JP6084963B2 - Method for producing 1,3-butadiene - Google Patents

Method for producing 1,3-butadiene Download PDF

Info

Publication number
JP6084963B2
JP6084963B2 JP2014500658A JP2014500658A JP6084963B2 JP 6084963 B2 JP6084963 B2 JP 6084963B2 JP 2014500658 A JP2014500658 A JP 2014500658A JP 2014500658 A JP2014500658 A JP 2014500658A JP 6084963 B2 JP6084963 B2 JP 6084963B2
Authority
JP
Japan
Prior art keywords
catalyst
component
butadiene
ethanol
preparation example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014500658A
Other languages
Japanese (ja)
Other versions
JPWO2013125389A1 (en
Inventor
哲 中谷
哲 中谷
田中 康隆
康隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of JPWO2013125389A1 publication Critical patent/JPWO2013125389A1/en
Application granted granted Critical
Publication of JP6084963B2 publication Critical patent/JP6084963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、自動車産業分野、電子材料分野を含む多くの産業分野において重要な合成ゴムの原料である1,3−ブタジエンをエタノールからワンパスで製造する新規な1,3−ブタジエンの製造方法に関する。   The present invention relates to a novel 1,3-butadiene production method for producing 1,3-butadiene, which is a raw material of synthetic rubber important in many industrial fields including the automotive industry field and the electronic material field, from ethanol in one pass.

従来、1,3−ブタジエンは主に石油からエチレンを合成(=ナフサクラッキング)する際に副生するC4留分を精製することにより製造されてきた。しかし、近年、石油から得られる化学工業原料に代えて、バイオマス由来原料から誘導された化学工業原料が注目されており、例えば、サトウキビやトウモロコシなどのバイオマス由来のバイオエタノールを1,3−ブタジエンに変換する技術が切望されている。   Conventionally, 1,3-butadiene has been produced mainly by refining a C4 fraction produced as a by-product when ethylene is synthesized from petroleum (= naphtha cracking). However, in recent years, instead of chemical industrial raw materials obtained from petroleum, chemical industrial raw materials derived from biomass-derived raw materials have attracted attention. For example, biomass-derived bioethanol such as sugarcane and corn is converted into 1,3-butadiene. The technology to convert is anxious.

エタノールを原料として1,3−ブタジエンを得る方法としては、触媒としてMgOを使用する方法(特許文献1)、Al23とZnOの混合物(混合比:60/40)を使用する方法(非特許文献1)等が知られている。しかし、製造技術がナフサクラッキングに比べ繊細で確立されていないこと、触媒が熱により劣化し易くリサイクルが困難であるためコストが嵩むこと、エタノールの変換効率が低く、1,3−ブタジエンの収率が低いこと等から、石油から得られる化学工業原料を使用した製造方法に対抗できる利点を見出すことができず、実用化が進まないのが現状である。As a method for obtaining 1,3-butadiene using ethanol as a raw material, a method using MgO as a catalyst (Patent Document 1) and a method using a mixture of Al 2 O 3 and ZnO (mixing ratio: 60/40) Patent Document 1) and the like are known. However, the manufacturing technology is not as delicate and established as naphtha cracking, the catalyst is easily deteriorated by heat and is difficult to recycle, the cost is increased, the ethanol conversion efficiency is low, and the yield of 1,3-butadiene is low. However, it is difficult to find an advantage that can be opposed to a manufacturing method using chemical industrial raw materials obtained from petroleum, and the practical use is not progressing.

米国特許第2423681号明細書US Pat. No. 2,436,681

ジャーナル・オブ・キャタリスト第5巻152頁(1967年)Journal of Catalyst 5: 152 (1967)

従って、本発明の目的は、簡便且つ工業的に有利な方法でエタノールから1,3−ブタジエンを得る1,3−ブタジエンの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol by a simple and industrially advantageous method.

本発明者等は上記課題を解決するため鋭意検討した結果、加熱環境下でエタノールを特定の触媒に接触させると、極めて優れた選択率で1,3−ブタジエンが得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to solve the above problems, the present inventors have found that when ethanol is brought into contact with a specific catalyst in a heating environment, 1,3-butadiene can be obtained with extremely excellent selectivity. The present invention has been completed based on these findings.

すなわち、本発明は、エタノールから1,3−ブタジエンを得る1,3−ブタジエンの製造方法であって、加熱下で、下記原料を下記触媒に接触させることを特徴とする1,3−ブタジエンの製造方法を提供する。
原料:エタノールを含む
触媒:周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒
That is, the present invention is a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol, wherein the following raw materials are brought into contact with the following catalyst under heating: A manufacturing method is provided.
Raw material: including ethanol Catalyst: Periodic Table 4-13 Group metal oxide (component A), magnesium oxide (component B), and a catalyst containing a binder component (component C) containing an inorganic oxide other than the above

本発明は、また、成分Cにおける無機酸化物が二酸化珪素である前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the method for producing 1,3-butadiene as described above, wherein the inorganic oxide in component C is silicon dioxide.

本発明は、また、水素存在下で原料を触媒に接触させる前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the above-described method for producing 1,3-butadiene, wherein the raw material is contacted with a catalyst in the presence of hydrogen.

本発明は、また、成分Cがゼオライトである前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the method for producing 1,3-butadiene as described above, wherein Component C is zeolite.

本発明は、また、ゼオライトが、SiO2/Al23モル比が12以上であり、細孔径が10Å以下であるゼオライトである前記の1,3−ブタジエンの製造方法を提供する。The present invention also provides the above-mentioned method for producing 1,3-butadiene, wherein the zeolite is a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 12 or more and a pore diameter of 10 mm or less.

本発明は、また、成分B及び成分Cとして珪酸マグネシウムを使用する前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the above-mentioned method for producing 1,3-butadiene using magnesium silicate as component B and component C.

本発明は、また、珪酸マグネシウムがフィロ珪酸マグネシウムである前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the method for producing 1,3-butadiene as described above, wherein the magnesium silicate is magnesium phyllosilicate.

本発明は、また、原料を下記触媒(A)と触媒(B)に、この順に接触させる前記の1,3−ブタジエンの製造方法を提供する。
触媒(A):周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr-1)させた時に得られるアセトアルデヒドの選択率が10%以上である触媒
触媒(B):周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr-1)させた時に得られるアセトアルデヒドの選択率が10%未満であり、且つ1,3−ブタジエンの選択率が45%以上である触媒
The present invention also provides the method for producing 1,3-butadiene, wherein the raw material is contacted with the following catalyst (A) and catalyst (B) in this order.
Catalyst (A): a catalyst containing a group 4-13 metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above. Catalyst having a selectivity of acetaldehyde of 10% or more obtained when ethanol is brought into contact with the catalyst (temperature: 400 ° C., space velocity: 360 hr −1 ) Catalyst (B): Group 4-13 metals in the periodic table Catalyst (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than the above, wherein ethanol is brought into contact with the catalyst (temperature: 400 ° C., space Catalyst having a selectivity of acetaldehyde of less than 10% and a selectivity of 1,3-butadiene of 45% or more at a rate of 360 hr -1 )

本発明に係る1,3−ブタジエンの製造方法によれば、簡便な方法でエタノールから1,3−ブタジエンを選択的に製造することができる。また、本発明において使用する触媒は熱により劣化し難く、且つ繰り返し利用することができる。そのため、本発明に係る1,3−ブタジエンの製造方法は、エタノールから、多くの産業分野において重要な合成ゴムの原料である1,3−ブタジエンを工業的に製造する方法に好適に使用することができる。   According to the method for producing 1,3-butadiene according to the present invention, 1,3-butadiene can be selectively produced from ethanol by a simple method. In addition, the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.

本発明に係る1,3−ブタジエンの製造方法は、加熱下で、下記原料を下記触媒に接触させることを特徴とする。
原料:エタノールを含む
触媒:周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒
The method for producing 1,3-butadiene according to the present invention is characterized in that the following raw materials are brought into contact with the following catalyst under heating.
Raw material: including ethanol Catalyst: Periodic Table 4-13 Group metal oxide (component A), magnesium oxide (component B), and a catalyst containing a binder component (component C) containing an inorganic oxide other than the above

本発明の1,3−ブタジエンの製造方法は、下記反応工程を経ると考えられる。

Figure 0006084963
The method for producing 1,3-butadiene of the present invention is considered to undergo the following reaction steps.
Figure 0006084963

[原料]
本発明の原料は少なくともエタノールを含む。前記エタノールとしては、特に限定されることが無く、例えば、サトウキビやトウモロコシなどのバイオマス由来のエタノールや、石油若しくは天然ガス由来のエタノールなどを挙げることができる。本発明においては、特に、バイオマス由来のエタノールを使用することが、温室効果ガス削減に大いに貢献することができる点で好ましい。
[material]
The raw material of the present invention contains at least ethanol. The ethanol is not particularly limited, and examples thereof include ethanol derived from biomass such as sugar cane and corn, ethanol derived from petroleum or natural gas, and the like. In the present invention, it is particularly preferable to use biomass-derived ethanol because it can greatly contribute to the reduction of greenhouse gases.

本発明の原料(100重量%)におけるエタノールの含有量は、例えば50重量%以上、好ましくは70〜100重量%である。   The content of ethanol in the raw material (100 wt%) of the present invention is, for example, 50 wt% or more, preferably 70 to 100 wt%.

本発明の原料は、エタノールと共にアセトアルデヒドを含有していてもよい。アセトアルデヒドをエタノールと共に含有することにより、より一層選択的かつ高収率に1,3−ブタジエンを得ることができる。   The raw material of the present invention may contain acetaldehyde together with ethanol. By containing acetaldehyde together with ethanol, 1,3-butadiene can be obtained more selectively and with a high yield.

エタノールと共にアセトアルデヒドを含有する場合、エタノールとアセトアルデヒドのモル比(前者:後者)は、例えば95/5〜50/50程度、好ましくは90/10〜60/40、特に好ましくは85/15〜65/35、最も好ましくは80/20〜70/30となる範囲である。   When acetaldehyde is contained together with ethanol, the molar ratio of ethanol to acetaldehyde (the former: the latter) is, for example, about 95/5 to 50/50, preferably 90/10 to 60/40, particularly preferably 85/15 to 65 / 35, most preferably in the range of 80/20 to 70/30.

[触媒]
本発明の触媒は、周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する。本発明の触媒には、周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)を前記以外の無機酸化物を含むバインダー成分(成分C)により接合して得られる触媒が含まれる。
[catalyst]
The catalyst of this invention contains the binder component (component C) containing the oxide (component A) of a periodic table group 4-13 metal, magnesium oxide (component B), and inorganic oxides other than the above. The catalyst of the present invention is obtained by joining a metal oxide (component A) of groups 4 to 13 of the periodic table and magnesium oxide (component B) with a binder component (component C) containing an inorganic oxide other than the above. Catalyst.

前記周期表第4〜13族の金属の酸化物(成分A)は助触媒として作用し、1,3−ブタジエンの選択率を向上させる効果を発揮するものであり、例えば、上記工程(a)において、エタノールを脱水してエチレンを得る副反応を抑制して、エタノールを脱水素してアセトアルデヒドを得る反応を促進する作用を有し、上記工程(d)において、クロトンアルデヒドのカルボニル基(C=O)を選択的に水素化する反応を促進する作用を有し、クロトンアルデヒドの炭素−炭素二重結合の水素化物(例えば、ブチルアルデヒド、ノルマルブタノール等)の副生、及びクロトンアルデヒドの縮合や分解を抑制することができる。   The Group 4-13 Group metal oxide (component A) acts as a co-catalyst and exhibits an effect of improving the selectivity of 1,3-butadiene. For example, the step (a) In the step (d), the side reaction of dehydrating ethanol to suppress ethylene and suppressing the side reaction of obtaining ethylene to promote the reaction of dehydrating ethanol to obtain acetaldehyde. O) has a function of promoting a reaction of selectively hydrogenating, byproduct of crotonaldehyde hydride of carbon-carbon double bond (for example, butyraldehyde, normal butanol, etc.), and condensation of crotonaldehyde Decomposition can be suppressed.

前記周期表第4〜13族の金属としては、例えば、アルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブテン、タンタル、タングステン、及び銀等を挙げることができる。   Examples of the metals in groups 4 to 13 of the periodic table include aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, tantalum, tungsten, and silver. Can be mentioned.

本発明における周期表第4〜13族の金属の酸化物(成分A)としては、なかでも、チタン、クロム、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、タンタル、及び銀から選択される少なくとも1種の金属の酸化物が好ましい。   As the oxide (component A) of the metals of Groups 4 to 13 of the periodic table in the present invention, at least one selected from titanium, chromium, copper, zinc, gallium, zirconium, niobium, tantalum, and silver, among others. The metal oxides are preferred.

前記酸化マグネシウム(成分B)は、エタノールから1,3−ブタジエンを得る触媒反応における活性種である。   The magnesium oxide (component B) is an active species in the catalytic reaction for obtaining 1,3-butadiene from ethanol.

前記成分Cは、活性種である酸化マグネシウム(成分B)を微粒子安定化させるための希釈剤として作用する。成分Cにおける無機酸化物としては二酸化珪素が好ましい。従って、本発明においては、成分Cとして二酸化珪素を含むバインダー成分を使用することが好ましい。成分Cには、更に、前記周期表第4〜13族の金属の酸化物(例えば、Al23等)を含んでいてもよい。The component C acts as a diluent for stabilizing fine particles of magnesium oxide (component B) which is an active species. As the inorganic oxide in component C, silicon dioxide is preferred. Therefore, in the present invention, it is preferable to use a binder component containing silicon dioxide as component C. Component C may further contain an oxide (for example, Al 2 O 3 or the like) of the metals in groups 4 to 13 of the periodic table.

成分Cの比表面積(BET比表面積)としては、例えば10〜1000m2/g程度、好ましくは50〜1000m2/g、より好ましくは100〜1000m2/g、特に好ましくは250〜1000m2/g、最も好ましくは330〜1000m2/gである。成分Cの比表面積が上記範囲を下回ると、酸化マグネシウム(成分B)を微粒子安定化することが困難となる傾向がある。また、成分Cの比表面積が上記範囲を上回ると、細孔径が極端に小さくなる為、炭素析出による細孔閉塞を起こし易くなり、活性点への基質の拡散を阻害するため、失活速度が速くなる傾向がある。The specific surface area of the component C (BET specific surface area), for example, 10 to 1000 m 2 / g, preferably about 50~1000m 2 / g, more preferably 100~1000m 2 / g, particularly preferably 250~1000m 2 / g Most preferably, it is 330 to 1000 m 2 / g. When the specific surface area of Component C is below the above range, it tends to be difficult to stabilize the magnesium oxide (Component B) fine particles. Further, if the specific surface area of component C exceeds the above range, the pore diameter becomes extremely small, so that pore clogging due to carbon deposition is likely to occur, and the diffusion of the substrate to the active site is inhibited, so the deactivation rate is Tend to be faster.

成分Cの形状は特に制限はなく、粉粒体や塊状物、層状、多孔質形状、いわゆるハニカム構造物など、各種形状のものを利用できる。   The shape of the component C is not particularly limited, and various shapes such as powders, lumps, layers, porous shapes, so-called honeycomb structures can be used.

成分Cとしては、例えば、コロイダルシリカ(シリカゾル)、シリカゲル、フュームドシリカ、珪藻土、雲母、メソポーラスシリカ(MCM−41)、ゼオライト、シリコアルミノリン酸塩等を挙げることができる。これらは、単独で、または2種以上を混合して使用することができる。   Examples of component C include colloidal silica (silica sol), silica gel, fumed silica, diatomaceous earth, mica, mesoporous silica (MCM-41), zeolite, and silicoaluminophosphate. These can be used alone or in admixture of two or more.

前記ゼオライトは結晶性アルミノ珪酸塩の総称であり、A型、X型、Y型、モルデナイト型、フェリエライト型、ZSM−5型、β型等が含まれる。ゼオライトは下記式で表される。式中、Mn+はNa+、K+、Ca2+、H+等の陽イオンを示す。xは2以上の数を示し、yは0以上の数を示す。
(Mn+2/nO・Al23・xSiO2・yH2
The zeolite is a general term for crystalline aluminosilicates, and includes A type, X type, Y type, mordenite type, ferrierite type, ZSM-5 type, β type and the like. Zeolite is represented by the following formula. In the formula, M n + represents a cation such as Na + , K + , Ca 2+ and H + . x represents a number of 2 or more, and y represents a number of 0 or more.
(M n +) 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O

ゼオライトのSiO2/Al23モル比としては12以上が好ましく、特に好ましくは18以上、最も好ましくは300以上である。ゼオライトのSiO2/Al23モル比を上記範囲に調整すると、強い酸点を減少させることができ、エタノールを脱水してエチレンを生成する副反応を抑制することができる点で好ましい。一方、ゼオライトのSiO2/Al23モル比が上記範囲を外れると、酸点が増加し、エタノールの脱水によるエチレンの生成量が増加する傾向がある。The SiO 2 / Al 2 O 3 molar ratio of zeolite is preferably 12 or more, particularly preferably 18 or more, and most preferably 300 or more. When the SiO 2 / Al 2 O 3 molar ratio of zeolite is adjusted to the above range, it is preferable in that strong acid sites can be reduced and side reactions that generate ethylene by dehydrating ethanol can be suppressed. On the other hand, if the SiO 2 / Al 2 O 3 molar ratio of the zeolite is out of the above range, the acid point increases and the amount of ethylene produced by ethanol dehydration tends to increase.

また、ゼオライトの細孔径としては10Å以下が好ましく、特に好ましくは4〜8Åである。細孔径が上記範囲のゼオライトは、炭素数が5以上の大きな分子の副生や拡散を抑制し、1,3−ブタジエンの選択性を一層向上することができる。   Further, the pore diameter of zeolite is preferably 10 mm or less, particularly preferably 4 to 8 mm. Zeolite having a pore size in the above range can suppress the by-generation and diffusion of large molecules having 5 or more carbon atoms, and can further improve the selectivity of 1,3-butadiene.

本発明においては成分Cとして、例えば、商品名「スノーテックス30」(コロイダルシリカ、二酸化珪素含有割合:30重量%、比表面積:300±100m2/g、日産化学工業(株)製)、商品名「スノーテックスXS」(コロイダルシリカ、二酸化珪素含有割合:20重量%、比表面積:800±200m2/g、日産化学工業(株)製)、商品名「Aerosil 380PE」(フュームドシリカ、二酸化珪素含有割合:99.9重量%、比表面積:380±30m2/g、日本アエロジル(株)製)等の市販品を使用してもよい。In the present invention, as component C, for example, trade name “Snowtex 30” (colloidal silica, silicon dioxide content ratio: 30 wt%, specific surface area: 300 ± 100 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), product Name “Snowtex XS” (colloidal silica, silicon dioxide content: 20% by weight, specific surface area: 800 ± 200 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), trade name “Aerosil 380PE” (fumed silica, dioxide) Commercial products such as silicon content ratio: 99.9% by weight, specific surface area: 380 ± 30 m 2 / g, manufactured by Nippon Aerosil Co., Ltd. may be used.

また、本発明において、成分Cは成分Bと共に複合酸化物(例えば、珪酸マグネシウム等)やオキソ酸塩等を形成していてもよく、前記複合酸化物が層構造を有していてもよい(例えば、フィロ珪酸マグネシウム)。本発明においては、成分Bと成分Cの複合酸化物として、商品名「ミズカライフP−1」(MgO/SiO2(重量比)=35/65、比表面積:400m2/g、水澤化学工業(株)製)等の市販品を使用してもよい。In the present invention, the component C may form a composite oxide (for example, magnesium silicate), an oxo acid salt, or the like together with the component B, and the composite oxide may have a layer structure ( For example, magnesium phyllosilicate). In the present invention, the trade name “Mizuka Life P-1” (MgO / SiO 2 (weight ratio) = 35/65, specific surface area: 400 m 2 / g, Mizusawa Chemical Co., Ltd.) You may use commercial items, such as a product made from Corporation | KK.

本発明の触媒(100重量%)における各成分の含有量(2種以上含有する場合はその総量)としては、下記の範囲が好ましい。
成分A含有量:例えば0.1〜10重量%、好ましくは0.5〜5重量%、特に好ましくは1〜5重量%
成分B含有量:例えば20〜95重量%、好ましくは30〜90重量%、更に好ましくは50〜90重量%、特に好ましくは60〜90重量%、最も好ましくは75〜85重量%
成分C含有量:例えば5〜80重量%、好ましくは10〜70重量%、特に好ましくは15〜25重量%
The content of each component in the catalyst (100% by weight) of the present invention (the total amount when two or more are contained) is preferably in the following range.
Component A content: for example 0.1 to 10% by weight, preferably 0.5 to 5% by weight, particularly preferably 1 to 5% by weight
Component B content: for example 20 to 95% by weight, preferably 30 to 90% by weight, more preferably 50 to 90% by weight, particularly preferably 60 to 90% by weight, most preferably 75 to 85% by weight
Component C content: for example 5 to 80% by weight, preferably 10 to 70% by weight, particularly preferably 15 to 25% by weight

触媒における成分A含有量が上記範囲を下回ると、1,3−ブタジエン選択性を向上させる効果が得られにくくなる傾向がある。一方、成分A含有量が上記範囲を上回ると、うまく触媒上に分散せず、むしろ活性点を塞ぐことにより触媒活性を低下させる傾向がある。   If the component A content in the catalyst is below the above range, the effect of improving the 1,3-butadiene selectivity tends to be difficult to obtain. On the other hand, if the component A content exceeds the above range, it does not disperse well on the catalyst, but rather tends to lower the catalytic activity by closing the active sites.

触媒における成分B含有量が上記範囲を下回ると、活性点が減少するため、ブタジエン収率が大きく低下する傾向がある。一方、成分B含有量が上記範囲を上回ると、触媒の塩基性度が増加し、n−ブタノール選択性が増加する傾向がある。   If the content of component B in the catalyst is below the above range, the active sites are decreased, and the butadiene yield tends to be greatly reduced. On the other hand, when the component B content exceeds the above range, the basicity of the catalyst increases and the n-butanol selectivity tends to increase.

触媒における成分C含有量が上記範囲を下回ると、酸化マグネシウム(成分B)の凝集により比表面積が低下し、エタノール転化率が低下する傾向がある。一方、成分C含有量が上記範囲を上回ると、酸点が増加し、エタノールの脱水によるエチレンの生成量が増加する傾向がある。   When the content of component C in the catalyst is below the above range, the specific surface area decreases due to aggregation of magnesium oxide (component B), and the ethanol conversion tends to decrease. On the other hand, when the component C content exceeds the above range, the acid point increases and the amount of ethylene produced by ethanol dehydration tends to increase.

本発明の触媒は上記成分以外の他の成分(例えば、Na2O、K2O等のアルカリ金属の酸化物等)を含有していてもよい。本発明の触媒としては、特に、Na2O、K2O等のアルカリ金属の酸化物を含有することが、1,3−ブタジエンの選択率をより一層向上することができる点で好ましい。他の成分の含有量としては、触媒(100重量%)の0.01〜1重量%程度、好ましくは0.05〜0.5重量%である。The catalyst of the present invention may contain components other than the above components (for example, oxides of alkali metals such as Na 2 O and K 2 O). In particular, the catalyst of the present invention preferably contains an oxide of an alkali metal such as Na 2 O or K 2 O in that the selectivity of 1,3-butadiene can be further improved. The content of other components is about 0.01 to 1% by weight of the catalyst (100% by weight), preferably 0.05 to 0.5% by weight.

本発明に係る1,3−ブタジエンの製造方法では、上記触媒を1種類使用してもよく、2種以上を組み合わせて使用してもよい。また、2種類以上を組み合わせて使用する場合、原料と2種類以上の触媒との接触を1段階で行ってもよく(すなわち、2種類以上の触媒を混合した状態で接触させてもよく)、2段階以上の多段階に分けて行ってもよい(すなわち、2種類以上の触媒を別々に接触させてもよい)。   In the method for producing 1,3-butadiene according to the present invention, one type of the catalyst may be used, or two or more types may be used in combination. Moreover, when using in combination of 2 or more types, you may perform a contact with a raw material and 2 or more types of catalysts in 1 step (that is, you may make it contact in the state which mixed 2 or more types of catalysts), It may be carried out in two or more stages (that is, two or more kinds of catalysts may be contacted separately).

例えば、2種類の触媒を2段階に分けて接触させる場合、先に接触させる触媒(以後、「触媒(A)」と称する場合がある)と後に接触させる触媒(以後、「触媒(B)」と称する場合がある)としてはそれぞれ下記特性を有することが好ましい。   For example, when two types of catalysts are contacted in two stages, a catalyst to be contacted first (hereinafter sometimes referred to as “catalyst (A)”) and a catalyst to be contacted later (hereinafter referred to as “catalyst (B)”) Each of which has the following characteristics.

触媒(A):周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr-1)させた時に得られるアセトアルデヒドの選択率が10%以上(好ましくは15%以上、特に好ましくは20%以上)である触媒
触媒(B):周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr-1)させた時に得られるアセトアルデヒドの選択率が10%未満であり、且つ1,3−ブタジエンの選択率が45%以上(好ましくは50%以上、特に好ましくは55%以上)である触媒
Catalyst (A): a catalyst containing a group 4-13 metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above. Catalyst having an acetaldehyde selectivity of 10% or more (preferably 15% or more, particularly preferably 20% or more) obtained when ethanol is brought into contact with the catalyst (temperature: 400 ° C., space velocity: 360 hr −1 ) Catalyst (B): A catalyst containing a group 4-13 metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than those described above. ethanol contact with the catalyst (temperature: 400 ° C., space velocity: 360hr -1) acetaldehyde obtained when obtained by the selectivity is less than 10%, and 1,3-butadiene selectivity of 45% or more (Preferably 50% or more, particularly preferably 55% or more) as a catalyst

前記触媒(A)における周期表第4〜13族の金属の酸化物としては、なかでも、銅、亜鉛、銀等の周期表第11又は12族の金属の酸化物が、段階(a)の反応速度促進作用に優れる点で好ましい。   Among the oxides of the metals of Groups 4 to 13 of the periodic table in the catalyst (A), among them, the oxides of metals of Groups 11 or 12 of the periodic table such as copper, zinc, silver, etc. This is preferable in that the reaction rate promoting action is excellent.

前記触媒(B)における周期表第4〜13族の金属の酸化物としては、なかでも、チタン、ジルコニウム、ニオブ、及びタンタル等の、周期表第4又は5族の金属の酸化物が、段階(d)の反応速度促進作用に優れる点で好ましい。   In the catalyst (B), the Group 4-13 Group metal oxide includes, among others, a Group 4 or Group 5 metal oxide such as titanium, zirconium, niobium, and tantalum. (D) It is preferable at the point which is excellent in the reaction rate acceleration | stimulation effect | action.

上記触媒(A)と触媒(B)の使用割合としては、触媒(A)と触媒(B)の体積比率、接触時間比率、及び空間速度比率から選択される少なくとも1つが下記範囲内であることが好ましい。
触媒(A)と触媒(B)の体積比率(前者/後者)が、例えば1/9〜1/1程度(好ましくは1/7〜1/2、特に好ましくは1/5〜1/3)となる範囲内
触媒(A)と触媒(B)の接触時間比率(前者/後者)が、例えば1/9〜1/1程度(好ましくは1/7〜1/2、特に好ましくは1/5〜1/3)となる範囲内
触媒(A)と触媒(B)の空間速度比率(前者/後者)が、例えば9/1〜1/1程度(好ましくは7/1〜2/1、特に好ましくは5/1〜3/1)となる範囲内
As a use ratio of the catalyst (A) and the catalyst (B), at least one selected from the volume ratio, the contact time ratio, and the space velocity ratio of the catalyst (A) and the catalyst (B) is within the following range. Is preferred.
The volume ratio (the former / the latter) of the catalyst (A) and the catalyst (B) is, for example, about 1/9 to 1/1 (preferably 1/7 to 1/2, particularly preferably 1/5 to 1/3). The contact time ratio (the former / the latter) of the catalyst (A) and the catalyst (B) is, for example, about 1/9 to 1/1 (preferably 1/7 to 1/2, particularly preferably 1/5). Within a range of ˜1 / 3) The space velocity ratio (the former / the latter) of the catalyst (A) and the catalyst (B) is, for example, about 9/1 to 1/1 (preferably 7/1 to 2/1, particularly Preferably within the range of 5/1 to 3/1)

触媒(A)の体積比率及び/又は接触時間比率が多すぎると反応開始直後は1,3−ブタジエンを優れた選択率で製造することができるが、時間の経過と共に1,3−ブタジエンの選択率が低下し、炭素数4以上の化合物の副生が増加する傾向がある。一方、触媒(B)の体積比率及び/又は接触時間比率が多すぎると、律速段階の反応を促進する効果が得られにくくなるため、エタノールの転化率が低下する傾向がある。   If the volume ratio and / or contact time ratio of the catalyst (A) is too large, 1,3-butadiene can be produced with excellent selectivity immediately after the start of the reaction. The rate tends to decrease, and the by-product of the compound having 4 or more carbon atoms tends to increase. On the other hand, if the volume ratio and / or contact time ratio of the catalyst (B) is too large, the effect of promoting the rate-determining step reaction is difficult to obtain, and the ethanol conversion tends to decrease.

[触媒の調製方法]
触媒の調製方法としては、例えば、混練法、含浸法、気相蒸着法、担持錯体分解法等を挙げることができる。本発明においては、なかでも、1,3−ブタジエンを優れた選択率で生成する触媒を再現性良く調製できる点で、混練法を採用することが好ましい。混練法では、例えば、周期表第4〜13族の金属化合物(例えば、銅化合物、亜鉛化合物、クロム化合物、銀化合物、チタン化合物、ジルコニウム化合物、ニオブ化合物、タンタル化合物等)とマグネシウム化合物(例えば、水酸化マグネシウム、硝酸マグネシウム、蓚酸マグネシウム等)と前記以外の無機酸化物を含むバインダー成分と必要に応じて上記他の成分に対応する化合物(例えば、水酸化ナトリウム、水酸化カリウム等)を混合して、溶媒(例えば、水、アセトン、アルコール、又はこれらの混合液等)中に懸濁させ、オートミル等を使用して混練し、乾燥、焼成(加熱処理)を経て周期表第4〜13族の金属の酸化物と酸化マグネシウムと前記以外の無機酸化物を含むバインダー成分を含有する触媒を調製することができる。
[Method for preparing catalyst]
Examples of the method for preparing the catalyst include a kneading method, an impregnation method, a vapor deposition method, and a supported complex decomposition method. In the present invention, it is preferable to employ a kneading method because a catalyst that produces 1,3-butadiene with excellent selectivity can be prepared with good reproducibility. In the kneading method, for example, a metal compound belonging to Groups 4 to 13 of the periodic table (for example, a copper compound, a zinc compound, a chromium compound, a silver compound, a titanium compound, a zirconium compound, a niobium compound, a tantalum compound) and a magnesium compound (for example, Magnesium hydroxide, magnesium nitrate, magnesium oxalate, etc.) and a binder component containing an inorganic oxide other than the above and a compound corresponding to the above other components (for example, sodium hydroxide, potassium hydroxide, etc.) as necessary. Then, it is suspended in a solvent (for example, water, acetone, alcohol, or a mixture thereof), kneaded using an auto mill or the like, dried, baked (heat treatment), and periodic groups 4 to 13 A catalyst containing a binder component containing a metal oxide, magnesium oxide and an inorganic oxide other than the above can be prepared.

前記銅化合物としては、例えば、硝酸銅、硫酸銅、酢酸銅、銅イソプロポキシド等を挙げることができる。   Examples of the copper compound include copper nitrate, copper sulfate, copper acetate, copper isopropoxide, and the like.

前記亜鉛化合物としては、例えば、硝酸亜鉛、硫酸亜鉛、ビスアセチルアセトナト亜鉛等を挙げることができる。   Examples of the zinc compound include zinc nitrate, zinc sulfate, and bisacetylacetonato zinc.

前記クロム化合物としては、例えば、硝酸クロム、蟻酸クロム、硫酸クロム等を挙げることができる。   Examples of the chromium compound include chromium nitrate, chromium formate, and chromium sulfate.

前記銀化合物としては、例えば、硝酸銀、亜硝酸銀、炭酸銀、酢酸銀等を挙げることができる。   Examples of the silver compound include silver nitrate, silver nitrite, silver carbonate, and silver acetate.

前記チタン化合物としては、例えば、四塩化チタン、三塩化チタン、蓚酸チタンアンモニウム、チタンイソプロポキシド等を挙げることができる。   Examples of the titanium compound include titanium tetrachloride, titanium trichloride, titanium ammonium oxalate, titanium isopropoxide, and the like.

前記ジルコニウム化合物としては、例えば、オキシ硝酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、ジルコニウムアセチルアセトナート等を挙げることができる。   Examples of the zirconium compound include zirconium oxynitrate, zirconium sulfate, zirconium carbonate, zirconium acetylacetonate and the like.

前記ニオブ化合物としては、例えば、蓚酸ニオブ、ニオブエトキシド等を挙げることができる。   Examples of the niobium compound include niobium oxalate and niobium ethoxide.

前記タンタル化合物としては、例えば、タンタルエトキシド、塩化タンタル等を挙げることができる。   Examples of the tantalum compound include tantalum ethoxide and tantalum chloride.

[1,3−ブタジエンの製造方法]
本発明の1,3−ブタジエンの製造方法は、エタノールから1,3−ブタジエンを得る1,3−ブタジエンの製造方法であって、加熱下で、原料を上記触媒(周期表第4〜13族の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒)に接触させることを特徴とする。
[Method for producing 1,3-butadiene]
The method for producing 1,3-butadiene according to the present invention is a method for producing 1,3-butadiene that obtains 1,3-butadiene from ethanol, and the raw material is heated under the above catalyst (groups 4 to 13 of the periodic table). A metal oxide (component A), magnesium oxide (component B), and a binder component (component C) containing an inorganic oxide other than the above are contacted.

本発明の1,3−ブタジエンの製造方法は、回分式、半回分式、連続式等の慣用の方法により行うことができる。回分式又は半回分式を採用した場合は、原料の使用率を極めて高くすることができる。また、本発明に係る1,3−ブタジエンの製造方法は上記触媒を使用するため、連続式を採用しても、従来に比べて効率よく原料のエタノールを転化することができ、更に未反応原料を反応系に再利用することにより原料のエタノールの使用率を極めて高いレベルに向上させることができる。そのため、簡便且つ効率的に1,3−ブタジエンを分離、回収することができる連続式を採用することが好ましい。   The method for producing 1,3-butadiene of the present invention can be carried out by a conventional method such as a batch system, a semi-batch system, or a continuous system. When the batch system or the semi-batch system is employed, the usage rate of the raw material can be made extremely high. In addition, since the method for producing 1,3-butadiene according to the present invention uses the above catalyst, even if a continuous method is employed, ethanol as a raw material can be converted more efficiently than in the past, and unreacted raw material can be further converted. By reusing them in the reaction system, the usage rate of the raw material ethanol can be improved to a very high level. Therefore, it is preferable to employ a continuous system that can separate and recover 1,3-butadiene simply and efficiently.

原料を上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよい。本発明では、特に、大量合成が可能な点、運転作業負荷が軽い点、及び触媒の回収、再生処理が簡便な点で、上記触媒を反応管に充填して触媒層を形成し、原料をガスとして流通させて気相にて反応させる固定床式気相連続流通反応装置を用いることが好ましい。   Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed system, a fluidized bed system, and a fixed bed system. Further, the present invention may be either a gas phase method or a liquid phase method. In the present invention, in particular, the catalyst can be filled into the reaction tube to form a catalyst layer in that mass synthesis is possible, operation workload is light, and catalyst recovery and regeneration are simple. It is preferable to use a fixed bed gas phase continuous flow reaction apparatus that is made to flow as a gas and react in the gas phase.

気相で反応を行う場合、原料ガス(例えば、エタノールガス、好ましくはエタノールガスとアセトアルデヒドガスの混合物)は、希釈することなく反応器に供給してもよく、窒素、ヘリウム、アルゴン、炭酸ガスなどの不活性ガスにより適宜希釈して反応器に供給してもよい。   When the reaction is performed in the gas phase, the raw material gas (for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas) may be supplied to the reactor without dilution, such as nitrogen, helium, argon, carbon dioxide gas, etc. It may be appropriately diluted with an inert gas and supplied to the reactor.

また、本発明の1,3−ブタジエンの製造方法おいては、水素存在下で原料を触媒に接触させることが、上記工程(d)において、クロトンアルデヒドのクロチルアルコールへの選択的水素化反応が促進され、クロトンアルデヒドの縮合や分解が抑制されるため、1,3−ブタジエンの選択性を向上することができる点で好ましい。   In the method for producing 1,3-butadiene according to the present invention, the selective hydrogenation reaction of crotonaldehyde to crotyl alcohol in the step (d) may be performed by bringing the raw material into contact with a catalyst in the presence of hydrogen. Is promoted and the condensation and decomposition of crotonaldehyde are suppressed, which is preferable in that the selectivity of 1,3-butadiene can be improved.

触媒に接触させる原料と水素のモル比[前者/後者]としては、例えば10/90〜95/5程度、好ましくは20/80〜90/10、特に好ましくは30/70〜70/30である。   The molar ratio of the raw material to be brought into contact with the catalyst and hydrogen [the former / the latter] is, for example, about 10/90 to 95/5, preferably 20/80 to 90/10, particularly preferably 30/70 to 70/30. .

触媒に接触させる原料と水素のモル比[前者/後者]が上記範囲を下回ると、クロトンアルデヒドの縮合や分解が促進され、上記範囲を上回るとエタノールからアセトアルデヒドへの脱水素反応が抑制されて、エタノールからエチレンへの脱水反応が促進されるため、1,3−ブタジエンの選択性が低下する傾向がある。   When the molar ratio of the raw material to be contacted with the catalyst and hydrogen [the former / the latter] is below the above range, the condensation and decomposition of crotonaldehyde is promoted, and when the above range is exceeded, the dehydrogenation reaction from ethanol to acetaldehyde is suppressed Since the dehydration reaction from ethanol to ethylene is promoted, the selectivity of 1,3-butadiene tends to decrease.

反応温度としては、例えば300〜500℃程度、好ましくは350〜450℃である。反応温度が上記範囲を下回ると、触媒活性が十分に得られなくなって反応速度が低下し製造効率が低下する恐れがある。一方、反応温度が上記範囲を上回ると、触媒劣化の恐れがある。   As reaction temperature, it is about 300-500 degreeC, for example, Preferably it is 350-450 degreeC. If the reaction temperature is below the above range, sufficient catalytic activity may not be obtained, the reaction rate may decrease, and the production efficiency may decrease. On the other hand, if the reaction temperature exceeds the above range, the catalyst may be deteriorated.

反応圧力は、常圧から高圧までの広い範囲で適宜設定できる。製造効率や装置構成などの観点から、1MPa以下に設定することが好ましい。   The reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. From the viewpoint of production efficiency, device configuration, etc., it is preferable to set it to 1 MPa or less.

連続式を採用する場合、原料と触媒との接触時間(触媒を多段階で接触させる場合は各接触時間の和)は、例えば0.1〜30秒程度、好ましくは1〜10秒である。接触時間が短すぎると、エタノールがブタジエンまで転化せず、反応器出口において、未反応エタノール、及び中間体であるアセトアルデヒド、クロトンアルデヒド等が増加する傾向がある。一方、触媒との接触時間が長くなりすぎると、アセトアルデヒドやブタジエン等の縮合や重合が進行し、高沸点成分が多量に生成する傾向がある。原料と触媒との接触時間は、原料の供給速度を調整することによりコントロールすることができ、例えば、エタノールガス空間速度を100〜50000hr-1(好ましくは200〜10000hr-1、特に好ましくは300〜5000hr-1)の範囲内に調整することが好ましい。When the continuous method is adopted, the contact time between the raw material and the catalyst (when the catalyst is contacted in multiple stages, the sum of the contact times) is, for example, about 0.1 to 30 seconds, preferably 1 to 10 seconds. If the contact time is too short, ethanol does not convert to butadiene, and unreacted ethanol and acetaldehyde, crotonaldehyde, and the like as intermediates tend to increase at the reactor outlet. On the other hand, if the contact time with the catalyst becomes too long, condensation or polymerization of acetaldehyde, butadiene or the like proceeds and a large amount of high-boiling components tend to be generated. The contact time between the raw material and the catalyst can be controlled by adjusting the feed rate of the raw material. For example, the ethanol gas space velocity is 100 to 50000 hr −1 (preferably 200 to 10000 hr −1 , particularly preferably 300 to It is preferable to adjust within the range of 5000 hr −1 ).

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出等の分離手段や、これらを組み合わせた分離手段により分離精製することができる。   After completion of the reaction, the reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, and extraction, or a separation means that combines these.

本発明の触媒は、周期表第4〜13族の金属の酸化物(成分A)と触媒活性成分である酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含むため(特に、前記成分Aと成分Bが成分Cにより接合された構造を有するため)、有機合成反応においても前記触媒活性成分が反応溶液中に溶出しにくく、反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。また、未反応原料は回収し、再利用してもよい。   The catalyst of the present invention comprises a binder component (component C) containing an oxide of a metal of group 4 to 13 of the periodic table (component A), magnesium oxide (component B) as a catalytic active component, and an inorganic oxide other than the above. (In particular, since the component A and the component B have a structure in which the component B is joined by the component C), the catalytically active component is not easily eluted in the reaction solution even in the organic synthesis reaction, and the reaction solution is filtered, centrifuged, etc. It can be easily recovered by the physical separation method. Unreacted raw materials may be recovered and reused.

また、本発明の触媒は、反応器内において、例えば350〜500℃程度、好ましくは450〜500℃の加熱下において、空気を流通させ、例えば1〜24時間、好ましくは3〜6時間の再生処理を行うことで、触媒活性が未使用の触媒に対して90%以上まで回復し、再利用することができる。   In addition, the catalyst of the present invention allows air to flow in the reactor under heating at, for example, about 350 to 500 ° C., preferably 450 to 500 ° C., for example, for 1 to 24 hours, preferably 3 to 6 hours. By performing the treatment, the catalyst activity is recovered to 90% or more with respect to the unused catalyst, and can be reused.

本発明に係る1,3−ブタジエンの製造方法は、加熱下で、エタノールを含む原料を上記触媒に接触させるため、エタノールの転化率に優れ、且つ、優れた選択率で1,3−ブタジエンを製造することができる。   In the method for producing 1,3-butadiene according to the present invention, since the raw material containing ethanol is brought into contact with the catalyst under heating, 1,3-butadiene is excellent in ethanol conversion and excellent in selectivity. Can be manufactured.

特に、加熱下で、エタノールを上記触媒(A)と触媒(B)に、この順に接触させる場合は、触媒(A)により反応の律速段階であるアセトアルデヒド生成工程が促進され、更に触媒(B)によりエタノールとクロトンアルデヒドからクロチルアルコールを得る反応が促進されるため、エタノールの転化率に優れ、且つ、優れた選択率で1,3−ブタジエンを製造することができる。   In particular, when ethanol is brought into contact with the catalyst (A) and the catalyst (B) in this order under heating, the catalyst (A) accelerates the acetaldehyde generation process, which is the rate-limiting step of the reaction, and further the catalyst (B). This promotes the reaction of obtaining crotyl alcohol from ethanol and crotonaldehyde, so that 1,3-butadiene can be produced with excellent ethanol conversion and excellent selectivity.

本発明の1,3−ブタジエンの製造方法は、1,3−ブタジエンを選択的に製造することができ、例えば反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後の1,3−ブタジエンの選択率は、例えば45%以上、好ましくは55%以上、特に好ましくは60%以上である。また、本発明の1,3−ブタジエンの製造方法はエタノールの転化率に優れ、例えば反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後のエタノールの転化率は、例えば25%以上、好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。The method for producing 1,3-butadiene according to the present invention can selectively produce 1,3-butadiene, for example, after the start of the reaction when the reaction is carried out under conditions of a reaction temperature of 400 ° C. and a space velocity of 360 hr −1. The selectivity for 1,3-butadiene after 75 minutes is, for example, 45% or more, preferably 55% or more, particularly preferably 60% or more. In addition, the method for producing 1,3-butadiene of the present invention is excellent in the conversion rate of ethanol. For example, the conversion of ethanol 75 minutes after the start of the reaction at a reaction temperature of 400 ° C. and a space velocity of 360 hr −1. The rate is, for example, 25% or more, preferably 30% or more, more preferably 40% or more, and particularly preferably 50% or more.

本発明の1,3−ブタジエンの製造方法は、上記のように1,3−ブタジエンの選択率が非常に高いので、未反応エタノールを反応系に再利用することにより、エタノール使用率を向上することができ、工業的に効率よく1,3−ブタジエンを製造することができる。   Since the 1,3-butadiene production method of the present invention has a very high selectivity for 1,3-butadiene as described above, the ethanol usage rate is improved by reusing unreacted ethanol in the reaction system. 1,3-butadiene can be produced industrially efficiently.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

調製例1
水酸化マグネシウム(関東化学(株)製)24.1g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)14.4g、タンタルエトキシド0.74gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュで分級して触媒(1)(Ta25/MgO/SiO2(重量比)=2/83/15)を得た。
Preparation Example 1
Magnesium hydroxide (manufactured by Kanto Chemical Co., Inc.) 24.1 g, colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., specific surface area: 800 ± 200 m 2 / g), 14.4 g, tantalum ethoxy 0.74 g of the slurry was suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (1) (Ta 2 O 5 / MgO / SiO 2 (weight ratio) = 2/83/15).

調製例2
タンタルエトキシド0.74gに代えて、硝酸クロム(III)九水和物1.92gを使用した以外は調製例1と同様にして、触媒(2)(Cr23/MgO/SiO2(重量比)=2/83/15)を得た。
Preparation Example 2
The catalyst (2) (Cr 2 O 3 / MgO / SiO 2 (Cr) was prepared in the same manner as in Preparation Example 1 except that 1.92 g of chromium (III) nitrate nonahydrate was used instead of 0.74 g of tantalum ethoxide. Weight ratio) = 2/83/15).

調製例3
タンタルエトキシド0.74gに代えて、オキシ硝酸ジルニウム(IV)二水和物1.79gを使用した以外は調製例1と同様にして、触媒(3)(ZrO2/MgO/SiO2(重量比)=4/82/14)を得た。
Preparation Example 3
Catalyst (3) (ZrO 2 / MgO / SiO 2 (weight) was prepared in the same manner as in Preparation Example 1 except that 1.79 g of zirconium oxynitrate (IV) dihydrate was used instead of 0.74 g of tantalum ethoxide. Ratio) = 4/82/14).

調製例4
タンタルエトキシド0.74gに代えて、硝酸銅(II)三水和物2.49gを使用した以外は調製例1と同様にして、触媒(4)(CuO/MgO/SiO2(重量比)=4/82/14)を得た。
Preparation Example 4
Catalyst (4) (CuO / MgO / SiO 2 (weight ratio)) was prepared in the same manner as in Preparation Example 1 except that 2.49 g of copper (II) nitrate trihydrate was used instead of 0.74 g of tantalum ethoxide. = 4/82/14).

調製例5
タンタルエトキシド0.74gに代えて、五蓚酸ニオブ(V)1.62gを使用した以外は調製例1と同様にして、触媒(5)(Nb25/MgO/SiO2(重量比)=2/83/15)を得た。
Preparation Example 5
Catalyst (5) (Nb 2 O 5 / MgO / SiO 2 (weight ratio)) was prepared in the same manner as in Preparation Example 1 except that 1.62 g of niobium pentaoxalate (V) was used instead of 0.74 g of tantalum ethoxide. = 2/83/15).

調製例6
タンタルエトキシド0.74gに代えて、オキシ蓚酸チタン(IV)アンモニウム 1.47gを使用した以外は調製例1と同様にして、触媒(6)(TiO2/MgO/SiO2(重量比)=2/83/15)を得た。
Preparation Example 6
Catalyst (6) (TiO 2 / MgO / SiO 2 (weight ratio) = the same as in Preparation Example 1 except that 1.47 g of titanium (IV) ammonium oxalate was used instead of 0.74 g of tantalum ethoxide. 2/83/15) was obtained.

調製例7
タンタルエトキシド0.74gに代えて、硝酸銀(I)0.30gを使用した以外は調製例1と同様にして、触媒(7)(Ag2O/MgO/SiO2(重量比)=1/84/15)を得た。
Preparation Example 7
Catalyst (7) (Ag 2 O / MgO / SiO 2 (weight ratio) = 1 / (similar to Preparation Example 1) except that 0.30 g of silver nitrate (I) was used instead of 0.74 g of tantalum ethoxide. 84/15).

調製例8
タンタルエトキシド0.74gに代えて、硝酸亜鉛(II)六水和物2.99gを使用した以外は調製例1と同様にして、触媒(8)(ZnO/MgO/SiO2(重量比)=4/82/14)を得た。
Preparation Example 8
Catalyst (8) (ZnO / MgO / SiO 2 (weight ratio)) was prepared in the same manner as in Preparation Example 1 except that 2.99 g of zinc nitrate (II) hexahydrate was used instead of 0.74 g of tantalum ethoxide. = 4/82/14).

調製例9
五蓚酸ニオブ(V)の使用量を0.81gに変更した以外は調製例5と同様にして、触媒(9)(Nb25/MgO/SiO2(重量比)=1/84/15)を得た。
Preparation Example 9
Catalyst (9) (Nb 2 O 5 / MgO / SiO 2 (weight ratio) = 1/84/15 in the same manner as in Preparation Example 5, except that the amount of niobium pentaoxalate (V) used was changed to 0.81 g. )

調製例10
タンタルエトキシドを使用しなかった以外は調製例1と同様にして、触媒(10)(MgO/SiO2(重量比)=85/15)を得た。
Preparation Example 10
A catalyst (10) (MgO / SiO 2 (weight ratio) = 85/15) was obtained in the same manner as in Preparation Example 1, except that tantalum ethoxide was not used.

調製例11
硝酸マンガン六水和物1.72gを溶解した水溶液中に、セピオライト19.67gを浸漬し、80℃の温水バス上で蒸発乾固した後に、500℃で4時間焼成することで得られる粉末を、打錠成形、破砕、10−20メッシュで分級して触媒(11)(Mn/セピオライト)(Mn:0.3mmol/g−cat)を得た。
Preparation Example 11
A powder obtained by immersing Sepiolite 19.67 g in an aqueous solution in which 1.72 g of manganese nitrate hexahydrate is dissolved, evaporating to dryness on a hot water bath at 80 ° C., and baking at 500 ° C. for 4 hours. Then, tableting, crushing, and classification with 10-20 mesh gave catalyst (11) (Mn / sepiolite) (Mn: 0.3 mmol / g-cat).

調製例12
バナジン酸ナトリウム5.42gを溶解した水溶液中に、セピオライト17.96gを浸漬し、80℃の温水バス上で蒸発乾固した後に、500℃で4時間焼成することで得られる粉末を、打錠成形、破砕、10−20メッシュで分級して触媒(12)(V/セピオライト)(V:2mmol/g−cat)を得た。
Preparation Example 12
The powder obtained by dipping 17.96 g of sepiolite in an aqueous solution in which 5.42 g of sodium vanadate is dissolved, evaporating to dryness on a hot water bath at 80 ° C., and baking for 4 hours at 500 ° C. Molding, crushing and classification with 10-20 mesh gave catalyst (12) (V / sepiolite) (V: 2 mmol / g-cat).

調製例13
水酸化マグネシウム(関東化学(株)製)17.35g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)39.25gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュで分級して触媒(13)(MgO/SiO2(重量比)=60/40)を得た。
Preparation Example 13
17.35 g of magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd.), colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., specific surface area: 800 ± 200 m 2 / g), 39.25 g of water And kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (13) (MgO / SiO 2 (weight ratio) = 60/40).

調製例14
水酸化マグネシウム(関東化学(株)製)7.23g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)24.51g、水酸化ナトリウム0.028gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュで分級して触媒(14)(Na2O/MgO/SiO2、Na:0.1重量%、Mg/Si(モル比)=1/1)を得た。
Preparation Example 14
Magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd.) 7.23 g, colloidal silica (trade name “Snowtex XS”, Nissan Chemical Industries, Ltd., specific surface area: 800 ± 200 m 2 / g) 24.51 g, hydroxylated 0.028 g of sodium was suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (14) (Na 2 O / MgO / SiO 2 , Na: 0.1 wt%, Mg / Si (molar ratio) = 1/1). Got.

調製例15
水酸化マグネシウム(関東化学(株)製)23.6g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)14.1g、硝酸亜鉛(II)六水和物1.46g、及びオキシ硝酸ジルニウム(IV)二水和物0.88gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後120℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュに分級して触媒(15)を得た(ZnO/ZrO2/MgO/SiO2(重量比)=2/2/82/14)。
Preparation Example 15
Magnesium hydroxide (manufactured by Kanto Chemical Co., Inc.) 23.6 g, colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., specific surface area: 800 ± 200 m 2 / g), 14.1 g, zinc nitrate (II) 1.46 g of hexahydrate and 0.88 g of zirconium oxynitrate (IV) dihydrate were suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 120 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min, and baked at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified into 10-20 mesh to obtain catalyst (15) (ZnO / ZrO 2 / MgO / SiO 2 (weight ratio) = 2/2/82/14).

調製例16
水酸化マグネシウム(関東化学(株)製)17.0g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)25.7g、硝酸クロム九水和物1.92gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュで分級して触媒(16)(Cr23/MgO/SiO2(重量比)=2/59/39)を得た。
Preparation Example 16
Magnesium hydroxide (manufactured by Kanto Chemical Co., Inc.) 17.0 g, colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., specific surface area: 800 ± 200 m 2 / g) 25.7 g, chromium nitrate 1.92 g of nonahydrate was suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (16) (Cr 2 O 3 / MgO / SiO 2 (weight ratio) = 2/59/39).

調製例17
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、フュームドシリカ(商品名「Aerosil 380PE」、日本アエロシル(株)製、比表面積:320m2/g)を使用した以外は調製例1と同様にして、触媒(17)(Ta25/MgO/SiO2(重量比)=2/83/15)を得た。
Preparation Example 17
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), fumed silica (trade name “Aerosil 380PE”, manufactured by Nippon Aerosil Co., Ltd.) The catalyst (17) (Ta 2 O 5 / MgO / SiO 2 (weight ratio) = 2/83/15) was obtained in the same manner as in Preparation Example 1 except that the specific surface area was 320 m 2 / g. .

調製例18
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、Y型ゼオライト(商品名「LZY−210」、日揮ユニバーサル(株)製、SiO2/AI23重量比:12、比表面積:800〜900m2/g、細孔径:8〜10Å)を使用した以外は調製例1と同様にして、触媒(18)(Ta25/MgO/Y型ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 18
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), Y-type zeolite (trade name “LZY-210”, JGC Universal Co., Ltd.) The catalyst (18) (Ta) was prepared in the same manner as in Preparation Example 1 except that SiO 2 / AI 2 O 3 weight ratio: 12, specific surface area: 800 to 900 m 2 / g, pore diameter: 8 to 10 mm was used. 2 O 5 / MgO / Y-type zeolite (weight ratio) = 2/83/15) was obtained.

調製例19
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、ZSM−5型ゼオライト(商品名「MFI−40」、日揮ユニバーサル(株)製、SiO2/AI23重量比:40、比表面積:400m2/g、細孔径:6Å)を使用した以外は調製例1と同様にして、触媒(19)(Ta25/MgO/ZSM−5ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 19
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), ZSM-5 type zeolite (trade name “MFI-40”, JGC Universal ( The catalyst (19) (Ta 2 O) was prepared in the same manner as in Preparation Example 1, except that SiO 2 / AI 2 O 3 weight ratio: 40, specific surface area: 400 m 2 / g, pore size: 6 mm) was used. 5 / MgO / ZSM-5 zeolite (weight ratio) = 2/83/15).

調製例20
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、ZSM−5型ゼオライト(商品名「MFI−300」、日揮ユニバーサル(株)製、SiO2/AI23重量比:300、比表面積:400m2/g、細孔径:6Å)を使用した以外は調製例1と同様にして、触媒(20)(Ta25/MgO/ZSM−5ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 20
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), ZSM-5 type zeolite (trade name “MFI-300”, JGC Universal ( The catalyst (20) (Ta 2 O) was prepared in the same manner as in Preparation Example 1 except that SiO 2 / AI 2 O 3 weight ratio: 300, specific surface area: 400 m 2 / g, pore size: 6 mm) was used. 5 / MgO / ZSM-5 zeolite (weight ratio) = 2/83/15).

調製例21
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、β型ゼオライト(商品名「Beta」、日揮ユニバーサル(株)製、SiO2/AI23重量比:25、比表面積:650m2/g、細孔径:6〜8Å)を使用した以外は調製例1と同様にして、触媒(21)(Ta25/MgO/β型ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 21
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), β-type zeolite (trade name “Beta”, manufactured by JGC Universal Co., Ltd., Catalyst (21) (Ta 2 O 5 / Ta) was prepared in the same manner as in Preparation Example 1 except that SiO 2 / AI 2 O 3 weight ratio: 25, specific surface area: 650 m 2 / g, and pore diameter: 6 to 8 mm were used. MgO / β-type zeolite (weight ratio) = 2/83/15) was obtained.

調製例22
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、β型ゼオライト(商品名「H−BEA−150」、クラリアント触媒(株)製、SiO2/AI23重量比:184.6、比表面積:620m2/g、細孔径:6〜8Å)を使用した以外は調製例1と同様にして、触媒(22)(Ta25/MgO/β型ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 22
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), β-type zeolite (trade name “H-BEA-150”, Clariant Catalyst ( Co., Ltd., SiO 2 / AI 2 O 3 weight ratio: 184.6, specific surface area: 620 m 2 / g, pore diameter: 6 to 8 mm), catalyst (22) (Ta 2 O 5 / MgO / β-type zeolite (weight ratio) = 2/83/15) was obtained.

調製例23
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、モルデナイト型ゼオライト(商品名「LZM−8」、日揮ユニバーサル(株)製、SiO2/AI23重量比:18、比表面積:480m2/g、細孔径:7Å)を使用した以外は調製例1と同様にして、触媒(23)(Ta25/MgO/モルデナイト型ゼオライト(重量比)=2/83/15)を得た。
Preparation Example 23
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), mordenite-type zeolite (trade name “LZM-8”, JGC Universal Co., Ltd.) The catalyst (23) (Ta 2 O 5 / Ta) was prepared in the same manner as in Preparation Example 1 except that the product, SiO 2 / AI 2 O 3 weight ratio: 18, specific surface area: 480 m 2 / g, pore diameter: 7 mm, was used. MgO / mordenite zeolite (weight ratio) = 2/83/15) was obtained.

調製例24
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、シリコアルミノリン酸塩(商品名「SAPO−11」、日揮ユニバーサル(株)製、SiO2/AI23重量比:0.154、比表面積:240m2/g、細孔径:6Å)を使用した以外は調製例1と同様にして、触媒(24)(Ta25/MgO/シリコアルミノリン酸塩(重量比)=2/83/15)を得た。
Preparation Example 24
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), silicoaluminophosphate (trade name “SAPO-11”, JGC Universal ( Ltd.), SiO 2 / AI 2 O 3 weight ratio: 0.154, specific surface area: 240 m 2 / g, pore diameter: 6 Å) except for using in the same manner as in preparation example 1, the catalyst (24) (Ta 2 O 5 / MgO / silicoaluminophosphate (weight ratio) = 2/83/15) was obtained.

調製例25
コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、比表面積:800±200m2/g)に代えて、シリコアルミノリン酸塩(商品名「SAPO−34」、日揮ユニバーサル(株)製、SiO2/AI23重量比:0.070、比表面積:750m2/g、細孔径:4Å)を使用した以外は調製例1と同様にして、触媒(25)(Ta25/MgO/シリコアルミノリン酸塩(重量比)=2/83/15)を得た。
Preparation Example 25
Instead of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, specific surface area: 800 ± 200 m 2 / g), silicoaluminophosphate (trade name “SAPO-34”, JGC Universal ( The catalyst (25) (Ta) was prepared in the same manner as in Preparation Example 1 except that SiO 2 / AI 2 O 3 weight ratio: 0.070, specific surface area: 750 m 2 / g, pore size: 4 mm) was used. 2 O 5 / MgO / silicoaluminophosphate (weight ratio) = 2/83/15) was obtained.

調製例26
フィロ珪酸マグネシウム(商品名「ミズカライフP−1」、水澤化学工業(株)製、MgO/SiO2(重量比)=35/65、比表面積:400m2/g)9.8g、硝酸亜鉛(II)六水和物0.62gを、水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10−20メッシュで分級して触媒(26)(ZnO/MgO/SiO2(重量比)=2/34/64)を得た。
Preparation Example 26
Magnesium phyllosilicate (trade name “Mizuka Life P-1”, manufactured by Mizusawa Chemical Industry Co., Ltd., MgO / SiO 2 (weight ratio) = 35/65, specific surface area: 400 m 2 / g), 9.8 g, zinc nitrate ( II) 0.62 g of hexahydrate was suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (26) (ZnO / MgO / SiO 2 (weight ratio) = 2/34/64).

調製例27
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと硝酸ナトリウム0.02gを使用した以外は調製例26と同様にして、触媒(27)(Na2O/ZnO/MgO/SiO2(重量比)=0.07/2/34/64)を得た。
Preparation Example 27
The catalyst (27) was prepared in the same manner as in Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate and 0.02 g of sodium nitrate were used instead of 0.62 g of zinc (II) nitrate hexahydrate. ) (Na 2 O / ZnO / MgO / SiO 2 (weight ratio) = 0.07 / 2/34/64).

調製例28
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと炭酸カリウム0.02gを使用した以外は調製例26と同様にして、触媒(28)(K2O/ZnO/MgO/SiO2(重量比)=0.1/2/34/64)を得た。
Preparation Example 28
A catalyst (28) was prepared in the same manner as in Preparation Example 26 except that 0.62 g of zinc nitrate (II) hexahydrate and 0.02 g of potassium carbonate were used instead of 0.62 g of zinc nitrate (II) hexahydrate. ) (K 2 O / ZnO / MgO / SiO 2 (weight ratio) = 0.1 / 2/34/64).

調製例29
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと硝酸銀(I)1gを使用した以外は調製例26と同様にして、触媒(29)(Ag2O/ZnO/MgO/SiO2(重量比)=1/2/34/63)を得た。
Preparation Example 29
A catalyst (29) was prepared in the same manner as in Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate and 1 g of silver nitrate (I) were used instead of 0.62 g of zinc nitrate (II) hexahydrate. ) (Ag 2 O / ZnO / MgO / SiO 2 (weight ratio) = 1/2/34/63).

調製例30
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと炭酸カリウム0.02gとタンタルエトキシド0.38gを使用した以外は調製例26と同様にして、触媒(30)(K2O/Ta25/ZnO/MgO/SiO2(重量比)=0.1/2/2/34/62)を得た。
Preparation Example 30
Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate, 0.02 g of potassium carbonate and 0.38 g of tantalum ethoxide were used instead of 0.62 g of zinc (II) nitrate hexahydrate. Similarly, catalyst (30) (K 2 O / Ta 2 O 5 / ZnO / MgO / SiO 2 (weight ratio) = 0.1 / 2/2/34/62) was obtained.

調製例31
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと炭酸カリウム0.08gとタンタルエトキシド0.38gを使用した以外は調製例26と同様にして、触媒(31)(K2O/Ta25/ZnO/MgO/SiO2(重量比)=0.5/2/2/33/62)を得た。
Preparation Example 31
Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate, 0.08 g of potassium carbonate, and 0.38 g of tantalum ethoxide were used instead of 0.62 g of zinc (II) nitrate hexahydrate. Similarly, catalyst (31) (K 2 O / Ta 2 O 5 / ZnO / MgO / SiO 2 (weight ratio) = 0.5 / 2/2/33/62) was obtained.

調製例32
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.66gとタンタルエトキシド0.38gを使用した以外は調製例26と同様にして、触媒(32)(Ta25/ZnO/MgO/SiO2(重量比)=2/2/34/62)を得た。
Preparation Example 32
In the same manner as in Preparation Example 26 except that 0.66 g of zinc (II) nitrate hexahydrate and 0.38 g of tantalum ethoxide were used instead of 0.62 g of zinc (II) nitrate hexahydrate, the catalyst ( 32) (Ta 2 O 5 / ZnO / MgO / SiO 2 (weight ratio) = 2/2/34/62) was obtained.

調製例33
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと硝酸銀(I)0.02gとタンタルエトキシド0.38gを使用した以外は調製例26と同様にして、触媒(34)(Ag2O/Ta25/ZnO/MgO/SiO2(重量比)=0.1/2/2/34/62)を得た。
Preparation Example 33
Preparation example except that zinc nitrate (II) hexahydrate 0.62 g was used instead of zinc nitrate (II) hexahydrate 0.62 g, silver nitrate (I) 0.02 g and tantalum ethoxide 0.38 g In the same manner as in No. 26, a catalyst (34) (Ag 2 O / Ta 2 O 5 / ZnO / MgO / SiO 2 (weight ratio) = 0.1 / 2/2/34/62) was obtained.

調製例34
硝酸亜鉛(II)六水和物0.62gに代えて、硝酸亜鉛(II)六水和物0.62gと硝酸ナトリウム0.03gを使用した以外は調製例26と同様にして、触媒(34)(Na2O/ZnO/MgO/SiO2(重量比)=0.1/2/34/64)を得た。
Preparation Example 34
A catalyst (34) was prepared in the same manner as in Preparation Example 26 except that 0.62 g of zinc (II) nitrate hexahydrate and 0.03 g of sodium nitrate were used instead of 0.62 g of zinc (II) nitrate hexahydrate. ) (Na 2 O / ZnO / MgO / SiO 2 (weight ratio) = 0.1 / 2/34/64).

実施例1〜11、比較例1〜5
表1、2中に記載の触媒を、固定床式気相連続流通反応装置(反応器)に接続した10mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後に電気炉温度を表中に記載の温度に保持し、約90%エタノール/N2ガスをGHSV=360hr-1の速度で反応器に流通させて、反応させた(原料の触媒接触時間:10秒)。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
反応開始後60〜75分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。
尚、触媒としては、実施例1〜8はそれぞれ調製例1〜8、実施例9は調製例2、実施例10は調製例1、実施例11は調製例9、比較例1〜5はそれぞれ調製例10〜14で得られた触媒を使用した。
Examples 1-11, Comparative Examples 1-5
The catalysts described in Tables 1 and 2 were filled into a 10 mmφ SUS reaction tube connected to a fixed bed type gas-phase continuous flow reactor (reactor), and 500 μm by an electric furnace under N 2 flow of 100 mL / min. Heated to ° C.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at the temperature described in the table, and about 90% ethanol / N 2 gas was allowed to flow through the reactor at a rate of GHSV = 360 hr −1 for reaction. (Raw material catalyst contact time: 10 seconds). The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The composition of the gas at the outlet of the reactor 60 to 75 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter.
As the catalysts, Examples 1 to 8 are Preparation Examples 1 to 8, Example 9 is Preparation Example 2, Example 10 is Preparation Example 1, Example 11 is Preparation Example 9, and Comparative Examples 1 to 5 are Comparative Examples 1 to 5, respectively. The catalyst obtained in Preparation Examples 10-14 was used.

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

実施例12
調製例8で得られた触媒(8)(ZnO/MgO/SiO2(重量比)=4/82/14)1.5mL、及び調製例3で得られた触媒(3)(ZrO2/MgO/SiO2(重量比)=4/82/14)1.5mLを、固定床式気相連続流通反応装置(反応器)に接続した10mmφのSUS製反応管に、触媒(8)−触媒(3)の順に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した(触媒(8):触媒(3)(体積比)=1:1)。
1時間の前処理を行った後に電気炉温度を400℃に保持し、約90%エタノール/N2ガスをGHSV=360hr-1の速度で反応器に流通させた(原料の触媒接触時間:10秒)。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
反応開始後60〜75分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。
Example 12
1.5 mL of the catalyst (8) obtained in Preparation Example 8 (ZnO / MgO / SiO 2 (weight ratio) = 4/82/14) and the catalyst (3) obtained in Preparation Example 3 (ZrO 2 / MgO / SiO 2 (weight ratio) = 4/82/14) 1.5 mL is connected to a 10 mmφ SUS reaction tube connected to a fixed-bed gas-phase continuous flow reactor (reactor). The mixture was charged in the order of 3) and heated to 500 ° C. with an electric furnace under N 2 flow of 100 mL / min (catalyst (8): catalyst (3) (volume ratio) = 1: 1).
After the pretreatment for 1 hour, the electric furnace temperature was maintained at 400 ° C., and about 90% ethanol / N 2 gas was passed through the reactor at a rate of GHSV = 360 hr −1 (feed catalyst contact time: 10 Seconds). The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The composition of the gas at the outlet of the reactor 60 to 75 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter.

実施例13
調製例8で得られた触媒(8)(ZnO/MgO/SiO2(重量比)=4/82/14)1.5mL、及び調製例3で得られた触媒(3)(ZrO2/MgO/SiO2(重量比)=4/82/14)1.5mLを完全に混合して固定床式気相連続流通反応装置に接続した10mmφのSUS製反応管に充填した以外は実施例12と同様にした。
Example 13
1.5 mL of the catalyst (8) obtained in Preparation Example 8 (ZnO / MgO / SiO 2 (weight ratio) = 4/82/14) and the catalyst (3) obtained in Preparation Example 3 (ZrO 2 / MgO / SiO 2 (weight ratio) = 4/82/14) Example 12 except that 1.5 mL was thoroughly mixed and charged into a 10 mmφ SUS reaction tube connected to a fixed bed type gas phase continuous flow reactor. The same was done.

実施例14
調製例15で得られた触媒(15)3.0mLを固定床式気相連続流通反応装置に接続した10mmφのSUS製反応管に充填した以外は実施例12と同様にした。
Example 14
The same procedure as in Example 12 was performed except that 3.0 mL of the catalyst (15) obtained in Preparation Example 15 was charged into a 10 mmφ SUS reaction tube connected to a fixed bed gas phase continuous flow reactor.

上記結果を下記表にまとめて示す。

Figure 0006084963
*EtOH:エタノールThe above results are summarized in the following table.
Figure 0006084963
* EtOH: Ethanol

実施例15、16
調製例8で得られた触媒(8)(ZnO/MgO/SiO2(重量比)=4/82/14)、及び調製例3で得られた触媒(3)(ZrO2/MgO/SiO2(重量比)=4/82/14)の量を表4に記載の量に変更した以外は実施例12と同様にした。
Examples 15 and 16
Catalyst (8) obtained in Preparation Example 8 (ZnO / MgO / SiO 2 (weight ratio) = 4/82/14), and Catalyst (3) obtained in Preparation Example 3 (ZrO 2 / MgO / SiO 2) The same procedure as in Example 12 was conducted except that the amount (weight ratio) = 4/82/14) was changed to the amount shown in Table 4.

1時間の前処理を行った後に電気炉温度を400℃に保持し、約90%エタノール/N2ガスをGHSV=360hr-1の速度で反応器に流通させ、反応開始後5〜20分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。結果を下記表4にまとめて示す。After the pretreatment for 1 hour, the electric furnace temperature was maintained at 400 ° C., and about 90% ethanol / N 2 gas was passed through the reactor at a rate of GHSV = 360 hr −1 , and 5 to 20 minutes after the start of the reaction. The gas composition at the outlet of the reactor was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are summarized in Table 4 below.

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

また、1時間の前処理を行った後に電気炉温度を400℃に保持し、約90%エタノール/N2ガスをGHSV=360hr-1の速度で反応器に流通させ、反応開始後60〜75分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。結果を下記表5にまとめて示す。In addition, after the pretreatment for 1 hour, the electric furnace temperature was maintained at 400 ° C., and about 90% ethanol / N 2 gas was allowed to flow through the reactor at a rate of GHSV = 360 hr −1 , and 60 to 75 after the start of the reaction. The gas composition at the outlet of the reactor was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are summarized in Table 5 below.

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

反応の律速段階であるエタノールからアセトアルデヒドを生成する工程を促進する周期表第4〜13族の金属の酸化物を含む触媒(A)、又はエタノールとクロトンアルデヒドからクロチルアルコールを生成する反応を促進する周期表第4〜13族の金属の酸化物を含む触媒(B)を単独で使用した場合に比べ、前記触媒(A)と、前記触媒(B)とを併用し、且つ、エタノールを触媒(A)−触媒(B)の順に接触させることにより、1,3−ブタジエンの収率を著しく向上できた。
また、前記触媒(A)と、前記触媒(B)の体積比率を特定の範囲に調整すると、より一層、1,3−ブタジエンを選択的、且つ高収率で製造できた。
The catalyst (A) containing a metal oxide of Group 4-13 of the periodic table that promotes the process of producing acetaldehyde from ethanol, which is the rate-limiting step of the reaction, or the reaction that produces crotyl alcohol from ethanol and crotonaldehyde The catalyst (A) and the catalyst (B) are used in combination as compared with the case where the catalyst (B) containing an oxide of a metal of Group 4 to 13 of the periodic table is used alone, and ethanol is catalyzed. By contacting in the order of (A) -catalyst (B), the yield of 1,3-butadiene could be remarkably improved.
Moreover, when the volume ratio of the catalyst (A) and the catalyst (B) was adjusted to a specific range, 1,3-butadiene could be further selectively produced at a high yield.

実施例17
調製例16で得られた触媒(16)(Cr23/MgO/SiO2(重量比)=2/59/39)を、固定床式気相連続流通反応装置(反応器)に接続した22.2mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃で1時間加熱した(前処理)。
前処理を行った後に電気炉温度を400℃に降温し、26.7mL/minのH2を流通させた状態で1時間保持した。原料としてエタノールを130mg/minの速度で供給開始することで、約70%エタノールガス/30%H2ガスをGHSV=360hr-1の速度で反応器に流通させて反応させた(原料の触媒接触時間:10秒)。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
反応開始後60〜150分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。
Example 17
The catalyst (16) obtained in Preparation Example 16 (Cr 2 O 3 / MgO / SiO 2 (weight ratio) = 2/59/39) was connected to a fixed bed gas phase continuous flow reactor (reactor). The reactor was filled in a 22.2 mmφ SUS reaction tube and heated in an electric furnace at 500 ° C. for 1 hour under N 2 flow of 100 mL / min (pretreatment).
After performing the pretreatment, the temperature of the electric furnace was lowered to 400 ° C. and kept for 1 hour in a state where 26.7 mL / min of H 2 was circulated. By starting to supply ethanol as a raw material at a rate of 130 mg / min, about 70% ethanol gas / 30% H 2 gas was allowed to flow through the reactor at a rate of GHSV = 360 hr −1 and reacted (catalyst contact of raw material) Time: 10 seconds). The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The gas composition at the outlet of the reactor 60 to 150 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter.

実施例18〜26
触媒及び仕込組成を表6に記載の通りに変更した以外は実施例17と同様にした。尚、実施例18、19は調製例16で得られた触媒(16)、実施例20〜24は調製例1で得られた触媒(1)、実施例25、26は調製例7で得られた触媒(7)を使用した。結果を下記表6にまとめて示す。
Examples 18-26
Example 17 was repeated except that the catalyst and the charged composition were changed as shown in Table 6. Examples 18 and 19 are the catalyst (16) obtained in Preparation Example 16, Examples 20 to 24 are the catalyst (1) obtained in Preparation Example 1, and Examples 25 and 26 are obtained in Preparation Example 7. Catalyst (7) was used. The results are summarized in Table 6 below.

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

実施例27〜32
反応温度及び原料の触媒接触時間を表7に記載の通りに変更した以外は実施例21と同様にした。結果を下記表7にまとめて示す。
Examples 27-32
The reaction was conducted in the same manner as in Example 21 except that the reaction temperature and the catalyst contact time of the raw materials were changed as shown in Table 7. The results are summarized in Table 7 below.

Figure 0006084963
Figure 0006084963

実施例33〜36
仕込組成及び原料の触媒接触時間を表8に記載の通りに変更した以外は実施例21と同様にした。結果を下記表8にまとめて示す。
Examples 33-36
Example 21 was repeated except that the feed composition and the catalyst contact time of the raw materials were changed as shown in Table 8. The results are summarized in Table 8 below.

Figure 0006084963
*EtOH:エタノール
AD:アセトアルデヒド
Figure 0006084963
* EtOH: Ethanol AD: Acetaldehyde

実施例37〜42
反応温度及び原料の触媒接触時間を表9に記載の通りに変更した以外は実施例35と同様にした。結果を下記表9にまとめて示す。
Examples 37-42
The reaction was performed in the same manner as in Example 35 except that the reaction temperature and the catalyst contact time of the raw materials were changed as shown in Table 9. The results are summarized in Table 9 below.

Figure 0006084963
Figure 0006084963

実施例43〜51
触媒を表10に記載の触媒に変更した以外は実施例41と同様にした。尚、実施例43〜51はそれぞれ調製例17〜25で得られた触媒を使用した。結果を下記表10にまとめて示す。
Examples 43-51
Example 41 was repeated except that the catalyst was changed to the catalyst shown in Table 10. In Examples 43 to 51, the catalysts obtained in Preparation Examples 17 to 25 were used. The results are summarized in Table 10 below.

Figure 0006084963
Figure 0006084963

実施例52、53
仕込組成を表11に記載の通り変更した以外は実施例41、46と同様にした。結果を下記表11にまとめて示す。
Examples 52, 53
Except having changed the preparation composition as described in Table 11, it carried out similarly to Example 41,46. The results are summarized in Table 11 below.

Figure 0006084963
Figure 0006084963

実施例54
調製例26で得られた触媒(26)(ZnO/MgO/SiO2(重量比)=2/34/64)を、固定床式気相連続流通反応装置(反応器)に接続した10mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後に電気炉温度を表中に記載の温度に保持し、85%エタノール/15%H2ガスをGHSV=360hr-1の速度で反応器に流通させて、反応させた(原料の触媒接触時間:10秒)。
Example 54
10 mmφ SUS in which the catalyst (26) obtained in Preparation Example 26 (ZnO / MgO / SiO 2 (weight ratio) = 2/34/64) was connected to a fixed-bed gas-phase continuous flow reactor (reactor). The reaction tube was filled and heated to 500 ° C. with an electric furnace under N 2 flow of 100 mL / min.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at the temperature indicated in the table, and 85% ethanol / 15% H 2 gas was allowed to flow through the reactor at a rate of GHSV = 360 hr −1 for reaction. (Raw material catalyst contact time: 10 seconds).

比較例6
調製例26で得られた触媒(26)(ZnO/MgO/SiO2(重量比)=2/34/64)に代えて、フィロ珪酸マグネシウム(商品名「ミズカライフP−1」、水澤化学工業(株)製、比表面積:400m2/g)を顆粒状にしたフィロ珪酸マグネシウム(商品名「ミズカライフF−2GH」、水澤化学工業(株)製、MgO/SiO2(重量比)=35/65、比表面積:500m2/g)を使用した以外は実施例54と同様にした。
Comparative Example 6
Instead of the catalyst (26) (ZnO / MgO / SiO 2 (weight ratio) = 2/34/64) obtained in Preparation Example 26, magnesium phyllosilicate (trade name “Mizuka Life P-1”, Mizusawa Chemical Industries, Ltd.) Co., Ltd., specific surface area: 400m 2 / g) the Philo magnesium silicate, which was granular (trade name "hydration life F-2GH", Mizusawa chemical industry Co., Ltd., MgO / SiO 2 (weight ratio) = 35 / 65, specific surface area: 500 m 2 / g).

上記結果を下記表12にまとめて示す。

Figure 0006084963
The results are summarized in Table 12 below.
Figure 0006084963

実施例55〜60
反応温度、原料の触媒接触時間、及び仕込組成を表13に記載の通りに変更した以外は実施例54と同様にした。結果を下記表13にまとめて示す。
Examples 55-60
Example 54 was repeated except that the reaction temperature, the catalyst contact time of the raw materials, and the feed composition were changed as shown in Table 13. The results are summarized in Table 13 below.

Figure 0006084963
*EtOH:エタノール
AD:アセトアルデヒド
Figure 0006084963
* EtOH: Ethanol AD: Acetaldehyde

実施例61〜70
触媒及び仕込組成を表14に記載の触媒に変更した以外は実施例59と同様にした。尚、実施例61は調製例27で得られた触媒を使用した。実施例62、69では調製例28で得られた触媒を使用した。実施例63では調製例29で得られた触媒を使用した。実施例64では調製例30で得られた触媒を使用した。実施例65、70では調製例31で得られた触媒を使用した。実施例66では調製例32で得られた触媒を使用した。実施例67では調製例33で得られた触媒を使用した。実施例68では調製例34で得られた触媒を使用した。結果を下記表14にまとめて示す。
Examples 61-70
The same procedure as in Example 59 was conducted, except that the catalyst and the charged composition were changed to those shown in Table 14. In Example 61, the catalyst obtained in Preparation Example 27 was used. In Examples 62 and 69, the catalyst obtained in Preparation Example 28 was used. In Example 63, the catalyst obtained in Preparation Example 29 was used. In Example 64, the catalyst obtained in Preparation Example 30 was used. In Examples 65 and 70, the catalyst obtained in Preparation Example 31 was used. In Example 66, the catalyst obtained in Preparation Example 32 was used. In Example 67, the catalyst obtained in Preparation Example 33 was used. In Example 68, the catalyst obtained in Preparation Example 34 was used. The results are summarized in Table 14 below.

Figure 0006084963
*EtOH:エタノール
Figure 0006084963
* EtOH: Ethanol

Claims (8)

エタノールから1,3−ブタジエンを得る1,3−ブタジエンの製造方法であって、加熱下で、下記原料を下記触媒に接触させることを特徴とする1,3−ブタジエンの製造方法。
原料:エタノールを含む
触媒:タンタル、クロム、銅、亜鉛、ジルコニウム、ニオブ、チタン、銀及びガリウムから選択される少なくとも1種の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒
A method for producing 1,3-butadiene, wherein 1,3-butadiene is obtained from ethanol, wherein the following raw materials are brought into contact with the following catalyst under heating.
Raw material: containing ethanol Catalyst: Tantalum, chromium, copper, zinc, zirconium, niobium, titanium, silver and gallium oxide (component A), magnesium oxide (component B) and other than the above Containing a binder component (component C) containing an inorganic oxide of
成分Cにおける無機酸化物が二酸化珪素である請求項1に記載の1,3−ブタジエンの製造方法。   The method for producing 1,3-butadiene according to claim 1, wherein the inorganic oxide in component C is silicon dioxide. 水素存在下で原料を触媒に接触させる請求項1又は2に記載の1,3−ブタジエンの製造方法。   The method for producing 1,3-butadiene according to claim 1 or 2, wherein the raw material is brought into contact with the catalyst in the presence of hydrogen. 成分Cがゼオライトである請求項1又は3に記載の1,3−ブタジエンの製造方法。   The method for producing 1,3-butadiene according to claim 1 or 3, wherein Component C is zeolite. ゼオライトが、SiO/Alモル比が12以上であり、細孔径が10Å以下であるゼオライトである請求項4に記載の1,3−ブタジエンの製造方法。 The method for producing 1,3-butadiene according to claim 4, wherein the zeolite is a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 12 or more and a pore diameter of 10 Å or less. 成分B及び成分Cとして珪酸マグネシウムを使用する請求項1又は3に記載の1,3−ブタジエンの製造方法。   The method for producing 1,3-butadiene according to claim 1 or 3, wherein magnesium silicate is used as component B and component C. 珪酸マグネシウムがフィロ珪酸マグネシウムである請求項6に記載の1,3−ブタジエンの製造方法。   The method for producing 1,3-butadiene according to claim 6, wherein the magnesium silicate is magnesium phyllosilicate. 原料を下記触媒(A)と触媒(B)に、この順に接触させる請求項1〜7の何れか1項に記載の1,3−ブタジエンの製造方法。
触媒(A):タンタル、クロム、銅、亜鉛、ジルコニウム、ニオブ、チタン、銀及びガリウムから選択される少なくとも1種の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr−1)させた時に得られるアセトアルデヒドの選択率が10%以上である触媒
触媒(B):タンタル、クロム、銅、亜鉛、ジルコニウム、ニオブ、チタン、銀及びガリウムから選択される少なくとも1種の金属の酸化物(成分A)と酸化マグネシウム(成分B)と前記以外の無機酸化物を含むバインダー成分(成分C)を含有する触媒であって、エタノールを該触媒に接触(温度:400℃、空間速度:360hr−1)させた時に得られるアセトアルデヒドの選択率が10%未満であり、且つ1,3−ブタジエンの選択率が45%以上である触媒
The method for producing 1,3-butadiene according to any one of claims 1 to 7, wherein the raw material is brought into contact with the following catalyst (A) and catalyst (B) in this order.
Catalyst (A): at least one metal oxide selected from tantalum, chromium, copper, zinc, zirconium, niobium, titanium, silver and gallium (component A), magnesium oxide (component B) and other inorganics A catalyst containing an oxide-containing binder component (component C), the selectivity of acetaldehyde obtained when ethanol is brought into contact with the catalyst (temperature: 400 ° C., space velocity: 360 hr −1 ) is 10% or more Catalyst (B): an oxide (component A) and magnesium oxide (component B) of at least one metal selected from tantalum, chromium, copper, zinc, zirconium, niobium, titanium, silver and gallium A catalyst containing a binder component (component C) containing an inorganic oxide other than the above, and contacting ethanol with the catalyst (temperature: 400 ° C., space velocity: 60 hr -1) selectivity for acetaldehyde obtained when allowed to is less than 10%, and the catalyst of 1,3-butadiene selectivity of 45% or more
JP2014500658A 2012-02-20 2013-02-12 Method for producing 1,3-butadiene Active JP6084963B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2012033692 2012-02-20
JP2012033692 2012-02-20
JP2012033975 2012-02-20
JP2012033975 2012-02-20
JP2012134768 2012-06-14
JP2012134768 2012-06-14
PCT/JP2013/053211 WO2013125389A1 (en) 2012-02-20 2013-02-12 Method for producing 1,3-butadiene

Publications (2)

Publication Number Publication Date
JPWO2013125389A1 JPWO2013125389A1 (en) 2015-07-30
JP6084963B2 true JP6084963B2 (en) 2017-02-22

Family

ID=49005577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500658A Active JP6084963B2 (en) 2012-02-20 2013-02-12 Method for producing 1,3-butadiene

Country Status (2)

Country Link
JP (1) JP6084963B2 (en)
WO (1) WO2013125389A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077325B2 (en) * 2013-02-14 2017-02-08 Jxエネルギー株式会社 Method for producing conjugated diene compound
JP6091310B2 (en) * 2013-04-22 2017-03-08 昭和電工株式会社 Method for producing butadiene
JP6017386B2 (en) * 2013-08-09 2016-11-02 株式会社ダイセル Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
US10358395B2 (en) 2014-09-16 2019-07-23 Sekisui Chemical Co., Ltd. Method for producing butadiene and device for producing butadiene
CN107001173A (en) * 2014-10-03 2017-08-01 新加坡科技研究局 Method and system for producing alkene
WO2016066869A1 (en) 2014-10-30 2016-05-06 Abengoa Research, S.L. Microporous catalyst with selective encapsulation of metal oxides, used to produce butadiene precursors
JP6678429B2 (en) * 2014-11-06 2020-04-08 昭和電工株式会社 Method for producing conjugated diene compound and catalyst for dehydrating allylic unsaturated alcohol
KR101714127B1 (en) * 2014-12-11 2017-03-08 주식회사 엘지화학 Metal complex oxide catalyst for producing butadiene and preparation method thereof
WO2016111203A1 (en) * 2015-01-05 2016-07-14 日揮株式会社 Method for producing 1,3-butadiene
EP3246301B1 (en) * 2015-01-13 2021-04-14 Sekisui Chemical Co., Ltd. Butadiene production system and butadiene production method
JP6774710B2 (en) * 2015-01-13 2020-10-28 積水化学工業株式会社 Butadiene production equipment and butadiene production method
CN107108397B (en) * 2015-02-23 2021-07-27 维尔萨利斯股份公司 Process for producing diolefins
JP6721567B2 (en) * 2015-02-27 2020-07-15 積水化学工業株式会社 1,3-Butadiene synthesis catalyst, method for producing 1,3-butadiene synthesis catalyst, 1,3-butadiene production apparatus, and 1,3-butadiene production method
EP3090801B1 (en) * 2015-05-08 2018-07-25 The Siam Cement Public Company Limited Catalyst for 1,3-butadiene production from ethanol
FR3038851B1 (en) * 2015-07-13 2019-11-08 IFP Energies Nouvelles CATALYST BASED ON TANTALUM BASED ON SILICA FOR THE TRANSFORMATION OF ETHANOL TO BUTADIENE
FR3038852B1 (en) 2015-07-13 2019-11-29 IFP Energies Nouvelles STABILIZED PRODUCTION OF 1,3-BUTADIENE IN THE PRESENCE OF A TANTALIUM OXIDE DOPED BY AN ALDOLIZING ELEMENT
FR3038849B1 (en) 2015-07-13 2019-11-29 IFP Energies Nouvelles MESOPOROUS MIXED OXIDE CATALYST COMPRISING SILICON
FR3038850B1 (en) 2015-07-13 2019-11-08 IFP Energies Nouvelles CATALYST TA-NB FOR THE PRODUCTION OF 1,3-BUTADIENE
JP6619255B2 (en) * 2016-02-15 2019-12-11 積水化学工業株式会社 1,3-butadiene synthesis catalyst, 1,3-butadiene production apparatus, and 1,3-butadiene production method
JP6684641B2 (en) * 2016-04-26 2020-04-22 昭和電工株式会社 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol
JP2018008248A (en) * 2016-07-15 2018-01-18 積水化学工業株式会社 Catalyst for synthesizing 1,3-butadiene and apparatus and method for producing 1,3-butadiene
JP7109018B2 (en) * 2018-06-28 2022-07-29 横浜ゴム株式会社 Solid catalyst and method for producing butadiene
JP7174947B2 (en) * 2018-06-28 2022-11-18 横浜ゴム株式会社 Solid catalyst and method for producing butadiene
EP3695900A1 (en) * 2019-02-13 2020-08-19 Scg Chemicals Co. Ltd. Method and catalyst for the production of 1,3-butadiene from ethanol
JP7316801B2 (en) * 2019-02-15 2023-07-28 株式会社ダイセル Method for producing 1,3-butadiene
JP6816241B2 (en) * 2019-11-14 2021-01-20 積水化学工業株式会社 1,3-butadiene synthesis catalyst, 1,3-butadiene production equipment and 1,3-butadiene production method
CN112973767B (en) * 2019-12-02 2023-07-21 中国石油化工股份有限公司 C4 olefin cracking catalyst containing illite mesoporous composite material, and preparation method and application thereof
JPWO2022003922A1 (en) * 2020-07-02 2022-01-06
JP2020199502A (en) * 2020-09-02 2020-12-17 積水化学工業株式会社 Catalyst for synthesizing 1,3-butadiene and apparatus and method for producing 1,3-butadiene
BR112023019743A2 (en) * 2021-04-01 2023-10-31 Synthos Sa USE OF CATALYST SYSTEM IN THE PRODUCTION OF 1,3-BUTADIENE FROM ETHANOL IN TWO STAGES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene
JPH11217343A (en) * 1998-01-30 1999-08-10 Sangi Co Ltd Synthesis of chemical industrial feedstock and high-octane fuel
JP2008088140A (en) * 2006-10-05 2008-04-17 Sangi Co Ltd Method for synthesizing chemical industry feedstock and fuel composition

Also Published As

Publication number Publication date
WO2013125389A1 (en) 2013-08-29
JPWO2013125389A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6084963B2 (en) Method for producing 1,3-butadiene
KR102178406B1 (en) Dual catalyst system for propylene production
US9254479B2 (en) Process and catalyst for cracking of ethers and alcohols
KR101851542B1 (en) A hydrocracking catalyst, process for preparing the same and use thereof
US9862664B2 (en) Process for the production of alkenols and use thereof for the production of 1,3-butadiene
RU2656602C1 (en) One-step method of obtaining butadiene
JP6017386B2 (en) Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
GB2049645A (en) Activated alumina catalyst for the conversion of ethanol to ethylene
EA007767B1 (en) Production of olefins
WO2014129248A1 (en) Method for producing 1,3-butadiene from ethanol in selective manner
CN109833904B (en) Acid-base bifunctional catalyst, preparation method thereof and application thereof in ethanol conversion reaction
JP2015168644A (en) IMPROVEMENT OF PREPARATION CONDITIONS OF METAL-ADDED MgO-SiO2 CATALYST EFFECTIVE FOR BUTADIENE SYNTHESIS FROM ETHANOL
WO2019200778A1 (en) Catalyst for preparing pyridine base from synthetic gas, preparation method therefor and use thereof
CN101439294A (en) Molecular sieve catalyst for producing ethylene from ethanol dehydration as well as preparation and use
JPS63248448A (en) Production of catalyst and oligomerization method
JP3342504B2 (en) Method for producing improved metal-supported crystalline aluminosilicate and method for reforming hydrocarbons using the same
CN103521235A (en) Catalyst for preparing acrylic acid through acrolein oxidation and preparation method thereof
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JP7500015B2 (en) Solid catalyst and method for producing butadiene
WO2016125578A1 (en) Method for producing 1,3-butadiene
JP2000191642A (en) Production of pyridine bases
JP2019136702A (en) Zeolite catalyst, and method for producing lower olefin using the same
JP2020001001A (en) Solid catalyst and method for producing butadiene
WO2017111392A1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JPH0859531A (en) One-stage production of diisopropyl ether from crude by-product acetone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6084963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150