JP2005241168A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005241168A
JP2005241168A JP2004053068A JP2004053068A JP2005241168A JP 2005241168 A JP2005241168 A JP 2005241168A JP 2004053068 A JP2004053068 A JP 2004053068A JP 2004053068 A JP2004053068 A JP 2004053068A JP 2005241168 A JP2005241168 A JP 2005241168A
Authority
JP
Japan
Prior art keywords
tube
air flow
heat exchanger
groove
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004053068A
Other languages
Japanese (ja)
Inventor
Ryoji Okabe
良次 岡部
Kei Yoshitomi
圭 吉富
Katsuhiro Saito
克弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004053068A priority Critical patent/JP2005241168A/en
Publication of JP2005241168A publication Critical patent/JP2005241168A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger with a structure capable of discharging condensate remaining at a downstream side end part of an air flowing direction of a fold-back part of a corrugated fin, and preventing a brazing material of a tank from flowing into a groove of a tube when brazing the tube to the tank. <P>SOLUTION: In the heat exchanger, an end 12b of downstream side of the air flowing direction of an outer fin (corrugated fin) 12 of a groove 20 of downstream side end part in the air flow direction of the tube 11 is brought into a same position of an end 20a of upstream side of the air flowing direction, one or both ends of the downstream side in the air flowing direction of the outer fin are provided with protruding parts. The width of the outer fin in the air flowing direction including the width of the protruding parts in the air flowing direction is made equal to the width of the tube in the air flowing direction and the protruding parts are only provided at flat surface parts of the corrugated fin. At a brazing and mating part of the tube and the tank, an end of the groove is provided off a tip end position of a brazing fillet and a forming range of the groove is matched with a range of mating length of the corrugated fin. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は熱交換器に関し、具体的には蒸発器として機能する熱交換器において運転中(冷媒による空気の冷却中)に生じる凝縮水を、確実に排水するように構成したものである。   The present invention relates to a heat exchanger, and specifically, is configured to reliably drain condensed water generated during operation (during cooling of air by a refrigerant) in a heat exchanger that functions as an evaporator.

車両用空調装置(所謂カーエアコン)の蒸発器などとして使用される熱交換器は、上下方向に沿う冷媒流路が内部に形成された扁平状のチューブと、チューブの表面に接合されてチューブとともに水平方向に沿う空気流路を形成するコルゲートフィンとを、交互に多数積層してなる積層型のものであり、前記冷媒流路を流れる冷媒と前記空気流路を流れる空気との熱交換を行う。   A heat exchanger used as an evaporator of a vehicle air conditioner (so-called car air conditioner) has a flat tube in which a refrigerant flow path along the vertical direction is formed, and a tube joined to the surface of the tube together with the tube It is a laminated type in which a large number of corrugated fins forming an air flow path along the horizontal direction are alternately stacked, and performs heat exchange between the refrigerant flowing through the refrigerant flow path and the air flowing through the air flow path. .

このような熱交換器が蒸発器として機能する場合、冷媒と空気との熱交換によって同空気が冷却される際に同空気に含まれる水分が凝縮することによって凝縮水が生じ、この凝縮水がチューブやコルゲートフィンの表面に付着して滞留することがある。そして、この滞留した凝縮水が、前記空気流路の通風抵抗を増大させたり、或いは通風によって室内に吹き飛ばされるといった問題が発生することがある。例えば車両用空調装置では通風によって吹き飛ばされた凝縮水は、フロントグリルの吹き出し口から車室内に吹き出される。特に現在では熱交換器は小型化の傾向にあり、熱交換器全体の体積に比して凝縮水の割合が大きくなっているため、凝縮水の排水性を向上させることが重要である。   When such a heat exchanger functions as an evaporator, when the air is cooled by heat exchange between the refrigerant and the air, moisture contained in the air is condensed to produce condensed water, and this condensed water is It may adhere and stay on the surface of the tube or corrugated fin. In some cases, the accumulated condensed water may increase the ventilation resistance of the air flow path, or may be blown into the room by the ventilation. For example, in a vehicle air conditioner, condensed water blown off by ventilation is blown into the vehicle compartment from a blow-out port of the front grille. In particular, at present, heat exchangers tend to be miniaturized, and the proportion of condensed water is larger than the total volume of the heat exchanger, so it is important to improve the drainage of condensed water.

このため蒸発器として機能する熱交換器では、凝縮水の排水性を向上させることが重要である。これに対し、凝縮水の排水性向上を図った従来の熱交換器(蒸発器)としては、例えば図9及び図10に示すようなものがある(下記の特許文献1参照)。図9及び図10は従来の蒸発器の空気流通方向下流側の端部を示す斜視図及び平面図である。   For this reason, it is important to improve the drainage of condensed water in a heat exchanger that functions as an evaporator. On the other hand, conventional heat exchangers (evaporators) that improve the drainage of condensed water include those shown in FIGS. 9 and 10, for example (see Patent Document 1 below). 9 and 10 are a perspective view and a plan view showing an end of the conventional evaporator on the downstream side in the air flow direction.

図9及び図10に示すように、従来の蒸発器は扁平状のチューブ1と、コルゲートフィン(波形状のフィン)であるアウターフィン4とを、交互に積層してなる積層型のものである。各チューブ1はアルミニウム材をプレス加工してなる2枚のプレート2を、アルミニウム製のコルゲートフィンであるインナーフィン8を間に挟んだ状態で互いに対向させて接合することにより形成されたものである。このとき、チューブ1の内部には、前記プレス加工で形成された2枚のプレート2の内面側(対向面側)の凹部6同士が対向して上下方向に沿う冷媒流路3が形成されている。また、チューブ1の表面における空気流通方向(水平方向:矢印A方向)の下流側の端部には、前記プレス加工で形成されたプレート2の外面側(反対向面側)の凹部である溝7が、上下方向(矢印B方向)に沿って設けられている。   As shown in FIGS. 9 and 10, the conventional evaporator is a laminated type obtained by alternately laminating flat tubes 1 and outer fins 4 that are corrugated fins (wave-shaped fins). . Each tube 1 is formed by joining two plates 2 formed by pressing an aluminum material so as to face each other with an inner fin 8 being an aluminum corrugated fin interposed therebetween. . At this time, inside the tube 1, a refrigerant flow path 3 is formed along the vertical direction with the concave portions 6 on the inner surface side (opposing surface side) of the two plates 2 formed by the press working facing each other. Yes. Moreover, the groove | channel which is a recessed part of the outer surface side (anti-opposing surface side) of the plate 2 formed by the said press work in the downstream edge part of the air flow direction (horizontal direction: arrow A direction) in the surface of the tube 1 7 is provided along the up-down direction (arrow B direction).

一方、チューブ1の外側には、チューブ1とコルゲートフィン4とによって水平方向に沿う空気流路5が形成されている。また、コルゲートフィン4の平面部4aには、同平面部4aの一部を切り起こすことによってルーバ4cが形成されている。これらのルーバ4cは空気流路5を流通する空気を平面部4aの上下両側に蛇行させることよって、当該空気とチューブ1の冷媒流路3を流れる冷媒との熱交換効率を更に向上させるために設けられている。   On the other hand, on the outside of the tube 1, an air flow path 5 is formed along the horizontal direction by the tube 1 and the corrugated fins 4. Further, a louver 4c is formed on the flat portion 4a of the corrugated fin 4 by cutting and raising a part of the flat portion 4a. These louvers 4 c mean that the air flowing through the air flow path 5 meanders on both the upper and lower sides of the flat portion 4 a, thereby further improving the heat exchange efficiency between the air and the refrigerant flowing through the refrigerant flow path 3 of the tube 1. Is provided.

そして、本蒸発器では溝7の深さHを0.9±0.2mmとし、且つ、ルーバ切れ位置Lを0〜0.6mmとしており、このことによって凝縮水をルーバ5で溝7に向けて転向させるに十分な吸引力を確保しつつ、溝7で凝縮水を排水させることができるので、凝縮水の排水性が向上する。   In this evaporator, the depth H of the groove 7 is set to 0.9 ± 0.2 mm, and the louver cutting position L is set to 0 to 0.6 mm, whereby the condensed water is directed to the groove 7 by the louver 5. Thus, the condensed water can be drained by the groove 7 while ensuring a sufficient suction force to be turned, and the drainage of the condensed water is improved.

特開平11−83371号公報JP-A-11-83371

しかしながら、例えば上記従来の構成を採用したとしても、熱交換器の小型化や冷却性能の向上などによって凝縮水の割合が多くなると、図9に示すようにコルゲートフィン4の折り返し部における空気流通方向下流側の端部4bに凝縮水9が溜まることがある。ところが、図9及び図10に示すようにコルゲートフィン4の端部4bが溝7を完全に跨いでいるため、同端部4bに凝縮水9が溜まってしまった場合には、この溜まった凝縮水9を溝7によって排水することはできず、行き場のなくなった凝縮水9が通風によって室内に吹き飛ばされるなどの不具合を招くおそれがある。なお、チューブ1とコルゲートフィン4とを積層する際、一般には図10に示すようにチューブ1の端とコルゲートフィン4の端とを当て板10に当てることによってチューブ1に対するコルゲートフィン4の位置決めを行うため、コルゲートフィン4の端部4bはチューブ1の溝7を跨いでしまうことになる。   However, even if the above-described conventional configuration is adopted, for example, if the proportion of condensed water increases due to downsizing of the heat exchanger or improvement of cooling performance, the air flow direction in the folded portion of the corrugated fin 4 as shown in FIG. Condensed water 9 may accumulate at the downstream end 4b. However, as shown in FIGS. 9 and 10, since the end 4b of the corrugated fin 4 completely crosses the groove 7, when the condensed water 9 is accumulated in the end 4b, the accumulated condensation The water 9 cannot be drained by the groove 7, and there is a possibility that the condensed water 9 having no place to go is blown into the room by ventilation. When the tube 1 and the corrugated fin 4 are laminated, generally, the corrugated fin 4 is positioned with respect to the tube 1 by applying the end of the tube 1 and the end of the corrugated fin 4 to the abutting plate 10 as shown in FIG. For this reason, the end 4 b of the corrugated fin 4 straddles the groove 7 of the tube 1.

また、チューブと、チューブの上端部や下端部に設けられるタンクとが一体に形成されている場合には特に問題はないが、例えばチューブを押し出し成形する場合のようにチューブとタンクとが別体の場合には、チューブをタンクにロウ付けする必要があるが、このときチューブの空気流通方向下流側の端部に設ける溝が長すぎると(例えばチューブ全長にわたって溝を設けると)、チューブをタンクにロウ付けするときに高温になったタンクのロウ材がチューブの溝に流れ込んで集中することにより、当該溝部分にエロージョンが発生して、減肉もしくは穴あきなどの不具合が発生するおそれがある。   In addition, there is no particular problem when the tube and the tank provided at the upper end and the lower end of the tube are integrally formed. However, for example, when the tube is extruded, the tube and the tank are separated. In this case, it is necessary to braze the tube to the tank. At this time, if the groove provided at the downstream end of the tube in the air flow direction is too long (for example, if the groove is provided over the entire length of the tube), the tube is When the brazing material of the tank that has reached a high temperature flows into the tube groove when it is brazed to the tube, erosion may occur in the groove portion, which may cause problems such as thinning or perforation. .

従って本発明は上記の事情に鑑み、コルゲートフィンの折り返し部の空気流通方向下流側端部に滞留した凝縮水も排水することができ、また、チューブをタンクにロウ付けする際にタンクのロウ材がチューブの溝に流れ込むのを防止することができる構造の熱交換器を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention can drain the condensed water staying at the downstream end of the corrugated fin folded portion in the air flow direction, and when brazing the tube to the tank, the brazing material of the tank It is an object of the present invention to provide a heat exchanger having a structure capable of preventing the air from flowing into the groove of the tube.

上記課題を解決する第1発明の熱交換器は、上下方向に沿う冷媒流路が内部に形成された扁平状のチューブと、前記チューブの表面に接合されて前記チューブとともに水平方向に沿う空気流路を形成するコルゲートフィンとを、交互に積層してなり、前記冷媒流路を流れる冷媒と前記空気流路を流れる空気との熱交換を行う熱交換器において、前記チューブの表面における空気流通方向下流側の端部には、上下方向に沿う溝を形成し、前記コルゲートフィンの空気流通方向下流側の端を、前記溝の空気流通方向下流側の端よりも、空気流通方向上流側に位置させることにより、前記コルゲートフィンの折り返し部の空気流通方向下流側の端部に溜まった凝縮水が、前記溝を下方に流れる凝縮水に引かれて前記溝に入り同凝縮水とともに下方に流れて排水されるように構成したことを特徴とする。   A heat exchanger according to a first aspect of the present invention that solves the above problems includes a flat tube in which a refrigerant flow path along the vertical direction is formed, and an air flow along the horizontal direction together with the tube that is joined to the surface of the tube. Corrugated fins that form channels are alternately stacked, and in a heat exchanger that exchanges heat between the refrigerant flowing through the refrigerant flow path and the air flowing through the air flow path, the air flow direction on the surface of the tube A groove along the vertical direction is formed at the downstream end, and the downstream end of the corrugated fin in the air flow direction is positioned upstream of the downstream end of the groove in the air flow direction. As a result, the condensed water accumulated at the downstream end of the corrugated fin folded-back portion is drawn by the condensed water flowing downward in the groove and enters the groove downward together with the condensed water. It is characterized by being configured to be drained.

また、第2発明の熱交換器は、第1発明の熱交換器において、前記コルゲートフィンの空気流通方向下流側の端には複数の凸部を有し、これらの凸部の空気流通方向の幅を含めた前記コルゲートフィンの空気流通方向の幅を、前記チューブの空気流通方向の幅と一致させたことを特徴とする。   The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the corrugated fin has a plurality of convex portions at the downstream end in the air flow direction, and the air flow direction of these convex portions is The width of the corrugated fin including the width in the air flow direction is made to coincide with the width of the tube in the air flow direction.

また、第3発明の熱交換器は、第1発明の熱交換器において、前記コルゲートフィンの空気流通方向下流側の端と空気流通方向上流側の端とにそれぞれ複数の凸部を有し、これら両側の凸部の空気流通方向の幅を含めた前記コルゲートフィンの空気流通方向の幅を、前記チューブの空気流通方向の幅と一致させたことを特徴とする。   Further, the heat exchanger of the third invention is the heat exchanger of the first invention, wherein the corrugated fin has a plurality of convex portions at an end on the downstream side in the air flow direction and an end on the upstream side in the air flow direction, The width in the air circulation direction of the corrugated fin including the width in the air circulation direction of the convex portions on both sides is made to coincide with the width in the air circulation direction of the tube.

また、第4発明の熱交換器は、第2又は第3発明の熱交換器において、前記凸部を前記コルゲートフィンの平面部にのみ設けたことを特徴とする。   Moreover, the heat exchanger of 4th invention is a heat exchanger of 2nd or 3rd invention, The said convex part was provided only in the plane part of the said corrugated fin, It is characterized by the above-mentioned.

また、第5発明の熱交換器は、上下方向に沿う冷媒流路が内部に形成された扁平状のチューブと、前記チューブの表面に接合されて前記チューブとともに水平方向に沿う空気流路を形成するコルゲートフィンとを、交互に積層してなり、前記冷媒流路を流れる冷媒と前記空気流路を流れる空気との熱交換を行う熱交換器において、前記チューブの表面における空気流通方向下流側の端部には、上下方向に沿う溝を形成し、前記チューブの上端部もしくは下端部又は上端部及び下端部はロウ付けによってタンクに接合されており、且つ、このチューブとタンクとのロウ付け接合部では前記溝の上端位置もしくは下端位置又は上端位置及び下端位置を、前記ロウ付けフィレットの先端位置から離したことを特徴とする。   The heat exchanger according to the fifth aspect of the invention is a flat tube in which a refrigerant flow path along the vertical direction is formed inside, and an air flow path along the horizontal direction together with the tube that is joined to the surface of the tube. And a corrugated fin that is alternately stacked, and in a heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant flow path and the air flowing through the air flow path, on the downstream side of the air flow direction on the surface of the tube A groove along the vertical direction is formed at the end, and the upper end or lower end of the tube or the upper end and the lower end are joined to the tank by brazing, and the tube and the tank are brazed. The portion is characterized in that the upper end position or the lower end position or the upper end position and the lower end position of the groove are separated from the front end position of the brazing fillet.

また、第6発明の熱交換器は、第1,第2,第3又は第4発明の熱交換器において、前記チューブの上端部もしくは下端部又は上端部及び下端部はロウ付けによってタンクに接合されており、且つ、このチューブとタンクとのロウ付け接合部では前記溝の上端位置もしくは下端位置又は上端位置及び下端位置を、前記ロウ付けフィレットの先端位置から離したことを特徴とする。   The heat exchanger of the sixth invention is the heat exchanger of the first, second, third or fourth invention, wherein the upper end or lower end of the tube or the upper and lower ends are joined to the tank by brazing. The upper end position or the lower end position or the upper end position and the lower end position of the groove are separated from the front end position of the brazing fillet at the brazed joint portion between the tube and the tank.

また、第7発明の熱交換器は、第5又は第6発明の熱交換器において、前記溝の形成範囲を、前記コルゲートフィンの接合長さの範囲に一致させたことを特徴とする。   The heat exchanger of the seventh invention is characterized in that, in the heat exchanger of the fifth or sixth invention, the formation range of the groove is made to coincide with the range of the junction length of the corrugated fins.

第1発明の熱交換器によれば、チューブの表面における空気流通方向下流側の端部には、上下方向に沿う溝を形成し、コルゲートフィンの空気流通方向下流側の端を、溝の空気流通方向下流側の端よりも、空気流通方向上流側に位置させることにより、コルゲートフィンの折り返し部の空気流通方向下流側の端部に溜まった凝縮水が、溝を下方に流れる凝縮水に引かれて溝に入り同凝縮水とともに下方に流れて排水されるように構成したため、凝縮水の排水性が向上する。即ち、本熱交換器が蒸発器として機能する場合、チューブ内の冷媒流路を流れる冷媒とコルゲートフィン部分の空気流路を流れる空気との熱交換によって同空気が冷却される際に同空気に含まれる水分が凝縮することによって生じた凝縮水が、コルゲートフィンの折り返し部における空気流通方向下流側の端部に溜まっても、この溜まった凝縮水が、溝を下方に流れる凝縮水(チューブやコルゲートフィンの表面に付着した凝縮水が空気に押し流されて溝に溜まった凝縮水)に引かれて溝に入り同凝縮水とともに下方に流れて効率よく排水される。このため、コルゲートフィンの端部に溜まった凝縮水が通風によって室内に吹き飛ばされるなどの不具合の発生を防止することができる。   According to the heat exchanger of the first invention, a groove along the vertical direction is formed at the end of the tube surface on the downstream side in the air flow direction, and the end of the corrugated fin on the downstream side in the air flow direction is By positioning the corrugated fins at the downstream end of the air flow direction, the condensed water collected at the downstream end of the corrugated fin is drawn to the condensed water flowing down the groove. Since it is configured so as to enter the groove and flow downward along with the condensed water to be drained, the drainage of the condensed water is improved. That is, when this heat exchanger functions as an evaporator, when the air is cooled by heat exchange between the refrigerant flowing through the refrigerant flow path in the tube and the air flowing through the air flow path of the corrugated fin portion, Even if the condensed water generated by the condensation of the contained water accumulates at the downstream end of the corrugated fin in the air flow direction, the accumulated condensed water is condensed water (tube or The condensed water adhering to the surface of the corrugated fins is pushed by the air and is drawn by the condensed water accumulated in the groove), enters the groove, flows downward together with the condensed water, and is efficiently drained. For this reason, generation | occurrence | production of malfunctions, such as the condensed water collected at the edge part of the corrugated fin being blown away indoors by ventilation, can be prevented.

第2発明の熱交換器によれば、コルゲートフィンの空気流通方向下流側の端には複数の凸部を有し、これらの凸部の空気流通方向の幅を含めたコルゲートフィンの空気流通方向の幅を、チューブの空気流通方向の幅と一致させたため、チューブの端とコルゲートフィンの端(凸部)とを当て板に当てることなどによって容易にチューブに対してコルゲートフィンを位置決めすることができ、コルゲートフィンの位置決め精度が向上する。   According to the heat exchanger of the second aspect of the present invention, the corrugated fin has an air flow direction in the air flow direction of the corrugated fin, including a plurality of convex portions at the downstream end in the air flow direction, Therefore, the corrugated fin can be easily positioned with respect to the tube by, for example, placing the end of the tube and the end (convex part) of the corrugated fin against the backing plate. This can improve the positioning accuracy of the corrugated fin.

第3発明の熱交換器によれば、コルゲートフィンの空気流通方向下流側の端と空気流通方向上流側の端とにそれぞれ複数の凸部を有し、これら両側の凸部の空気流通方向の幅を含めたコルゲートフィンの空気流通方向の幅を、チューブの空気流通方向の幅と一致させたため、チューブの端とコルゲートフィンの端(凸部)とを当て板に当てることなどによって容易にチューブに対してコルゲートフィンを位置決めすることができてコルゲートフィンの位置決め精度が向上し、しかも、コルゲートフィンの両側が同じような構造となっていることから、空気流通方向が一方向に限定されず逆方向にすることもできるため、適用機種の自由度がある。   According to the heat exchanger of the third aspect of the invention, the corrugated fin has a plurality of convex portions at the downstream end in the air flow direction and the upstream end in the air flow direction, and the convex portions on both sides of the air flow direction. Since the width of the corrugated fin including the width in the air flow direction is matched with the width of the tube in the air flow direction, the tube can be easily placed by applying the end of the tube and the end of the corrugated fin (projection) to the backing plate. The corrugated fins can be positioned with respect to the positioning accuracy of the corrugated fins, and the corrugated fins have the same structure on both sides. Since it can be set in any direction, there is a degree of freedom of applicable models.

第4発明の熱交換器によれば、凸部をコルゲートフィンの平面部にのみ設けたため、凸部が溝を跨いでしまうことが全くないため、コルゲートフィンの空気流通方向下流側の端部に溜まる凝縮水の排水性が更に向上する。   According to the heat exchanger of the fourth invention, since the convex portion is provided only on the flat portion of the corrugated fin, the convex portion does not straddle the groove at all, so that the corrugated fin has an air flow direction downstream end. The drainage of the accumulated condensed water is further improved.

第5発明又は第6発明の熱交換器によれば、チューブとタンクとのロウ付け接合部では溝の上端位置もしくは下端位置又は上端位置及び下端位置を、ロウ付けフィレットの先端位置から離したため、タンクのロウ材がロウ付けの際に溝に流れ込んでエロージョンが発生するのを防止することができる。   According to the heat exchanger of the fifth invention or the sixth invention, the upper end position or the lower end position or the upper end position and the lower end position of the groove are separated from the front end position of the brazing fillet at the brazed joint between the tube and the tank. It is possible to prevent erosion from occurring due to the brazing material of the tank flowing into the grooves during brazing.

第7発明の熱交換器によれば、溝の形成範囲を、コルゲートフィンの接合長さの範囲に一致させたため、凝縮水の排水に要する溝の長さを確保している。   According to the heat exchanger of the seventh aspect of the invention, since the groove formation range is matched with the range of the corrugated fin joining length, the length of the groove required for draining condensed water is ensured.

以下、本発明の実施の形態例を図面に基づき詳細に説明する。なお、以下に説明する熱交換器は空気調和機の熱交換器として使用されるものであり、車両用空調装置などの蒸発器としてのみ使用される熱交換器であってもよく、冷媒の流れ方向を切り替えることで蒸発器として機能する場合と凝縮器として機能する場合とがある熱交換器であってもよい。   Embodiments of the present invention will be described below in detail with reference to the drawings. The heat exchanger described below is used as a heat exchanger of an air conditioner, and may be a heat exchanger used only as an evaporator of a vehicle air conditioner or the like, and the flow of refrigerant It may be a heat exchanger that may function as an evaporator or function as a condenser by switching directions.

<実施の形態例1>
図1は本発明の実施の形態例1に係る熱交換器の一部を示す斜視図、図2及び図3は前記熱交換器の更に一部を拡大して示す斜視図及び平面図である。
<Embodiment 1>
FIG. 1 is a perspective view showing a part of a heat exchanger according to Embodiment 1 of the present invention, and FIGS. 2 and 3 are a perspective view and a plan view showing an enlarged part of the heat exchanger. .

図1及び図2に示すように、本実施の形態例1の熱交換器は扁平状のチューブ11と、コルゲートフィン(波形状のフィン)であるアウターフィン12とを、交互に多数積層してなる積層型のものである。アウターフィン12はアルニュウム製のものであり、折り返し部がロウ付けによってチューブ11の表面に接合されている。   As shown in FIGS. 1 and 2, the heat exchanger according to the first embodiment has a flat tube 11 and a plurality of outer fins 12 that are corrugated fins (wave-shaped fins) alternately stacked. It is a laminated type. The outer fin 12 is made of aluminum, and the folded portion is joined to the surface of the tube 11 by brazing.

各チューブ11はアルミニウム材をプレス加工してなる2枚のプレート14を、アルミニウム製のコルゲートフィンであるインナーフィン13を間に挟んだ状態で互いに対向させてロウ付け接合することにより形成されたものである。このとき、チューブ11の内部には、前記プレス加工で形成された2枚のプレート14の内面側(対向面側)の凹部15同士が対向して上下方向に沿う冷媒流路16が形成されている。図示例では凹部15の横断面形状は台形状となっており、冷媒流路16の横断面形状は六角形状となっている。   Each tube 11 is formed by brazing and joining two plates 14 formed by pressing an aluminum material so as to face each other with an inner fin 13 that is an aluminum corrugated fin sandwiched therebetween. It is. At this time, inside the tube 11, the recess 15 on the inner surface side (opposite surface side) of the two plates 14 formed by the pressing process is opposed to each other, and a coolant channel 16 is formed along the vertical direction. Yes. In the illustrated example, the recess 15 has a trapezoidal cross-sectional shape, and the refrigerant channel 16 has a hexagonal cross-sectional shape.

また、チューブ11の表面における空気流通方向(水平方向:矢印C方向)の下流側の端部には、前記プレス加工で形成されたプレート14の外面側(反対向面側)の凹部である溝20が、上下方向(矢印D方向)に沿って設けられている。溝20の横断面(空気流通方向)の幅Wは例えば1〜2mm程度である。溝20の横断面形状は図示例では台形状となっているが、必ずしもこれに限定するものではなく、円弧状や矩形状などでもよい。なお、図示例では溝20が、チューブ11の表面における空気流通方向下流側の端部だけでなく、空気流通方向中央部及び空気流通方向上流側の端部にも設けられている。   Moreover, the groove | channel which is a recessed part of the outer surface side (anti-opposing surface side) of the plate 14 formed by the said press work in the downstream edge part of the air flow direction (horizontal direction: arrow C direction) in the surface of the tube 11 20 is provided along the up-down direction (arrow D direction). The width W of the cross section (air flow direction) of the groove 20 is, for example, about 1 to 2 mm. The cross-sectional shape of the groove 20 is a trapezoidal shape in the illustrated example, but is not necessarily limited thereto, and may be an arc shape or a rectangular shape. In the illustrated example, the groove 20 is provided not only at the downstream end portion in the air circulation direction on the surface of the tube 11 but also at the central portion in the air circulation direction and the upstream end portion in the air circulation direction.

また、チューブ11の上端部にはタンク18を有している。タンク18はチューブ11と一体のものであり、前記プレス加工によってプレート14の上端部に形成されたタンク部14aが多数積層されることによって一体的に形成されたものである。なお、図示例ではタンクがチューブの上端にのみ設けられているが、本発明は必ずしもこれに限定するものではなく、タンクがチューブの下端部に設けられている熱交換器や、チューブの上下両端部に設けられている熱交換器にも適用することができる。   In addition, a tank 18 is provided at the upper end of the tube 11. The tank 18 is integral with the tube 11, and is integrally formed by laminating a large number of tank portions 14a formed at the upper end portion of the plate 14 by the press working. In the illustrated example, the tank is provided only at the upper end of the tube. However, the present invention is not necessarily limited to this, and a heat exchanger in which the tank is provided at the lower end of the tube or both upper and lower ends of the tube are provided. The present invention can also be applied to a heat exchanger provided in the section.

一方、チューブ11の外側にはチューブ11とアウターフィン12とによって水平方向に沿う空気流路17が形成されている。この空気流路17には、図示しないファンによって送風される空気が、空気流通方向(矢印C方向)に流れる。その結果、この空気と、チューブ11の冷媒流路16を上下方向(矢印D方向)に流れる冷媒とがチューブ11及びアウターフィン12を介して熱交換する。また、アウターフィン12の平面部12aには、同平面部4aの一部を切り起こすことによってルーバ12fが形成されている。これらのルーバ12fは空気流路17を流通する空気を平面部12aの上下両側に蛇行させることよって、当該空気とチューブ11の冷媒流路16を流れる冷媒との熱交換効率を更に向上させる。なお、本発明は必ずしもこれに限定するものではなく、アウターフィン(コルゲートフィン)にルーバが設けられていない熱交換器にも適用することができる。   On the other hand, an air flow path 17 along the horizontal direction is formed by the tube 11 and the outer fin 12 outside the tube 11. In the air flow path 17, air blown by a fan (not shown) flows in the air circulation direction (arrow C direction). As a result, this air and the refrigerant flowing in the vertical direction (arrow D direction) through the refrigerant flow path 16 of the tube 11 exchange heat through the tube 11 and the outer fin 12. Further, a louver 12f is formed on the flat surface portion 12a of the outer fin 12 by cutting and raising a part of the flat surface portion 4a. These louvers 12f meander the air flowing through the air flow path 17 to both the upper and lower sides of the flat portion 12a, thereby further improving the heat exchange efficiency between the air and the refrigerant flowing through the refrigerant flow path 16 of the tube 11. In addition, this invention is not necessarily limited to this, It can apply also to the heat exchanger with which the louver is not provided in the outer fin (corrugated fin).

そして、図1〜図3に示すように本熱交換器では、アウターフィン12の空気流通方向下流側の端12bを、チューブ11の空気流通方向下流側端部の溝20における空気流通方向上流側の端20aに一致させている。即ち、アウターフィン12の端12bを、チューブ11の空気流通方向下流側端部の溝20に臨ませている。なお、図2に示すようにアウターフィン12の空気流通方向上流側の端12cは、チューブ11の空気流通方向上流側端部の溝20における空気流通方向上流側の端20bに一致させている。   As shown in FIGS. 1 to 3, in this heat exchanger, the downstream end 12 b of the outer fin 12 in the air circulation direction is connected to the upstream side in the air circulation direction of the groove 20 at the downstream end of the tube 11 in the air circulation direction. It is made to correspond to the edge 20a. That is, the end 12 b of the outer fin 12 faces the groove 20 at the downstream end of the tube 11 in the air flow direction. As shown in FIG. 2, the end 12 c on the upstream side in the air flow direction of the outer fin 12 is made to coincide with the end 20 b on the upstream side in the air flow direction in the groove 20 at the upstream end of the tube 11 in the air flow direction.

以上のように、本実施の形態例1の熱交換器によれば、アウターフィン12の空気流通方向下流側の端12bを、チューブ11の空気流通方向下流側端部の溝20における空気流通方向上流側の端20aに一致させたため、凝縮水の排水性が向上する。即ち、本熱交換器が蒸発器として機能する場合、チューブ11内の冷媒流路16を流れる冷媒とアウターフィン12部分の空気流路17を流れる空気との熱交換によって同空気が冷却される際に同空気に含まれる水分が凝縮することによって生じた凝縮水が、同空気に押し流されて図2及び図3に一点鎖線で示すようにアウターフィン12の折り返し部における空気流通方向下流側の端部12dに溜まっても、この溜まった凝縮水21が、溝20を矢印Eのように下方に流れる凝縮水22(チューブ11やアウターフィン12の表面に付着した凝縮水が空気に押し流されて溝20に溜まった凝縮水)に矢印Fのように引かれて溝20に入り、同凝縮水22とともに下方に流れて効率よく排水され、図示しないドレン受けに入る。このため、アウターフィン12の端部12dに溜まった凝縮水21が通風によって室内に吹き飛ばされるなどの不具合の発生を防止することができる。   As described above, according to the heat exchanger of the first embodiment, the end 12b on the downstream side in the air flow direction of the outer fin 12 is connected to the air flow direction in the groove 20 at the downstream end of the tube 11 in the air flow direction. Since it was made to correspond to the upstream end 20a, the drainage of condensed water improves. That is, when this heat exchanger functions as an evaporator, when the air is cooled by heat exchange between the refrigerant flowing through the refrigerant flow path 16 in the tube 11 and the air flowing through the air flow path 17 of the outer fin 12 portion. The condensed water produced by the condensation of the water contained in the air is swept away by the air and the downstream end of the folded portion of the outer fin 12 in the air flow direction as shown by the one-dot chain line in FIGS. Even if accumulated in the portion 12d, the accumulated condensed water 21 flows downward in the groove 20 as indicated by an arrow E (condensed water adhering to the surface of the tube 11 and the outer fin 12 is pushed away by the air and grooved). (Condensed water collected at 20) is drawn into the groove 20 as indicated by the arrow F, flows downward together with the condensed water 22 and is efficiently drained, and enters a drain receiver (not shown). For this reason, generation | occurrence | production of malfunctions, such as the condensed water 21 collected at the edge part 12d of the outer fin 12, being blown away indoors by ventilation, can be prevented.

なお、アウターフィン12の空気流通方向下流側の端12bの位置は、必ずしも上記のようにチューブ11の空気流通方向下流側端部の溝20における空気流通方向上流側の端20aに一致させる場合に限定するものではなく、アウターフィン12の端部12dが溝20を完全に跨がない位置であればよく、例えば図3に二点鎖線で示すように溝20の端20aよりも多少空気流通方向上流側の位置であってもよく、逆に溝20の端20aよりも空気流通方向下流側の位置であってもよい。即ち、アウターフィン12の空気流通方向下流側の端12bを、溝20の空気流通方向下流側の端20cよりも、空気流通方向上流側に位置させることにより、アウターフィン12の折り返し部における空気流通方向下流側の端部12dに溜まった凝縮水21が、溝20を下方に流れる凝縮水22に引かれて溝20に入り同凝縮水22とともに下方に流れて排水されるように構成されていればよい。   Note that the position of the end 12b of the outer fin 12 on the downstream side in the air flow direction is not necessarily the same as the end 20a on the upstream side in the air flow direction of the groove 20 at the downstream end of the tube 11 in the air flow direction. It is not limited, and it is only necessary that the end 12d of the outer fin 12 does not completely straddle the groove 20. For example, as shown by a two-dot chain line in FIG. The position may be on the upstream side, and conversely the position on the downstream side in the air flow direction from the end 20a of the groove 20 may be used. That is, the end 12b of the outer fin 12 on the downstream side in the air flow direction is positioned on the upstream side of the groove 20 in the air flow direction with respect to the end 20c on the downstream side in the air flow direction. Condensed water 21 collected at the end 12 d on the downstream side in the direction is drawn by the condensed water 22 flowing downward in the groove 20, enters the groove 20, flows downward together with the condensed water 22, and is drained. That's fine.

<実施の形態例2>
図4(a)は本発明の実施の形態例2に係る熱交換器のアウターフィンを成形するためのアルミニウム材の構成図、図4(b)は前記アウターフィンの構成を示す斜視図、図4(c)は前記アウターフィンの他の構成を示す斜視図である。
<Embodiment 2>
FIG. 4A is a configuration diagram of an aluminum material for forming an outer fin of a heat exchanger according to Embodiment 2 of the present invention, and FIG. 4B is a perspective view showing the configuration of the outer fin. 4 (c) is a perspective view showing another configuration of the outer fin.

図4(a)に示すように、アウターフィンを成形するための帯板状のアルミニュウム材31は、幅方向の一端に適宜の間隔で凸部31aが形成されている。従って、図4(b)に示すように、このアルミニュウム材31を図示しない歯車状のロール等の成形機で波形に成形してなる本実施の形態例2のアウターフィン(コルゲートフィン)12は、空気流通方向(矢印C方向)下流側の端12bに複数の凸部12e(アルミニュウム材31の凸部31a)を有している。そして、これらの凸部12eの空気流通方向の幅を含めたアウターフィン12の空気流通方向の幅WFを、チューブ11の空気流通方向の幅WT(例えば40〜60mm程度)に一致させている。   As shown in FIG. 4A, the band-plate-like aluminum material 31 for forming the outer fin has convex portions 31a formed at appropriate intervals at one end in the width direction. Therefore, as shown in FIG. 4 (b), the outer fin (corrugated fin) 12 of the present embodiment 2 formed by forming this aluminum material 31 into a waveform with a molding machine such as a gear-shaped roll (not shown) A plurality of convex portions 12e (the convex portions 31a of the aluminum material 31) are provided at the downstream end 12b in the air circulation direction (arrow C direction). And the width WF of the air circulation direction of the outer fin 12 including the width of the air flow direction of these convex portions 12e is made to coincide with the width WT (for example, about 40 to 60 mm) of the tube 11 in the air circulation direction.

なお、図4(b)ではアウターフィン12の折り返し部にも凸部12eが設けられる場合があり、この部分では凸部12eが、チューブ11の溝20を跨いでしまうことになるため、他の部分に比べてアウターフィン12の折り返し部の空気流通方向下流側の端部12dに溜まった凝縮水を排水しにくくするおそれがある。従って、より望ましくは図4(c)に示すように凸部12eは、アウターフィン12の平面部12aにのみ設ける。   In addition, in FIG.4 (b), since the convex part 12e may be provided also in the folding | returning part of the outer fin 12, and the convex part 12e will straddle the groove | channel 20 of the tube 11 in this part, other Compared to the portion, the condensed water collected at the end 12d on the downstream side in the air flow direction of the folded portion of the outer fin 12 may be difficult to drain. Therefore, more desirably, as shown in FIG. 4C, the convex portion 12 e is provided only on the flat surface portion 12 a of the outer fin 12.

本実施の形態例2の熱交換器における上記アウターフィン12以外の構成については、上記実施の形態例1の熱交換器と同様であるため、ここでの図示及び説明は省略する(図1〜3参照)。   Since the configuration of the heat exchanger of the second embodiment other than the outer fin 12 is the same as that of the heat exchanger of the first embodiment, illustration and description thereof are omitted here (FIGS. 1 to 1). 3).

以上のように、本実施の形態例2の熱交換器によれば、アウターフィン12の空気流通方向下流側の端12bには複数の凸部12eを有し、これらの凸部12eの空気流通方向の幅を含めたアウターフィン12の空気流通方向の幅WFを、チューブ11の空気流通方向の幅WTと一致させたため、チューブ11の端とアウターフィン12の端(凸部12e)とを当て板に当てることなどによって容易にチューブ11に対してアウターフィン12を位置決めすることができ、アウターフィン12の位置決め精度が向上する。   As described above, according to the heat exchanger of the second embodiment, the end 12b of the outer fin 12 on the downstream side in the air flow direction has the plurality of convex portions 12e, and the air flow of these convex portions 12e. Since the width WF in the air circulation direction of the outer fin 12 including the width in the direction is made to coincide with the width WT in the air circulation direction of the tube 11, the end of the tube 11 and the end of the outer fin 12 (projection 12 e) are applied. The outer fin 12 can be easily positioned with respect to the tube 11 by applying it to the plate, and the positioning accuracy of the outer fin 12 is improved.

また、凸部12eをアウターフィン12の平面部12aにのみ設けた場合には、凸部12eが溝20を跨いでしまうことが全くないため、アウターフィン12の折り返し部の空気流通方向下流側の端部12dに溜まる凝縮水の排水性が更に向上する。   Moreover, since the convex part 12e does not straddle the groove | channel 20 at all when the convex part 12e is provided only in the plane part 12a of the outer fin 12, the folding | returning part of the outer fin 12 is the downstream of the air circulation direction. The drainage of the condensed water collected at the end 12d is further improved.

<実施の形態例3>
図5(a)は本発明の実施の形態例3に係る熱交換器のアウターフィンを成形するためのアルミニウム材の構成図、図5(b)は前記アウターフィンの構成を示す斜視図、図5(c)は前記アウターフィンの他の構成を示す斜視図である。
<Embodiment 3>
FIG. 5A is a configuration diagram of an aluminum material for forming an outer fin of a heat exchanger according to Embodiment 3 of the present invention, and FIG. 5B is a perspective view showing the configuration of the outer fin. FIG. 5C is a perspective view showing another configuration of the outer fin.

図5(a)に示すように、本実施の形態例3ではアルミニュウム材31の幅方向の両端に、それぞれ適宜の間隔で凸部31aが形成されている。従って、図5(b)に示すように、このアルミニュウム材31を図示しない歯車状のロール等の成形機で波形に成形してなる本実施の形態例3のアウターフィン(コルゲートフィン)12は、空気流通方向(矢印C方向)下流側の端12bと、空気流通方向上流側の端12cとにそれぞれ複数の凸部12e(アルミニュウム材41の凸部41a)を有している。そして、これら両側の凸部12eの空気流通方向の幅を含めたアウターフィン12の空気流通方向の幅WFを、チューブ11の空気流通方向の幅WTと一致させている。   As shown in FIG. 5A, in the third embodiment, convex portions 31a are formed at appropriate intervals on both ends of the aluminum material 31 in the width direction. Therefore, as shown in FIG. 5 (b), the outer fin (corrugated fin) 12 of the third embodiment formed by forming this aluminum material 31 into a corrugated shape with a molding machine such as a gear-shaped roll (not shown) The air flow direction (arrow C direction) downstream end 12b and the air flow direction upstream end 12c each have a plurality of convex portions 12e (the convex portions 41a of the aluminum material 41). The width WF in the air circulation direction of the outer fin 12 including the width in the air circulation direction of the convex portions 12e on both sides is made to coincide with the width WT of the tube 11 in the air circulation direction.

なお、図5(b)ではアウターフィン12の折り返し部にも凸部12eが設けられる場合があり、この部分では凸部12eが、チューブ11の溝20を跨いでしまうことになるため、他の部分に比べてアウターフィン12の折り返し部の空気流通方向下流側の端部12dに溜まった凝縮水を排水しにくくするおそれがある。従って、より望ましくは図5(c)に示すように凸部12eは、アウターフィン12の平面部12aにのみ設ける。   In addition, in FIG.5 (b), since the convex part 12e may be provided also in the folding | turning part of the outer fin 12, and the convex part 12e will straddle the groove | channel 20 of the tube 11 in this part, other Compared to the portion, the condensed water collected at the end 12d on the downstream side in the air flow direction of the folded portion of the outer fin 12 may be difficult to drain. Therefore, more desirably, the convex portion 12e is provided only on the flat surface portion 12a of the outer fin 12, as shown in FIG.

本実施の形態例3の熱交換器における上記アウターフィン12以外の構成については、上記実施の形態例1の熱交換器と同様であるため、ここでの図示及び説明は省略する(図1〜3参照)。   Since the configuration other than the outer fin 12 in the heat exchanger of the third embodiment is the same as that of the heat exchanger of the first embodiment, illustration and description thereof are omitted (FIGS. 1 to 1). 3).

以上のように、本実施の形態例3の熱交換器によれば、アウターフィン12の空気流通方向下流側の端12bと空気流通方向上流側の端12bとにそれぞれ複数の凸部12eを有し、これら両側の凸部12eの空気流通方向の幅を含めたアウターフィン12の空気流通方向の幅WFを、チューブ11の空気流通方向の幅WTと一致させたため、チューブ11の端とアウターフィン12の端(凸部12e)とを当て板に当てることなどによって容易にチューブ11に対してアウターフィン12を位置決めすることができてアウターフィン12の位置決め精度が向上する。しかも、アウターフィン12の両側が同じような構造となっていることから、空気流通方向が一方向(矢印C方向)に限定されず逆方向にすることもできるため、適用機種の自由度がある。   As described above, according to the heat exchanger of the third embodiment, the outer fin 12 has the plurality of convex portions 12e at the downstream end 12b in the air circulation direction and the upstream end 12b in the air circulation direction. Since the width WF in the air flow direction of the outer fin 12 including the width in the air flow direction of the convex portions 12e on both sides is made to coincide with the width WT in the air flow direction of the tube 11, the end of the tube 11 and the outer fin The outer fin 12 can be easily positioned with respect to the tube 11 by, for example, applying the end of 12 (the convex portion 12e) to the contact plate, and the positioning accuracy of the outer fin 12 is improved. In addition, since both sides of the outer fin 12 have the same structure, the direction of air flow is not limited to one direction (arrow C direction), and the direction can be reversed. .

また、凸部12eをアウターフィン12の平面部12aにのみ設けた場合には、凸部12eが溝20を跨いでしまうことが全くないため、アウターフィン12の折り返し部の空気流通方向下流側の端部12bに溜まる凝縮水の排水性が更に向上する。   Moreover, since the convex part 12e does not straddle the groove | channel 20 at all when the convex part 12e is provided only in the plane part 12a of the outer fin 12, the folding | returning part of the outer fin 12 is the downstream of the air circulation direction. The drainage of the condensed water accumulated at the end 12b is further improved.

<実施の形態例4>
図6は本発明の実施の形態例4に係る熱交換器の一部を示す正面図、図7は前記熱交換器の更に一部を拡大して示す斜視図、図8は前記熱交換器におけるチューブの上端部及び下端部のロウ付け部分を示す拡大断面図である。
<Embodiment 4>
6 is a front view showing a part of a heat exchanger according to Embodiment 4 of the present invention, FIG. 7 is an enlarged perspective view of a part of the heat exchanger, and FIG. 8 is the heat exchanger. It is an expanded sectional view which shows the brazing part of the upper end part of a tube, and a lower end part.

図6及び図7に示すように、本実施の形態例4の熱交換器は扁平状のチューブ51と、コルゲートフィン(波形状のフィン)であるアウターフィン52とを、交互に多数積層してなる積層型のものである。アウターフィン52はアルミニュウム製のものであり、折り返し部がロウ付けによってチューブ51の表面に接合されている。各チューブ1は押し出し成形されたアルミニウム製のものである。このとき、チューブ51の内部には、前記押し出し成形によって上下方向に沿う冷媒流路53が形成されている。図示例では冷媒流路53の横断面形状は矩形状となっている。   As shown in FIGS. 6 and 7, the heat exchanger according to the fourth embodiment has a flat tube 51 and a plurality of outer fins 52 that are corrugated fins (wave-shaped fins) alternately stacked. It is a laminated type. The outer fin 52 is made of aluminum, and the folded portion is joined to the surface of the tube 51 by brazing. Each tube 1 is made of extruded aluminum. At this time, a refrigerant flow path 53 is formed in the tube 51 along the vertical direction by the extrusion molding. In the illustrated example, the cross-sectional shape of the refrigerant channel 53 is rectangular.

また、チューブ51の表面における空気流通方向(水平方向:矢印G方向)の下流側の端部には、後からプレス加工などで形成された溝54が、上下方向(矢印H方向)に沿って設けられている。溝54の横断面(空気流通方向)の幅Wは例えば1〜2mm程度である。溝54の横断面形状は図示例では台形状となっているが、必ずしもこれに限定するものではなく、円弧状や矩形状などでもよい。なお、図示例では溝54が、チューブ51の表面における空気流通方向下流側の端部だけでなく、空気流通方向中央部及び空気流通方向上流側の端部にも設けられている。   Further, a groove 54 formed later by pressing or the like is formed along the vertical direction (arrow H direction) at the downstream end of the air flow direction (horizontal direction: arrow G direction) on the surface of the tube 51. Is provided. The width W of the cross section (air flow direction) of the groove 54 is, for example, about 1 to 2 mm. The cross-sectional shape of the groove 54 is a trapezoidal shape in the illustrated example, but is not necessarily limited to this, and may be an arc shape or a rectangular shape. In the illustrated example, the groove 54 is provided not only at the downstream end portion in the air circulation direction on the surface of the tube 51 but also at the central portion in the air circulation direction and the upstream end portion in the air circulation direction.

そして、図7に示すように本熱交換器では、アウターフィン52の空気流通方向下流側の端52bを、チューブ51の空気流通方向下流側端部の溝54における空気流通方向上流側の端54aに一致させている。即ち、アウターフィン52の端52bを、チューブ51の空気流通方向下流側端部の溝54に臨ませている。なお、アウターフィン52の空気流通方向上流側の端52cは、チューブ51の空気流通方向上流側端部の溝54における空気流通方向上流側の端54bに一致させている。   As shown in FIG. 7, in the present heat exchanger, an end 52 b on the downstream side in the air flow direction of the outer fin 52 is connected to an end 54 a on the upstream side in the air flow direction in the groove 54 at the downstream end portion in the air flow direction of the tube 51. To match. That is, the end 52 b of the outer fin 52 faces the groove 54 at the downstream end of the tube 51 in the air flow direction. The upstream end 52c of the outer fin 52 in the air flow direction is made to coincide with the upstream end 54b of the groove 54 at the upstream end of the tube 51 in the air flow direction.

一方、チューブ51の外側にはチューブ51とアウターフィン52とによって水平方向に沿う空気流路60が形成されている。この空気流路60には、図示しないファンによって送風される空気が、空気流通方向(矢印G方向)に流れる。その結果、この空気と、チューブ51の冷媒流路53を上下方向(矢印H方向)に流れる冷媒とがチューブ51及びアウターフィン52を介して熱交換する。また、アウターフィン52の平面部52aには、同平面部52aの一部を切り起こすことによってルーバ52eが形成されている。これらのルーバ52eは空気流路60を流通する空気を平面部52aの上下両側に蛇行させることよって、当該空気とチューブ51の冷媒流路53を流れる冷媒との熱交換効率を更に向上させる。なお、本発明は必ずしもこれに限定するものではなく、アウターフィン(コルゲートフィン)にルーバが設けられていない熱交換器にも適用することができる。   On the other hand, an air flow path 60 extending in the horizontal direction is formed on the outside of the tube 51 by the tube 51 and the outer fin 52. In the air flow path 60, air blown by a fan (not shown) flows in the air circulation direction (arrow G direction). As a result, the air and the refrigerant flowing in the vertical direction (in the direction of arrow H) through the refrigerant flow path 53 of the tube 51 exchange heat through the tube 51 and the outer fin 52. Further, a louver 52e is formed on the flat surface portion 52a of the outer fin 52 by cutting and raising a part of the flat surface portion 52a. These louvers 52e meander the air flowing through the air flow path 60 to the upper and lower sides of the flat portion 52a, thereby further improving the heat exchange efficiency between the air and the refrigerant flowing through the refrigerant flow path 53 of the tube 51. In addition, this invention is not necessarily limited to this, It can apply also to the heat exchanger with which the louver is not provided in the outer fin (corrugated fin).

また、チューブ51の上端部及び下端部には、それぞれ上部タンク55及び下部タンク56を有している。チューブ51の上端部及び下端部は、これらの上部タンク55及び下部タンク56にそれぞれロウ付けによって接合されている。即ち、図8に示すように、チューブ51の上端部と上部タンク55との接合部には、ロウ付けの際に形成されたフィレット57を有しており、チューブ51の下端部と下部タンク56との接合部には、ロウ付けの際に形成されたフィレット58を有している。なお、フィレット57,58の基端から先端までの高さは例えば2mm程度である。   Further, an upper tank 55 and a lower tank 56 are respectively provided at the upper end portion and the lower end portion of the tube 51. The upper end portion and the lower end portion of the tube 51 are joined to the upper tank 55 and the lower tank 56 by brazing, respectively. That is, as shown in FIG. 8, the joint between the upper end of the tube 51 and the upper tank 55 has a fillet 57 formed at the time of brazing, and the lower end of the tube 51 and the lower tank 56 are formed. The joint portion has a fillet 58 formed at the time of brazing. The height from the base end to the tip end of the fillets 57, 58 is, for example, about 2 mm.

そして、図6及び8に示すように本熱交換器では、チューブ51の溝54の形成範囲を、チューブ全長でなく、アウターフィン52との接合長さLの範囲に一致させている。つまり、このことによって溝54の上端54dの位置をロウ付けフィレット57の先端(下端)57aの位置から離し、且つ、溝54の下端54eの位置をロウ付けフィレット58の先端(上端)58aの位置から離している。即ち、ロウ付けフィレット57,58と溝54との間にはクリアランスCLを有している。   As shown in FIGS. 6 and 8, in the present heat exchanger, the formation range of the groove 54 of the tube 51 is matched not with the entire length of the tube but with the range of the joining length L with the outer fin 52. That is, by this, the position of the upper end 54d of the groove 54 is separated from the position of the tip (lower end) 57a of the brazing fillet 57, and the position of the lower end 54e of the groove 54 is set to the position of the tip (upper end) 58a of the brazing fillet 58. Away from That is, a clearance CL is provided between the brazing fillets 57 and 58 and the groove 54.

以上のように、本実施の形態例4の熱交換器によれば、アウターフィン52の空気流通方向下流側の端52bを、チューブ51の空気流通方向下流側端部の溝54における空気流通方向上流側の端54aに一致させたため、凝縮水の排水性が向上する。即ち、本熱交換器が蒸発器として機能する場合、チューブ51内の冷媒流路53を流れる冷媒とアウターフィン52部分の空気流路60を流れる空気との熱交換によって同空気が冷却される際に同空気に含まれる水分が凝縮することによって生じた凝縮水が、同空気に押し流されて図7に一点鎖線で示すようにアウターフィン52の折り返し部における空気流通方向下流側の端部52dに溜まっても、この溜まった凝縮水61が、溝54を矢印Iのように下方に流れる凝縮水62(チューブ51やコルゲートフィン52の表面に付着した凝縮水が空気に押し流されて溝54に溜まった凝縮水)に矢印Jのように引かれて溝54に入り、同凝縮水62とともに下方に流れて効率よく排水され、図示しないドレン受けに入る。このため、アウターフィン52の端部52dに溜まった凝縮水61が通風によって室内に吹き飛ばされるなどの不具合の発生を防止することができる。   As described above, according to the heat exchanger of the fourth embodiment, the end 52b of the outer fin 52 on the downstream side in the air flow direction is connected to the air flow direction in the groove 54 at the downstream end of the tube 51 in the air flow direction. Since it was made to correspond to the upstream end 54a, the drainage of condensed water improves. That is, when this heat exchanger functions as an evaporator, when the air is cooled by heat exchange between the refrigerant flowing through the refrigerant flow path 53 in the tube 51 and the air flowing through the air flow path 60 of the outer fin 52 portion. The condensed water generated by the condensation of the water contained in the air is pushed into the air and flows to the end 52d on the downstream side in the air flow direction in the folded portion of the outer fin 52 as shown by a one-dot chain line in FIG. Even if it accumulates, the accumulated condensed water 61 flows downward in the groove 54 as indicated by an arrow I (condensed water adhering to the surfaces of the tube 51 and the corrugated fin 52 is pushed away by the air and accumulated in the groove 54. The condensed water) is drawn as shown by an arrow J, enters the groove 54, flows downward together with the condensed water 62, and is efficiently drained, and enters a drain receiver (not shown). For this reason, the generation | occurrence | production of malfunctions, such as the condensed water 61 collected in the edge part 52d of the outer fin 52 being blown away indoors by ventilation, can be prevented.

なお、アウターフィン52の空気流通方向下流側の端52bの位置は、必ずしも上記のようにチューブ51の空気流通方向下流側端部の溝54における空気流通方向上流側の端54aに一致させる場合に限定するものではなく、アウターフィン52の端部52dが溝54を完全に跨がない位置であればよい(図3参照)。即ち、アウターフィン52の空気流通方向下流側の端52bを、溝54の空気流通方向下流側の端54cよりも、空気流通方向上流側に位置させることにより、アウターフィン52の折り返し部における空気流通方向下流側の端部52dに溜まった凝縮水61が、溝54を下方に流れる凝縮水62に引かれて溝54に入り同凝縮水62とともに下方に流れて排水されるように構成されていればよい。また、本実施の形態例4においても、上記実施の形態例2又は3のようにアウターフィン52の空気流通方向の一端又は両端に凸部を形成して、凸部の空気流通方向の幅を含めたアウターフィン52の空気流通方向の幅を、チューブ51の空気流通方向の幅と一致させるようにしてもよい。   The position of the end 52b of the outer fin 52 on the downstream side in the air flow direction is not necessarily equal to the end 54a on the upstream side in the air flow direction of the groove 54 at the downstream end of the tube 51 in the air flow direction. It is not limited, and it is only necessary that the end 52d of the outer fin 52 does not completely cross the groove 54 (see FIG. 3). That is, the air flow in the folded portion of the outer fin 52 is determined by positioning the downstream end 52b of the outer fin 52 in the air flow direction upstream of the end 54c of the groove 54 in the air flow direction. Condensed water 61 accumulated at the end 52 d on the downstream side in the direction is drawn by the condensed water 62 flowing downward in the groove 54, enters the groove 54, flows downward together with the condensed water 62, and is drained. That's fine. Also in the fourth embodiment, a convex portion is formed at one or both ends of the outer fin 52 in the air flow direction as in the second or third embodiment, and the width of the convex portion in the air flow direction is increased. You may make it make the width | variety of the air distribution direction of the included outer fin 52 correspond with the width | variety of the air distribution direction of the tube 51. FIG.

そして、本実施の形態例4の熱交換器によれば、溝54の上端位置54d及び下端位置54eを、ロウ付けフィレット57,58の先端位置57a,58aから離したため、上部タンク55及び下部タンク56のロウ材がロウ付けの際に溝54に流れ込んでエロージョンが発生するのを防止することができる。しかも、溝54の形成範囲をアウターフィン52の接合長さLの範囲に一致させているため、凝縮水の排水に要する溝54の長さを確保することができる。   According to the heat exchanger of the fourth embodiment, since the upper end position 54d and the lower end position 54e of the groove 54 are separated from the front end positions 57a and 58a of the braze fillets 57 and 58, the upper tank 55 and the lower tank It can be prevented that 56 brazing materials flow into the grooves 54 during brazing and cause erosion. In addition, since the formation range of the groove 54 is matched with the range of the joining length L of the outer fin 52, the length of the groove 54 required for draining condensed water can be ensured.

なお、図示例ではタンクがチューブの上下両端に設けられているが、本発明は必ずしもこれに限定するものではなく、タンクがチューブの上端又は下端の何れか一方にのみ設けられている熱交換器にも適用することができる。   In the illustrated example, the tanks are provided at the upper and lower ends of the tube, but the present invention is not necessarily limited to this, and the heat exchanger is provided with the tank only at either the upper end or the lower end of the tube. It can also be applied to.

本発明は熱交換器に関するものであり、空気調和機において、蒸発器としてのみ使用される熱交換器に適用される他、冷媒の流れ方向を切り替えることで蒸発器として機能する場合と凝縮器として機能する場合とがある熱交換器などにも適用可能なものである。   The present invention relates to a heat exchanger. In an air conditioner, the present invention is applied to a heat exchanger used only as an evaporator, and functions as an evaporator by switching the flow direction of refrigerant and as a condenser. It can also be applied to heat exchangers that may function.

本発明の実施の形態例1に係る熱交換器の一部を示す斜視図である。It is a perspective view which shows a part of heat exchanger which concerns on Example 1 of Embodiment of this invention. 前記熱交換器の更に一部を拡大して示す斜視図である。It is a perspective view which expands and shows further a part of the said heat exchanger. 前記熱交換器の更に一部を拡大して示す平面図である。It is a top view which expands and shows further a part of the said heat exchanger. (a)は本発明の実施の形態例2に係る熱交換器のアウターフィンを成形するためのアルミニウム材の構成図、(b)は前記アウターフィンの構成を示す斜視図、(c)は前記アウターフィンの他の構成を示す斜視図である。(A) is a block diagram of the aluminum material for shape | molding the outer fin of the heat exchanger which concerns on Embodiment 2 of this invention, (b) is a perspective view which shows the structure of the said outer fin, (c) is the said It is a perspective view which shows the other structure of an outer fin. (a)は本発明の実施の形態例3に係る熱交換器のアウターフィンを成形するためのアルミニウム材の構成図、(b)は前記アウターフィンの構成を示す斜視図、(c)は前記アウターフィンの他の構成を示す斜視図である。(A) is a block diagram of the aluminum material for shape | molding the outer fin of the heat exchanger which concerns on Embodiment 3 of this invention, (b) is a perspective view which shows the structure of the said outer fin, (c) is the said It is a perspective view which shows the other structure of an outer fin. 本発明の実施の形態例4に係る熱交換器の一部を示す正面図である。It is a front view which shows a part of heat exchanger which concerns on Example 4 of Embodiment of this invention. 前記熱交換器の更に一部を拡大して示す斜視図である。It is a perspective view which expands and shows further a part of the said heat exchanger. 前記熱交換器におけるチューブの上端部及び下端部のロウ付け部分を示す拡大断面図である。It is an expanded sectional view which shows the brazing part of the upper end part and lower end part of the tube in the said heat exchanger. 従来の蒸発器の空気流通方向下流側の端部を示す斜視図である。It is a perspective view which shows the edge part of the air flow direction downstream side of the conventional evaporator. 従来の蒸発器の空気流通方向下流側の端部を示す平面図である。It is a top view which shows the edge part of the air distribution direction downstream of the conventional evaporator.

符号の説明Explanation of symbols

11 チューブ
12 アウターフィン
12a 平面部
12b,12c 端
12d 端部
12e 凸部
12f ルーバ
13 インナーフィン
14 プレート
14a タンク部
15 凹部
16 冷媒流路
17 空気流路
18 タンク
20 溝
20a,20b,20c 端
21,22 凝縮水
31 アルミニュウム材
31a 凸部
51 チューブ
52 アウターフィン
52a 平面部
52b,52c 端
52d 端部
52e ルーバ
53 冷媒流路
54 溝
54a,54b,54c 端
54d 上端
54e 下端
55 上部タンク
56 下部タンク
57 ロウ付けフィレット
57a 先端
58 ロウ付けフィレット
58a 先端
60 空気流路
61,62 凝縮水
DESCRIPTION OF SYMBOLS 11 Tube 12 Outer fin 12a Plane part 12b, 12c End 12d End part 12e Convex part 12f Louver 13 Inner fin 14 Plate 14a Tank part 15 Recessed part 16 Refrigerant flow path 17 Air flow path 18 Tank 20 Groove 20a, 20b, 20c End 21, 22 Condensed water 31 Aluminum material 31a Convex part 51 Tube 52 Outer fin 52a Plane part 52b, 52c End 52d End part 52e Louver 53 Refrigerant flow path 54 Groove 54a, 54b, 54c End 54d Upper end 54e Lower end 55 Upper tank 57 Lower tank 57 Attached fillet 57a Tip 58 Brazed fillet 58a Tip 60 Air flow path 61, 62 Condensed water

Claims (7)

上下方向に沿う冷媒流路が内部に形成された扁平状のチューブと、前記チューブの表面に接合されて前記チューブとともに水平方向に沿う空気流路を形成するコルゲートフィンとを、交互に積層してなり、前記冷媒流路を流れる冷媒と前記空気流路を流れる空気との熱交換を行う熱交換器において、
前記チューブの表面における空気流通方向下流側の端部には、上下方向に沿う溝を形成し、
前記コルゲートフィンの空気流通方向下流側の端を、前記溝の空気流通方向下流側の端よりも、空気流通方向上流側に位置させることにより、前記コルゲートフィンの折り返し部の空気流通方向下流側の端部に溜まった凝縮水が、前記溝を下方に流れる凝縮水に引かれて前記溝に入り同凝縮水とともに下方に流れて排水されるように構成したことを特徴とする熱交換器。
A flat tube in which a refrigerant flow path along the vertical direction is formed inside and corrugated fins that are joined to the surface of the tube and form an air flow path along the horizontal direction together with the tube are alternately stacked. A heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant flow path and the air flowing through the air flow path,
At the end on the downstream side in the air flow direction on the surface of the tube, a groove is formed along the vertical direction,
By positioning the downstream end of the corrugated fin in the air flow direction downstream of the end of the groove in the air flow direction, the end of the corrugated fin folded portion on the downstream side of the air flow direction. The heat exchanger is configured such that the condensed water accumulated at the end is drawn by the condensed water flowing downward through the groove, enters the groove, flows downward together with the condensed water, and is drained.
請求項1に記載の熱交換器において、
前記コルゲートフィンの空気流通方向下流側の端には複数の凸部を有し、これらの凸部の空気流通方向の幅を含めた前記コルゲートフィンの空気流通方向の幅を、前記チューブの空気流通方向の幅と一致させたことを特徴とする熱交換器。
The heat exchanger according to claim 1,
The corrugated fin has a plurality of convex portions on the downstream side in the air flow direction, and the width of the corrugated fin in the air flow direction including the width of the air flow direction of the convex portions is defined as the air flow of the tube. A heat exchanger characterized by matching the width of the direction.
請求項1に記載の熱交換器において、
前記コルゲートフィンの空気流通方向下流側の端と空気流通方向上流側の端とにそれぞれ複数の凸部を有し、これら両側の凸部の空気流通方向の幅を含めた前記コルゲートフィンの空気流通方向の幅を、前記チューブの空気流通方向の幅と一致させたことを特徴とする熱交換器。
The heat exchanger according to claim 1,
The corrugated fin has an air flow direction downstream end and an air flow direction upstream end, each of which has a plurality of convex portions, and the air flow direction of the corrugated fin includes the width of the convex portions on both sides including the width in the air flow direction. The heat exchanger is characterized in that the width in the direction is made to coincide with the width in the air circulation direction of the tube.
請求項2又は3に記載の熱交換器において、
前記凸部を前記コルゲートフィンの平面部にのみ設けたことを特徴とする熱交換器。
The heat exchanger according to claim 2 or 3,
The heat exchanger according to claim 1, wherein the convex portion is provided only on a flat portion of the corrugated fin.
上下方向に沿う冷媒流路が内部に形成された扁平状のチューブと、前記チューブの表面に接合されて前記チューブとともに水平方向に沿う空気流路を形成するコルゲートフィンとを、交互に積層してなり、前記冷媒流路を流れる冷媒と前記空気流路を流れる空気との熱交換を行う熱交換器において、
前記チューブの表面における空気流通方向下流側の端部には、上下方向に沿う溝を形成し、
前記チューブの上端部もしくは下端部又は上端部及び下端部はロウ付けによってタンクに接合されており、且つ、このチューブとタンクとのロウ付け接合部では前記溝の上端位置もしくは下端位置又は上端位置及び下端位置を、前記ロウ付けフィレットの先端位置から離したことを特徴とする熱交換器。
A flat tube in which a refrigerant flow path along the vertical direction is formed inside and corrugated fins that are joined to the surface of the tube and form an air flow path along the horizontal direction together with the tube are alternately stacked. A heat exchanger that performs heat exchange between the refrigerant flowing through the refrigerant flow path and the air flowing through the air flow path,
At the end of the tube surface on the downstream side in the air flow direction, a groove along the vertical direction is formed,
The upper end portion or the lower end portion or the upper end portion and the lower end portion of the tube are joined to the tank by brazing, and the upper end position, the lower end position, or the upper end position of the groove at the brazed joint portion between the tube and the tank, and A heat exchanger characterized in that a lower end position is separated from a tip position of the braze fillet.
請求項1,2,3又は4に記載の熱交換器において、
前記チューブの上端部もしくは下端部又は上端部及び下端部はロウ付けによってタンクに接合されており、且つ、このチューブとタンクとのロウ付け接合部では前記溝の上端位置もしくは下端位置又は上端位置及び下端位置を、前記ロウ付けフィレットの先端位置から離したことを特徴とする熱交換器。
The heat exchanger according to claim 1, 2, 3 or 4,
The upper end portion or the lower end portion or the upper end portion and the lower end portion of the tube are joined to the tank by brazing, and the upper end position, the lower end position, or the upper end position of the groove at the brazed joint portion between the tube and the tank, and A heat exchanger characterized in that a lower end position is separated from a tip position of the braze fillet.
請求項5又は6に記載の熱交換器において、
前記溝の形成範囲を、前記コルゲートフィンの接合長さの範囲に一致させたことを特徴とする熱交換器。
The heat exchanger according to claim 5 or 6,
The heat exchanger according to claim 1, wherein a formation range of the groove is made to coincide with a range of joining lengths of the corrugated fins.
JP2004053068A 2004-02-27 2004-02-27 Heat exchanger Withdrawn JP2005241168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053068A JP2005241168A (en) 2004-02-27 2004-02-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053068A JP2005241168A (en) 2004-02-27 2004-02-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005241168A true JP2005241168A (en) 2005-09-08

Family

ID=35023082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053068A Withdrawn JP2005241168A (en) 2004-02-27 2004-02-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005241168A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045765A (en) * 2006-08-10 2008-02-28 Denso Corp Heat exchanger
WO2008141715A2 (en) * 2007-05-18 2008-11-27 Modine Manufacturing Company Heat exchanger core, production method, roller line
JP2008292083A (en) * 2007-05-25 2008-12-04 Denso Corp Refrigerant evaporator
ITBO20120131A1 (en) * 2012-03-14 2013-09-15 Valmex S P A HEAT EXCHANGER PARTICULARLY SUITABLE FOR USE AS AN EVAPORATOR
WO2013183136A1 (en) * 2012-06-07 2013-12-12 株式会社日立製作所 Air heat exchanger
JP2014205476A (en) * 2013-04-16 2014-10-30 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using evaporator
JP2015105767A (en) * 2013-11-29 2015-06-08 三菱重工業株式会社 Heat exchanger, heat exchanger structure, and heat exchanger fin
EP3312540A1 (en) * 2016-10-24 2018-04-25 Hamilton Sundstrand Corporation Heat exchanger with integral anti-icing
CN108253834A (en) * 2016-12-28 2018-07-06 丹佛斯微通道换热器(嘉兴)有限公司 Flat tube for heat exchanger and the heat exchanger with the flat tube
CN112268480A (en) * 2020-10-27 2021-01-26 江苏科菱库精工科技有限公司 Micro-channel flat tube and preparation method thereof
WO2021016769A1 (en) * 2019-07-26 2021-02-04 杭州三花微通道换热器有限公司 Heat exchange device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045765A (en) * 2006-08-10 2008-02-28 Denso Corp Heat exchanger
WO2008141715A2 (en) * 2007-05-18 2008-11-27 Modine Manufacturing Company Heat exchanger core, production method, roller line
WO2008141715A3 (en) * 2007-05-18 2009-01-22 Modine Mfg Co Heat exchanger core, production method, roller line
JP2008292083A (en) * 2007-05-25 2008-12-04 Denso Corp Refrigerant evaporator
ITBO20120131A1 (en) * 2012-03-14 2013-09-15 Valmex S P A HEAT EXCHANGER PARTICULARLY SUITABLE FOR USE AS AN EVAPORATOR
JP5799382B2 (en) * 2012-06-07 2015-10-28 日立アプライアンス株式会社 Air heat exchanger
WO2013183136A1 (en) * 2012-06-07 2013-12-12 株式会社日立製作所 Air heat exchanger
US9534827B2 (en) 2012-06-07 2017-01-03 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Air heat exchanger
JP2014205476A (en) * 2013-04-16 2014-10-30 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using evaporator
JP2015105767A (en) * 2013-11-29 2015-06-08 三菱重工業株式会社 Heat exchanger, heat exchanger structure, and heat exchanger fin
EP3312540A1 (en) * 2016-10-24 2018-04-25 Hamilton Sundstrand Corporation Heat exchanger with integral anti-icing
US10451360B2 (en) 2016-10-24 2019-10-22 Hamilton Sundstrand Corporation Heat exchanger with integral anti-icing
US11035624B2 (en) 2016-10-24 2021-06-15 Hamilton Sundstrand Corporation Heat exchanger with integral anti-icing
CN108253834A (en) * 2016-12-28 2018-07-06 丹佛斯微通道换热器(嘉兴)有限公司 Flat tube for heat exchanger and the heat exchanger with the flat tube
WO2021016769A1 (en) * 2019-07-26 2021-02-04 杭州三花微通道换热器有限公司 Heat exchange device
US11906253B2 (en) 2019-07-26 2024-02-20 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat exchange device
CN112268480A (en) * 2020-10-27 2021-01-26 江苏科菱库精工科技有限公司 Micro-channel flat tube and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2013161802A1 (en) Heat exchanger and air conditioner
WO2012098920A1 (en) Heat exchanger and air conditioner
WO2012098914A1 (en) Heat exchanger and air conditioner
JP2006322698A (en) Heat exchanger
JP2000179988A (en) Refrigerant evaporator
JPH11287580A (en) Heat exchanger
JP2008116102A (en) Heat exchanger for cooling
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
JP6330577B2 (en) Fin and tube heat exchanger
JP2005241168A (en) Heat exchanger
JP5421859B2 (en) Heat exchanger
WO2019009158A1 (en) Heat exchanger
JP2009204279A (en) Heat exchanger
JP2006105415A (en) Heat exchanger
JP2005506505A5 (en)
JP2006138503A (en) Heat exchanger
JP7188564B2 (en) Heat exchanger
JPH11223421A (en) Refrigerant evaporator
JP2010025481A (en) Heat exchanger
JP6844946B2 (en) Heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP7044991B2 (en) Heat exchanger and air conditioner
JP3812021B2 (en) Laminate heat exchanger
JP6088754B2 (en) Heat exchanger
JP2009204278A (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501