JP6088754B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6088754B2
JP6088754B2 JP2012134102A JP2012134102A JP6088754B2 JP 6088754 B2 JP6088754 B2 JP 6088754B2 JP 2012134102 A JP2012134102 A JP 2012134102A JP 2012134102 A JP2012134102 A JP 2012134102A JP 6088754 B2 JP6088754 B2 JP 6088754B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange tube
heat
refrigerant
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012134102A
Other languages
Japanese (ja)
Other versions
JP2013257096A (en
Inventor
浩隆 門
浩隆 門
金子 智
智 金子
祐介 飯野
祐介 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2012134102A priority Critical patent/JP6088754B2/en
Publication of JP2013257096A publication Critical patent/JP2013257096A/en
Application granted granted Critical
Publication of JP6088754B2 publication Critical patent/JP6088754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、例えば、車両用空気調和装置に用いられるヒートポンプサイクルにおいて、冷媒と空気とを熱交換するための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between refrigerant and air, for example, in a heat pump cycle used in a vehicle air conditioner.

従来、この種の熱交換器としては、中空扁平状に形成され、第1流体が流通する複数の熱交換チューブを備え、熱交換チューブの内側を流通する第1流体と熱交換チューブの外側を流通する第2流体とを熱交換させるようにしたものが知られている(例えば、特許文献1参照)。この熱交換器は、例えば、第1流体としての冷媒と第2流体としての空気とを熱交換することによって冷媒を吸熱させるヒートポンプサイクルのエバポレータとして用いることが可能である。   Conventionally, this type of heat exchanger has a hollow flat shape and includes a plurality of heat exchange tubes through which the first fluid circulates, and the first fluid that circulates inside the heat exchange tubes and the outside of the heat exchange tubes. There is known one in which heat is exchanged with the second fluid that is circulated (see, for example, Patent Document 1). This heat exchanger can be used, for example, as an evaporator of a heat pump cycle that absorbs heat from the refrigerant by exchanging heat between the refrigerant as the first fluid and the air as the second fluid.

特開平01−181092号公報Japanese Patent Laid-Open No. 01-181092

前記熱交換器では、熱交換チューブ内を第1流体が層流状態で流れる場合や、熱交換チューブ内面の第1流体に対する伝熱面積が小さい場合において、第1流体と熱交換チューブとの間において伝達される熱量が小さく、熱交換効率が低下するおそれがある。   In the heat exchanger, when the first fluid flows in a laminar flow state in the heat exchange tube or when the heat transfer area with respect to the first fluid on the inner surface of the heat exchange tube is small, the space between the first fluid and the heat exchange tube is There is a possibility that the amount of heat transferred in is small and the heat exchange efficiency is lowered.

本発明の目的とするところは、第1流体の熱交換チューブに対する熱伝達を促進し、熱交換効率を向上させることのできる熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that can promote heat transfer of a first fluid to a heat exchange tube and improve heat exchange efficiency.

本発明は、前記目的を達成するために、中空扁平状に形成され、第1流体が流通する複数の熱交換チューブと、各熱交換チューブの間に設けられ、波形状に形成された伝熱フィンと、を備え、熱交換チューブの内側を流通する第1流体と熱交換チューブの外側を流通する第2流体とを熱交換させる熱交換器であって、熱交換チューブには、厚さ方向両側の内面に幅方向に渡って内側に張り出すように設けられた複数の凸部によって、厚さ方向に蛇行しながら延びる流体流路が形成され、各凸部は、熱交換チューブの厚さ方向両側における熱交換チューブを構成する部材を外側から内側に向かって張り出させるように変形することによって形成され、熱交換チューブの厚さ方向両側の外面には、各凸部に対応する位置に幅方向に延びる凹部が設けられ、各凹部には、伝熱フィンの波形状の頂部が配置され、熱交換チューブは、流体流路が上下方向に向けて配置され、熱交換チューブの厚さ方向両側の外面には、熱交換チューブおよび伝熱フィンにおいて生じる結露水を下方に案内する案内溝が形成され、案内溝は、各凹部の間に設けられ、各案内溝は、上端側の幅寸法が上端に向かって徐々に大きく形成されている。 In order to achieve the above object, the present invention provides a plurality of heat exchange tubes which are formed in a hollow flat shape and through which a first fluid flows, and are provided between the heat exchange tubes and are formed in a wave shape. A heat exchanger that exchanges heat between a first fluid that circulates inside the heat exchange tube and a second fluid that circulates outside the heat exchange tube, the heat exchange tube having a thickness direction A plurality of convex portions provided on the inner surfaces of both sides so as to project inward in the width direction form a fluid flow path extending while meandering in the thickness direction, and each convex portion has a thickness of the heat exchange tube. It is formed by deforming the members constituting the heat exchange tube on both sides in the direction so as to protrude from the outside to the inside, and the outer surfaces on both sides in the thickness direction of the heat exchange tube are in positions corresponding to the convex portions. A recess extending in the width direction is provided. In each recess, a wave-shaped top portion of the heat transfer fin is arranged, the heat exchange tube is arranged with the fluid flow path directed in the vertical direction, and the heat exchange tube is heated on the outer surfaces on both sides in the thickness direction. Guide grooves are formed to guide the condensed water generated in the exchange tube and the heat transfer fins downward. The guide grooves are provided between the recesses, and the width of the upper end side gradually increases toward the upper end. Largely formed .

これにより、流体流路を流通する冷媒の流れが乱流状態となりやすくなるとともに、流体流路内の第1流体との伝熱面積が拡大されることから、冷媒の熱交換チューブに対する熱伝達が促進される。   As a result, the flow of the refrigerant flowing through the fluid flow path is likely to be in a turbulent state, and the heat transfer area with the first fluid in the fluid flow path is expanded, so that heat transfer from the refrigerant to the heat exchange tube is achieved. Promoted.

本発明によれば、熱交換チューブに対する熱伝達を促進することが可能となるので、第1流体と第2流体との熱交換効率を向上させることが可能となる。   According to the present invention, since heat transfer to the heat exchange tube can be promoted, it is possible to improve the heat exchange efficiency between the first fluid and the second fluid.

本発明の一実施形態を示す熱交換器の全体斜視図である。1 is an overall perspective view of a heat exchanger showing an embodiment of the present invention. 熱交換器が接続された冷媒回路を示す図である。It is a figure which shows the refrigerant circuit to which the heat exchanger was connected. 熱交換器の要部を示す図である。It is a figure which shows the principal part of a heat exchanger. 熱交換チューブの一部を切断した状態を示す斜視図である。It is a perspective view which shows the state which cut | disconnected a part of heat exchange tube. 熱交換チューブの斜視図である。It is a perspective view of a heat exchange tube. 冷媒流路を流通する冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant which distribute | circulates a refrigerant | coolant flow path.

図1乃至図6は、本発明の一実施形態を示すものである。   1 to 6 show an embodiment of the present invention.

本発明の熱交換器は、例えば、車両用空気調和装置に適用されるものである。車両用空気調和装置は、図2に示すように、車室A内に設けられた本発明の室内熱交換器10が接続された冷媒回路1を備えている。冷媒回路1には、室内熱交換器10の他に、冷媒を圧縮するための圧縮機2と、車室A外に設けられた室外熱交換器3と、冷媒を減圧するための膨張弁4と、が接続されている。   The heat exchanger of the present invention is applied to, for example, a vehicle air conditioner. As shown in FIG. 2, the vehicle air conditioner includes a refrigerant circuit 1 to which an indoor heat exchanger 10 of the present invention provided in a passenger compartment A is connected. In the refrigerant circuit 1, in addition to the indoor heat exchanger 10, a compressor 2 for compressing the refrigerant, an outdoor heat exchanger 3 provided outside the vehicle compartment A, and an expansion valve 4 for depressurizing the refrigerant. And are connected.

冷媒回路1は、室外熱交換器3において冷媒を放熱させるとともに、室内熱交換器10において冷媒を吸熱させることにより車室A内の冷房を行っている。   The refrigerant circuit 1 radiates the refrigerant in the outdoor heat exchanger 3 and cools the passenger compartment A by absorbing the refrigerant in the indoor heat exchanger 10.

室内熱交換器10は、図1に示すように、互いに間隔をおいて設けられた上下一対のヘッダ11と、一端が一方のヘッダ11に接続され、他端が他方のヘッダ11に接続された複数の熱交換チューブ12と、各熱交換チューブ12の間に設けられた複数の伝熱フィン13と、を備えている。   As shown in FIG. 1, the indoor heat exchanger 10 has a pair of upper and lower headers 11 spaced from each other, one end connected to one header 11, and the other end connected to the other header 11. A plurality of heat exchange tubes 12 and a plurality of heat transfer fins 13 provided between the heat exchange tubes 12 are provided.

各ヘッダ11は、例えばアルミニウム等の金属からなり、中心軸が水平方向に延びる中空円筒状に形成された部材である。各ヘッダ11の外周部には、各熱交換チューブ12の端部が接続されている。一方のヘッダ11には、冷媒をヘッダ11内に流入させるための冷媒流入口11aが設けられ、他方のヘッダ11には、ヘッダ11内の冷媒を流出させるための冷媒流出口11bが設けられている。   Each header 11 is a member formed of a metal such as aluminum, for example, and formed in a hollow cylindrical shape whose central axis extends in the horizontal direction. The end of each heat exchange tube 12 is connected to the outer periphery of each header 11. One header 11 is provided with a refrigerant inlet 11 a for allowing the refrigerant to flow into the header 11, and the other header 11 is provided with a refrigerant outlet 11 b for allowing the refrigerant in the header 11 to flow out. Yes.

各熱交換チューブ12は、例えばアルミニウム等の金属からなり、上下方向に延びる平板状に形成された中空扁平状の管状部材である。各熱交換チューブ12は、流路断面の長手方向(幅方向)が冷媒と熱交換する空気の流通方向に向くように配置される。また、各熱交換チューブ12は、内部を流路断面の長手方向(幅方向)に仕切ることによって、図5に示すように、冷媒が流通する流体流路としての冷媒流路12aが流路断面の長手方向(幅方向)に複数形成されている。   Each heat exchange tube 12 is a hollow flat tubular member made of a metal such as aluminum and formed in a flat plate shape extending in the vertical direction. Each heat exchange tube 12 is arranged such that the longitudinal direction (width direction) of the cross section of the flow path is directed to the flow direction of the air that exchanges heat with the refrigerant. Each heat exchange tube 12 is partitioned in the longitudinal direction (width direction) of the cross section of the flow path so that the refrigerant flow path 12a as a fluid flow path through which the refrigerant flows, as shown in FIG. Are formed in the longitudinal direction (width direction).

また、各熱交換チューブ12の厚さ方向両側には、図4に示すように、熱交換チューブ12を構成する部材を外側からそれぞれ内側に向かって変形させることによって、冷媒流路12a内に幅方向に渡って張り出す複数の凸部12bと、凸部12bに対応する位置の熱交換チューブ12の外周面に幅方向に延びる溝状の複数の凹部12cと、が形成される。各凸部12bおよび各凹部12cは、冷媒流路12aの延びる方向に、熱交換チューブ12の厚さ方向一方および他方に交互に設けられている。これにより、冷媒流路12aは、熱交換チューブ12の厚さ方向に蛇行しながら延びるように形成される。また、凹部12cの深さ寸法は、伝熱フィン13の厚さ寸法以上の寸法に形成されている。   Further, on both sides in the thickness direction of each heat exchange tube 12, as shown in FIG. 4, the members constituting the heat exchange tube 12 are respectively deformed from the outside toward the inside, thereby causing a width in the refrigerant flow path 12 a. A plurality of convex portions 12b projecting in the direction and a plurality of groove-shaped concave portions 12c extending in the width direction are formed on the outer peripheral surface of the heat exchange tube 12 at a position corresponding to the convex portion 12b. Each convex part 12b and each concave part 12c are alternately provided in one direction and the other in the thickness direction of the heat exchange tube 12 in the extending direction of the refrigerant flow path 12a. Thereby, the refrigerant flow path 12a is formed to extend while meandering in the thickness direction of the heat exchange tube 12. Moreover, the depth dimension of the recessed part 12c is formed in the dimension more than the thickness dimension of the heat-transfer fin 13. FIG.

さらに、各熱交換チューブ12の厚さ方向両側には、図5に示すように、熱交換チューブ12の幅方向に延びる凹部12cと直交する方向、即ち、熱交換チューブ12の冷媒流通方向に延びる案内溝としての排水溝12dが各凹部12cの間に設けられている。各排水溝12dは、熱交換チューブ12や伝熱フィン13において生じる結露水を下方に案内するためのものである。各排水溝12dは、上端側の幅寸法が上端に向かって徐々に大きく形成されており、上方から流れ落ちる結露水を各熱交換チューブ12の幅方向中央部に案内することが可能に構成されている。   Further, on both sides in the thickness direction of each heat exchange tube 12, as shown in FIG. 5, the heat exchange tube 12 extends in a direction orthogonal to the recess 12 c extending in the width direction of the heat exchange tube 12, that is, in the refrigerant flow direction of the heat exchange tube 12. A drainage groove 12d as a guide groove is provided between the recesses 12c. Each drainage groove 12d is for guiding the condensed water generated in the heat exchange tubes 12 and the heat transfer fins 13 downward. Each drainage groove 12d is formed so that the width dimension on the upper end side is gradually increased toward the upper end, and the dew condensation water that flows down from above can be guided to the center in the width direction of each heat exchange tube 12. Yes.

各伝熱フィン13は、例えばアルミニウム等の金属板を波形状に形成した部材からなる。各伝熱フィン13の波形状の各頂部13aは、熱交換チューブ12の凹部12cに密接する形状に形成されており、各頂部13aが熱交換チューブ12の凹部12cに密接した状態でロウ付け等によって取り付けられている。   Each heat transfer fin 13 is made of a member in which a metal plate such as aluminum is formed in a wave shape. Each wave-shaped top portion 13a of each heat transfer fin 13 is formed in a shape in close contact with the recess 12c of the heat exchange tube 12, and brazing or the like in a state in which each top portion 13a is in close contact with the recess 12c of the heat exchange tube 12 Is attached by.

以上のように構成された熱交換器において、圧縮機2を駆動させると、圧縮機2から吐出された冷媒は、室外熱交換器3において放熱した後、膨張弁4を介して減圧され、室内熱交換器10において吸熱した後、圧縮機2に吸入される。   In the heat exchanger configured as described above, when the compressor 2 is driven, the refrigerant discharged from the compressor 2 radiates heat in the outdoor heat exchanger 3 and then is depressurized via the expansion valve 4. After absorbing heat in the heat exchanger 10, the heat is sucked into the compressor 2.

このとき、室内熱交換器10において、膨張弁4によって減圧された冷媒は、冷媒流入口11aから一方のヘッダ11に流入した後に、分岐されて各熱交換チューブ12の各冷媒流路12aを流通する。このとき、冷媒は、冷媒流路12aが熱交換チューブ12の厚さ方向に蛇行する冷媒流路12aを流通するため、冷媒流路12aにおいて流れが乱流状態となりやすくなるため、熱交換チューブ12に対する熱伝達が促進される。また、冷媒流路12aは、凸部12bが張り出すことによって直線状の冷媒流路と比較して伝熱面積が大きくなる。これにより、熱交換チューブ12に対する熱伝達が促進される。   At this time, in the indoor heat exchanger 10, the refrigerant decompressed by the expansion valve 4 flows into the one header 11 from the refrigerant inlet 11 a and then branches to flow through the refrigerant flow paths 12 a of the heat exchange tubes 12. To do. At this time, since the refrigerant flows through the refrigerant flow channel 12a meandering in the thickness direction of the heat exchange tube 12, the flow is likely to be turbulent in the refrigerant flow channel 12a. Heat transfer to is promoted. Further, the refrigerant flow path 12a has a larger heat transfer area than the linear refrigerant flow path due to the protrusion 12b protruding. Thereby, the heat transfer with respect to the heat exchange tube 12 is accelerated | stimulated.

また、伝熱フィン13の頂部13aは、熱交換チューブ12の凹部12cに密接した状態で取り付けられているため、伝熱フィン13と熱交換チューブ12とを面接触させることで冷媒と空気との熱交換が促進される。また、伝熱フィン13の頂部13aが熱交換チューブ12の凹部12cに密接した状態で取り付けられているため、伝熱フィン13と熱交換チューブ12との間に小さな隙間ができることはなく、塵埃の詰まりや着霜が生じにくくなる。   Moreover, since the top part 13a of the heat transfer fin 13 is attached in a state of being in close contact with the recess 12c of the heat exchange tube 12, the heat transfer fin 13 and the heat exchange tube 12 are brought into surface contact so that the refrigerant and the air Heat exchange is promoted. In addition, since the top portion 13a of the heat transfer fin 13 is attached in close contact with the recess 12c of the heat exchange tube 12, there is no small gap between the heat transfer fin 13 and the heat exchange tube 12, and dust Clogging and frost formation are less likely to occur.

また、室内熱交換器10では、冷媒が吸熱することから熱交換される空気が冷却されて熱交換チューブ12や伝熱フィン13に結露が生じる。熱交換チューブ12や伝熱フィン13おいて生じた結露水は、熱交換チューブ12の排水溝12dに沿って下方に案内される。   Further, in the indoor heat exchanger 10, since the refrigerant absorbs heat, the heat exchanged air is cooled, and condensation occurs on the heat exchange tubes 12 and the heat transfer fins 13. Condensed water generated in the heat exchange tubes 12 and the heat transfer fins 13 is guided downward along the drain grooves 12 d of the heat exchange tubes 12.

このように、本実施形態の熱交換器によれば、熱交換チューブ12には、厚さ方向両側の内面に幅方向に渡って内側に張り出すように設けられた複数の凸部12bによって、厚さ方向に蛇行しながら延びる冷媒流路12aが形成されている。これにより、冷媒の熱交換チューブ12に対する熱伝達の促進を図ることができるので、冷媒と空気との熱交換効率を向上させることが可能となる。   Thus, according to the heat exchanger of the present embodiment, the heat exchange tube 12 has a plurality of convex portions 12b provided on the inner surfaces on both sides in the thickness direction so as to project inward across the width direction, A refrigerant flow path 12a extending while meandering in the thickness direction is formed. Thereby, since heat transfer with respect to the heat exchange tube 12 of a refrigerant | coolant can be aimed at, it becomes possible to improve the heat exchange efficiency of a refrigerant | coolant and air.

また、熱交換チューブ12は、熱交換チューブ12の厚さ方向両側の外面には、各凸部12bに対応する位置に幅方向に延びる凹部12cが設けられ、各凹部12cには、伝熱フィン13の波形状の頂部13aが配置される。これにより、熱交換チューブ12の凹部12cに伝熱フィン13の頂部13aを密接した状態で取り付けることによって、伝熱フィン13と熱交換チューブ12との間に小さな隙間が生じることを防止できるので、塵埃の詰まりや着霜を生じにくくすることが可能となる。   Moreover, the heat exchange tube 12 is provided with concave portions 12c extending in the width direction at positions corresponding to the respective convex portions 12b on the outer surfaces on both sides in the thickness direction of the heat exchange tube 12, and each concave portion 12c has a heat transfer fin. Thirteen corrugated tops 13a are arranged. Accordingly, by attaching the top portion 13a of the heat transfer fin 13 in close contact with the recess 12c of the heat exchange tube 12, it is possible to prevent a small gap from being generated between the heat transfer fin 13 and the heat exchange tube 12. It becomes possible to prevent clogging of dust and frost formation.

また、熱交換チューブ12は、冷媒流路12aが上下方向に向けて配置され、熱交換チューブ12の厚さ方向両側の外面には、熱交換チューブ12および伝熱フィン13において生じる結露水を下方に案内する排水溝12dが形成されている。これにより、熱交換チューブ12および伝熱フィン13において生じた結露水を確実に排出することができるので、より着霜を生じにくくすることが可能となる。   In addition, the heat exchange tube 12 has the refrigerant flow path 12a arranged in the vertical direction, and dew condensation water generated in the heat exchange tube 12 and the heat transfer fins 13 is placed on the outer surfaces on both sides in the thickness direction of the heat exchange tube 12 below. A drainage groove 12d is formed to guide the water. Thereby, since the dew condensation water produced in the heat exchange tube 12 and the heat transfer fin 13 can be discharged | emitted reliably, it becomes possible to make it hard to produce frost.

なお、前記実施形態では、車両用空気調和装置の室内熱交換器10に本発明を適用したものを示したが、冷媒を吸熱させるために冷媒と空気とを熱交換させるものに限られず、流体と流体とを熱交換させるための熱交換器であれば、本発明を適用可能である。   In addition, in the said embodiment, although what applied this invention to the indoor heat exchanger 10 of the air conditioning apparatus for vehicles was shown, it is not restricted to what heat-exchanges a refrigerant | coolant and air in order to make a refrigerant | coolant absorb heat, The present invention can be applied to any heat exchanger for exchanging heat with the fluid.

また、前記実施形態では、各冷媒流路12aを断面略矩形状に形成するようにしたものを示したが、これに限られるものではない。例えば、断面三角形状に形成した冷媒流路であっても本発明を適用可能である。   In the above-described embodiment, each refrigerant channel 12a is formed to have a substantially rectangular cross section. However, the present invention is not limited to this. For example, the present invention can be applied even to a refrigerant channel formed in a triangular cross section.

10…室内熱交換器、12…熱交換チューブ、12a…冷媒流路、12b…凸部、12c…凹部、13…伝熱フィン、13a…頂部。   DESCRIPTION OF SYMBOLS 10 ... Indoor heat exchanger, 12 ... Heat exchange tube, 12a ... Refrigerant flow path, 12b ... Convex part, 12c ... Concave part, 13 ... Heat transfer fin, 13a ... Top part.

Claims (1)

中空扁平状に形成され、第1流体が流通する複数の熱交換チューブと、各熱交換チューブの間に設けられ、波形状に形成された伝熱フィンと、を備え、熱交換チューブの内側を流通する第1流体と熱交換チューブの外側を流通する第2流体とを熱交換させる熱交換器であって、
熱交換チューブには、厚さ方向両側の内面に幅方向に渡って内側に張り出すように設けられた複数の凸部によって、厚さ方向に蛇行しながら延びる流体流路が形成され
各凸部は、熱交換チューブの厚さ方向両側における熱交換チューブを構成する部材を外側から内側に向かって張り出させるように変形することによって形成され、
熱交換チューブの厚さ方向両側の外面には、各凸部に対応する位置に幅方向に延びる凹部が設けられ、
各凹部には、伝熱フィンの波形状の頂部が配置され、
熱交換チューブは、流体流路が上下方向に向けて配置され、
熱交換チューブの厚さ方向両側の外面には、熱交換チューブおよび伝熱フィンにおいて生じる結露水を下方に案内する案内溝が形成され、
案内溝は、各凹部の間に設けられ、
各案内溝は、上端側の幅寸法が上端に向かって徐々に大きく形成されている
ことを特徴とする熱交換器。
A plurality of heat exchange tubes formed in a hollow flat shape through which the first fluid flows and heat transfer fins provided between the heat exchange tubes and formed in a wave shape, A heat exchanger for exchanging heat between the first fluid flowing and the second fluid flowing outside the heat exchange tube,
In the heat exchange tube, a fluid flow path extending while meandering in the thickness direction is formed by a plurality of convex portions provided so as to protrude inward in the width direction on the inner surfaces on both sides in the thickness direction ,
Each convex portion is formed by deforming the members constituting the heat exchange tube on both sides in the thickness direction of the heat exchange tube so as to protrude from the outside to the inside,
On the outer surfaces on both sides in the thickness direction of the heat exchange tube, concave portions extending in the width direction are provided at positions corresponding to the respective convex portions,
In each recess, the wave-shaped top of the heat transfer fin is arranged,
In the heat exchange tube, the fluid flow path is arranged in the vertical direction,
On the outer surfaces on both sides in the thickness direction of the heat exchange tube, guide grooves for guiding the condensed water generated in the heat exchange tube and the heat transfer fins downward are formed,
The guide groove is provided between the recesses,
Each guide groove is formed such that the width dimension on the upper end side is gradually increased toward the upper end .
JP2012134102A 2012-06-13 2012-06-13 Heat exchanger Expired - Fee Related JP6088754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012134102A JP6088754B2 (en) 2012-06-13 2012-06-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012134102A JP6088754B2 (en) 2012-06-13 2012-06-13 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2013257096A JP2013257096A (en) 2013-12-26
JP6088754B2 true JP6088754B2 (en) 2017-03-01

Family

ID=49953677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012134102A Expired - Fee Related JP6088754B2 (en) 2012-06-13 2012-06-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6088754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890399A (en) * 2014-10-31 2016-08-24 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
FR3040478B1 (en) * 2015-08-25 2017-12-15 Valeo Systemes Thermiques HEAT EXCHANGER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932791A (en) * 1982-08-13 1984-02-22 Hitachi Ltd Corrugated type heat exchanger
JPS61191889A (en) * 1985-02-20 1986-08-26 Matsushita Refrig Co Heat exchanger
JPH0188179U (en) * 1987-11-30 1989-06-09
JPH01181092A (en) * 1988-01-14 1989-07-19 Nippon Denso Co Ltd Heat exchanger
JPH02127974U (en) * 1989-03-29 1990-10-22
JPH07190661A (en) * 1993-12-27 1995-07-28 Hitachi Ltd Heat exchanger

Also Published As

Publication number Publication date
JP2013257096A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
US10520262B2 (en) Heat exchanger
US20120103583A1 (en) Heat exchanger and fin for the same
JP5421859B2 (en) Heat exchanger
CN104937362B (en) Heat exchanger
JP2014142138A (en) Air conditioner
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
JP6002583B2 (en) Evaporator
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JP2016102592A (en) Heat exchanger
JP6088754B2 (en) Heat exchanger
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
JP6160385B2 (en) Laminate heat exchanger
JP6375897B2 (en) Heat exchanger
WO2013187434A1 (en) Heat exchanger
WO2013187435A1 (en) Heat exchanger
JP2005241168A (en) Heat exchanger
JP2013257095A (en) Finless heat exchanger
US20160296993A1 (en) Method for forming end plate for heat exchanger and heat exchanger equipped with end plate formed with this method
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP6816411B2 (en) Heat exchanger
JP7006376B2 (en) Heat exchanger
JP6275046B2 (en) Refrigeration cycle and heat exchanger for vehicle air conditioning
KR101650088B1 (en) A heat exchanger
JP2010255918A (en) Air heat exchanger
KR101472368B1 (en) A heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6088754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees