JP6077325B2 - Method for producing conjugated diene compound - Google Patents

Method for producing conjugated diene compound Download PDF

Info

Publication number
JP6077325B2
JP6077325B2 JP2013026917A JP2013026917A JP6077325B2 JP 6077325 B2 JP6077325 B2 JP 6077325B2 JP 2013026917 A JP2013026917 A JP 2013026917A JP 2013026917 A JP2013026917 A JP 2013026917A JP 6077325 B2 JP6077325 B2 JP 6077325B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
supported
silica
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013026917A
Other languages
Japanese (ja)
Other versions
JP2014156408A (en
Inventor
瀬川 敦司
敦司 瀬川
剛 小池
剛 小池
松本 隆也
隆也 松本
智 高崎
智 高崎
泰之 岩佐
泰之 岩佐
真理絵 岩間
真理絵 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2013026917A priority Critical patent/JP6077325B2/en
Priority to PCT/JP2014/053957 priority patent/WO2014126264A1/en
Publication of JP2014156408A publication Critical patent/JP2014156408A/en
Application granted granted Critical
Publication of JP6077325B2 publication Critical patent/JP6077325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Description

本発明は、α,β−不飽和アルデヒドを原料とした、共役ジエン化合物の製造方法に関するものである。本発明者らの考えによれば、α,β−不飽和アルデヒドとアルコールとから、位置選択性水素移行反応によるα,β‐不飽和アルコールの生成と、これに連続して起こる脱水反応とが、特定触媒存在下で連続的に進行する、共役ジエン化合物の製造方法に関するものである。また、将来の基礎化学品市場から見れば、現在、ナフサのスチームクラッキングのC4留分から得られているブタジエンを、トウモロコシ等の農産物から得られるバイオエタノールから製造可能とするものである。   The present invention relates to a method for producing a conjugated diene compound using an α, β-unsaturated aldehyde as a raw material. According to the idea of the present inventors, α, β-unsaturated alcohol is produced from α, β-unsaturated aldehyde and alcohol by regioselective hydrogen transfer reaction, and dehydration reaction that takes place continuously. The present invention relates to a process for producing a conjugated diene compound, which proceeds continuously in the presence of a specific catalyst. In view of the future basic chemicals market, butadiene currently obtained from the C4 fraction of naphtha steam cracking can be produced from bioethanol obtained from agricultural products such as corn.

共役ジエン系化合物は、炭素−炭素二重結合が1,3位にそれぞれ存在し、反応性の高さあるいは、重合反応性から、化学品の中でも重要な位置を占める。工業的に重要な共役ジエン系化合物は、炭素数4、炭素数5のもので、ブタジエン、クロロプレン、イソプレン、シクロペンタジエン等があげられる。   A conjugated diene compound has a carbon-carbon double bond at positions 1 and 3, respectively, and occupies an important position among chemical products because of its high reactivity or polymerization reactivity. Industrially important conjugated diene compounds are those having 4 and 5 carbon atoms, such as butadiene, chloroprene, isoprene and cyclopentadiene.

特に、ブタジエンは、輸送機器のタイヤの主構造材料である、スチレン−ブタジエンゴム(SBR)、ブタジエンゴム(BR)、各種家庭用品ハウジングに利用されるABS樹脂の原料等の重合用モノマー原料である。全世界市場で需要拡大傾向が見込まれることから、ナフサの「スチームクラッキング」で得られるC4留分精製(特許文献3,4)、あるいはn−ブテンの脱水素(特許文献1,2)、不飽和アルデヒドを原料に水素化により対応するアルコールを得る反応(特許文献5参照)を利用して、当該アルコールの脱水反応により選択的に1,3−ブタジエンを得る方法に加えて、もっと緩和な反応条件による高収率のブタジエンの新たな製造方法の開発が嘱望されている。   In particular, butadiene is a monomer material for polymerization such as styrene-butadiene rubber (SBR), butadiene rubber (BR), which is the main structural material of tires for transportation equipment, and a raw material of ABS resin used in various household appliance housings. . As demand is expected to expand in the global market, C4 fraction purification obtained by naphtha “steam cracking” (patent documents 3 and 4), or dehydrogenation of n-butene (patent documents 1 and 2), In addition to the method of selectively obtaining 1,3-butadiene by dehydration reaction of the alcohol by using a reaction to obtain a corresponding alcohol by hydrogenation from a saturated aldehyde (see Patent Document 5), a more mild reaction Development of a new method for producing butadiene with a high yield depending on conditions is desired.

これまでエタノールを出発原料として、いくつかの検討が行われている。
所謂Lebedev(レベデフ)法では、エタノールを400℃でMgO−SiO2触媒を用いて脱水素、脱水する方法が報告されているが、ブタジエン選択率が40%程度であることが問題であった(非特許文献1)。
α,β−不飽和アルデヒドからのブタジエン合成では反応、Ta−MgO/SiO、Ta/SiO触媒系が検討された例があるが、350℃〜420℃と高温条件が必要で、転化率、選択率にも改良の余地があった(非特許文献2)。
Several studies have been conducted so far using ethanol as a starting material.
In the so-called Lebedev method, a method of dehydrogenating and dehydrating ethanol at 400 ° C. using a MgO—SiO 2 catalyst has been reported, but there was a problem that the butadiene selectivity was about 40% (non- Patent Document 1).
In the synthesis of butadiene from α, β-unsaturated aldehydes, there are examples in which reaction, Ta 2 O 5 —MgO / SiO 2 , Ta 2 O 5 / SiO 2 catalyst system have been studied, but high temperature conditions of 350 ° C. to 420 ° C. However, there was room for improvement in conversion and selectivity (Non-patent Document 2).

特開2012−67048号JP 2012-67048 A 特開2012−197272号JP 2012-197272 A 特開2011−178919号JP2011-178919A 特開2010−265188号JP 2010-265188 A 特開平7−204509号JP-A-7-204509

「工業有機化学」 K.Weissermel、H−J.Arpe著、向山光昭 監訳、(東京化学同人、1976)“Industrial Organic Chemistry” Weissermel, HJ. By Arpe, translated by Mitsuaki Mukayama B.B.Corson et al, ”Butadien from Ethyl Alchol”, Vol.42(2)359−373、(1950)B. B. Corson et al, “Butadien from Ethyl Alchol”, Vol. 42 (2) 359-373, (1950)

本発明の目的は、アルコールの脱水素反応あるいはオレフィンの酸化反応により、得られたアルデヒドのアルドール縮合で得られたα,β−不飽和アルデヒドから、高転化率及び高選択率で、対応する共役ジエン化合物を製造する方法を提供することである。   The object of the present invention is to provide a corresponding conjugate with high conversion and high selectivity from an α, β-unsaturated aldehyde obtained by aldol condensation of an aldehyde obtained by alcohol dehydrogenation or olefin oxidation. It is to provide a method for producing a diene compound.

本発明の第一は、固体酸化物担体に、下記(I)群から選ばれる金属および/または当該金属酸化物の少なくとも1種を担持した触媒の存在下、α,β−不飽和アルデヒドと等倍モル以上のアルコールを含む混合気体を供給し、水素移行反応、脱水反応による前記α,β−不飽和アルデヒドに対応する共役ジエンの製造方法に関する。
(I)群 Cr、Mn、Fe
In the first aspect of the present invention, an α, β-unsaturated aldehyde and the like are present on a solid oxide support in the presence of a metal selected from the following group (I) and / or a catalyst supporting at least one of the metal oxides. The present invention relates to a method for producing a conjugated diene corresponding to the α, β-unsaturated aldehyde by supplying a mixed gas containing an alcohol at a molar ratio of 2 or more and performing a hydrogen transfer reaction and a dehydration reaction.
(I) Group Cr, Mn, Fe

本発明の第二は、固体酸化物担体に、下記(I)群から選ばれる金属および/または当該金属酸化物の少なくとも1種、および、下記(II)群から選ばれる金属および/または当該金属酸化物の少なくとも1種を担持した触媒存在下に、α,β−不飽和アルデヒドと等倍モル以上のアルコールを含む混合気体を供給し、水素移行反応、脱水反応による前記α,β−不飽和アルデヒドに対応する共役ジエンの製造方法に関する。
(I)群 Cr、Mn、Fe
(II)群 Co、Ni
In the second aspect of the present invention, a metal selected from the following group (I) and / or at least one of the metal oxides, and a metal selected from the following group (II) and / or the metal are used as the solid oxide support. In the presence of a catalyst supporting at least one oxide, a mixed gas containing an α, β-unsaturated aldehyde and an equal mole or more of alcohol is supplied, and the α, β-unsaturated by hydrogen transfer reaction or dehydration reaction is supplied. The present invention relates to a method for producing a conjugated diene corresponding to an aldehyde.
(I) Group Cr, Mn, Fe
(II) group Co, Ni

本発明の第三は、前記アルコールの沸点が前記α,β−不飽和アルデヒドの沸点以下であることを特徴とする、本発明第一乃至本発明第二に記載の共役ジエンの製造方法に関する。   A third aspect of the present invention relates to the method for producing a conjugated diene according to the first or second aspect of the present invention, wherein the alcohol has a boiling point equal to or lower than that of the α, β-unsaturated aldehyde.

本発明の第四は、前記α,β−不飽和アルデヒドが、クロトンアルデヒドであることを特徴とする、本発明第一乃至第三の何れか一に記載の共役ジエンの製造方法に関する。   A fourth aspect of the present invention relates to the method for producing a conjugated diene according to any one of the first to third aspects of the present invention, wherein the α, β-unsaturated aldehyde is crotonaldehyde.

本発明の第五は、前記アルコールがエチルアルコールであることを特徴とする、本発明第一乃至第四の何れか一に記載の共役ジエンの製造方法に関する。   A fifth aspect of the present invention relates to the method for producing a conjugated diene according to any one of the first to fourth aspects of the present invention, wherein the alcohol is ethyl alcohol.

本発明の第六は、前記固体酸化物担体に、シリカを含んでなることを特徴とする、本発明第一乃至第五の何れか一に記載の共役ジエンの製造方法に関する。   A sixth aspect of the present invention relates to the method for producing a conjugated diene according to any one of the first to fifth aspects of the present invention, wherein the solid oxide support contains silica.

本発明によれば、α,β−不飽和アルデヒドを原料として、アルコールを用いて、対応する炭素数の共役ジエン化合物を得ることができる。また、石油資源に依存しないバイオエタノールから、公知の脱水素反応によるアルデヒドへの変換とアルドール縮合によるα,β−不飽和アルデヒドであるクロトンアルデヒドの合成を経由して、ブタジエンを製造することができる。   According to the present invention, a conjugated diene compound having a corresponding number of carbon atoms can be obtained using an α, β-unsaturated aldehyde as a raw material and an alcohol. Also, butadiene can be produced from bioethanol that does not depend on petroleum resources, through conversion to aldehyde by a known dehydrogenation reaction and synthesis of crotonaldehyde, which is an α, β-unsaturated aldehyde by aldol condensation. .

<担体となる固体酸化物>
担体となる固体酸化物には、特に制限はない。シリカ、アルミナ、マグネシア、カルシア、チタニア、ジルコニア等を用いることができる。中でも、シリカ、アルミナ、チタニア、ジルコニアが好ましい。これらの中でも、シリカが特に好ましい。担体は1種を用いてもよく、2種以上を併用してもよい。2種以上の担体を併用する場合は、例えばシリカとアルミナを混合した混合物を用いることもでき、シリカ−アルミナ等の複合酸化物を用いることもできる。
<Solid oxide as carrier>
There is no restriction | limiting in particular in the solid oxide used as a support | carrier. Silica, alumina, magnesia, calcia, titania, zirconia and the like can be used. Of these, silica, alumina, titania, and zirconia are preferable. Among these, silica is particularly preferable. One type of carrier may be used, or two or more types may be used in combination. When using 2 or more types of support | carriers together, the mixture which mixed silica and an alumina can also be used, for example, and complex oxides, such as a silica-alumina, can also be used.

担体の比表面積は、10〜2000m2/gが好ましく、50〜1500m2/gがより好ましく、100〜1000m2/gがさらに好ましい。担体の比表面積が上記範囲より小さいと有用成分がより多く表面に担持された触媒の製造が困難となり、上記範囲より大きいものは工業的な製造が困難となる。担体の比表面積は、窒素ガス吸着法により測定することができる。   The specific surface area of the carrier is preferably 10 to 2000 m2 / g, more preferably 50 to 1500 m2 / g, and still more preferably 100 to 1000 m2 / g. When the specific surface area of the support is smaller than the above range, it becomes difficult to produce a catalyst having more useful components supported on the surface, and when the specific surface area is larger than the above range, industrial production becomes difficult. The specific surface area of the carrier can be measured by a nitrogen gas adsorption method.

<(I)群の金属と(II)群の金属>
本発明者らは、上記[技術分野]の段落に記載したとおり、α,β−不飽和アルデヒドとアルコールとから、位置選択性水素移行反応によるα,β−不飽和アルコールの生成と、これに連続する脱水反応とが、共役ジエン化合物の製造に関与していると考えている。現時点で、本発明における触媒活性成分としての、(I)群の金属、(II)群の金属のそれぞれの反応機構は、明らかではないが、発明者らは、(I)群の金属が「脱水反応」および「位置選択性水素移行反応」に、(II)群の金属が「位置選択性水素移行反応」に主たる役割を果たしていると考えている。なお、(I)群の金属を触媒として用いるだけでも、共役ジエン化合物を得ることはできるが、(II)群の金属を併用した場合に比べると収率は低いものとなる。
<Metal of Group (I) and Metal of Group (II)>
As described in the above [Technical Field] paragraph, the present inventors have produced α, β-unsaturated alcohol from α, β-unsaturated aldehyde and alcohol by regioselective hydrogen transfer reaction, and The continuous dehydration reaction is considered to be involved in the production of the conjugated diene compound. At present, the reaction mechanism of the group (I) metal and the group (II) metal as the catalytically active component in the present invention is not clear. In the “dehydration reaction” and “regioselective hydrogen transfer reaction”, it is considered that the metal of group (II) plays a main role in the “regioselective hydrogen transfer reaction”. A conjugated diene compound can be obtained simply by using a metal of group (I) as a catalyst, but the yield is lower than when a metal of group (II) is used in combination.

<(I)群の金属>
本発明においては、(I)群から選ばれる少なくとも1種の金属および/または当該金属酸化物(以下、「金属」にはその酸化物も含まれる。)を固体酸化物に担持する。本発明者らは、(I)群に含まれる金属として、第一遷移金属元素から、周期表上で隣接する元素である、Cr、Mn、Feが適することを見出した。
<Metal of group (I)>
In the present invention, at least one metal selected from the group (I) and / or the metal oxide (hereinafter, “metal” includes its oxide) is supported on a solid oxide. The present inventors have found that, as a metal contained in the group (I), Cr, Mn, and Fe, which are adjacent elements on the periodic table, are suitable from the first transition metal element.

<(II)群の金属>
本発明においては、(II)群から選ばれる少なくとも1種の金属および/または当該金属酸化物を(I)群から選ばれる少なくとも1種の金属と併せて担持する。本発明者らは、(II)群に含まれる金属として、第一遷移金属元素から、周期表上で隣接する元素である、Co、Niが適することを見出した。その詳細な反応機構は明らかではないが、本発明者らは、これらが近似して有する電子配置、イオン半径等が関係していると考えている。また、(I)属との相互作用についても同様に考えている。
<Metal of group (II)>
In the present invention, at least one metal selected from the group (II) and / or the metal oxide is supported together with at least one metal selected from the group (I). The present inventors have found that Co and Ni, which are adjacent elements on the periodic table, are suitable from the first transition metal element as the metal contained in the group (II). Although the detailed reaction mechanism is not clear, the present inventors consider that the electron arrangement, the ionic radius, etc. which these have approximately are related. Moreover, the interaction with (I) genus is considered similarly.

本発明では、前記の担体に、(I)群から選ばれる金属、必要に応じて、(II)群から選ばれる金属を担持前の担体質量に対して0.1質量%〜10質量%の範囲で担持する。0.1質量%未満であると、本発明の効果が十分に発揮できず、また、10重量%を越えると、経済的効率が低下する。担体の形状は、柱状、錠剤状、粉状、粒状のいずれでもよいが、高速連続処理を行う観点からは、充填塔に充填されることを考慮すれば圧力損失の小さい、粒状触媒が好ましい。   In the present invention, a metal selected from the group (I) and, if necessary, a metal selected from the group (II) to the support is 0.1% by mass to 10% by mass with respect to the support mass before supporting. Carry in range. If the amount is less than 0.1% by mass, the effects of the present invention cannot be exhibited sufficiently, and if it exceeds 10% by weight, the economic efficiency is lowered. The shape of the carrier may be any of a columnar shape, a tablet shape, a powdery shape, and a granular shape, but from the viewpoint of performing high-speed continuous processing, a granular catalyst with a small pressure loss is preferable in view of being packed in a packed tower.

共役ジエン製造における、触媒の割合は、通常は、触媒と液体としての原料(アルデヒドとアルコールの和を基準として)の接触速度であるLHSV(1/hr)で表され、0.1〜3の範囲内が好ましく、0.2〜1がさらに好ましい。   The ratio of the catalyst in the conjugated diene production is usually represented by LHSV (1 / hr) which is a contact speed between the catalyst and the raw material (based on the sum of aldehyde and alcohol) as a liquid, and is 0.1 to 3 Within the range, 0.2 to 1 is more preferable.

担持方法には特に制限はなく、最終的に活性成分としての(I)群、および、(II)群から選ばれる金属が充分に分散された形態を取ればよく、公知の含浸法、沈澱法、共沈法で製造できる。また、前記金属成分を触媒に含有させる方法ないし段階も、活性が実質的に阻害されない限度において任意である。二種類以上の金属を担持させる場合も同時担持、逐次担持どちらも可能である。例えば、予め成型した多孔質担体粒または微紛に可溶性の活性成分の前駆体を含浸、乾燥、焼成する含浸法や活性成分の塩の水溶液から沈澱により調製する沈澱法などが挙げられる。好ましい方法は、メソポーラスシリカに(I)群から選ばれる金属および/またはその酸化物、および必要に応じて(II)群から選ばれる金属および/またはその酸化物を含浸させて、焼成処理する方法が好ましい。   There are no particular limitations on the loading method, and it is sufficient that the metal selected from the groups (I) and (II) as the active component is finally sufficiently dispersed. Known impregnation methods and precipitation methods Can be produced by coprecipitation. Further, the method or step of incorporating the metal component into the catalyst is optional as long as the activity is not substantially inhibited. When two or more kinds of metals are supported, both simultaneous support and sequential support are possible. For example, an impregnation method of impregnating, drying and calcining a precursor of an active ingredient soluble in a porous carrier particle or fine powder previously formed, a precipitation method of preparing by precipitation from an aqueous solution of a salt of the active ingredient, and the like can be mentioned. A preferred method is a method in which a mesoporous silica is impregnated with a metal selected from the group (I) and / or an oxide thereof, and, if necessary, a metal selected from the group (II) and / or an oxide thereof, and then subjected to a firing treatment. Is preferred.

<α,β−不飽和アルデヒド>
本発明に係るα,β−不飽和アルデヒドは、その炭素数に相当する炭素数を有する共役ジエン化合物となる。α,β−不飽和アルデヒドとしては、特に制限はないが、市場の大きさの点から、ブタジエンが得られるクロトンアルデヒドが好ましい。
<Α, β-unsaturated aldehyde>
The α, β-unsaturated aldehyde according to the present invention is a conjugated diene compound having a carbon number corresponding to the carbon number. The α, β-unsaturated aldehyde is not particularly limited, but crotonaldehyde from which butadiene can be obtained is preferable from the viewpoint of market size.

<アルコール>
本発明に係る反応に使用するアルコールは水素供与体としての使用である。使用するアルコールには、特に制限はない。具体的には、メタノール、エタノール、イソプロパノール、1−プロパノール、1−ブタノール、2−ブタノール、イソブタノール、ベンジルアルコール、シクロヘキサノール等、1級または2級アルコールが使用でき、経済性、入手容易性、副生物の利用可能性等を考慮して選択されるが、バイオエタノール利用性の観点からは、取り分けエタノールが好適である。α,β−不飽和アルデヒドとアルコールとの混合気体を得る観点から、アルコールの沸点がα,β−不飽和アルデヒドの沸点以下であることが好ましい。クロトンアルデヒドを原料にする場合、その沸点は常圧で104℃で、それより沸点が低いものは、メタノール(常圧の沸点(以下同じ):65℃)、エタノール(78℃)、イソプロパノール(82℃)、プロパノール(97℃)、2−ブタノール(99℃)が適する。
α,β−不飽和アルデヒドに対するアルコールの混合比は、等倍モル以上、好ましくは、2〜30倍モルである。この範囲未満では、副反応が生じることがあり、この範囲を超えると、過剰のアルコールが経済性を損なう。特に好ましい範囲は、3〜10倍モルである。
<Alcohol>
The alcohol used in the reaction according to the present invention is used as a hydrogen donor. There is no restriction | limiting in particular in the alcohol to be used. Specifically, primary or secondary alcohols such as methanol, ethanol, isopropanol, 1-propanol, 1-butanol, 2-butanol, isobutanol, benzyl alcohol, cyclohexanol, etc. can be used. Although it is selected in consideration of availability of by-products, ethanol is particularly preferable from the viewpoint of bioethanol availability. From the viewpoint of obtaining a mixed gas of an α, β-unsaturated aldehyde and an alcohol, the alcohol preferably has a boiling point equal to or lower than that of the α, β-unsaturated aldehyde. When crotonaldehyde is used as a raw material, its boiling point is 104 ° C. at normal pressure, and those having a lower boiling point are methanol (boiling point at normal pressure (hereinafter the same): 65 ° C.), ethanol (78 ° C.), isopropanol (82 ° C), propanol (97 ° C), 2-butanol (99 ° C) are suitable.
The mixing ratio of the alcohol with respect to the α, β-unsaturated aldehyde is equal to or greater than 1 mol, preferably 2 to 30 mol. If it is less than this range, side reactions may occur. If this range is exceeded, excess alcohol impairs economic efficiency. A particularly preferred range is 3 to 10 moles.

(実施例)
(触媒調整)
(Cr担持触媒の製造方法)
1.2gの硝酸クロム9水和物(関東化学製Cr(NO3)3-9H2O、分子量400.15)を33mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)30gと混合し、クロムをシリカ上に担持した。得られたクロム担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、クロム担持シリカ触媒を得た。このときクロム担持量は約0.5質量%である。クロム担持量の増減量は、硝酸クロム9水和物の増減量で行った。
(Example)
(Catalyst adjustment)
(Method for producing Cr-supported catalyst)
An aqueous solution in which 1.2 g of chromium nitrate nonahydrate (Cr (NO 3 ) 3 -9H 2 O manufactured by Kanto Chemical Co., Ltd., molecular weight of 400.15) was dissolved in 33 ml of water was prepared, and spherical silica Q- manufactured by Fuji Silysia Chemical Ltd. 10 (about 2 mmφ) and mixed with 30 g of chromium on silica. The resulting chromium-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a chromium-supported silica catalyst. At this time, the amount of chromium supported is about 0.5% by mass. The increase / decrease amount of the chromium carrying amount was the same as the increase / decrease amount of chromium nitrate nonahydrate.

(Co担持触媒の製造)
3.0gの硝酸コバルト6水和物(和光純薬製Co(NO3)2-6H2O、分子量291.03)を39mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)30gと混合し、コバルトをシリカ上に担持した。得られたコバルト担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、コバルト担持シリカ触媒を得た。このときコバルト担持量は約2%である。コバルト担持量の増減量は、硝酸コバルト6水和物の増減量で行った。
(Manufacture of Co-supported catalyst)
An aqueous solution in which 3.0 g of cobalt nitrate hexahydrate (Co (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 291.03) was dissolved in 39 ml of water was prepared, and spherical silica Q manufactured by Fuji Silysia Chemical Ltd. Cobalt was supported on silica by mixing with 30 g of -10 (about 2 mmφ). The obtained cobalt-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a cobalt-supported silica catalyst. At this time, the amount of cobalt supported is about 2%. The increase / decrease amount of the cobalt carrying amount was the same as the increase / decrease amount of cobalt nitrate hexahydrate.

(Cr、Co両担持触媒の製造)
1.5gの硝酸コバルト6水和物(和光純薬製Co(NO3)2-6H2O、分子量291.03)および0.59gの硝酸クロム9水和物(関東化学製Cr(NO3)3-9H2O、分子量400.15)を16mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)15gと混合し、コバルトおよびクロムをシリカ上に担持した。得られたコバルトおよびクロム担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、コバルトおよびクロム担持シリカ触媒を得た。
このときコバルト担持量は約2%、クロム 担持量は約0.5%である。コバルト及びクロムの担持量の増減量は、各化合物の添加量の増減量で行った。
(Manufacture of both Cr and Co supported catalysts)
1.5 g of cobalt nitrate hexahydrate (Co (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, molecular weight 291.03) and 0.59 g of chromium nitrate nonahydrate (Cr (NO 3 manufactured by Kanto Chemical Co., Ltd.) ) Prepare an aqueous solution of 3 -9H 2 O, molecular weight 400.15) dissolved in 16 ml of water, mix with 15 g of spherical silica Q-10 (about 2 mmφ) manufactured by Fuji Silysia Chemical, and carry cobalt and chromium on the silica. did. The obtained cobalt and chromium-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a cobalt and chromium-supported silica catalyst.
At this time, the cobalt loading is about 2% and the chromium loading is about 0.5%. The increase / decrease amount of the loading amount of cobalt and chromium was performed by the increase / decrease amount of the addition amount of each compound.

(Ni担持触媒の製造方法)
3.0gの硝酸ニッケル6水和物(和光純薬製Ni(NO3)2-6H2O、分子量290.79)を39mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)30gと混合し、ニッケルをシリカ上に担持した。得られたニッケル担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、ニッケル担持シリカ触媒を得た。このときニッケル担持量は約2%である。ニッケル担持量の増減量は、硝酸ニッケル6水和物の増減量で行った。
(Method for producing Ni-supported catalyst)
An aqueous solution in which 3.0 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 290.79) was dissolved in 39 ml of water was prepared, and spherical silica Q manufactured by Fuji Silysia Chemical Ltd. Mixed with 30 g of -10 (about 2 mmφ), nickel was supported on silica. The obtained nickel-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a nickel-supported silica catalyst. At this time, the nickel loading is about 2%. The increase / decrease amount of the nickel carrying amount was the same as the increase / decrease amount of nickel nitrate hexahydrate.

(Cr、Ni担持触媒の製造方法)
1.5gの硝酸ニッケル6水和物(和光純薬製Ni(NO3)2-6H2O、分子量290.79)および0.59gの硝酸クロム9水和物(関東化学製Cr(NO3)3-9H2O、分子量400.15)を16mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)15gと混合し、ニッケルおよびクロムをシリカ上に担持した。得られたニッケルおよびクロム担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、ニッケルおよびクロム担持シリカ触媒を得た。
このときニッケル担持量は約2質量%、クロム担持量は約0.5質量%である。ニッケル及びクロムの担持量の増減量は、各化合物の添加量の増減量で行った。
(Method for producing Cr, Ni supported catalyst)
1.5 g of nickel nitrate hexahydrate (Ni (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, molecular weight 290.79) and 0.59 g of chromium nitrate nonahydrate (Cr (NO 3 manufactured by Kanto Chemical)) ) Prepare an aqueous solution of 3 -9H 2 O, molecular weight 400.15) dissolved in 16 ml of water, mix with 15 g of spherical silica Q-10 (about 2 mmφ) manufactured by Fuji Silysia Chemical, and carry nickel and chromium on the silica. did. The obtained nickel and chromium-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a nickel and chromium-supported silica catalyst.
At this time, the nickel loading is about 2% by mass and the chromium loading is about 0.5% by mass. The amount of nickel and chromium supported was increased or decreased by the amount of each compound added.

(Fe担持触媒の製造方法)
1.5gの硝酸鉄9水和物(和光純薬製Fe(NO3)3-9H2O、分子量403.85)を44mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)40gと混合し、鉄をシリカ上に担持した。得られた鉄担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、鉄担持シリカ触媒を得た。このとき鉄担持量は約0.5質量%である。鉄の担持量の増減量は、硝酸鉄9水和物の増減量で行った。
(Method for producing Fe-supported catalyst)
An aqueous solution in which 1.5 g of iron nitrate nonahydrate (Fe (NO 3 ) 3 -9H 2 O manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 403.85) was dissolved in 44 ml of water was prepared, and spherical silica Q manufactured by Fuji Silysia Chemical Ltd. It was mixed with 40 g of -10 (about 2 mmφ), and iron was supported on silica. The obtained iron-supporting silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain an iron-supporting silica catalyst. At this time, the iron loading is about 0.5% by mass. The increase / decrease amount of the iron loading was the increase / decrease amount of iron nitrate nonahydrate.

(Fe、Co担持触媒の製造方法)
1.5gの硝酸コバルト6水和物(和光純薬製Co(NO3)2-6H2O、分子量291.03)および0.55gの硝酸鉄9水和物(和光純薬製Fe(NO3)3-9H2O、分子量403.85)を16mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)15gと混合し、鉄およびコバルトをシリカ上に担持した。得られた鉄およびコバルト担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、鉄およびコバルト担持シリカ触媒を得た。
このときコバルト担持量は約2質量%、鉄担持量は約0.5質量%である。コバルト及び鉄の担持量の増減量は、各化合物の添加量の増減量で行った。
(Method for producing Fe, Co supported catalyst)
1.5 g of cobalt nitrate hexahydrate (Co (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, molecular weight 291.03) and 0.55 g of iron nitrate nonahydrate (Fe (NO manufactured by Wako Pure Chemical Industries, Ltd.) 3 ) An aqueous solution in which 3 -9H 2 O, molecular weight 403.85) is dissolved in 16 ml of water is prepared, mixed with 15 g of spherical silica Q-10 (about 2 mmφ) manufactured by Fuji Silysia Chemical, and iron and cobalt are deposited on the silica. Supported. The obtained iron and cobalt-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain an iron and cobalt-supported silica catalyst.
At this time, the amount of cobalt supported is about 2% by mass, and the amount of iron supported is about 0.5% by mass. The increase / decrease amount of the loading amount of cobalt and iron was performed by the increase / decrease amount of the addition amount of each compound.

(Mn担持触媒の製造方法)
1.1gの硝酸マンガン6水和物(和光純薬製Mn(NO3)2-6H2O、分子量287.04)を44mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)40gと混合し、マンガンをシリカ上に担持した。得られたマンガン担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、マンガン担持シリカ触媒を得た。このときマンガン担持量は約0.5質量%である。マンガンの担持量の増減量は、硝酸マンガン6水和物の増減量で行った。
(Method for producing Mn-supported catalyst)
An aqueous solution in which 1.1 g of manganese nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., Mn (NO 3 ) 2 -6H 2 O, molecular weight 287.04) was dissolved in 44 ml of water was prepared, and spherical silica Q manufactured by Fuji Silysia Chemical Ltd. Mixed with 40 g of -10 (about 2 mmφ), manganese was supported on silica. The obtained manganese-supported silica was dried at 110 ° C. overnight and further calcined in air at 500 ° C. for 3 hours to obtain a manganese-supported silica catalyst. At this time, the amount of manganese supported is about 0.5% by mass. The amount of manganese supported was increased or decreased by the amount of manganese nitrate hexahydrate.

(Mn、Co担持触媒の製造方法)
1.5gの硝酸コバルト6水和物(和光純薬製Co(NO3)2-6H2O、分子量291.03)および0.40gの硝酸マンガン6水和物(和光純薬製Mn(NO3)2-6H2O、分子量287.04)を17mlの水に溶解した水溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)15gと混合し、マンガンおよびコバルトをシリカ上に担持した。得られたマンガンおよびコバルト担持シリカを110℃にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、マンガンおよびコバルト担持シリカ触媒を得た。
このときコバルト担持量は約質量2%、マンガン担持量は約0.5質量%である。マンガン及びコバルトの担持量の増減量は、各化合物の添加量の増減量で行った。
(Method for producing Mn, Co supported catalyst)
1.5 g of cobalt nitrate hexahydrate (Co (NO 3 ) 2 -6H 2 O manufactured by Wako Pure Chemical Industries, molecular weight 291.03) and 0.40 g of manganese nitrate hexahydrate (Mn (NO manufactured by Wako Pure Chemical Industries, Ltd.) 3) 2 -6H 2 O, molecular weight 287.04) to prepare an aqueous solution dissolved in water of 17 ml, was mixed with Fuji Silysia chemical Ltd. spherical silica Q-10 (about 2 mm) 15 g, manganese and cobalt on the silica Supported. The obtained manganese and cobalt-supported silica was dried at 110 ° C. overnight, and further calcined in air at 500 ° C. for 3 hours to obtain a manganese and cobalt-supported silica catalyst.
At this time, the amount of cobalt supported is about 2% by mass, and the amount of manganese supported is about 0.5% by mass. The increase / decrease amount of manganese and cobalt supported was the increase / decrease amount of each compound added.

(Ta担持触媒の製造)
0.90gのタンタルエトキシド(和光純薬製Ta(OC2H5)5、分子量406.25)を窒素ボックス内で22mlのトルエンに溶解した溶液を調製し、富士シリシア化学製球状シリカQ−10(約2mmφ)20gと混合し、タンタルをシリカ上に担持した。得られたタンタル担持シリカを窒素流通下で室温にて一晩乾燥し、さらに500℃、空気中にて3時間焼成して、タンタル担持シリカ触媒を得た。このときタンタル担持量は約2%である。得られたタンタル担持シリカ触媒は、比較例3の反応に供され、その結果を表1に示した。
(Production of Ta supported catalyst)
A solution prepared by dissolving 0.90 g of tantalum ethoxide (Ta (OC 2 H 5 ) 5 manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 406.25) in 22 ml of toluene in a nitrogen box was prepared, and spherical silica Q- manufactured by Fuji Silysia Chemical Ltd. 10 (about 2 mmφ) and mixed with 20 g, tantalum was supported on silica. The obtained tantalum-supported silica was dried overnight at room temperature under nitrogen flow, and further calcined in air at 500 ° C. for 3 hours to obtain a tantalum-supported silica catalyst. At this time, the amount of tantalum supported is about 2%. The obtained tantalum-supported silica catalyst was subjected to the reaction of Comparative Example 3, and the results are shown in Table 1.

(CuCrO4触媒)
エヌ・イー・ケムキャット製Cu−0203T1/8”を触媒として直接使用した。反応は、比較例4に従って行ない、その結果を表1に示した。
(CuCrO 4 catalyst)
Cu-0203T1 / 8 ″ manufactured by N.E. Chemcat was directly used as a catalyst. The reaction was carried out according to Comparative Example 4 and the results are shown in Table 1.

(ブタジエンの製造)
上記で得られた触媒6mlをSUS製反応管(内径:約10mm)に充填した。活性金属として、コバルト、ニッケルを担持した触媒については、反応前に350℃にて3時間の水素処理を実施した。
クロトンアルデヒドとエタノールを所定のモル比で混合した原料液を液体ポンプにて、所定のLHSV(クロトンアルデヒドとエタノールの和を基準とした)で供給した。なお反応管前に気化器を設け、設定することで、原料液は反応管に導入される前にガス化されている。反応は大気圧、所定の反応温度で実施し、反応生成物をガスクロマトグラフにより分析した。原料モル比、LHSV、反応温度は表1に示すとおりである。
(Production of butadiene)
6 ml of the catalyst obtained above was filled in a SUS reaction tube (inner diameter: about 10 mm). About the catalyst which carry | supported cobalt and nickel as an active metal, the hydrogen treatment for 3 hours was implemented at 350 degreeC before reaction.
A raw material liquid in which crotonaldehyde and ethanol were mixed at a predetermined molar ratio was supplied by a liquid pump at a predetermined LHSV (based on the sum of crotonaldehyde and ethanol). In addition, by providing and setting a vaporizer before the reaction tube, the raw material liquid is gasified before being introduced into the reaction tube. The reaction was carried out at atmospheric pressure and a predetermined reaction temperature, and the reaction product was analyzed by gas chromatography. The raw material molar ratio, LHSV, and reaction temperature are as shown in Table 1.

(各触媒・各反応条件下でのブタジエン製造方法の評価)
以下の式で求める、「クロトンアルデヒド転化率」、「水素移行選択率」、「ブタジエン選択率」で評価した。
(Evaluation of butadiene production method under each catalyst and reaction conditions)
Evaluation was made by “crotonaldehyde conversion rate”, “hydrogen transfer selectivity”, and “butadiene selectivity” obtained by the following formulas.

<クロトンアルデヒド転化率>
クロトンアルデヒド転化率(%) = 〔1−(残存クロトンアルデヒド)/(原料中クロトンアルデヒド)〕×100
「残存クロトンアルデヒド」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたクロトンアルデヒドのモル分率、「原料中クロトンアルデヒド」の値は、原料中のクロマトグラフ分析ピーク面積比から求めたクロトンアルデヒドのモル分率である。上記転化率から、クロトンアルデヒドを反応基質として消費する能力の優劣が分かる。
<Crotonaldehyde conversion>
Conversion rate of crotonaldehyde (%) = [1- (residual crotonaldehyde) / (crotonaldehyde in raw material)] × 100
The value of “residual crotonaldehyde” was obtained from the molar fraction of crotonaldehyde obtained from the chromatographic analysis peak area ratio after the reaction, and the value of “crotonaldehyde in raw material” was obtained from the chromatographic analysis peak area ratio in the raw material. It is the mole fraction of crotonaldehyde. From the above conversion rate, it can be seen that the ability to consume crotonaldehyde as a reaction substrate is superior or inferior.

<ブタジエン選択率>
ブタジエン選択率(%) = 〔生成ブタジエン/(1−未反応原料)〕×100
「生成ブタジエン」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたブタジエンのモル分率、「未反応原料」の値は、反応後のクロマトグラフ分析ピーク面積比から求めた原料のモル分率である。上記選択率から、ブタジエンを生成する能力の優劣が分かる。
<Butadiene selectivity>
Butadiene selectivity (%) = [produced butadiene / (1-unreacted raw material)] × 100
The value of “produced butadiene” is the mole fraction of butadiene determined from the chromatographic analysis peak area ratio after reaction, and the value of “unreacted raw material” is the mole of raw material determined from the chromatographic analysis peak area ratio after reaction. It is a fraction. From the above selectivity, the superiority or inferiority of the ability to produce butadiene is known.

<水素移行選択率>
水素移行選択率(%) = 〔(生成ブタジエン)+(生成クロチルアルコール)〕/〔(生成ブタジエン)+(生成クロチルアルコール)+(生成ブタノール)+(生成ブチルアルデヒド)+(生成ブテン)〕×100
「生成ブタジエン」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたブタジエンのモル分率、「生成クロチルアルコール」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたクロチルアルコールのモル分率、「生成ブタノール」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたブタノールのモル分率、「生成ブチルアルデヒド」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたブチルアルデヒドのモル分率、「生成ブテン」の値は、反応後のクロマトグラフ分析ピーク面積比から求めたブテンのモル分率である。上記水素移行選択率から、クロトンアルデヒドのカルボニル部分を選択的に水素化する能力の優劣が分かる。
<Hydrogen transfer selectivity>
Hydrogen transfer selectivity (%) = [(generated butadiene) + (generated crotyl alcohol)] / [(generated butadiene) + (generated crotyl alcohol) + (generated butanol) + (generated butyraldehyde) + (generated butene) ] × 100
The value of “produced butadiene” is the molar fraction of butadiene determined from the chromatographic analysis peak area ratio after reaction, and the value of “product crotyl alcohol” is crotyl determined from the chromatographic analysis peak area ratio after reaction. The molar fraction of alcohol, “product butanol” is the molar fraction of butanol determined from the chromatographic analysis peak area ratio after reaction, and the value of “product butyraldehyde” is the chromatographic analysis peak area ratio after reaction. The value of “butene”, the molar fraction of butyraldehyde obtained from the above, is the molar fraction of butene obtained from the chromatographic analysis peak area ratio after the reaction. From the hydrogen transfer selectivity, it can be seen that the ability to selectively hydrogenate the carbonyl moiety of crotonaldehyde is superior or inferior.

結果を表1にまとめた。

Figure 0006077325
The results are summarized in Table 1.
Figure 0006077325

まず、本実施例にかかる触媒が、「クロトンアルデヒド転化率」に優れることが分かる。
ブタジエン生成のための開始反応は、クロトンアルデヒドとエタノールの反応により、反応中間体としてクロチルアルコールを生成すると考えられる。そして、エタノールからクロトンアルデヒドへの水素移行反応が高選択率で進む(クロトンアルデヒド中のC=C二重結合ではなく、C=O結合のみ選択的に水素化する)と、目的物であるブタジエン生成へと、逐次、反応が進行する条件が整う。この、「クロトンアルデヒド転化率」は、ブタジエン生成に向けた第一ステップとして、極めて重要である。
First, it can be seen that the catalyst according to this example is excellent in “crotonaldehyde conversion”.
The initiation reaction for butadiene production is considered to produce crotyl alcohol as a reaction intermediate by the reaction of crotonaldehyde and ethanol. Then, the hydrogen transfer reaction from ethanol to crotonaldehyde proceeds with high selectivity (selectively hydrogenating only C = O bonds, not C = C double bonds in crotonaldehyde), and the target butadiene The conditions under which the reaction proceeds sequentially are established. This “crotonaldehyde conversion” is extremely important as the first step toward butadiene production.

実施例1〜7の結果から、シリカ担持Cr((I)群金属)触媒が、「ブタジエン選択率」に優れることが分かる。一方、比較例1のシリカ担持Co((II)群金属)触媒は、「水素移行選択率」に優れる一方で、「ブタジエン選択率」が低いことが分かる。そして、実施例8〜10の結果から、シリカ担持Cr/Co触媒が、「ブタジエン選択率」、「水素移行選択率」の両者に優れることが分かる。   From the results of Examples 1 to 7, it is understood that the silica-supported Cr ((I) group metal) catalyst is excellent in “butadiene selectivity”. On the other hand, it is understood that the silica-supported Co ((II) group metal) catalyst of Comparative Example 1 is excellent in “hydrogen transfer selectivity” while having a low “butadiene selectivity”. From the results of Examples 8 to 10, it can be seen that the silica-supported Cr / Co catalyst is excellent in both “butadiene selectivity” and “hydrogen transfer selectivity”.

以下、比較例2のシリカ担持Ni((II)群金属)触媒は、「水素移行選択率」に優れる一方で、「ブタジエン選択率」が低いことが分かる。そして、実施例11〜13の結果から、シリカ担持Cr/Ni触媒が、「ブタジエン選択率」、「水素移行選択率」の両者に優れることが分かる。
以下、実施例14〜17の結果から、シリカ担持Fe((I)群金属)触媒、および、実施例19〜21の結果から、シリカ担持Mn((I)群金属)触媒が、CrまたはCr/Co触媒系よりやや劣るものの、「ブタジエン選択率」に優れることが分かる。そして、実施例18のシリカ担持Fe/Co触媒、および、実施例22のシリカ担持Mn/Co触媒、が、「ブタジエン選択率」、「水素移行選択率」の両者に優れることが分かる。
Hereinafter, it can be seen that the silica-supported Ni ((II) group metal) catalyst of Comparative Example 2 is excellent in “hydrogen transfer selectivity” but low in “butadiene selectivity”. From the results of Examples 11 to 13, it can be seen that the silica-supported Cr / Ni catalyst is excellent in both “butadiene selectivity” and “hydrogen transfer selectivity”.
Hereinafter, from the results of Examples 14 to 17, the silica-supported Fe ((I) group metal) catalyst and from the results of Examples 19 to 21, the silica-supported Mn ((I) group metal) catalyst is Cr or Cr. Although it is slightly inferior to the / Co catalyst system, it can be seen that the “butadiene selectivity” is excellent. And it turns out that the silica carrying | support Fe / Co catalyst of Example 18 and the silica carrying | support Mn / Co catalyst of Example 22 are excellent in both "butadiene selectivity" and "hydrogen transfer selectivity".

本発明によれば、石油資源に依存しないバイオエタノールから、公知の脱水素反応によるアルデヒドへの変換とアルドール縮合によるα,β−不飽和アルデヒドであるクロトンアルデヒドの合成を経由して、水素移行反応、脱水反応によりブタジエンを製造することができる。ブタジエンは、輸送機器のタイヤの主構造材料である、スチレン‐ブタジエンゴム(SBR)、ブタジエンゴム(BR)、各種家庭用品ハウジングに利用されるABS樹脂の原料等の重合用モノマー原料として需要が拡大傾向にあり、将来、石油資源が逼迫した場合に本発明の製造方法は有効である。   According to the present invention, hydrogen transfer reaction is performed from bioethanol independent of petroleum resources to aldehyde by a known dehydrogenation reaction and synthesis of crotonaldehyde, which is an α, β-unsaturated aldehyde by aldol condensation. Butadiene can be produced by a dehydration reaction. Butadiene is growing in demand as a monomer material for polymerization, such as styrene-butadiene rubber (SBR), butadiene rubber (BR), which is the main structural material of tires for transportation equipment, and ABS resin used in various household housings. The production method of the present invention is effective when petroleum resources are tight in the future.

Claims (4)

固体酸化物担体に、下記(I)群から選ばれる金属および/または当該金属酸化物の少なくとも1種を担持した触媒の存在下、クロトンアルデヒドと前記クロトンアルデヒドに対して等倍モル以上の、沸点が前記クロトンアルデヒドの沸点よりも低いアルコールを含む混合気体を供給し、水素移行反応、脱水反応によるアルデヒドに対応する共役ジエンの製造方法。
(I)群 Cr、Mn、Fe
Boiling point equal to or greater than 1 mole of crotonaldehyde and crotonaldehyde in the presence of a catalyst supporting at least one metal selected from the following group (I) and / or the metal oxide on a solid oxide support: A method for producing a conjugated diene corresponding to an aldehyde by supplying a mixed gas containing an alcohol having a lower boiling point than that of the crotonaldehyde and corresponding to an aldehyde by a hydrogen transfer reaction or a dehydration reaction.
(I) Group Cr, Mn, Fe
前記触媒が、前記Crの金属および/または金属酸化物とCoおよび/またはNiの金属または金属酸化物とからなる触媒、Mnの金属および/または金属酸化物とCoの金属および/または金属酸化物とからなる触媒またはFeの金属および/または金属酸化物とCoの金属および/または金属酸化物とからなる触媒のいずれかであることを特徴とする、請求項1記載の共役ジエンの製造方法。 A catalyst comprising the Cr metal and / or metal oxide and Co and / or Ni metal or metal oxide; the Mn metal and / or metal oxide and Co metal and / or metal oxide; 2. The method for producing a conjugated diene according to claim 1 , wherein the catalyst is a catalyst comprising: a metal comprising Fe and / or a metal oxide and a metal comprising Co and / or a metal oxide . 前記アルコールがエチルアルコールであることを特徴とする、請求項1乃至請求項2の何れか一項に記載の共役ジエンの製造方法。 The method for producing a conjugated diene according to any one of claims 1 to 2 , wherein the alcohol is ethyl alcohol. 前記固体酸化物担体に、シリカを含んでなることを特徴とする、請求項1乃至請求項3の何れか一項に記載の共役ジエンの製造方法。 The method for producing a conjugated diene according to any one of claims 1 to 3 , wherein the solid oxide support contains silica.
JP2013026917A 2013-02-14 2013-02-14 Method for producing conjugated diene compound Active JP6077325B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013026917A JP6077325B2 (en) 2013-02-14 2013-02-14 Method for producing conjugated diene compound
PCT/JP2014/053957 WO2014126264A1 (en) 2013-02-14 2014-02-13 Method for producing conjugated diene compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026917A JP6077325B2 (en) 2013-02-14 2013-02-14 Method for producing conjugated diene compound

Publications (2)

Publication Number Publication Date
JP2014156408A JP2014156408A (en) 2014-08-28
JP6077325B2 true JP6077325B2 (en) 2017-02-08

Family

ID=51354262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026917A Active JP6077325B2 (en) 2013-02-14 2013-02-14 Method for producing conjugated diene compound

Country Status (2)

Country Link
JP (1) JP6077325B2 (en)
WO (1) WO2014126264A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141140A (en) * 2017-02-28 2018-09-13 株式会社リコー Phthalate plastic chemical recycling method, and composition
JP7316801B2 (en) * 2019-02-15 2023-07-28 株式会社ダイセル Method for producing 1,3-butadiene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421361A (en) * 1942-09-29 1947-05-27 Carbide & Carbon Chem Corp Process for making diolefins
JP2010105974A (en) * 2008-10-31 2010-05-13 Tokyo Institute Of Technology Method for producing olefin
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene

Also Published As

Publication number Publication date
JP2014156408A (en) 2014-08-28
WO2014126264A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
Guo et al. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols
Kozlowski et al. Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol
TWI503170B (en) Hydrogenation catalyst and process for preparing alcohols by hydrogenation of carbonyl compounds
AU2014264717B2 (en) Process for the production of 1,3-butadiene
JP5565646B2 (en) Catalytic hydrogenation process of hydrogenation catalyst and ester-containing aldehyde mixture
Tao et al. Sustainable production of acrolein: Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol
Xiang et al. Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst
US20140309470A1 (en) PREPARATION METHOD OF PLATINUM/TIN/ALUMINA CATALYST FOR DIRECT DEHYDROGENATION OF n-BUTANE AND METHOD FOR PRODUCING C4 OLEFINS USING SAID CATALYST
Liu et al. Hydrogenolysis of glycerol with in-situ produced H2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReOx/SiO2 catalyst
Cho et al. Reductive amination of 2-propanol to monoisopropylamine over Co/γ-Al2O3 catalysts
Carlini et al. Guerbet condensation of methanol with n-propanol to isobutyl alcohol over heterogeneous bifunctional catalysts based on Mg–Al mixed oxides partially substituted by different metal components
US8785343B2 (en) Mesoporous carbon supported copper based catalyst, production and use thereof
CN101735004A (en) Method for producing isopropylbenzene by hydrogenolysis of alpha, alpha-dimethyl benzyl alcohol
Hao et al. Hydrogenolysis of glycerol to 1, 2‐propanediol catalyzed by Cu‐H4SiW12O40/Al2O3 in liquid phase
Segawa et al. Acetaldehyde production from ethanol by eco-friendly non-chromium catalysts consisting of copper and calcium silicate
Rassolov et al. Catalytic properties of nanostructured Pd–Ag catalysts in the liquid-phase hydrogenation of terminal and internal alkynes
US8921616B2 (en) Method for producing glycol from polyhydric alcohol
EP3917669B1 (en) Copper-iron-based catalytic composition comprising zeolites, method for producing such catalytic composition and process using such catalytic composition for the conversion of syngas to higher alcohols
JP6077325B2 (en) Method for producing conjugated diene compound
Torresi et al. Upgrading of diols by gas-phase dehydrogenation and dehydration reactions on bifunctional Cu-based oxides
CN106179373A (en) A kind of catalyst for decenal liquid-phase hydrogenatin isodecanol and preparation method thereof
Segawa et al. 1, 3-butadiene production by crotyl alcohol dehydration over solid acids and catalyst deactivation by water adsorption
US20200002244A1 (en) Process for Converting Butanol into Propylene
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
JP7160604B2 (en) Method for producing 1,3-butadiene and acetaldehyde diethyl acetal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250