount and the charging upper and lower limit values, and FIG. 44 is a chart explaining the wireless charging period and the wireless discharging period. As shown in (a) of FIG. 43, it is assumed that a time t0 when the remaining amount of the second battery 212 is predicted to exceed the charging upper limit value BU has occurred. In this case, as shown in FIG. 44 (a), the rest period T is set retroactively based on the time t0. Then, as shown in (b) of FIG. 44, the wireless charging for the second battery is turned off only during the suspension period T. As a result, as shown in FIG. 43 (b), it is possible to prevent an overcharge state exceeding at least the charge upper limit value BU at the time t0. In the example of this figure, the remaining amount at time t0 can be 70%.
 しかし、図43の(b)に示すように、第2バッテリ212の残量が無線充電の休止期間Tを設定したことにより、この休止期間Tの期間中に容量が充電下限値BLの5%以下になる時期tLが生じたとする。この場合、過放電となることを防止するために、図44の(c)に示すように、上記式に基づき、時期t0を基準に遡り、無線放電時間T2を設定する。これにより、図43の(c)に示すように、時期tLでは少なくとも充電下限値BLを下回る過放電の状態となることを防ぐことができるようになる。 However, as shown in FIG. 43 (b), since the remaining amount of the second battery 212 sets the wireless charging suspension period T, the capacity during the suspension period T is 5% of the charging lower limit BL. Assume that a time tL occurs as follows. In this case, in order to prevent overdischarge, as shown in FIG. 44C, the radio discharge time T2 is set based on the timing t0 based on the above formula. As a result, as shown in FIG. 43 (c), it is possible to prevent an overdischarge state at least below the charging lower limit value BL at the time tL.
(最適充放電計画にしたがった給電制御処理)
 以下の説明では、処理例2により作成された最適充放電計画にしたがった無線充電・無線放電制御処理の処理内容について説明する。図45は、無線充電・無線放電制御の処理内容を示すフローチャートである。コントローラ101(給電制御手段221)は、はじめに通常走行モードで起動し、電源ONで走行可能な状態のとき(ステップS4501:No)、以下の処理を実行する。電源OFFの場合には(ステップS4501:Yes)、処理を終了する。
(Power supply control processing according to the optimal charge / discharge plan)
In the following description, processing contents of the wireless charging / wireless discharging control process according to the optimum charging / discharging plan created by the processing example 2 will be described. FIG. 45 is a flowchart showing the processing content of wireless charging / discharging control. The controller 101 (power supply control means 221) first starts in the normal travel mode, and executes the following processing when it is in a state where it can travel with the power on (step S4501: No). If the power is off (step S4501: Yes), the process ends.
 つぎに、第2バッテリ212(212a~212d)それぞれの残量(現在値B1)を監視する(ステップS4502)。つぎに、あるモータM(M1~M4のいずれか)の第2バッテリ212(212a~212dのいずれか)の残量が無線放電実施判断値BJ+(図16参照)以上であるか判断する(ステップS4503)。いずれかの第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+以上の場合には(ステップS4503:Yes)、無線充電中であるか判断する(ステップS4504)。 Next, the remaining amount (current value B1) of each of the second batteries 212 (212a to 212d) is monitored (step S4502). Next, it is determined whether the remaining amount of the second battery 212 (any one of 212a to 212d) of a certain motor M (any one of M1 to M4) is equal to or greater than the wireless discharge execution judgment value BJ + (see FIG. 16) (step). S4503). If the remaining amount of any of the second batteries 212 (212a to 212d) is equal to or greater than the wireless discharge execution determination value BJ + (step S4503: Yes), it is determined whether wireless charging is in progress (step S4504).
 無線充電中であれば(ステップS4504:Yes)、無線充電を停止し(ステップS4505)、ステップS4502に戻る。無線充電中でなければ(ステップS4504:No)、無線放電中であるか判断する(ステップS4506)。無線放電中であれば(ステップS4506:Yes)、通常モードから第2バッテリ212(212a~212d)に対する過充電を回避する最適配分モードに切り替え、この最適配分モードによる処理を実行する(ステップS4507)。無線放電中でなければ(ステップS4506:No)、無線放電を再開し(ステップS4508)、ステップS4502に戻る。 If wireless charging is in progress (step S4504: YES), wireless charging is stopped (step S4505), and the process returns to step S4502. If wireless charging is not in progress (step S4504: No), it is determined whether wireless discharge is in progress (step S4506). If wireless discharge is in progress (step S4506: Yes), the normal mode is switched to the optimal distribution mode that avoids overcharging of the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S4507). . If the wireless discharge is not in progress (step S4506: No), the wireless discharge is resumed (step S4508), and the process returns to step S4502.
 また、ステップS4503において、いずれかの第2バッテリ212(212a~212d)の残量が無線放電実施判断値BJ+未満の場合には(ステップS4503:No)、つぎに、この第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下であるか判断する(ステップS4509)。いずれかの第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下でなければ(ステップS4509:No)、無線充電を継続し(ステップS4510)、ステップS4502に戻る。 In step S4503, when the remaining amount of any of the second batteries 212 (212a to 212d) is less than the wireless discharge execution determination value BJ + (step S4503: No), the second battery 212 (212a) To 212d) is determined whether or not the remaining amount is less than or equal to the wireless charging execution determination value BJ− (step S4509). If the remaining amount of any of the second batteries 212 (212a to 212d) is not less than or equal to the wireless charging execution determination value BJ− (step S4509: No), the wireless charging is continued (step S4510), and the process returns to step S4502.
 一方、いずれかの第2バッテリ212(212a~212d)の残量が無線充電実施判断値BJ-以下であれば(ステップS4509:Yes)、無線放電中であるか判断する(ステップS4511)。 On the other hand, if the remaining amount of any of the second batteries 212 (212a to 212d) is less than or equal to the wireless charging execution determination value BJ− (step S4509: Yes), it is determined whether wireless discharge is in progress (step S4511).
 無線放電中であれば(ステップS4511:Yes)、無線充電を停止し(ステップS4512)、ステップS4502に戻る。無線放電中でなければ(ステップS4511:No)、無線充電中であるか判断する(ステップS4513)。無線充電中であれば(ステップS4513:Yes)、通常モードから第2バッテリ212(212a~212d)に対する過放電を回避する最適配分モードに切り替え、この最適配分モードによる処理を実行する(ステップS4514)。無線充電中でなければ(ステップS4513:No)、無線充電を再開し(ステップS4515)、ステップS4502に戻る。 If wireless discharge is in progress (step S4511: YES), wireless charging is stopped (step S4512), and the process returns to step S4502. If wireless discharge is not in progress (step S4511: No), it is determined whether wireless charging is in progress (step S4513). If wireless charging is in progress (step S4513: Yes), the normal mode is switched to the optimal distribution mode that avoids overdischarge to the second battery 212 (212a to 212d), and processing in this optimal distribution mode is executed (step S4514). . If wireless charging is not in progress (step S4513: No), wireless charging is resumed (step S4515), and the process returns to step S4502.
 上記の過充電回避の最適配分モード、および過放電回避の最適配分モードの処理内容は、図39,図40と同様の処理である。 The processing contents of the optimal distribution mode for avoiding overcharge and the optimal distribution mode for avoiding overdischarge are the same as those shown in FIGS.
 上記の処理によれば、車両の走行予定経路の情報を収集し、消費電力を予測することにより、目的地に至るまで第2バッテリに対する無線充電、および無線放電を効率的に行える電力伝送の計画を最適化することができるようになる。また、複数の第2バッテリのいずれも過充電および過放電を防止できる。 According to the above processing, by collecting information on the planned travel route of the vehicle and predicting power consumption, the power transmission plan can efficiently perform wireless charging and wireless discharging of the second battery up to the destination. Can be optimized. In addition, any of the plurality of second batteries can prevent overcharge and overdischarge.
 以上説明した実施の形態によれば、車両と車輪にそれぞれバッテリを設け、車両と車輪の間を非接触な無線により電力伝送する構成とした。これにより、車両と車輪との間に大容量の電力伝送ケーブルを設ける必要がなく、ケーブルの損傷や交換を不要にできる。また、相互のバッテリ間での電力伝送は、車輪側の第2バッテリの容量が常に目標残量値に近づくよう制御する。これにより、常時モータに対して安定な電力を供給できるようになる。 According to the embodiment described above, a battery is provided for each of the vehicle and the wheel, and power is transmitted between the vehicle and the wheel by non-contact radio. Thereby, it is not necessary to provide a large-capacity power transmission cable between the vehicle and the wheel, and it is possible to eliminate damage and replacement of the cable. In addition, the power transmission between the batteries is controlled so that the capacity of the second battery on the wheel side always approaches the target remaining amount value. As a result, stable power can be supplied to the motor at all times.
 また、電力伝送を車両の走行状態にあわせて、力行時と回生時、および各モータに対するトルク配分、および制動トルクの変化に対応して制御するため、運転の安全性を確保できるとともに、電力伝送を効率的に行えるようになる。 In addition, since power transmission is controlled according to the running state of the vehicle, in response to power running and regeneration, torque distribution to each motor, and changes in braking torque, it is possible to ensure driving safety and power transmission Can be performed efficiently.
 そして、車輪の上下ストロークに応じて電力伝送アンテナを用いた電力伝送を制御するようにしたので、伝送効率がよい状態で電力伝送でき、電力伝送を効率化できるようになる。 Since power transmission using the power transmission antenna is controlled according to the vertical stroke of the wheel, power transmission can be performed with good transmission efficiency, and power transmission can be made more efficient.
 さらに、車両の予定経路に関する情報を事前に取得し、電力伝送計画を立てる構成とすることにより、道路の勾配やカーブ等で消費、あるいは回生する電力と、電力伝送アンテナの伝送効率を事前に推定することができるようになる。これにより、車両の走行前において、予定経路で消費あるいは回生される電力を予測することができるようになり、対応して第2バッテリが過充電および過放電になることを防ぐように、無線充電および無線放電を計画できるようになる。 In addition, by acquiring information related to the planned route of the vehicle in advance and making a power transmission plan, the power consumed or regenerated by road gradients and curves, etc. and the transmission efficiency of the power transmission antenna are estimated in advance. Will be able to. This makes it possible to predict the power consumed or regenerated on the planned route before the vehicle travels, and correspondingly wireless charging so as to prevent the second battery from being overcharged and overdischarged. And you will be able to plan wireless discharge.
 そして、第2バッテリが過充電になると予測されたときには、対応する車輪のモータに対するトルク配分を高め他の車輪のトルク配分を低くし、一方、第2バッテリが過放電になると予測されたときには、対応する車輪のモータに対するトルク配分を低くし他の車輪のトルク配分を高くする制御により、複数の車輪のトルク配分を変化させ、第2バッテリの電力消費を制御している。これにより、車両に複数設けられる第2バッテリ全ての過充電および過放電を防ぎ安定した走行を可能にする。 And when it is predicted that the second battery will be overcharged, the torque distribution for the motor of the corresponding wheel is increased and the torque distribution of the other wheel is lowered, while when the second battery is predicted to be overdischarged, By controlling the torque distribution of the corresponding wheel motor to be low and the torque distribution of the other wheels to be high, the torque distribution of the plurality of wheels is changed to control the power consumption of the second battery. This prevents overcharge and overdischarge of all the second batteries provided in the vehicle, and enables stable running.
 なお、本実施の形態で説明した方法は、あらかじめ用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD-ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。 Note that the method described in this embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation. This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read from the recording medium by the computer. The program may be a transmission medium that can be distributed via a network such as the Internet.
 100 車両
 101 コントローラ
 102 ハンドル
 103 アクセルペダル
 104 ブレーキペダル
 105 シフトブレーキ
 106 セレクタ
 111 第1バッテリ
 121(121a) 第1変換器(DC-AC変換部)
 122(122a),123(123a) 電力伝送アンテナ
 201(201a) 第2変換器(AC-DC変換部)
 202a 双方向チョッパ
 203a インバータ
 212(212a) 第2バッテリ
 221 残量制御部
 222 トルク制御部
1800 車輪
1803 サスペンション
1901 アクチュエータ
1902 位置検出器
2300 ナビゲーション装置
 M1~M4 モータユニット
 M モータ(インホイールモータ)
 L1~L4 電源ライン
DESCRIPTION OF SYMBOLS 100 Vehicle 101 Controller 102 Handle 103 Accelerator pedal 104 Brake pedal 105 Shift brake 106 Selector 111 First battery 121 (121a) First converter (DC-AC converter)
122 (122a), 123 (123a) Power transmission antenna 201 (201a) Second converter (AC-DC converter)
202a Bidirectional chopper 203a Inverter 212 (212a) Second battery 221 Remaining amount control unit 222 Torque control unit 1800 Wheel 1803 Suspension 1901 Position detector 2300 Navigation device M1 to M4 Motor unit M motor (in-wheel motor)
L1 to L4 Power line

Claims (5)

  1.  外部電源より取得した直流電力を蓄える第1蓄電池と、
     前記第1蓄電池に接続され、前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナとを有する第1送電手段と、
     前記送電アンテナにより送電された前記交流電力を無線受電する受電アンテナと、当該交流電力を直流電力へ変換する第2変換器とを有する第1受電手段と、
     車輪のハブに装着され、当該車輪を駆動するインホイールモータと、
     前記車輪に設けられ、前記第1受電手段により受電した直流電力を蓄える第2蓄電池と、
     前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、
     前記インホイールモータの回転駆動を制御する駆動制御手段と、
     前記第1送電手段より前記第1受電手段への無線給電を制御する給電制御手段と、
     前記第2蓄電池の蓄電量を監視する監視手段と、
     車両の走行予定経路を示す経路情報、当該走行予定経路における車両進行方向の道路線形情報、当該走行予定経路の走行抵抗の変化を示す走行抵抗変化情報、および、前記インホイールモータの効率マップを取得する取得手段と、
     前記蓄電量、前記経路情報、前記道路線形情報、前記走行抵抗変化情報、および前記効率マップに基づいて、前記第2蓄電池の蓄電量の変化を示す蓄電量変化情報を算出する算出手段と、を備え、
     前記給電制御手段は、前記蓄電量変化情報の蓄電量が所定範囲内に収まるように前記第1送電手段より前記第1受電手段への無線給電を行う給電量を調整すること
     を特徴とする車両駆動装置。
    A first storage battery for storing DC power acquired from an external power source;
    A first power transmission means connected to the first storage battery and having a first converter that converts the DC power into AC power; and a power transmission antenna that wirelessly transmits the AC power;
    A first power receiving means having a power receiving antenna for wirelessly receiving the AC power transmitted by the power transmission antenna, and a second converter for converting the AC power to DC power;
    An in-wheel motor mounted on a wheel hub and driving the wheel;
    A second storage battery that is provided on the wheel and stores DC power received by the first power receiving means;
    An inverter provided on the wheel for converting the DC power of the second storage battery into AC power;
    Drive control means for controlling the rotational drive of the in-wheel motor;
    Power supply control means for controlling wireless power supply from the first power transmission means to the first power reception means;
    Monitoring means for monitoring the amount of electricity stored in the second storage battery;
    Obtaining route information indicating the planned travel route of the vehicle, road alignment information of the vehicle traveling direction in the planned travel route, travel resistance change information indicating a change in travel resistance of the planned travel route, and an efficiency map of the in-wheel motor Acquisition means to
    Calculating means for calculating storage amount change information indicating a change in storage amount of the second storage battery based on the storage amount, the route information, the road alignment information, the travel resistance change information, and the efficiency map; Prepared,
    The power supply control unit adjusts a power supply amount for performing wireless power supply from the first power transmission unit to the first power reception unit so that a power storage amount of the power storage amount change information is within a predetermined range. Drive device.
  2.  前記算出手段は、
     前記経路情報に基づいて、前記車両の走行予定速度を示す速度変化情報を算出する第1算出手段と、
     前記速度変化情報、前記走行抵抗変化情報、および前記効率マップに基づいて、前記インホイールモータの消費電量予測量を示す消費電力変化情報を算出する第2算出手段と、
     前記道路線形情報に基づいて、前記無線給電の伝送効率の変化を示す伝送効率変化情報を算出する第3算出手段と、
     前記消費電力変化情報および前記伝送効率変化情報に基づいて、前記蓄電量変化情報を算出する第4算出手段と、を備えること
     を特徴とする請求項1に記載の車両駆動装置。
    The calculating means includes
    First calculation means for calculating speed change information indicating a planned traveling speed of the vehicle based on the route information;
    Second calculation means for calculating power consumption change information indicating a predicted power consumption amount of the in-wheel motor based on the speed change information, the running resistance change information, and the efficiency map;
    Third calculation means for calculating transmission efficiency change information indicating a change in transmission efficiency of the wireless power supply based on the road alignment information;
    The vehicle drive device according to claim 1, further comprising: a fourth calculation unit that calculates the storage amount change information based on the power consumption change information and the transmission efficiency change information.
  3.  回生により発生する直流電力を前記第2蓄電池に蓄える回生制御手段と、
     前記第2蓄電池に接続され、前記直流電力を交流電力に変換する第3変換器と、当該交流電力を無線送電する送電アンテナを有する第2送電手段と、
     前記第1蓄電池に接続され、前記交流電力を無線受電する受電アンテナと、当該交流電力を直流電力へ変換する第4変換器を有する第2受電手段と、をさらに備え、
     前記給電制御手段は、前記蓄電量変化情報の蓄電量が所定範囲内に収まるように前記第2送電手段より前記第2受電手段への無線放電を行う給電量を調整すること
     を特徴とする請求項1または2に記載の車両駆動装置。
    Regenerative control means for storing DC power generated by regeneration in the second storage battery;
    A third converter connected to the second storage battery and converting the DC power into AC power; and a second power transmission means having a power transmission antenna that wirelessly transmits the AC power;
    A power receiving antenna connected to the first storage battery and wirelessly receiving the AC power; and a second power receiving means having a fourth converter for converting the AC power into DC power,
    The power supply control unit adjusts a power supply amount for performing wireless discharge from the second power transmission unit to the second power reception unit so that a power storage amount of the power storage amount change information is within a predetermined range. Item 3. The vehicle drive device according to Item 1 or 2.
  4.  前記給電制御手段は、
     前記蓄電量が第1所定量より少ない場合は、前記無線充電を行うように制御し、
     前記蓄電量が前記第1所定量以上の場合は、前記無線充電を停止するように制御すること
     を特徴とする請求項1または2に記載の車両駆動装置。
    The power supply control means includes
    If the stored amount is less than the first predetermined amount, control to perform the wireless charging,
    3. The vehicle drive device according to claim 1, wherein when the amount of stored electricity is equal to or greater than the first predetermined amount, the wireless charging is controlled to stop. 4.
  5.  前記給電制御手段は、
     前記蓄電量が第1所定量より少ない場合は、前記無線充電を行うように制御し、
     前記蓄電量が前記第1所定量以上の場合は、前記無線充電を停止、あるいは、前記無線放電を行うように制御すること
     を特徴とする請求項3に記載の車両駆動装置。
    The power supply control means includes
    If the stored amount is less than the first predetermined amount, control to perform the wireless charging,
    4. The vehicle drive device according to claim 3, wherein when the charged amount is equal to or more than the first predetermined amount, the wireless charging is controlled to be stopped or the wireless discharging is performed. 5.
PCT/JP2011/080132 2011-12-26 2011-12-26 Vehicle drive device WO2013098928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/080132 WO2013098928A1 (en) 2011-12-26 2011-12-26 Vehicle drive device
JP2013551068A JP5822951B2 (en) 2011-12-26 2011-12-26 Vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080132 WO2013098928A1 (en) 2011-12-26 2011-12-26 Vehicle drive device

Publications (1)

Publication Number Publication Date
WO2013098928A1 true WO2013098928A1 (en) 2013-07-04

Family

ID=48696498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080132 WO2013098928A1 (en) 2011-12-26 2011-12-26 Vehicle drive device

Country Status (2)

Country Link
JP (1) JP5822951B2 (en)
WO (1) WO2013098928A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226342A (en) * 2014-05-26 2015-12-14 本田技研工業株式会社 Electric-vehicular charge control apparatus
EP2998149A1 (en) * 2014-09-18 2016-03-23 Gaston Glock Electrically operated vehicle
JP6095031B1 (en) * 2016-02-03 2017-03-15 三菱電機株式会社 Vehicle energy management system
EP3115250A4 (en) * 2014-03-07 2018-02-21 The University of Tokyo In-wheel motor system
CN113826300A (en) * 2019-09-06 2021-12-21 株式会社Lg新能源 Battery system and control method thereof
US20220097712A1 (en) * 2019-02-28 2022-03-31 Hitachi Astemo, Ltd. System and Method for Predictive Pre-Warming Control of Hybrid Electric Vehicles (HEV)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011580B1 (en) * 2017-11-29 2019-08-16 김정민 Apparatus and method for supplying a power
CN113733929B (en) * 2021-06-22 2023-05-30 北京中辰瑞通科技有限公司 Wheel torque coordination control method and device for in-wheel motor driven vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160033A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Electricity feed structure to wheel
JP2006174548A (en) * 2004-12-14 2006-06-29 Takenaka Komuten Co Ltd Collector wheel for cordless power transmission
JP2006345677A (en) * 2005-06-10 2006-12-21 Denso Corp Vehicle drive unit by motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218193B2 (en) * 2009-03-24 2013-06-26 株式会社デンソー Navigation device, electric motor drive motor control system, and drive motor control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160033A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Electricity feed structure to wheel
JP2006174548A (en) * 2004-12-14 2006-06-29 Takenaka Komuten Co Ltd Collector wheel for cordless power transmission
JP2006345677A (en) * 2005-06-10 2006-12-21 Denso Corp Vehicle drive unit by motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3115250A4 (en) * 2014-03-07 2018-02-21 The University of Tokyo In-wheel motor system
US10421351B2 (en) 2014-03-07 2019-09-24 The University Of Tokyo In-wheel motor system
JP2015226342A (en) * 2014-05-26 2015-12-14 本田技研工業株式会社 Electric-vehicular charge control apparatus
EP2998149A1 (en) * 2014-09-18 2016-03-23 Gaston Glock Electrically operated vehicle
JP6095031B1 (en) * 2016-02-03 2017-03-15 三菱電機株式会社 Vehicle energy management system
JP2017136943A (en) * 2016-02-03 2017-08-10 三菱電機株式会社 Energy management device for vehicle
US20220097712A1 (en) * 2019-02-28 2022-03-31 Hitachi Astemo, Ltd. System and Method for Predictive Pre-Warming Control of Hybrid Electric Vehicles (HEV)
US11834050B2 (en) * 2019-02-28 2023-12-05 Hitachi Astemo, Ltd. System and method for predictive pre-warming control of hybrid electric vehicles (HEV)
CN113826300A (en) * 2019-09-06 2021-12-21 株式会社Lg新能源 Battery system and control method thereof

Also Published As

Publication number Publication date
JP5822951B2 (en) 2015-11-25
JPWO2013098928A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5822951B2 (en) Vehicle drive device
US8761985B2 (en) Method of operating a dual motor drive and control system for an electric vehicle
JP5992604B2 (en) Energy management system and fuel saving method for hybrid electric vehicle
CN102470762B (en) Electric-vehicle propulsion power-conversion device
JP5739548B2 (en) Vehicle drive device
CN102781710B (en) Vehicle regenerative control system
CN105848978A (en) Control system and vehicle power supply
JP7047461B2 (en) Control device
JP5705333B2 (en) Vehicle drive device
US10981455B2 (en) Electric vehicle
CN111196168A (en) Charging control device for vehicle
JP5437572B2 (en) Electric vehicle drive device
EP3250411A1 (en) Electric propulsion system for a vehicle
WO2014091619A1 (en) Device for controlling hybrid vehicle
SE535739C2 (en) Method and system for operating an electric machine in a hybrid vehicle
JP4907262B2 (en) Electric vehicle control device
KR101237317B1 (en) Propulsion device and method for four wheel drive hybrid vehicles
JP5545709B2 (en) Railway vehicle drive system
JP5771284B2 (en) Vehicle drive device
JP5353365B2 (en) Vehicle system
JP6365067B2 (en) Control device for electric four-wheel drive vehicle
JP5822946B2 (en) Vehicle drive device
JP5771285B2 (en) Vehicle drive device
JP5277433B2 (en) Electric vehicle drive device
JP2021126939A (en) Vehicle power assistance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878607

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11878607

Country of ref document: EP

Kind code of ref document: A1