WO2013084682A1 - Control device for motor vehicle and method for controlling same - Google Patents

Control device for motor vehicle and method for controlling same Download PDF

Info

Publication number
WO2013084682A1
WO2013084682A1 PCT/JP2012/079602 JP2012079602W WO2013084682A1 WO 2013084682 A1 WO2013084682 A1 WO 2013084682A1 JP 2012079602 W JP2012079602 W JP 2012079602W WO 2013084682 A1 WO2013084682 A1 WO 2013084682A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
braking
control
braking force
storage device
Prior art date
Application number
PCT/JP2012/079602
Other languages
French (fr)
Japanese (ja)
Inventor
東谷幸祐
浅川雅信
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2013084682A1 publication Critical patent/WO2013084682A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/04Hill descent control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/06Hill holder; Start aid systems on inclined road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control device and a control method for an electric vehicle that applies a braking force to the vehicle by regenerative braking and friction braking.
  • the operation outline as a comparative example at the time of this switchback is shown in the time chart of FIG. 6A.
  • the shift operation is performed from the R position to the D position at time ta.
  • the motor torque is switched from the power running side to the regenerative side at time tb
  • the motor is decelerated in the regenerative braking state, stops at time tc, the motor rotation speed is changed from the reverse rotation side to the normal rotation side, and the traveling direction of the electric vehicle moves backward. Reverse from direction to forward direction.
  • the traveling direction in the state where the shift position is retracted at the R position (the motor rotation speed is the reverse rotation side and the motor torque is the power running side). Is switched from the R position to the D position at the time ta, and when the motor torque is about to switch from the power running side to the regeneration side at the time tb, the battery is fully charged.
  • regenerative braking is not applied, in other words, regenerative braking is restricted (referred to as regenerative restriction), and as a result, cooperative control between regenerative braking and friction braking may be required.
  • the present invention has been made in consideration of such problems, and an object thereof is to provide a control device and a control method for an electric vehicle in which regenerative braking is applied at the time of switchback regardless of the state of charge of the power storage device.
  • An electric vehicle control device is an electric vehicle control device that travels using the power of an electric motor driven by electric power from a power storage device and applies a braking force by friction braking and / or regenerative braking by the electric motor. , Control of the braking force for the host vehicle based on the determination result of the full charge state determination unit and the full charge state determination unit for determining whether or not the state of charge of the power storage device is a full charge state while traveling on a slope A braking force control unit configured to perform braking when the charging state of the power storage device is not fully charged during traveling on the slope.
  • the regenerative braking is prohibited and the braking control is applied to the host vehicle by the friction braking, and the regenerative braking
  • the braking force is applied by any one of the exception control that releases the prohibition and permits the regenerative braking and applies the braking force to the host vehicle by the regenerative braking, and reduces the forward direction of the host vehicle. Due to the vehicle operation of the driver who reverses from the hill direction to the uphill direction, when the moving direction of the host vehicle is in the reverse direction and the shift position is in the switchback state, the control of the braking force is performed. The principle control is switched to the exception control.
  • the electric vehicle control method controls an electric vehicle that travels using the power of an electric motor driven by electric power from a power storage device and applies a braking force by friction braking and / or regenerative braking by the electric motor.
  • a full charge state determination step for determining whether or not the state of charge of the power storage device is a full charge state while traveling on a slope, and a braking force for the host vehicle is controlled based on the determination result of the full charge state
  • a braking force control step that applies a braking force to the host vehicle by regenerative braking when the charging state of the power storage device is not fully charged during traveling on the slope.
  • the principle of prohibiting the regenerative braking and applying a braking force to the host vehicle by the friction braking when the state of charge of the power storage device is fully charged while traveling on the slope The braking force is applied by one of the control and the exception control in which the prohibition of the regenerative braking is canceled and the regenerative braking is permitted and the braking force is applied to the host vehicle by the regenerative braking. If the driver's vehicle operation that reverses the forward direction of the vehicle from the downhill direction to the uphill direction causes the vehicle to move backward and the shift position is switched to the forward position, the control is performed. The power control is switched from the principle control to the exception control.
  • the full-charge state determination unit sets the full-charge state to a first full-charge state (remaining capacity smaller than the electrochemical full-charge state of the power storage device).
  • the braking force control unit applies a braking force to the host vehicle by the regenerative braking when the charging state of the power storage device is not the first full charging state during traveling on the slope.
  • the principle control for prohibiting the regenerative braking and applying a braking force to the host vehicle by the friction braking; and Regenerative braking The storage device is overcharged and deteriorated by controlling the braking force by any one of the exception control that releases the prohibition, permits the regenerative braking, and applies the braking force to the host vehicle by the regenerative braking. Therefore, regenerative braking can be permitted at the time of switchback, so that the life of the power storage device can be extended and the merchantability can be further improved.
  • the braking force control unit limits the regenerative side torque value of the electric motor to a zero value, and the host vehicle remains forward.
  • the driver's vehicle operation reverses the moving direction of the own vehicle from the downhill direction to the uphill direction, when the moving direction of the own vehicle is in the reverse direction and the shift position is in the switchback state.
  • the regenerative braking is performed even in the fully charged state. Since the vehicle decelerates and stops and moves forward while the vehicle is applied, regenerative braking can be applied during switchback regardless of the state of charge of the power storage device.
  • the full charge state is preferably set in advance to a value smaller than the electrochemical full charge state of the power storage device in anticipation of regeneration at the time of switchback.
  • FIG. 1 is a block diagram of an embodiment of a control device that implements an electric vehicle control method according to the present invention.
  • FIG. It is a time chart explaining the operation
  • FIG. 6A is a time chart for explaining the operation when reversing the traveling direction while decelerating by regenerative braking at the time of switchback, and FIG. 6B requires complicated cooperative control of regenerative braking and friction braking at the time of switchback. It is a time chart explaining the operation
  • FIG. 1 is a schematic block diagram of an electric vehicle (also referred to as own vehicle) 10 according to this embodiment.
  • the electric vehicle 10 includes an electric motor 12 that generates power, and the rotating shaft of the electric motor 12 is connected to the wheel 16 via a transmission 14 and the like.
  • a friction brake 18 for applying a friction braking force is engaged with the wheel 16.
  • the motor 12 is connected to an inverter 20 (power converter) via a three-phase connection, and the inverter 20 is connected to a power storage device 22, and a motor that controls the motor 12 by controlling the drive of the inverter 20.
  • An ECU (Electronic Control Unit) 24 is connected.
  • the power storage device 22 is an energy storage, and a lithium ion secondary battery, a nickel hydride secondary battery, a capacitor, or the like can be used. In this embodiment, a lithium ion secondary battery is used.
  • the power storage device 22 has a built-in charge / discharge circuit 60 for controlling or limiting the charge / discharge current. While controlling the charging / discharging current of the charging / discharging circuit 60, the SOC detection unit 72 that detects the SOC (state of charge) that is the state of charge of the power storage device 22 and the regeneration limit that limits the charging current (regeneration amount)
  • a battery ECU 26 including a unit 74 is connected to the power storage device 22. The state of charge SOC of the power storage device 22 detected by the battery ECU 26 is supplied to the motor ECU 24.
  • the motor ECU 24 includes an accelerator opening degree ⁇ in which the operation amount of the accelerator pedal 28 is detected by the operation amount sensor 30, a brake operation amount B in which the operation amount of the brake pedal 32 is detected by the operation amount sensor 34, and a shift lever 36.
  • the vehicle speed Vs detected by the vehicle speed sensor 40 the motor rotational speed Nm detected by a rotational speed sensor such as a resolver constituting the electric motor 12, and the motor rotational direction (forward direction, stop, reverse direction) Md, etc. And are respectively supplied.
  • the navigation ECU 42 is also connected to the motor ECU 24, and the position, altitude, etc. of the host vehicle 10 on the map are supplied from the navigation ECU 42.
  • a brake ECU 50 is further connected to the motor ECU 24.
  • a brake operation amount B is supplied from the operation amount sensor 34 of the brake pedal 32 to the brake ECU 50, and a braking force by friction braking is applied to the wheel 16 via the fluid pressure modulator 52 and the friction brake 18.
  • the motor ECU 24 applies a braking force for braking the wheel 16 by the regenerative braking of the motor 12 by causing the power storage device 22 to collect the regenerative power of the motor 12 through the inverter 20.
  • the motor ECU 24, the brake ECU 50, and the battery ECU 26 perform coordinated control of the braking force due to regenerative braking and the braking force due to friction braking.
  • Each of the motor ECU 24, the battery ECU 26, the navigation ECU 42, and the brake ECU 50 is a computer including a microcomputer, and includes a CPU (central processing unit), a ROM (including EEPROM), and a RAM (random access). Memory), other input / output devices such as A / D converters and D / A converters, timers as timers, etc., and the CPU reads out and executes programs recorded in the ROM And function as various function realization units (function realization means) such as a control unit, a calculation unit, and a processing unit.
  • a CPU central processing unit
  • ROM including EEPROM
  • RAM random access
  • Memory random access memory
  • other input / output devices such as A / D converters and D / A converters, timers as timers, etc.
  • the CPU reads out and executes programs recorded in the ROM And function as various function realization units (function realization means) such as a control unit, a calculation unit, and a processing unit.
  • the battery ECU 26, the motor ECU 24, and the brake ECU 50 are communicably connected, for example, using data mutually through a communication line (not shown) related to a communication network such as CAN (Controller Area Network).
  • a communication network such as CAN (Controller Area Network).
  • the communication network may be a wireless network.
  • the battery ECU 26 functions as the SOC detection unit 72 that detects the state of charge SOC (remaining capacity) of the power storage device 22 and is charged from the electric motor 12 to the power storage device 22 through the inverter 20. It functions as a regeneration limiting unit 74 that limits a regenerative current (also referred to as a regeneration amount).
  • the navigation ECU 42 functions as an altitude detection unit or the like.
  • the motor ECU 24 functions as a traveling path detection unit that detects whether the road is a slope (downhill or climbing road) or a flat road based on altitude information from the navigation ECU 42 and the power storage device 22 during traveling on the slope.
  • the fully charged state determination unit 62 may be provided in the battery ECU 26, and the regeneration limiting unit 74 of the battery ECU 26 may be provided in the motor ECU 24.
  • the braking force control unit 64 of the motor ECU 24 basically applies to the host vehicle 10 by the regenerative braking of the electric motor 12 when the state of charge SOC of the power storage device 22 is not fully charged during traveling on the slope.
  • the regenerative braking of the electric motor 12 is prohibited and the friction braking by the friction brake 18 is performed automatically.
  • the braking force is applied by the control.
  • the braking force control unit 64 causes the host vehicle 10 to operate due to the driver's operation of the shift lever 36 (shift operation from the reverse position R to the forward position D) that reverses the forward direction of the own vehicle 10 from the downhill direction to the uphill direction.
  • the switch direction of 10 is the reverse direction and the shift position SP is the forward position D
  • the brake force control function is switched from the principle control to the exception control.
  • the time chart of FIG. 2 shows, as an example, a downhill (downhill road) from a parking lot such as a home located on a hill at a forward position D of a shift position SP (downhill), and a shop located under the hill.
  • a downhill downhill road
  • the shift position SP is set to the parking position P
  • the accelerator pedal is moved from the parking lot of the store or the like to the reverse position R.
  • the shift position SP detected by the motor ECU 24 and the traveling direction of the host vehicle 10 (which can be detected by the motor rotation direction Md of normal rotation or reverse rotation), altitude, and the motor ECU 24 through the battery ECU 26.
  • the full charge state depicted in the item of the charge state SOC may be the electrochemical full charge state of the power storage device 22, but when charged more than the electrochemical full charge state Since the deterioration of the power storage device 22 is accelerated, the first full charge state (also referred to as a deemed full charge state), which is a remaining capacity smaller than the electrochemical full charge state, is set.
  • the traveling direction (forward direction, backward direction, or stop) of the host vehicle 10 can be detected by the motor rotation direction Md or the like. If the motor rotation direction Md is the forward rotation direction, the traveling direction corresponds to the forward direction. If the motor rotation direction Md is the reverse direction, the traveling direction corresponds to the backward direction. When the motor rotation speed Nm is 0 or the motor rotation direction Md indicates stop, the traveling direction is set to the stop state.
  • the fully charged state determination unit 62 determines that the state of charge is not in the fully charged state (here, the first fully charged state) from time t0 to time t3. Is controlled in the regenerative state, and the power storage device 22 is charged, so the state of charge SOC gradually increases.
  • the braking force control unit 64 stops the inverter 20 and passes through the regeneration limiting unit 74.
  • the charge / discharge circuit 60 charging of the power storage device 22 by regeneration from the electric motor 12 is stopped. Thereby, regenerative braking is prohibited between time t3 and time t5.
  • the host vehicle 10 is stopped (stopped) at time t5 by operating the brake pedal 32 from time t4.
  • the shift position 36 is operated from the forward position D to the parking position P by operating the shift lever 36.
  • FIG. 3 shows a regenerative amount (also referred to as a regenerative amount or a regenerative limit value), that is, a charging current characteristic 100 with respect to the value of the state of charge SOC of the power storage device 22.
  • a regenerative amount also referred to as a regenerative amount or a regenerative limit value
  • the regenerative amount is limited to be smaller.
  • the charge state SOC is limited to the value of the first fully charged state by limiting earlier than the switchback regeneration amount characteristic 100sb, while the switch state regeneration amount characteristic 100sb
  • the limit is relaxed to the value of the storage device regeneration limit (of the state of charge SOC).
  • the regenerative limit value indicated by a one-dot chain line is a characteristic corresponding to the regenerative amount characteristics 100, 100ap, and 100sb of FIG. From time t0 to time t1, all of the regenerative current from the electric motor 12 is regenerated (charged) to the power storage device 22, but from the time t1, the regeneration side motor torque is regenerated along the regeneration amount characteristics 100 and 100ap.
  • the state of charge SOC is limited to the limit value and the state of charge SOC becomes the value of the first fully charged state at time t3
  • the braking force control unit 64 regenerates the power storage device 22 through the charge / discharge circuit 60 via the regeneration limit unit 74.
  • the flow of current (charging current) is blocked from time t3 to time t5 (may be time t6).
  • the shift position SP is switched from the parking position P to the reverse position R in order to return from the parking lot of the store below the hill to the house above the hill, and the accelerator pedal 28 is stepped forward at the time t8.
  • the parked vehicle 10 is once moved backward, and the shift position SP is switched from the reverse position R to the forward position D at the time t9 in the reverse state.
  • the braking force control unit 64 of the motor ECU 24 determines that the host vehicle 10 is in the switchback state, and the characteristics 100 of the regeneration amount shown in FIG. Switching from the regeneration amount characteristic 100ap when the pedal is released to the regeneration amount characteristic 100sb at the time of switchback. That is, the limit of the state of charge SOC is switched from the fully charged state shown in FIG. 2 to the value of the power storage device regeneration limit (see also FIG. 3).
  • the motor rotation speed Nm starts to increase from time t9 (the rotation speed in the reverse rotation direction decreases). Therefore, the motor torque moves from the power running side to the regeneration side, and moves from the power running side to the regeneration side at time t10.
  • the motor rotation speed Nm gradually approaches (decreases) the zero value from the time point t10 to the time point t11, regeneration occurs in the electric motor 12, and the regenerative portion is used as the charge state SOC for the power storage device regeneration limit. Is regenerated (charged) in the power storage device 22 that has been switched to (changed).
  • the regeneration side motor torque can be generated from the time point t10 to the time point t11 when the vehicle speed Vs becomes zero.
  • the host vehicle 10 smoothly decelerates and stops. That is, as shown in FIG. 6A, at the time of switchback, the traveling direction is always reversed after the vehicle is decelerated by the regenerative operation regardless of the value of the state of charge SOC.
  • FIG. 4 shows a control flowchart of the regeneration side motor torque controlled cooperatively by the motor ECU 24 and the battery ECU 26.
  • step S1 after time t0, based on the current motor rotation speed Nm and the regenerative power limit value (regeneration amount in FIG. 3), a corresponding map (not shown) is searched to determine the regeneration side motor torque limit value.
  • step S2 it is determined whether or not the state of charge SOC is in a fully charged state, in this case, the first fully charged state. If not in the fully charged state (step S2: NO), regeneration is performed in step S3. Braking is permitted, and in step S4, the regeneration side motor torque limit value calculated in step S1 is set as the regeneration side motor torque limit final value (for example, the period from time t0 to time t3 in FIG. 2 corresponds). ).
  • step S2 determines whether or not. If it is determined in step S2 that the state of charge SOC is in the fully charged state (first fully charged state) (step S2: YES), the shift position SP corresponds to the motor rotation direction Md in step S5. It is determined whether or not.
  • Step S5 When the shift position SP is the forward position D and the motor rotation direction Md is normal rotation, and when the shift position SP is the reverse position R and the motor rotation direction Md is reverse rotation, both are determined to be compatible (Ste S5: YES), in other cases, that is, when the shift position SP is the forward position D and the motor rotation direction Md is reverse, and when the shift position SP is the reverse position R and the motor rotation direction Md is normal rotation In this case, it is determined that they do not correspond to each other (step S5: NO).
  • step S2 YES
  • step S6 regenerative braking is prohibited in step S6, and the regenerative motor torque limit final value is set to 0 [Nm] in step S7 (period from time t3 to time t5). Corresponding to).
  • step S5 as shown in the period from time t9 to time t11, it is determined that the shift position SP (SP ⁇ D: forward position) does not correspond to the motor rotation direction Md (reverse rotation). If (step S5: NO), it is determined at the time of switchback.
  • step S8 regenerative braking is permitted in step S8, and the maximum value that the state of charge SOC can take is determined from the value of the fully charged state (first fully charged state) shown in FIGS.
  • step S9 the regeneration side motor torque limit final value is set to the switchable executable motor torque limit value (in the time chart of FIG. 2, the broken line in the motor torque item). Corresponding to the “regenerative amount necessary for switchback”).
  • the switchback control for switching the traveling direction of the host vehicle 10 from backward to forward is performed by switching the shift position SP from the reverse position R to the forward position D and operating the accelerator pedal 28 from time t8.
  • the regeneration (charging) is permitted even when the power storage device 22 is nearly fully charged.
  • the first full charge threshold for prohibiting regeneration is set to be small in advance in anticipation of regeneration due to switchback.
  • the braking force generated by regenerative braking can be achieved by simply depressing the accelerator pedal 28 at the time of switchback. Is applied to the wheel 16 and the vehicle 10 can be stopped and moved forward. In other words, the switchback can be performed smoothly without depending on the state of charge of the power storage device 22.
  • the vehicle travels using the power of the electric motor 12 driven by the electric power from the power storage device 22, and the braking force is generated by the friction braking by the friction brake 18 and / or the regenerative braking by the electric motor 12.
  • a fully charged state determination step for determining whether or not the charged state of the power storage device 22 is a fully charged state (including the vicinity of the fully charged state) during traveling on a slope road (step S2).
  • a braking force control step (steps S2 to S9) for controlling the braking force on the host vehicle 10 based on the determination result of the fully charged state.
  • step S3 the state of charge of the power storage device 22 is not fully charged.
  • step S3 a braking force is applied to the host vehicle 10 by the regenerative braking.
  • step S6 the regenerative braking is prohibited.
  • step S7 Control to apply braking force to the vehicle (step S7), and prohibition of the regenerative braking is released to permit the regenerative braking (step S8).
  • Exception control to apply braking force to the host vehicle 10 by the regenerative braking The driver's vehicle operation, in this case a shift operation (time point t9), is applied by the control of any one of (Step S9) and reverses the forward direction of the host vehicle 10 from the downhill direction to the uphill direction.
  • Step S9 a shift operation
  • the braking force is controlled in principle (step S6). Since switching from S7) to exception control (steps S8 and S9) is performed, at the time of switchback, regenerative braking is applied simply by depressing the accelerator pedal 28, the deceleration is smoothly performed, the host vehicle 10 is stopped, and the vehicle is further advanced. be able to.
  • the full-charge state determination unit 62 sets the full-charge state to a first full-charge state (deemed full-charge state) that is smaller than the electrochemical full-charge state of the power storage device 22, and a braking force control unit 64, when the state of charge of the power storage device 22 is not the first fully charged state during traveling on the slope, the braking force is applied to the host vehicle 10 by the regenerative braking, and the power storage device 22 is applied during traveling on the slope.
  • the charging state of the vehicle is the first fully charged state
  • the regenerative braking is prohibited and the principle control for applying the braking force to the host vehicle 10 by the friction braking and the regenerative braking prohibition are canceled and the regenerative braking is disabled.
  • the power storage device 22 Since the braking force is controlled by any one of the exceptional control that permits braking and applies braking force to the host vehicle 10 by the regenerative braking, the power storage device 22 is deteriorated by overcharge. Without It is possible to allow the regenerative braking at the time of switchback, Hakare an extended service life of the power storage device, it is possible to improve marketability.
  • Step S2 YES
  • Step S5 NO
  • the power control is switched from the principle control by friction braking using the friction brake 18 to the exception control (steps S8 and S9) by regenerative braking of the electric motor 12, deceleration by regenerative braking cannot be performed at the time of switchback. It is possible to prevent the need for complicated cooperative control with friction braking.
  • the full charge state exceeds the electrochemical full charge state of power storage device 22 in which power storage device 22 deteriorates (corresponding to the value of the power storage device regeneration limit in FIG. 5).
  • the power storage device regeneration limit at the time of switchback is set to the excessive power storage device regeneration as shown by the characteristic 100 sb ′ so that regenerative braking is applied by preventing complex cooperative control with friction braking. Setting the limit value is also included in the present invention.
  • the shift position SP is in the forward parking state of the parking position P, the charging facility (including homes, public facilities, commercial facilities, etc.) is charged to the fully charged state, and after the fully charged state Then, the shift position SP is set to the reverse position R and the accelerator pedal 28 is operated to move backward, the shift position SP is set to the forward position D during the reverse movement, and the operation of the accelerator pedal 28 is continued, and the host vehicle 10 is moved backward.
  • the regenerative braking can be obtained at the time of switchback in the case of making a transition to a forward state through a stop.
  • a switchback state in which the moving direction of the host vehicle 10 is the backward direction and the shift position SP is the forward position D is caused by the driver's vehicle operation that reverses the forward direction of the own vehicle 10 from the downhill direction to the uphill direction.
  • the switching of the braking force control from the principle control by friction braking using the friction brake 18 to the exception control by regenerative braking of the electric motor 12 includes a case where the shift operation is not caused.
  • the host vehicle 10 is stopped when the shift position SP reaches the uphill road after traveling down a long downhill road at the forward position D, and the vehicle 10 moves down again, the movement of the own vehicle 10 Since the direction is the reverse direction and the shift position SP is the forward position D (also referred to as a switchback state in this case), simply by depressing the accelerator pedal 28, the control is switched to exception control and regenerative braking is applied. From the stop to a forward state (starting on a slope and traveling on the uphill road). In this traveling state, the shift operation is not performed.
  • the shift position SP is the forward position D and the vehicle is traveling downhill on a downhill road
  • the host vehicle 10 is turned 180 ° and the front part of the vehicle body is turned upward, and the brake pedal 32 is stepped on to temporarily stop.
  • the moving direction of the host vehicle 10 is the backward direction and the shift position SP is the forward position D (this state is also a switchback). Therefore, it is similarly switched to exception control, and regenerative braking is applied, and the host vehicle 10 can be moved from a stopped state to a forward state (starting on a slope). Even in this traveling state, the shift operation is not performed.
  • the shift position SP is the forward position D and the vehicle is traveling downhill on the downhill road
  • the vehicle 10 is turned 180 ° and the front of the vehicle body is turned upward
  • the shift position SP is set to the parking position P and an ignition switch ( The main switch) is turned off
  • the vehicle is parked
  • the ignition switch is turned on again
  • the shift position SP is shifted from the parking position P to the forward position D
  • the accelerator pedal 28 is depressed to generate a slope.
  • the moving direction of the vehicle 10 is the reverse direction and the shift position SP is the forward position D (this state is also referred to as a switchback state)
  • the control is similarly switched to the exception control.
  • the electric vehicle 10 starting and running with the electric motor 12 is described as an example.
  • the electric vehicle according to the present invention includes at least a hybrid vehicle including an internal combustion engine that starts with the electric motor 12, and a plug. Needless to say, in-hybrid vehicles and fuel cell vehicles are included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided are a control device for a motor vehicle (10) and a method for controlling the same whereby during switchback deceleration can be generated by regenerative braking regardless of the state of charge in an electricity storage device (22). Even when the electricity storage device (22) is in the state of being fully charged (including a state of being nearly full) in which regenerative braking is generally prohibited (step S2: YES), if the vehicle (10) is brought into a switchback state where the vehicle moves backwards (rotational direction of motor reversed) and a shift position is in a forward position (D) (step S5: NO), the control for braking force is switched from general control based on friction braking that uses a friction brake (18) to exceptional control (steps S8, S9) based on regenerative braking that uses a motor (12).

Description

電動車両の制御装置及び制御方法Control device and control method for electric vehicle
 この発明は、車両に対する制動力を回生制動及び摩擦制動により付与する電動車両の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an electric vehicle that applies a braking force to the vehicle by regenerative braking and friction braking.
 従来から、走行の動力として電動機(以下、モータともいう。)を用いる電動車両において、走行中に変速操作(以下、シフト操作という。)をし、進行方向を切り替える時、例えば、シフト位置(シフトレンジ)がR位置(リバースレンジ)でアクセルペダル操作により後退している状態から、D位置(ドライブレンジ)にシフト操作して、前記アクセルペダル操作を継続して前進する時、前記電動機を発電機として動作させ回生制動をかけることによって前記電動車両を後退状態から円滑に停止させ、この停止から逆方向、この場合前進状態にする、いわゆるスイッチバック操作の走行技術が知られている{特開2007-74817号公報(以下、JP2007-74817Aという。)の[0003]}。 2. Description of the Related Art Conventionally, in an electric vehicle that uses an electric motor (hereinafter also referred to as a motor) as driving power, when a shift operation (hereinafter referred to as a shift operation) is performed during traveling and the traveling direction is switched, for example, a shift position (shift When the range is shifted backward by the accelerator pedal operation at the R position (reverse range) to the D position (drive range) and the accelerator pedal operation is continued to move forward, the motor is turned into a generator. There is known a travel technique of so-called switchback operation, in which the electric vehicle is smoothly stopped from the reverse state by applying the regenerative braking, and the reverse direction from the stop to the forward state in this case is established. [0003]} of Japanese Patent No. -74817 (hereinafter referred to as JP2007-74817A).
 このスイッチバック時の比較例としての動作概要を図6Aのタイムチャートに示す。シフト位置がR位置で後退している状態(モータ回転数は逆転側、モータトルクは力行側)において、進行方向を前進に切り替えたいとき、時点taにてR位置からD位置にシフト操作を行う。時点tbにて、モータトルクが力行側から回生側に切り替わると回生制動状態で減速し、時点tcにて、停止し、モータ回転数が逆転側から正転側となり、電動車両の進行方向が後退方向から前進方向に反転する。 The operation outline as a comparative example at the time of this switchback is shown in the time chart of FIG. 6A. In the state where the shift position is retreating at the R position (the motor rotation speed is the reverse rotation side and the motor torque is the power running side), when it is desired to switch the traveling direction to the forward direction, the shift operation is performed from the R position to the D position at time ta. . When the motor torque is switched from the power running side to the regenerative side at time tb, the motor is decelerated in the regenerative braking state, stops at time tc, the motor rotation speed is changed from the reverse rotation side to the normal rotation side, and the traveling direction of the electric vehicle moves backward. Reverse from direction to forward direction.
 ところで、上記比較例に係る電動車両において、図6Bのタイムチャートに示すように、シフト位置がR位置で後退している状態(モータ回転数は逆転側、モータトルクは力行側)において、進行方向を前進に切り替えたいとき、時点taにてR位置からD位置にシフト操作を行い、時点tbにて、モータトルクが力行側から回生側に切り替わろうとするときに、バッテリが満充電状態であると、回生制動がかからず、換言すれば、回生制動が制限(回生制限という。)され、結果として、回生制動と摩擦制動との協調制御が必要になる場合がある。 By the way, in the electric vehicle according to the comparative example, as shown in the time chart of FIG. 6B, the traveling direction in the state where the shift position is retracted at the R position (the motor rotation speed is the reverse rotation side and the motor torque is the power running side). Is switched from the R position to the D position at the time ta, and when the motor torque is about to switch from the power running side to the regeneration side at the time tb, the battery is fully charged. In other words, regenerative braking is not applied, in other words, regenerative braking is restricted (referred to as regenerative restriction), and as a result, cooperative control between regenerative braking and friction braking may be required.
 しかしながら、このスイッチバック時における回生制動と摩擦制動との協調制御は、条件が多岐に渡りきわめて複雑な制御となっている。 However, the cooperative control of regenerative braking and friction braking at the time of this switchback is extremely complicated control over various conditions.
 この発明はこのような課題を考慮してなされたものであり、蓄電装置の充電状態にかかわらず、スイッチバック時に回生制動がかかるようにした電動車両の制御装置及び制御方法を提供することを目的とする。 The present invention has been made in consideration of such problems, and an object thereof is to provide a control device and a control method for an electric vehicle in which regenerative braking is applied at the time of switchback regardless of the state of charge of the power storage device. And
 この発明に係る電動車両の制御装置は、蓄電装置からの電力により駆動される電動機の動力を用いて走行し、摩擦制動及び又は前記電動機による回生制動により制動力を付与する電動車両の制御装置において、坂路の走行中に前記蓄電装置の充電状態が満充電状態であるか否かを判定する満充電状態判定部と、前記満充電状態判定部の判定結果に基づき、自車両に対する制動力の制御を行う制動力制御部と、を備え、前記制動力制御部は、前記坂路の走行中に前記蓄電装置の充電状態が満充電状態でない場合は、前記回生制動により自車両に対し制動力を付与し、前記坂路の走行中に前記蓄電装置の充電状態が満充電状態である場合は、前記回生制動を禁止し前記摩擦制動により前記自車両に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により自車両に対し制動力を付与する例外制御と、のいずれか一方の制御により前記制動力を付与し、自車両の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記制動力の制御を前記原則制御から前記例外制御に切り替えることを特徴とする。 An electric vehicle control device according to the present invention is an electric vehicle control device that travels using the power of an electric motor driven by electric power from a power storage device and applies a braking force by friction braking and / or regenerative braking by the electric motor. , Control of the braking force for the host vehicle based on the determination result of the full charge state determination unit and the full charge state determination unit for determining whether or not the state of charge of the power storage device is a full charge state while traveling on a slope A braking force control unit configured to perform braking when the charging state of the power storage device is not fully charged during traveling on the slope. And when the power storage device is fully charged while traveling on the slope, the regenerative braking is prohibited and the braking control is applied to the host vehicle by the friction braking, and the regenerative braking The braking force is applied by any one of the exception control that releases the prohibition and permits the regenerative braking and applies the braking force to the host vehicle by the regenerative braking, and reduces the forward direction of the host vehicle. Due to the vehicle operation of the driver who reverses from the hill direction to the uphill direction, when the moving direction of the host vehicle is in the reverse direction and the shift position is in the switchback state, the control of the braking force is performed. The principle control is switched to the exception control.
 また、この発明に係る電動車両の制御方法は、蓄電装置からの電力により駆動される電動機の動力を用いて走行し、摩擦制動及び又は前記電動機による回生制動により制動力を付与する電動車両の制御方法において、坂路の走行中に前記蓄電装置の充電状態が満充電状態であるか否かを判定する満充電状態判定ステップと、前記満充電状態の判定結果に基づき、自車両に対する制動力を制御する制動力制御ステップと、を備え、前記制動力制御ステップでは、前記坂路の走行中に前記蓄電装置の充電状態が満充電状態でない場合は、前記回生制動により自車両に対し制動力を付与し、前記坂路の走行中に前記蓄電装置の充電状態が満充電状態である場合は、前記回生制動を禁止し前記摩擦制動により前記自車両に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により自車両に対し制動力を付与する例外制御とのいずれか一方の制御により前記制動力を付与し、自車両の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記制動力の制御を前記原則制御から前記例外制御に切り替えることを特徴とする。 The electric vehicle control method according to the present invention controls an electric vehicle that travels using the power of an electric motor driven by electric power from a power storage device and applies a braking force by friction braking and / or regenerative braking by the electric motor. In the method, a full charge state determination step for determining whether or not the state of charge of the power storage device is a full charge state while traveling on a slope, and a braking force for the host vehicle is controlled based on the determination result of the full charge state A braking force control step that applies a braking force to the host vehicle by regenerative braking when the charging state of the power storage device is not fully charged during traveling on the slope. The principle of prohibiting the regenerative braking and applying a braking force to the host vehicle by the friction braking when the state of charge of the power storage device is fully charged while traveling on the slope The braking force is applied by one of the control and the exception control in which the prohibition of the regenerative braking is canceled and the regenerative braking is permitted and the braking force is applied to the host vehicle by the regenerative braking. If the driver's vehicle operation that reverses the forward direction of the vehicle from the downhill direction to the uphill direction causes the vehicle to move backward and the shift position is switched to the forward position, the control is performed. The power control is switched from the principle control to the exception control.
 上記の各発明によれば、蓄電装置の充電状態が、原則としては回生制動を禁止する満充電状態である場合(満充電状態に近い状態である場合も含む)であっても、自車両の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、制動力の付与(制御)を摩擦制動による原則制御から回生制動による例外制御に切り替えるようにしたので、スイッチバック時には、アクセルペダルを踏むだけで回生制動がかかって減速が円滑になされて自車両が停止され、さらに前進させることができる。よって、蓄電装置の充電状態にかかわらず、スイッチバック時に回生制動がかかるようにできる。 According to each of the above-described inventions, even when the state of charge of the power storage device is a fully charged state that prohibits regenerative braking in principle (including a state close to the fully charged state), When the movement direction is in the reverse direction and the shift position is in the switchback state, the braking force application (control) is switched from the principle control by friction braking to the exception control by regenerative braking. Sometimes, just by depressing the accelerator pedal, regenerative braking is applied, the deceleration is smoothly performed, the host vehicle is stopped, and the vehicle can be further advanced. Therefore, regenerative braking can be applied during switchback regardless of the state of charge of the power storage device.
 この場合、前記満充電状態が、前記蓄電装置が劣化する前記蓄電装置の電気化学的満充電状態を上回る場合(過充電になる場合)にも、上記ドライバビリティを優先して回生制動がかかるようにすることもこの発明に含まれるが、好ましくは、前記満充電状態判定部は、前記満充電状態を、前記蓄電装置の電気化学的満充電状態より小さい残容量である第1満充電状態(みなし満充電状態)とし、前記制動力制御部は、前記坂路の走行中に前記蓄電装置の充電状態が前記第1満充電状態でない場合は、前記回生制動により自車両に対し制動力を付与し、前記坂路の走行中に前記蓄電装置の充電状態が前記第1満充電状態である場合は、前記回生制動を禁止し前記摩擦制動により前記自車両に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により自車両に対し制動力を付与する例外制御とのいずれか一方の制御により前記制動力を制御することで、蓄電装置を過充電劣化させることなく、スイッチバック時に回生制動を許可することができるので、蓄電装置の長寿命化が図れ、商品性を一層向上させることができる。 In this case, even when the fully charged state exceeds the electrochemical full charged state of the power storage device in which the power storage device deteriorates (when overcharging occurs), regenerative braking is applied with priority on the drivability. Preferably, the full-charge state determination unit sets the full-charge state to a first full-charge state (remaining capacity smaller than the electrochemical full-charge state of the power storage device). The braking force control unit applies a braking force to the host vehicle by the regenerative braking when the charging state of the power storage device is not the first full charging state during traveling on the slope. When the charge state of the power storage device is the first fully charged state during traveling on the slope, the principle control for prohibiting the regenerative braking and applying a braking force to the host vehicle by the friction braking; and Regenerative braking The storage device is overcharged and deteriorated by controlling the braking force by any one of the exception control that releases the prohibition, permits the regenerative braking, and applies the braking force to the host vehicle by the regenerative braking. Therefore, regenerative braking can be permitted at the time of switchback, so that the life of the power storage device can be extended and the merchantability can be further improved.
 より具体的には、前記制動力制御部は、前記原則制御時に、前記回生制動を禁止しているときには、前記電動機の回生側トルク値をゼロ値に制限するとともに、前記自車両が前向きのまま、前記自車両の移動方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記電動機の回生側トルク値を所定値に制限することで、蓄電装置の過充電をより確実に防止することができる。 More specifically, when the regenerative braking is prohibited during the principle control, the braking force control unit limits the regenerative side torque value of the electric motor to a zero value, and the host vehicle remains forward. , When the driver's vehicle operation reverses the moving direction of the own vehicle from the downhill direction to the uphill direction, when the moving direction of the own vehicle is in the reverse direction and the shift position is in the switchback state. By restricting the regeneration side torque value of the electric motor to a predetermined value, overcharging of the power storage device can be more reliably prevented.
 この発明によれば、シフト位置を後退位置にしてアクセルの操作により当該電動車両を後退させている状態において、シフト位置を前進位置に切り替えたとき、例え、満充電状態であっても、回生制動がかかりながら車両が減速して停止し、前進するので、蓄電装置の充電状態にかかわらず、スイッチバック時に回生制動がかかるようにできる。なお、前記満充電状態は、スイッチバック時の回生分を見越して、予め、蓄電装置の電気化学的満充電状態よりも小さい値に設定しておくことが好ましい。 According to the present invention, when the shift position is switched to the forward position in a state where the shift position is set to the reverse position and the electric vehicle is moved backward by the operation of the accelerator, the regenerative braking is performed even in the fully charged state. Since the vehicle decelerates and stops and moves forward while the vehicle is applied, regenerative braking can be applied during switchback regardless of the state of charge of the power storage device. The full charge state is preferably set in advance to a value smaller than the electrochemical full charge state of the power storage device in anticipation of regeneration at the time of switchback.
この発明に係る電動車両の制御方法を実施する制御装置の一実施形態のブロック図である。1 is a block diagram of an embodiment of a control device that implements an electric vehicle control method according to the present invention. FIG. 降坂満充電時からスイッチバックにより登坂する際の回生制限の解除を含む動作を説明するタイムチャートである。It is a time chart explaining the operation | movement including cancellation | release of the regeneration restriction | limiting at the time of climbing up by switchback from the time of a full-downhill charge. 充電状態と回生量との関係を示す特性図である。It is a characteristic view which shows the relationship between a charge condition and the amount of regeneration. 回生側モータトルクの設定を説明する制御フローチャートである。It is a control flowchart explaining the setting of the regeneration side motor torque. 変形例を説明する、充電状態と回生量との関係を示す特性図である。It is a characteristic view which shows the relationship between a charge condition and the amount of regeneration explaining a modification. 図6Aは、スイッチバック時に、回生制動で減速しながら進行方向を反転する際の動作を説明するタイムチャート、図6Bは、スイッチバック時に、回生制動と摩擦制動との複雑な協調制御が必要になる動作を説明するタイムチャートである。FIG. 6A is a time chart for explaining the operation when reversing the traveling direction while decelerating by regenerative braking at the time of switchback, and FIG. 6B requires complicated cooperative control of regenerative braking and friction braking at the time of switchback. It is a time chart explaining the operation | movement which becomes.
 以下、この発明に係る電動車両の制御装置及び制御方法について、前記制御方法を実施する前記制御装置の一実施形態を利用した電動車両について図面を参照しながら説明する。 Hereinafter, a control device and a control method for an electric vehicle according to the present invention will be described with reference to the drawings for an electric vehicle using an embodiment of the control device that performs the control method.
 図1は、この実施形態に係る電動車両(自車両ともいう。)10の模式的なブロック図である。電動車両10は、動力を発生する電動機12を備え、電動機12の回転軸は、トランスミッション14等を介して車輪16に接続される。車輪16には、摩擦制動力を付与するための摩擦ブレーキ18が係合している。 FIG. 1 is a schematic block diagram of an electric vehicle (also referred to as own vehicle) 10 according to this embodiment. The electric vehicle 10 includes an electric motor 12 that generates power, and the rotating shaft of the electric motor 12 is connected to the wheel 16 via a transmission 14 and the like. A friction brake 18 for applying a friction braking force is engaged with the wheel 16.
 電動機12には、3相の結線を介してインバータ20(電力変換装置)が接続され、インバータ20には、蓄電装置22が接続されるとともに、インバータ20を駆動制御して電動機12を制御するモータECU(Electronic Control Unit)24が接続される。 The motor 12 is connected to an inverter 20 (power converter) via a three-phase connection, and the inverter 20 is connected to a power storage device 22, and a motor that controls the motor 12 by controlling the drive of the inverter 20. An ECU (Electronic Control Unit) 24 is connected.
 蓄電装置22は、エネルギストレージであり、リチウムイオン2次電池、ニッケル水素2次電池、又はキャパシタ等を利用することができる。この実施形態では、リチウムイオン2次電池を利用している。 The power storage device 22 is an energy storage, and a lithium ion secondary battery, a nickel hydride secondary battery, a capacitor, or the like can be used. In this embodiment, a lithium ion secondary battery is used.
 蓄電装置22には、充放電電流を制御乃至制限する充放電回路60が内蔵されている。この充放電回路60の充放電電流を制御するとともに、蓄電装置22の充電状態であるSOC(State Of Charge:残容量)を検出するSOC検出部72と充電電流(回生量)を制限する回生制限部74とを備えるバッテリECU26が、前記蓄電装置22に接続されている。バッテリECU26で検出された蓄電装置22の充電状態SOC等がモータECU24に供給される。 The power storage device 22 has a built-in charge / discharge circuit 60 for controlling or limiting the charge / discharge current. While controlling the charging / discharging current of the charging / discharging circuit 60, the SOC detection unit 72 that detects the SOC (state of charge) that is the state of charge of the power storage device 22 and the regeneration limit that limits the charging current (regeneration amount) A battery ECU 26 including a unit 74 is connected to the power storage device 22. The state of charge SOC of the power storage device 22 detected by the battery ECU 26 is supplied to the motor ECU 24.
 モータECU24には、アクセルペダル28の操作量が操作量センサ30により検出されたアクセル開度θと、ブレーキペダル32の操作量が操作量センサ34により検出されたブレーキ操作量Bと、シフトレバー36の操作位置がシフト位置センサ38により検出された駐車位置P(P位置)、後退位置R(R位置)、又は前進位置D(D位置)の各シフト位置SP(SPは、P、R、又はD)と、車速センサ40により検出された車速Vsと、電動機12を構成するレゾルバ等の回転数センサで検出されたモータ回転数Nm、及びモータ回転方向(前進方向、停止、後退方向)Md等と、がそれぞれ供給される。 The motor ECU 24 includes an accelerator opening degree θ in which the operation amount of the accelerator pedal 28 is detected by the operation amount sensor 30, a brake operation amount B in which the operation amount of the brake pedal 32 is detected by the operation amount sensor 34, and a shift lever 36. The shift position SP of the parking position P (P position), reverse position R (R position), or forward position D (D position) detected by the shift position sensor 38 (SP is P, R, or D), the vehicle speed Vs detected by the vehicle speed sensor 40, the motor rotational speed Nm detected by a rotational speed sensor such as a resolver constituting the electric motor 12, and the motor rotational direction (forward direction, stop, reverse direction) Md, etc. And are respectively supplied.
 モータECU24には、ナビゲーションECU42も接続され、ナビゲーションECU42から、自車両10の地図上の位置、高度等が供給される。 The navigation ECU 42 is also connected to the motor ECU 24, and the position, altitude, etc. of the host vehicle 10 on the map are supplied from the navigation ECU 42.
 モータECU24には、さらにブレーキECU50が接続される。ブレーキECU50には、ブレーキペダル32の操作量センサ34からブレーキ操作量Bが供給され、液圧モジュレータ52を介し、摩擦ブレーキ18を介して車輪16に対し摩擦制動による制動力を付与する。 A brake ECU 50 is further connected to the motor ECU 24. A brake operation amount B is supplied from the operation amount sensor 34 of the brake pedal 32 to the brake ECU 50, and a braking force by friction braking is applied to the wheel 16 via the fluid pressure modulator 52 and the friction brake 18.
 一方、モータECU24は、電動機12の回生電力を、インバータ20を通じて蓄電装置22に回収させることで、車輪16に対し電動機12の回生制動により制動させる制動力を付与する。モータECU24とブレーキECU50とバッテリECU26は、回生制動による制動力と摩擦制動による制動力との協調制御を行う。 On the other hand, the motor ECU 24 applies a braking force for braking the wheel 16 by the regenerative braking of the motor 12 by causing the power storage device 22 to collect the regenerative power of the motor 12 through the inverter 20. The motor ECU 24, the brake ECU 50, and the battery ECU 26 perform coordinated control of the braking force due to regenerative braking and the braking force due to friction braking.
 上記のモータECU24、バッテリECU26、及びナビゲーションECU42、ブレーキECU50の各ECUは、それぞれマイクロコンピュータを含む計算機であり、CPU(中央処理装置)、メモリであるROM(EEPROMも含む。)、RAM(ランダムアクセスメモリ)、その他、A/D変換器、D/A変換器等の入出力装置、計時部としてのタイマ等を有しており、前記CPUが前記ROMに記録されているプログラムを読み出し実行することで各種機能実現部(機能実現手段)、たとえば制御部、演算部、及び処理部等として機能する。 Each of the motor ECU 24, the battery ECU 26, the navigation ECU 42, and the brake ECU 50 is a computer including a microcomputer, and includes a CPU (central processing unit), a ROM (including EEPROM), and a RAM (random access). Memory), other input / output devices such as A / D converters and D / A converters, timers as timers, etc., and the CPU reads out and executes programs recorded in the ROM And function as various function realization units (function realization means) such as a control unit, a calculation unit, and a processing unit.
 バッテリECU26、モータECU24及びブレーキECU50は、CAN(Controller Area Network)等の通信ネットワークに係る図示しない通信線を通じて相互にデータを利用する等、通信可能に接続されている。なお、通信ネットワークは、無線ネットワークとしてもよい。 The battery ECU 26, the motor ECU 24, and the brake ECU 50 are communicably connected, for example, using data mutually through a communication line (not shown) related to a communication network such as CAN (Controller Area Network). Note that the communication network may be a wireless network.
 この実施形態において、バッテリECU26は、上述したように、蓄電装置22の充電状態SOC(残容量)を検出するSOC検出部72として機能するとともに、電動機12からインバータ20を通じて蓄電装置22に充電される回生電流(回生量ともいう。)を制限する回生制限部74等として機能する。ナビゲーションECU42は、高度検出部等として機能する。 In this embodiment, as described above, the battery ECU 26 functions as the SOC detection unit 72 that detects the state of charge SOC (remaining capacity) of the power storage device 22 and is charged from the electric motor 12 to the power storage device 22 through the inverter 20. It functions as a regeneration limiting unit 74 that limits a regenerative current (also referred to as a regeneration amount). The navigation ECU 42 functions as an altitude detection unit or the like.
 モータECU24は、ナビゲーションECU42からの高度情報等に基づいて坂路(降坂路又は登坂路)であるか平坦路であるかを検出する走行路検出部として機能するとともに、坂路の走行中に蓄電装置22の充電状態SOCが満充電状態であるか否かを判定する満充電状態判定部62として機能し、さらに、満充電状態判定部62の判定結果等に基づき、自車両10に対する制動力の制御を行う制動力制御部64等として機能する。満充電状態判定部62は、バッテリECU26に設けてもよいし、バッテリECU26の回生制限部74は、モータECU24に設けてもよい。 The motor ECU 24 functions as a traveling path detection unit that detects whether the road is a slope (downhill or climbing road) or a flat road based on altitude information from the navigation ECU 42 and the power storage device 22 during traveling on the slope. Functions as a full charge state determination unit 62 that determines whether or not the state of charge SOC is a full charge state, and further controls the braking force on the host vehicle 10 based on the determination result of the full charge state determination unit 62 and the like. It functions as the braking force control part 64 etc. to perform. The fully charged state determination unit 62 may be provided in the battery ECU 26, and the regeneration limiting unit 74 of the battery ECU 26 may be provided in the motor ECU 24.
 ここで、モータECU24の制動力制御部64は、基本的には、前記坂路の走行中に蓄電装置22の充電状態SOCが満充電状態でない場合は、電動機12の前記回生制動により自車両10に対して制動力を付与する一方、前記坂路の走行中に蓄電装置22の充電状態SOCが満充電状態である場合は、前記電動機12の前記回生制動を禁止し摩擦ブレーキ18による前記摩擦制動により自車両10に対して制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により自車両10に対し制動力を付与する例外制御とのいずれか一方の制御により前記制動力を付与する。 Here, the braking force control unit 64 of the motor ECU 24 basically applies to the host vehicle 10 by the regenerative braking of the electric motor 12 when the state of charge SOC of the power storage device 22 is not fully charged during traveling on the slope. On the other hand, when the charging state SOC of the power storage device 22 is fully charged while traveling on the slope, the regenerative braking of the electric motor 12 is prohibited and the friction braking by the friction brake 18 is performed automatically. One of the principle control for applying the braking force to the vehicle 10 and the exception control for releasing the prohibition of the regenerative braking and permitting the regenerative braking and applying the braking force to the host vehicle 10 by the regenerative braking. The braking force is applied by the control.
 制動力制御部64は、自車両10の前進方向を降坂方向から登坂方向に反転させる運転者のシフトレバー36の操作(後退位置Rから前進位置Dへのシフト操作)を原因として、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dのスイッチバック状態となった場合には、前記制動力の制御を前記原則制御から前記例外制御に切り替える機能等を有する。 The braking force control unit 64 causes the host vehicle 10 to operate due to the driver's operation of the shift lever 36 (shift operation from the reverse position R to the forward position D) that reverses the forward direction of the own vehicle 10 from the downhill direction to the uphill direction. When the switch direction of 10 is the reverse direction and the shift position SP is the forward position D, the brake force control function is switched from the principle control to the exception control.
 基本的には以上のように構成されるこの実施形態に係る電動車両10の制御装置としてのモータECU24の動作について、次に、図2のタイムチャートを参照しながら説明する。 Basically, the operation of the motor ECU 24 as the control device of the electric vehicle 10 according to this embodiment configured as described above will be described below with reference to the time chart of FIG.
 図2のタイムチャートは、例として、坂の上に位置する自宅等の駐車場から坂路(降坂路)をシフト位置SPの前進位置Dで下り(降坂し)、前記坂の下に位置する店等の駐車場に前進状態(前向き)で駐車(停止)してシフト位置SPを駐車位置Pとした後、前記店での商品購買後に、前記店等の前記駐車場から後退位置Rで、アクセルペダル28の操作により後退状態(前向き)で出場し、その後退状態(後退中)にアクセルペダル28を踏みながら前進位置Dに切り替え、自車両10を前記後退状態から停止状態を通じて前進状態に推移させるスイッチバック状態を経て、前記前進位置Dで前記坂路(登坂路)を上り(登坂し)、前記坂の上の自宅等に帰る際の回生制動に係る各項目の変化状態を示している。 The time chart of FIG. 2 shows, as an example, a downhill (downhill road) from a parking lot such as a home located on a hill at a forward position D of a shift position SP (downhill), and a shop located under the hill. After the vehicle is parked (stopped) in the forward state (forward) and the shift position SP is set to the parking position P, after the product is purchased at the store, the accelerator pedal is moved from the parking lot of the store or the like to the reverse position R. A switch for entering in the reverse state (forward) by the operation of 28, switching to the forward position D while stepping on the accelerator pedal 28 in the reverse state (backward), and changing the host vehicle 10 from the reverse state to the forward state through the stop state. It shows the change state of each item related to regenerative braking when going up (climbing) the slope (uphill) at the forward position D through the back state and returning to the home or the like on the slope.
 図2のタイムチャートには、モータECU24で検出されるシフト位置SP及び自車両10の進行方向(正転か、逆転かのモータ回転方向Mdで検出できる。)、高度、バッテリECU26を通じてモータECU24で検出される充電状態SOC及びモータ回転数Nm(モータ回転方向Md)、並びにモータECU24で算出されるモータトルクMT{太い一点鎖線で示している回生側モータトルク制限値(回生制限値ともいう。)を含む。}の各項目を載せている。 In the time chart of FIG. 2, the shift position SP detected by the motor ECU 24 and the traveling direction of the host vehicle 10 (which can be detected by the motor rotation direction Md of normal rotation or reverse rotation), altitude, and the motor ECU 24 through the battery ECU 26. Detected state of charge SOC and motor rotation speed Nm (motor rotation direction Md), and motor torque MT calculated by the motor ECU 24 {regeneration side motor torque limit value (also referred to as a regeneration limit value) indicated by a thick dashed line. including. } Items are listed.
 図2のタイムチャート中、充電状態SOCの項目に描いた満充電状態は、蓄電装置22の電気化学的満充電状態であってもよいが、電気化学的満充電状態以上に充電した場合には、蓄電装置22の劣化が早まるので、電気化学的満充電状態より小さい残容量である第1満充電状態(みなし満充電状態ともいう。)に設定している。なお、自車両10の進行方向(前進方向、後退方向、又は停止)は、モータ回転方向Md等により検出可能であり、モータ回転方向Mdが正転方向であれば、進行方向が前進方向に対応し、モータ回転方向Mdが逆転方向であれば、進行方向が後退方向に対応する。モータ回転数Nmが0、又はモータ回転方向Mdが停止を示している場合、進行方向は、停止状態とされる。 In the time chart of FIG. 2, the full charge state depicted in the item of the charge state SOC may be the electrochemical full charge state of the power storage device 22, but when charged more than the electrochemical full charge state Since the deterioration of the power storage device 22 is accelerated, the first full charge state (also referred to as a deemed full charge state), which is a remaining capacity smaller than the electrochemical full charge state, is set. The traveling direction (forward direction, backward direction, or stop) of the host vehicle 10 can be detected by the motor rotation direction Md or the like. If the motor rotation direction Md is the forward rotation direction, the traveling direction corresponds to the forward direction. If the motor rotation direction Md is the reverse direction, the traveling direction corresponds to the backward direction. When the motor rotation speed Nm is 0 or the motor rotation direction Md indicates stop, the traveling direction is set to the stop state.
 図2のタイムチャート中、充電状態SOCの項目に描いた蓄電装置回生限界の値は、上記の電気化学的満充電状態(電気化学的満充電状態>第1満充電状態=みなし満充電状態)の値に対応する。 In the time chart of FIG. 2, the value of the power storage device regeneration limit drawn in the item of state of charge SOC is the electrochemical full charge state (electrochemical full charge state> first full charge state = deemed full charge state). Corresponds to the value of.
 時点t0から時点t5までの間は、シフト位置Dでの前進方向での降坂走行状態を示している。 From time t0 to time t5, a downhill traveling state in the forward direction at the shift position D is shown.
 この降坂走行状態では、時点t0から時点t3まで満充電状態判定部62により充電状態SOCから満充電状態(ここでは、第1満充電状態)ではないと判定されるので、インバータ20を通じて電動機12が回生状態に制御され、蓄電装置22が充電されることから充電状態SOCは徐々に増加している。 In this downhill traveling state, the fully charged state determination unit 62 determines that the state of charge is not in the fully charged state (here, the first fully charged state) from time t0 to time t3. Is controlled in the regenerative state, and the power storage device 22 is charged, so the state of charge SOC gradually increases.
 時点t3において、充電状態SOCが満充電状態{ここでは、上記第1満充電状態(みなし満充電状態)}になると、制動力制御部64により、インバータ20を停止させ、且つ回生制限部74を通じて充放電回路60による充電を禁止することで、電動機12からの回生による蓄電装置22への充電を停止する。これにより時点t3から時点t5の間で回生制動が禁止される。 At time t3, when the state of charge SOC becomes a fully charged state (here, the first fully charged state (deemed fully charged state)), the braking force control unit 64 stops the inverter 20 and passes through the regeneration limiting unit 74. By prohibiting charging by the charge / discharge circuit 60, charging of the power storage device 22 by regeneration from the electric motor 12 is stopped. Thereby, regenerative braking is prohibited between time t3 and time t5.
 時点t4からのブレーキペダル32の操作により時点t5にて自車両10を停車(停止)させる。時点t6にてシフトレバー36の操作によりシフト位置SPを前進位置Dから駐車位置Pに操作する。 The host vehicle 10 is stopped (stopped) at time t5 by operating the brake pedal 32 from time t4. At time t6, the shift position 36 is operated from the forward position D to the parking position P by operating the shift lever 36.
 図3は、蓄電装置22の充電状態SOCの値に対する、回生量(回生可能量又は回生制限値ともいう。)、すなわち充電電流の特性100を示している。充電状態SOCが満充電状態に近づくにつれ回生量がより小さく制限される。充電状態SOCが増加して、予め設定した回生制御切替閾値の充電状態SOCの値となったとき、アクセルペダル28の開放(アクセルペダルオフ)時回生量特性(アクセルペダル開放時回生量特性)100apに示すように、スイッチバック時回生量特性100sbに比べて早めに制限して、充電状態SOCを第1満充電状態の値に制限する一方、スイッチバック時回生量特性100sbでは、充電状態SOCを蓄電装置回生限界の(充電状態SOCの)値まで制限を緩和する。 FIG. 3 shows a regenerative amount (also referred to as a regenerative amount or a regenerative limit value), that is, a charging current characteristic 100 with respect to the value of the state of charge SOC of the power storage device 22. As the state of charge SOC approaches the fully charged state, the regenerative amount is limited to be smaller. When the state of charge SOC increases and reaches the value of the state of charge SOC of the preset regeneration control switching threshold, the regeneration amount characteristic when the accelerator pedal 28 is released (accelerator pedal off) (the regeneration amount characteristic when the accelerator pedal is released) 100ap As shown in FIG. 2, the charge state SOC is limited to the value of the first fully charged state by limiting earlier than the switchback regeneration amount characteristic 100sb, while the switch state regeneration amount characteristic 100sb The limit is relaxed to the value of the storage device regeneration limit (of the state of charge SOC).
 図2のタイムチャート中、モータトルクの項目において、1点鎖線で示す回生制限値は、図3の回生量の特性100、100ap、100sbに対応する特性となっている。時点t0から時点t1の間では、電動機12からの回生電流の全てが蓄電装置22に回生(充電)されるが、時点t1から回生側モータトルクは、回生量の特性100、100apに沿った回生制限値に制限され、時点t3で充電状態SOCが第1満充電状態の値になったとき、制動力制御部64は、回生制限部74を介し、充放電回路60を通じて蓄電装置22への回生電流(充電電流)の流れ込みを時点t3から時点t5(時点t6としてもよい。)の間まで阻止する。 In the motor torque item in the time chart of FIG. 2, the regenerative limit value indicated by a one-dot chain line is a characteristic corresponding to the regenerative amount characteristics 100, 100ap, and 100sb of FIG. From time t0 to time t1, all of the regenerative current from the electric motor 12 is regenerated (charged) to the power storage device 22, but from the time t1, the regeneration side motor torque is regenerated along the regeneration amount characteristics 100 and 100ap. When the state of charge SOC is limited to the limit value and the state of charge SOC becomes the value of the first fully charged state at time t3, the braking force control unit 64 regenerates the power storage device 22 through the charge / discharge circuit 60 via the regeneration limit unit 74. The flow of current (charging current) is blocked from time t3 to time t5 (may be time t6).
 時点t7において、前記坂の下にある前記店の駐車場から坂の上にある家まで戻るために、シフト位置SPを駐車位置Pから後退位置Rに切り替え、時点t8でアクセルペダル28を踏んで、前向き駐車していた自車両10を一旦後退させ、この後退状態の時点t9において、シフト位置SPを後退位置Rから前進位置Dに切り替える。 At time t7, the shift position SP is switched from the parking position P to the reverse position R in order to return from the parking lot of the store below the hill to the house above the hill, and the accelerator pedal 28 is stepped forward at the time t8. The parked vehicle 10 is once moved backward, and the shift position SP is switched from the reverse position R to the forward position D at the time t9 in the reverse state.
 この時点t9又は時点t9から時点t10の間において、モータECU24の制動力制御部64は、自車両10がスイッチバック状態になったものと判定し、図3に示した回生量の特性100をアクセルペダル開放時回生量特性100apからスイッチバック時回生量特性100sbに切り替える。すなわち、充電状態SOCの制限を図2に示す満充電状態から蓄電装置回生限界の値に切り替える(図3も参照)。 During this time point t9 or between time point t9 and time point t10, the braking force control unit 64 of the motor ECU 24 determines that the host vehicle 10 is in the switchback state, and the characteristics 100 of the regeneration amount shown in FIG. Switching from the regeneration amount characteristic 100ap when the pedal is released to the regeneration amount characteristic 100sb at the time of switchback. That is, the limit of the state of charge SOC is switched from the fully charged state shown in FIG. 2 to the value of the power storage device regeneration limit (see also FIG. 3).
 そして、時点t9からモータ回転数Nmが上昇に転じる(逆転方向の回転数が小さくなる。)。そのため、モータトルクは力行側から回生側に向かい、時点t10において、力行側から回生側に移る。このとき、時点t10から時点t11までの間ではモータ回転数Nmが徐々にゼロ値に近づく(減少する)ので、電動機12で回生が発生し、この回生分を、充電状態SOCを蓄電装置回生限界の値に切り替えた(持ち替えた)蓄電装置22に回生(充電)する。これにより、スイッチバック時において、車速Vsがゼロ値となる時点t10から時点t11の間、回生側のモータトルクを発生させることができる。この回生制動による制動力がトランスミッション14を介して車輪16に付与されるので、自車両10は、円滑に減速し停止に向かう。すなわち、図6Aに示したように、スイッチバック時には、充電状態SOCの値に拘わらず、必ず回生動作で減速してから進行方向が反転する。 Then, the motor rotation speed Nm starts to increase from time t9 (the rotation speed in the reverse rotation direction decreases). Therefore, the motor torque moves from the power running side to the regeneration side, and moves from the power running side to the regeneration side at time t10. At this time, since the motor rotation speed Nm gradually approaches (decreases) the zero value from the time point t10 to the time point t11, regeneration occurs in the electric motor 12, and the regenerative portion is used as the charge state SOC for the power storage device regeneration limit. Is regenerated (charged) in the power storage device 22 that has been switched to (changed). Thereby, at the time of switchback, the regeneration side motor torque can be generated from the time point t10 to the time point t11 when the vehicle speed Vs becomes zero. Since the braking force due to this regenerative braking is applied to the wheels 16 via the transmission 14, the host vehicle 10 smoothly decelerates and stops. That is, as shown in FIG. 6A, at the time of switchback, the traveling direction is always reversed after the vehicle is decelerated by the regenerative operation regardless of the value of the state of charge SOC.
 時点t11以降は、モータ回転数Nmが正転方向となって、モータトルクが力行側になるので、回生制動による制動力の付与がなくなり、アクセルペダル28の継続的な操作により坂道の登坂を円滑に行うことができる。 After time t11, since the motor rotation speed Nm is in the forward direction and the motor torque is on the power running side, no braking force is applied due to regenerative braking, and the hill climbs smoothly through continuous operation of the accelerator pedal 28. Can be done.
 図4は、モータECU24とバッテリECU26とで協調制御される回生側モータトルクの制御フローチャートを示している。 FIG. 4 shows a control flowchart of the regeneration side motor torque controlled cooperatively by the motor ECU 24 and the battery ECU 26.
 時点t0以降のステップS1において、現在のモータ回転数Nmと回生電力制限値(図3の回生量)とに基づき、図示しない対応マップを検索して、回生側モータトルク制限値を決定する。 In step S1 after time t0, based on the current motor rotation speed Nm and the regenerative power limit value (regeneration amount in FIG. 3), a corresponding map (not shown) is searched to determine the regeneration side motor torque limit value.
 ステップS2において、充電状態SOCが満充電状態、この場合、第1満充電状態になっているか否かを判定し、満充電状態になっていない場合(ステップS2:NO)、ステップS3にて回生制動が許可され、ステップS4にて、ステップS1で算出した回生側モータトルク制限値を回生側モータトルク制限最終値とする(例えば、図2中、時点t0から時点t3の間の期間が相当する)。 In step S2, it is determined whether or not the state of charge SOC is in a fully charged state, in this case, the first fully charged state. If not in the fully charged state (step S2: NO), regeneration is performed in step S3. Braking is permitted, and in step S4, the regeneration side motor torque limit value calculated in step S1 is set as the regeneration side motor torque limit final value (for example, the period from time t0 to time t3 in FIG. 2 corresponds). ).
 一方、ステップS2の判定にて、充電状態SOCが満充電状態(第1満充電状態)になっている場合(ステップS2:YES)、ステップS5にて、シフト位置SPとモータ回転方向Mdが対応しているか否かを判定する。シフト位置SPが前進位置Dであってモータ回転方向Mdが正転の場合、及びシフト位置SPが後退位置Rであってモータ回転方向Mdが逆転の場合、いずれも対応していると判定され(ステップS5:YES)、それ以外の場合、すなわち、シフト位置SPが前進位置Dであってモータ回転方向Mdが逆転の場合、及びシフト位置SPが後退位置Rであってモータ回転方向Mdが正転の場合、それぞれ対応していないと判定される(ステップS5:NO)。 On the other hand, if it is determined in step S2 that the state of charge SOC is in the fully charged state (first fully charged state) (step S2: YES), the shift position SP corresponds to the motor rotation direction Md in step S5. It is determined whether or not. When the shift position SP is the forward position D and the motor rotation direction Md is normal rotation, and when the shift position SP is the reverse position R and the motor rotation direction Md is reverse rotation, both are determined to be compatible ( Step S5: YES), in other cases, that is, when the shift position SP is the forward position D and the motor rotation direction Md is reverse, and when the shift position SP is the reverse position R and the motor rotation direction Md is normal rotation In this case, it is determined that they do not correspond to each other (step S5: NO).
 この場合、時点t0から時点t5の間では、シフト位置SP(SP←D)と、モータ回転方向Md(正転)とが対応していると判定され、時点t3から時点t5の間は満充電状態(ステップS2:YES)であるので、ステップS6にて、回生制動が禁止され、ステップS7にて、回生側モータトルク制限最終値が0[Nm]とされる(時点t3から時点t5の期間に対応する。)。 In this case, it is determined that the shift position SP (SP ← D) corresponds to the motor rotation direction Md (forward rotation) between the time point t0 and the time point t5, and the battery is fully charged between the time point t3 and the time point t5. In this state (step S2: YES), regenerative braking is prohibited in step S6, and the regenerative motor torque limit final value is set to 0 [Nm] in step S7 (period from time t3 to time t5). Corresponding to).
 また、ステップS5の判定にて、時点t9から時点t11の期間で示すように、シフト位置SP(SP←D:前進位置)と、モータ回転方向Md(逆転)とが対応していないと判定された場合には(ステップS5:NO)、スイッチバック時と判定される。 In step S5, as shown in the period from time t9 to time t11, it is determined that the shift position SP (SP ← D: forward position) does not correspond to the motor rotation direction Md (reverse rotation). If (step S5: NO), it is determined at the time of switchback.
 このスイッチバック時には、ステップS8にて回生制動が許可され、充電状態SOCの採り得る最大値が、図2、図3に示す満充電状態(第1満充電状態)の値から蓄電装置回生限界の値に切り替えられて回生量の許容範囲が広くされ、ステップS9にて、回生側モータトルク制限最終値がスイッチバック実施可能モータトルク制限値(図2のタイムチャート中、モータトルクの項目の破線で示す「スイッチバックに必要な回生量」に対応する。)に設定される。 At the time of this switchback, regenerative braking is permitted in step S8, and the maximum value that the state of charge SOC can take is determined from the value of the fully charged state (first fully charged state) shown in FIGS. In step S9, the regeneration side motor torque limit final value is set to the switchable executable motor torque limit value (in the time chart of FIG. 2, the broken line in the motor torque item). Corresponding to the “regenerative amount necessary for switchback”).
 このように、シフト位置SPの後退位置Rから前進位置Dへの切り替えと、時点t8からのアクセルペダル28の操作によって、自車両10の進行方向を後退から前進に切り替えるスイッチバック制御を行うときは、蓄電装置22が満充電に近いときであっても回生(充電)を許可するようにしている。しかも、回生を禁止する第1の満充電閾値は、スイッチバックによる回生分を見越して予め小さめに設定している。 As described above, when the switchback control for switching the traveling direction of the host vehicle 10 from backward to forward is performed by switching the shift position SP from the reverse position R to the forward position D and operating the accelerator pedal 28 from time t8. The regeneration (charging) is permitted even when the power storage device 22 is nearly fully charged. In addition, the first full charge threshold for prohibiting regeneration is set to be small in advance in anticipation of regeneration due to switchback.
 このため、蓄電装置22の残容量、すなわち充電状態SOCが、回生制動を禁止する程に満充電に近い状態であっても、スイッチバック時に、アクセルペダル28を踏むだけで、回生制動による制動力が車輪16に付与され自車両10を停止させ前進させることができる。換言すれば、蓄電装置22の充電状態に依存せずに、スイッチバックを円滑に行うことができる。 For this reason, even when the remaining capacity of the power storage device 22, that is, the state of charge SOC is nearly fully charged so that regenerative braking is prohibited, the braking force generated by regenerative braking can be achieved by simply depressing the accelerator pedal 28 at the time of switchback. Is applied to the wheel 16 and the vehicle 10 can be stopped and moved forward. In other words, the switchback can be performed smoothly without depending on the state of charge of the power storage device 22.
[実施形態の作用効果]
 以上説明したように上述した実施形態によれば、蓄電装置22からの電力により駆動される電動機12の動力を用いて走行し、摩擦ブレーキ18による摩擦制動及び又は電動機12による回生制動により制動力を付与する電動車両10の制御方法において、坂路の走行中に蓄電装置22の充電状態が満充電状態(満充電状態の近傍を含む)であるか否かを判定する満充電状態判定ステップ(ステップS2)と、前記満充電状態の判定結果に基づき、自車両10に対する制動力を制御する制動力制御ステップ(ステップS2からステップS9)と、を備え、前記制動力制御ステップでは、前記坂路の走行中に蓄電装置22の充電状態が満充電状態でない場合は(ステップS2:NO)、前記回生制動により自車両10に対する制動力を付与し(ステップS3、S4)、前記坂路の走行中に蓄電装置22の充電状態が満充電状態である場合は(ステップS2:YES)、前記回生制動を禁止し(ステップS6)前記摩擦制動により自車両10に対し制動力を付与する原則制御(ステップS7)と、前記回生制動の禁止を解除して前記回生制動を許可し(ステップS8)前記回生制動により自車両10に対し制動力を付与する例外制御(ステップS9)とのいずれか一方の制御により前記制動力を付与し、自車両10の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作、ここではシフト操作(時点t9)を原因として、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dのスイッチバック状態となった場合には、前記制動力の制御を原則制御(ステップS6、S7)から例外制御(ステップS8、S9)に切り替えるようにしたので、スイッチバック時には、アクセルペダル28を踏むだけで回生制動がかかって減速が円滑になされて自車両10が停止され、さらに前進させることができる。
[Effects of Embodiment]
As described above, according to the above-described embodiment, the vehicle travels using the power of the electric motor 12 driven by the electric power from the power storage device 22, and the braking force is generated by the friction braking by the friction brake 18 and / or the regenerative braking by the electric motor 12. In the control method of the electric vehicle 10 to be applied, a fully charged state determination step for determining whether or not the charged state of the power storage device 22 is a fully charged state (including the vicinity of the fully charged state) during traveling on a slope road (step S2). ) And a braking force control step (steps S2 to S9) for controlling the braking force on the host vehicle 10 based on the determination result of the fully charged state. In the braking force control step, the vehicle is traveling on the slope. If the state of charge of the power storage device 22 is not fully charged (step S2: NO), a braking force is applied to the host vehicle 10 by the regenerative braking ( Steps S3 and S4) When the power storage device 22 is fully charged while traveling on the slope (step S2: YES), the regenerative braking is prohibited (step S6). Control to apply braking force to the vehicle (step S7), and prohibition of the regenerative braking is released to permit the regenerative braking (step S8). Exception control to apply braking force to the host vehicle 10 by the regenerative braking The driver's vehicle operation, in this case a shift operation (time point t9), is applied by the control of any one of (Step S9) and reverses the forward direction of the host vehicle 10 from the downhill direction to the uphill direction. As a cause, when the moving direction of the host vehicle 10 is in the reverse direction and the shift position SP is in the switchback state of the forward position D, the braking force is controlled in principle (step S6). Since switching from S7) to exception control (steps S8 and S9) is performed, at the time of switchback, regenerative braking is applied simply by depressing the accelerator pedal 28, the deceleration is smoothly performed, the host vehicle 10 is stopped, and the vehicle is further advanced. be able to.
 この場合、満充電状態判定部62は、前記満充電状態を、蓄電装置22の電気化学的満充電状態より小さい残容量である第1満充電状態(みなし満充電状態)とし、制動力制御部64は、前記坂路の走行中に蓄電装置22の充電状態が前記第1満充電状態でない場合は、前記回生制動により自車両10に対し制動力を付与し、前記坂路の走行中に蓄電装置22の充電状態が前記第1満充電状態である場合は、前記回生制動を禁止し前記摩擦制動により自車両10に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により自車両10に対し制動力を付与する例外制御とのいずれか一方の制御により前記制動力を制御するように構成しているので、蓄電装置22を過充電劣化させることなく、スイッチバック時に回生制動を許可することができるので、蓄電装置の長寿命化が図れ、商品性を向上させることができる。 In this case, the full-charge state determination unit 62 sets the full-charge state to a first full-charge state (deemed full-charge state) that is smaller than the electrochemical full-charge state of the power storage device 22, and a braking force control unit 64, when the state of charge of the power storage device 22 is not the first fully charged state during traveling on the slope, the braking force is applied to the host vehicle 10 by the regenerative braking, and the power storage device 22 is applied during traveling on the slope. When the charging state of the vehicle is the first fully charged state, the regenerative braking is prohibited and the principle control for applying the braking force to the host vehicle 10 by the friction braking and the regenerative braking prohibition are canceled and the regenerative braking is disabled. Since the braking force is controlled by any one of the exceptional control that permits braking and applies braking force to the host vehicle 10 by the regenerative braking, the power storage device 22 is deteriorated by overcharge. Without It is possible to allow the regenerative braking at the time of switchback, Hakare an extended service life of the power storage device, it is possible to improve marketability.
 より簡潔に作用効果を説明すると、蓄電装置22の充電状態SOCが、原則としては回生制動を禁止する満充電状態である場合(満充電状態に近い状態である場合も含む)であっても(ステップS2:YES)、自車両10の移動方向が後退方向(モータ回転方向Mdが逆転方向)且つシフト位置SPが前進位置Dのスイッチバック状態となった場合には(ステップS5:NO)、制動力の制御を、摩擦ブレーキ18を利用する摩擦制動による原則制御から電動機12の回生制動による例外制御(ステップS8、S9)に切り替えるようにしたので、スイッチバック時に、回生制動による減速ができなくなって摩擦制動との複雑な協調制御が必要になることを防止できる。 To explain the effect more simply, even if the state of charge SOC of the power storage device 22 is in a fully charged state in which regenerative braking is prohibited in principle (including a case in which the state is close to the fully charged state) ( (Step S2: YES) When the moving direction of the host vehicle 10 is in the reverse direction (the motor rotation direction Md is the reverse direction) and the shift position SP is in the switchback state of the forward position D (Step S5: NO), Since the power control is switched from the principle control by friction braking using the friction brake 18 to the exception control (steps S8 and S9) by regenerative braking of the electric motor 12, deceleration by regenerative braking cannot be performed at the time of switchback. It is possible to prevent the need for complicated cooperative control with friction braking.
 なお、図5に示すように、前記満充電状態が、蓄電装置22が劣化する蓄電装置22の電気化学的満充電状態(図5中、蓄電装置回生限界の値に対応する。)を上回る場合(過充電になる場合)にも、摩擦制動との複雑な協調制御の発動を防止して回生制動がかかるように、スイッチバック時の蓄電装置回生限界を特性100sb´のように過剰蓄電装置回生限界の値に設定することもこの発明に含まれる。 As shown in FIG. 5, the full charge state exceeds the electrochemical full charge state of power storage device 22 in which power storage device 22 deteriorates (corresponding to the value of the power storage device regeneration limit in FIG. 5). Even in the case of overcharging, the power storage device regeneration limit at the time of switchback is set to the excessive power storage device regeneration as shown by the characteristic 100 sb ′ so that regenerative braking is applied by preventing complex cooperative control with friction braking. Setting the limit value is also included in the present invention.
 なお、この発明は、上述した実施形態に限らず、この明細書の記載内容に基づき、以下に説明するように、種々の構成を採り得ることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted as described below based on the description in this specification.
 例えば、平坦路であっても、シフト位置SPが駐車位置Pの前向き駐車状態において、充電設備(家庭、公共施設、商業施設等を含む。)にて満充電状態まで充電し、満充電状態後に、シフト位置SPを後退位置Rに入れてアクセルペダル28を操作して後退し、後退中にシフト位置SPを前進位置Dに入れてアクセルペダル28の操作を継続し、自車両10を、後退状態から停止を経て前進状態にするように遷移させる場合のスイッチバック時において回生制動が得られるようにする。 For example, even on a flat road, when the shift position SP is in the forward parking state of the parking position P, the charging facility (including homes, public facilities, commercial facilities, etc.) is charged to the fully charged state, and after the fully charged state Then, the shift position SP is set to the reverse position R and the accelerator pedal 28 is operated to move backward, the shift position SP is set to the forward position D during the reverse movement, and the operation of the accelerator pedal 28 is continued, and the host vehicle 10 is moved backward. The regenerative braking can be obtained at the time of switchback in the case of making a transition to a forward state through a stop.
 また、自車両10の前進方向を、降坂方向から登坂方向に反転させる運転者の車両操作を原因として、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dのスイッチバック状態となった場合に、前記制動力の制御を摩擦ブレーキ18を利用する摩擦制動による原則制御から電動機12の回生制動による例外制御に切り替える場面としては、シフト操作を原因としない場合も含まれる。 Further, a switchback state in which the moving direction of the host vehicle 10 is the backward direction and the shift position SP is the forward position D is caused by the driver's vehicle operation that reverses the forward direction of the own vehicle 10 from the downhill direction to the uphill direction. In such a case, the switching of the braking force control from the principle control by friction braking using the friction brake 18 to the exception control by regenerative braking of the electric motor 12 includes a case where the shift operation is not caused.
 例えば、シフト位置SPが前進位置Dで長い降坂路を降坂走行後に、登坂路に差し掛かったところで、自車両10を停止し、再発進する際に、ずり下がった場合も、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dの状態(この場合も、スイッチバック状態という。)となるので、アクセルペダル28を踏むだけで、例外制御に切り替えられ、回生制動がかかり自車両10を停止から前進(坂道発進して前記登坂路を登坂走行)状態にすることができる。この走行状態の場合には、シフト操作が行われない。 For example, if the host vehicle 10 is stopped when the shift position SP reaches the uphill road after traveling down a long downhill road at the forward position D, and the vehicle 10 moves down again, the movement of the own vehicle 10 Since the direction is the reverse direction and the shift position SP is the forward position D (also referred to as a switchback state in this case), simply by depressing the accelerator pedal 28, the control is switched to exception control and regenerative braking is applied. From the stop to a forward state (starting on a slope and traveling on the uphill road). In this traveling state, the shift operation is not performed.
 また、例えば、シフト位置SPが前進位置Dで降坂路を降坂走行中に、自車両10を180゜転回して、車体前部を上向きにした状態で、ブレーキペダル32を踏んで一時停止し、この一時停止状態からブレーキペダル32をアクセルペダル28に踏み替えて坂道発進する場合にも、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dの状態(この状態も、スイッチバック状態という。)となるので、同様に例外制御に切り替えられ回生制動がかかり自車両10を停止から前進状態に(坂道発進)することができる。この走行状態の場合にも、シフト操作が行われない。 Further, for example, while the shift position SP is the forward position D and the vehicle is traveling downhill on a downhill road, the host vehicle 10 is turned 180 ° and the front part of the vehicle body is turned upward, and the brake pedal 32 is stepped on to temporarily stop. Even when the brake pedal 32 is switched to the accelerator pedal 28 from this temporary stop state and the vehicle starts on a hill, the moving direction of the host vehicle 10 is the backward direction and the shift position SP is the forward position D (this state is also a switchback). Therefore, it is similarly switched to exception control, and regenerative braking is applied, and the host vehicle 10 can be moved from a stopped state to a forward state (starting on a slope). Even in this traveling state, the shift operation is not performed.
 また、シフト位置SPが前進位置Dで降坂路を降坂走行中に、自車両10を180゜転回し、車体前部を上向きにした状態で、シフト位置SPを駐車位置Pにしてイグニッションスイッチ(メインスイッチ)をオフ状態にし、駐車した後、再びイグニッションスイッチをオン状態にし、シフト位置SPを駐車位置Pから前進位置Dにシフト操作し、アクセルペダル28を踏んで坂道発生する場合にも、自車両10の移動方向が後退方向且つシフト位置SPが前進位置Dの状態(この状態も、スイッチバック状態という。)となるので、同様に例外制御に切り替えられる。 In addition, while the shift position SP is the forward position D and the vehicle is traveling downhill on the downhill road, the vehicle 10 is turned 180 ° and the front of the vehicle body is turned upward, the shift position SP is set to the parking position P and an ignition switch ( The main switch) is turned off, the vehicle is parked, the ignition switch is turned on again, the shift position SP is shifted from the parking position P to the forward position D, and the accelerator pedal 28 is depressed to generate a slope. Since the moving direction of the vehicle 10 is the reverse direction and the shift position SP is the forward position D (this state is also referred to as a switchback state), the control is similarly switched to the exception control.
 なお、上記実施形態では、電動機12で発進し走行する電動車両10を例として説明しているが、この発明に係る電動車両には、少なくとも電動機12で発進する、内燃機関を備えるハイブリッド車両、プラグインハイブリッド車両、及び燃料電池車両等が含まれることは言うまでもない。 In the above embodiment, the electric vehicle 10 starting and running with the electric motor 12 is described as an example. However, the electric vehicle according to the present invention includes at least a hybrid vehicle including an internal combustion engine that starts with the electric motor 12, and a plug. Needless to say, in-hybrid vehicles and fuel cell vehicles are included.

Claims (4)

  1.  蓄電装置(22)からの電力により駆動される電動機(12)の動力を用いて走行し、摩擦制動及び又は前記電動機(12)による回生制動により制動力を付与する電動車両(10)の制御装置において、
     坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態であるか否かを判定する満充電状態判定部(62)と、
     前記満充電状態判定部(62)の判定結果に基づき、自車両(10)に対する制動力の制御を行う制動力制御部(64)と、を備え、
     前記制動力制御部(64)は、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態でない場合は、前記回生制動により前記自車両(10)に対し制動力を付与し、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態である場合は、
     前記回生制動を禁止し前記摩擦制動により前記自車両(10)に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により前記自車両(10)に対し制動力を付与する例外制御と、のいずれか一方の制御により前記制動力を付与し、
     前記自車両(10)の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両(10)の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記制動力の制御を前記原則制御から前記例外制御に切り替える
     ことを特徴とする電動車両(10)の制御装置。
    Control device for electric vehicle (10) that travels using the power of electric motor (12) driven by electric power from power storage device (22) and applies braking force by friction braking and / or regenerative braking by electric motor (12) In
    A full charge state determination unit (62) for determining whether or not the state of charge of the power storage device (22) is a full charge state while traveling on a slope;
    A braking force control unit (64) for controlling the braking force on the host vehicle (10) based on the determination result of the full charge state determination unit (62);
    The braking force control unit (64)
    When the state of charge of the power storage device (22) is not fully charged during traveling on the slope, a braking force is applied to the host vehicle (10) by the regenerative braking,
    When the state of charge of the power storage device (22) is fully charged while traveling on the slope,
    The principle control for prohibiting the regenerative braking and applying the braking force to the host vehicle (10) by the friction braking, and the prohibition of the regenerative braking to permit the regenerative braking and the regenerative braking to the host vehicle ( 10) to provide the braking force by any one of the exception control to apply the braking force to,
    Switchback state in which the moving direction of the host vehicle (10) is the backward direction and the shift position is the forward position due to the driver's vehicle operation that reverses the forward direction of the host vehicle (10) from the downhill direction to the uphill direction. When it becomes, control of the said braking force is switched from the said principle control to the said exceptional control. The control apparatus of the electric vehicle (10) characterized by the above-mentioned.
  2.  請求項1記載の電動車両(10)の制御装置において、
     前記満充電状態判定部(62)は、
     前記満充電状態を、前記蓄電装置(22)の電気化学的満充電状態より小さい残容量である第1満充電状態とし、
     前記制動力制御部(64)は、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が前記第1満充電状態でない場合は、前記回生制動により前記自車両(10)に対し制動力を付与し、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が前記第1満充電状態である場合は、
     前記回生制動を禁止し前記摩擦制動により前記自車両(10)に対し制動力を付与する原則制御と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により前記自車両(10)に対し制動力を付与する例外制御とのいずれか一方の制御により前記制動力を制御する
     ことを特徴とする電動車両(10)の制御装置。
    In the control device of the electric vehicle (10) according to claim 1,
    The full charge state determination unit (62)
    The full charge state is a first full charge state that is a remaining capacity smaller than the electrochemical full charge state of the power storage device (22),
    The braking force control unit (64)
    When the state of charge of the power storage device (22) is not the first fully charged state during traveling on the slope, a braking force is applied to the host vehicle (10) by the regenerative braking,
    When the state of charge of the power storage device (22) is the first fully charged state during traveling on the slope,
    The principle control for prohibiting the regenerative braking and applying the braking force to the host vehicle (10) by the friction braking, and the prohibition of the regenerative braking to permit the regenerative braking and the regenerative braking to the host vehicle ( The control device for the electric vehicle (10), wherein the braking force is controlled by any one of the exceptional control for applying the braking force to 10).
  3.  請求項2記載の電動車両(10)の制御装置において、
     前記制動力制御部(64)は、
     前記原則制御時に、前記回生制動を禁止しているときには、前記電動機(12)の回生側トルク値をゼロ値に制限するとともに、前記自車両(10)の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両(10)の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記電動機(12)の回生側トルク値を所定値に制限する
     ことを特徴とする電動車両(10)の制御装置。
    In the control device of the electric vehicle (10) according to claim 2,
    The braking force control unit (64)
    When the regenerative braking is prohibited during the principle control, the regenerative side torque value of the electric motor (12) is limited to a zero value, and the forward direction of the host vehicle (10) is changed from the downhill direction to the uphill direction. When the moving direction of the host vehicle (10) is in the backward direction and the shift position is in the switchback state due to the vehicle operation of the driver to be reversed, the regeneration side torque value of the electric motor (12) Is limited to a predetermined value. A control device for an electric vehicle (10).
  4.  蓄電装置(22)からの電力により駆動される電動機(12)の動力を用いて走行し、摩擦制動及び又は前記電動機(12)による回生制動により制動力を付与する電動車両(10)の制御方法において、
     坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態であるか否かを判定する満充電状態判定ステップ(S2)と、
     前記満充電状態の判定結果に基づき、自車両(10)に対する制動力を制御する制動力制御ステップ(ステップS2-S9)と、を備え、
     前記制動力制御ステップ(ステップS2-ステップS9)では、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態でない場合は、前記回生制動により前記自車両(10)に対し制動力を付与し(ステップS3、S4)、
     前記坂路の走行中に前記蓄電装置(22)の充電状態が満充電状態である場合は、
     前記回生制動を禁止し前記摩擦制動により前記自車両(10)に対し制動力を付与する原則制御(ステップS7)と、前記回生制動の禁止を解除して前記回生制動を許可し前記回生制動により前記自車両(10)に対し制動力を付与する例外制御(ステップS9)とのいずれか一方の制御により前記制動力を付与し、
     前記自車両(10)の前進方向を降坂方向から登坂方向に反転させる運転者の車両操作を原因として、前記自車両(10)の移動方向が後退方向且つシフト位置が前進位置のスイッチバック状態となった場合には、前記制動力の制御を前記原則制御から前記例外制御に切り替える
     ことを特徴とする電動車両(10)の制御方法。
    A method for controlling an electric vehicle (10) that travels using the power of an electric motor (12) driven by electric power from a power storage device (22) and applies braking force by friction braking and / or regenerative braking by the electric motor (12) In
    A full charge state determination step (S2) for determining whether or not the charge state of the power storage device (22) is a full charge state while traveling on a slope;
    A braking force control step (steps S2-S9) for controlling the braking force for the host vehicle (10) based on the determination result of the fully charged state,
    In the braking force control step (step S2-step S9),
    When the power storage device (22) is not fully charged while traveling on the slope, a braking force is applied to the host vehicle (10) by the regenerative braking (steps S3 and S4).
    When the state of charge of the power storage device (22) is fully charged while traveling on the slope,
    The principle control (step S7) for prohibiting the regenerative braking and applying the braking force to the host vehicle (10) by the friction braking (step S7), and releasing the prohibition of the regenerative braking to permit the regenerative braking and by the regenerative braking. The braking force is applied by any one of the exception control (step S9) for applying a braking force to the host vehicle (10),
    Switchback state in which the moving direction of the host vehicle (10) is the reverse direction and the shift position is the forward position due to the driver's vehicle operation that reverses the forward direction of the host vehicle (10) from the downhill direction to the uphill direction. If it becomes, the control method of the electric vehicle (10), wherein the control of the braking force is switched from the principle control to the exception control.
PCT/JP2012/079602 2011-12-09 2012-11-15 Control device for motor vehicle and method for controlling same WO2013084682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-269541 2011-12-09
JP2011269541 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084682A1 true WO2013084682A1 (en) 2013-06-13

Family

ID=48574060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079602 WO2013084682A1 (en) 2011-12-09 2012-11-15 Control device for motor vehicle and method for controlling same

Country Status (2)

Country Link
JP (1) JPWO2013084682A1 (en)
WO (1) WO2013084682A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131559A (en) * 2014-01-13 2015-07-23 本田技研工業株式会社 Brake control apparatus for electric vehicle
JP2015131560A (en) * 2014-01-13 2015-07-23 本田技研工業株式会社 Brake control apparatus for electric vehicle
WO2015114979A1 (en) * 2014-01-31 2015-08-06 株式会社小松製作所 Work vehicle, and work vehicle control method
KR20150134529A (en) * 2014-05-22 2015-12-02 주식회사 만도 Vehicle control device and vehicle control method thereof
JP2015233387A (en) * 2014-06-10 2015-12-24 本田技研工業株式会社 Electric-vehicular charge control apparatus
JPWO2017047071A1 (en) * 2015-09-16 2018-07-12 三菱自動車工業株式会社 Regenerative brake control device
JP2020089103A (en) * 2018-11-27 2020-06-04 スズキ株式会社 Torque control device of electric vehicle
JP2021002980A (en) * 2019-06-24 2021-01-07 本田技研工業株式会社 Vehicular travel controller
EP3778288A1 (en) * 2019-08-13 2021-02-17 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271605A (en) * 1997-03-27 1998-10-09 Mitsubishi Motors Corp Brake control equipment of electric vehicle
JP2007074817A (en) * 2005-09-07 2007-03-22 Honda Motor Co Ltd Control unit for electric vehicle
JP2008201391A (en) * 2007-02-23 2008-09-04 Tcm Corp Forward/backward movement switching device of electric drive type cargo handling vehicle
JP2009040211A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Regenerative power control method and device for hybrid vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721838B2 (en) * 1999-03-18 2005-11-30 日産自動車株式会社 Regenerative power control device
JP4760756B2 (en) * 2007-03-30 2011-08-31 日産自動車株式会社 Regenerative braking device for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271605A (en) * 1997-03-27 1998-10-09 Mitsubishi Motors Corp Brake control equipment of electric vehicle
JP2007074817A (en) * 2005-09-07 2007-03-22 Honda Motor Co Ltd Control unit for electric vehicle
JP2008201391A (en) * 2007-02-23 2008-09-04 Tcm Corp Forward/backward movement switching device of electric drive type cargo handling vehicle
JP2009040211A (en) * 2007-08-08 2009-02-26 Toyota Industries Corp Regenerative power control method and device for hybrid vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131560A (en) * 2014-01-13 2015-07-23 本田技研工業株式会社 Brake control apparatus for electric vehicle
JP2015131559A (en) * 2014-01-13 2015-07-23 本田技研工業株式会社 Brake control apparatus for electric vehicle
WO2015114979A1 (en) * 2014-01-31 2015-08-06 株式会社小松製作所 Work vehicle, and work vehicle control method
JP2015143061A (en) * 2014-01-31 2015-08-06 株式会社小松製作所 Work vehicle and control method of work vehicle
CN105658493A (en) * 2014-01-31 2016-06-08 株式会社小松制作所 Work vehicle, and work vehicle control method
US9765500B2 (en) 2014-01-31 2017-09-19 Komatsu Ltd. Work vehicle and control method for work vehicle
KR101958798B1 (en) 2014-05-22 2019-07-02 주식회사 만도 Vehicle control device and vehicle control method thereof
KR20150134529A (en) * 2014-05-22 2015-12-02 주식회사 만도 Vehicle control device and vehicle control method thereof
JP2015233387A (en) * 2014-06-10 2015-12-24 本田技研工業株式会社 Electric-vehicular charge control apparatus
JPWO2017047071A1 (en) * 2015-09-16 2018-07-12 三菱自動車工業株式会社 Regenerative brake control device
JP2020089103A (en) * 2018-11-27 2020-06-04 スズキ株式会社 Torque control device of electric vehicle
JP7279345B2 (en) 2018-11-27 2023-05-23 スズキ株式会社 Torque controller for electric vehicle
JP2021002980A (en) * 2019-06-24 2021-01-07 本田技研工業株式会社 Vehicular travel controller
EP3778288A1 (en) * 2019-08-13 2021-02-17 Kabushiki Kaisha Toyota Jidoshokki Industrial vehicle
JP2021035064A (en) * 2019-08-13 2021-03-01 株式会社豊田自動織機 Industrial vehicle
JP7383929B2 (en) 2019-08-13 2023-11-21 株式会社豊田自動織機 industrial vehicle

Also Published As

Publication number Publication date
JPWO2013084682A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
WO2013084682A1 (en) Control device for motor vehicle and method for controlling same
US10768635B2 (en) Hybrid electric vehicle and platooning control method therefor
US11180149B2 (en) Vehicle and method for controlling the same
CN104853952B (en) The driving torque of vehicle controls device
US10392003B2 (en) Navigation-enhanced battery state of charge maintenance
EP2639098B1 (en) Control apparatus for preventing rolling back of electrically driven vehicle upon start-up thereof
US9751523B2 (en) Hybrid vehicle
US10632987B2 (en) Driving device of vehicle
US8666578B2 (en) Method and system for cutting fuel for hybrid vehicle
WO2014080468A1 (en) Accelerator-pedal-counterforce control device and vehicle
US11679754B2 (en) Hybrid vehicle and driving control method therefor
JP2020023280A (en) Control device of hybrid vehicle
JPWO2013125049A1 (en) Vehicle driving force control device
US11565694B2 (en) Cruise control method for hybrid vehicle
JP2009184647A (en) Driving control device for parallel-hybrid vehicle
JP2022059540A (en) Battery management system for electric vehicle and electric vehicle
JP6686384B2 (en) Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
JP6058564B2 (en) Electric vehicle braking control device
JP6801220B2 (en) Hybrid vehicle
KR100598805B1 (en) Method and system for controlling regenerative braking of four wheel drive electric vehicle
WO2017086471A1 (en) Hybrid vehicle and control method therefor
US10773712B2 (en) Hybrid vehicle and method of controlling engine therefor
JP5829872B2 (en) vehicle
JP5339091B2 (en) Hybrid car
JP2020102977A (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855630

Country of ref document: EP

Kind code of ref document: A1