JP2018141140A - Phthalate plastic chemical recycling method, and composition - Google Patents

Phthalate plastic chemical recycling method, and composition Download PDF

Info

Publication number
JP2018141140A
JP2018141140A JP2018023293A JP2018023293A JP2018141140A JP 2018141140 A JP2018141140 A JP 2018141140A JP 2018023293 A JP2018023293 A JP 2018023293A JP 2018023293 A JP2018023293 A JP 2018023293A JP 2018141140 A JP2018141140 A JP 2018141140A
Authority
JP
Japan
Prior art keywords
mass
nickel
acid
chemical recycling
recycling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018023293A
Other languages
Japanese (ja)
Inventor
輪太郎 ▲高▼橋
輪太郎 ▲高▼橋
Rintaro Takahashi
晋 千葉
Susumu Chiba
晋 千葉
雄亮 角田
Takesuke Tsunoda
雄亮 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JP2018141140A publication Critical patent/JP2018141140A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phthalate plastic chemical recycling method that makes it possible to produce a substance to be a raw material allowing efficient production of recycled products, the substance avoiding problems such as blockage of piping in a thermal decomposition reaction device.SOLUTION: A phthalate plastic chemical recycling method includes obtaining an aromatic compound by thermally decomposing phthalate plastic in the presence of a nickel catalyst.SELECTED DRAWING: None

Description

本発明は、フタル酸系プラスチックのケミカルリサイクル方法、及び組成物に関する。   The present invention relates to a method and a composition for chemical recycling of phthalic acid plastics.

フタル酸系プラスチックは、様々な用途に用いられている。中でも芳香族ジカルボン酸を主たるジカルボン酸成分とするポリエステル、特にポリエチレンテレフタレート(PET)は、強度、バリア性、及び光学透明度が優れることから衣類や飲料ボトルなど一般に広く使用されている。したがって、使用後廃棄される量も非常に多く、その処理方法が問題となっている。
これらフタル酸系プラスチックは使い捨てされる場合も多く、資源枯渇や最終処分場不足等の問題を解決するため、リサイクル技術の確立が望まれている。
現在、フタル酸系プラスチックのリサイクルは、廃プラスチックを再び同じ製品かまたは別のプラスチック製品の樹脂材料として利用する、いわゆるマテリアルリサイクルの手法が主になっている。しかし、このリサイクル手法は、高コストであることやリサイクル製品の市場規模が限界に近い状態であることから、新たなリサイクル技術の開発が求められている。
廃プラスチックのリサイクル方法として、上記マテリアルリサイクルの他に、高温で熱分解して合成ガスや分解油などの化学原料にしたり、または化学的に分解してモノマーに戻すなど、他の化学物質に転換して利用する、いわゆるケミカルリサイクルがある。
例えば、ケミカルリサイクル手法の一つとして、熱分解による油化が行われ、PETを熱分解することにより化学原料となるベンゼン等の芳香族炭化水素を得る方法が開示されている(例えば、特許文献1参照)。
また、高温水を用いてPETを熱分解し、PETの原材料であるテレフタル酸を得ることができる方法も開示されている(例えば、特許文献2参照)。
Phthalic acid plastics are used in various applications. Among them, polyesters having aromatic dicarboxylic acid as the main dicarboxylic acid component, particularly polyethylene terephthalate (PET), are widely used for clothing and beverage bottles because of their excellent strength, barrier properties, and optical transparency. Therefore, the amount discarded after use is very large, and the processing method becomes a problem.
These phthalate plastics are often disposable, and establishment of recycling technology is desired in order to solve problems such as resource depletion and shortage of final disposal sites.
At present, the recycling of phthalic acid-based plastics is mainly a so-called material recycling method in which waste plastic is used again as a resin material for the same product or another plastic product. However, since this recycling method is expensive and the market size of recycled products is close to the limit, development of a new recycling technology is required.
As a recycling method of waste plastic, in addition to the above material recycling, it can be pyrolyzed at a high temperature to become a chemical raw material such as synthesis gas or cracked oil, or it can be chemically decomposed and converted back to a monomer, etc. There is so-called chemical recycling that is used in the process.
For example, as one of chemical recycling methods, a method of obtaining an aromatic hydrocarbon such as benzene, which is a chemical raw material by thermally decomposing PET and thermally decomposing PET is disclosed (for example, Patent Documents). 1).
In addition, a method is disclosed in which terephthalic acid, which is a raw material of PET, can be obtained by thermally decomposing PET using high-temperature water (see, for example, Patent Document 2).

しかし、ケミカルリサイクルにおいて、熱分解により得られる原料がよりリサイクル製品の原材料に近い物質であるか、あるいは、熱分解反応中に装置内における配管閉塞の問題を生じさせない物質であるか等の観点からは、十分満足のいくケミカルリサイクル方法が提供できているとはいえなかった。
そこで、本発明は、リサイクル製品を効率よく生成できる原料となる物質であって、熱分解反応装置内における配管の閉塞等の問題を生じにくい物質を得ることができるケミカルリサイクル方法を提供することを目的とする。
However, in chemical recycling, from the viewpoint of whether the raw material obtained by pyrolysis is a substance that is closer to the raw material of the recycled product, or a substance that does not cause the problem of piping blockage in the apparatus during the pyrolysis reaction. Has not been able to provide a sufficiently satisfactory chemical recycling method.
Accordingly, the present invention provides a chemical recycling method capable of obtaining a substance that is a raw material capable of efficiently producing a recycled product and is less likely to cause problems such as blockage of piping in a thermal decomposition reactor. Objective.

前記課題を解決するための手段としては、以下の通りである。即ち、
本発明のケミカルリサイクル方法は、
フタル酸系プラスチックをニッケル触媒の存在下で熱分解することにより、芳香族化合物を得ることを特徴とする。
Means for solving the problems are as follows. That is,
The chemical recycling method of the present invention includes:
An aromatic compound is obtained by thermally decomposing a phthalic acid plastic in the presence of a nickel catalyst.

本発明によると、リサイクル製品を効率よく生成できる原料となる物質であって、熱分解反応装置内における配管の閉塞等の問題を生じにくい物質を得ることができるケミカルリサイクル方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical recycling method which can obtain the substance used as the raw material which can produce | generate a recycled product efficiently, Comprising: It is hard to produce problems, such as obstruction | occlusion of piping in a thermal decomposition reaction apparatus, can be provided. .

図1は、本発明で使用する熱分解反応装置の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a thermal decomposition reaction apparatus used in the present invention.

上記特許文献1に記載の方法でPETを熱分解すると、ベンゼンが生成される。しかし、ベンゼンを原料としてポリマーなどの最終製品を得ようとすると、多段階の反応を経て最終製品の前駆体へ変換する必要がある。つまり、ベンゼンを原料とした場合、リサイクル製品への生成効率は悪い。そこで、よりリサイクル製品の原材料に近い物質が生成できるケミカルリサイクル方法が望まれている。
上記特許文献2に記載の方法でPETを熱分解すると、PETの原材料であるテレフタル酸が生成される。しかし、テレフタル酸は高融点かつ昇華性を持つ物質であることから、分解反応中に大量に生成された場合、熱分解反応装置における配管の閉塞を引き起こす。したがって、テレフタル酸の生産量を制御する必要がある。
When PET is pyrolyzed by the method described in Patent Document 1, benzene is produced. However, in order to obtain a final product such as a polymer using benzene as a raw material, it is necessary to convert it into a precursor of the final product through a multistage reaction. In other words, when benzene is used as a raw material, the production efficiency of recycled products is poor. Therefore, a chemical recycling method that can generate a substance closer to the raw material of the recycled product is desired.
When PET is thermally decomposed by the method described in Patent Document 2, terephthalic acid, which is a raw material of PET, is generated. However, since terephthalic acid is a substance having a high melting point and sublimation properties, if it is produced in a large amount during the decomposition reaction, it will block the piping in the thermal decomposition reaction apparatus. Therefore, it is necessary to control the production amount of terephthalic acid.

(ケミカルリサイクル方法)
本発明のケミカルリサイクル方法は、上述したとおり、フタル酸系プラスチックをニッケル触媒の存在下で熱分解する工程を含むことを特徴とする。
本発明の方法により、ベンゼンの生成を抑え、テレフタル酸と安息香酸とを主に生成することができる。さらに、本発明によれば、安息香酸を高収率で生成できるため、テレフタル酸の生成量を、得られる分解生成物に対し30質量%以下に抑えることができ、熱分解反応中における配管の閉塞の問題を有効に防止することができる。
本発明のケミカルリサイクル方法は、より具体的には、フタル酸系プラスチックと、ニッケル触媒を混合する工程、及び前記混合工程で得られた混合物を加熱してフタル酸系プラスチックを分解する工程とを有する。
(Chemical recycling method)
As described above, the chemical recycling method of the present invention includes a step of thermally decomposing a phthalic acid plastic in the presence of a nickel catalyst.
By the method of the present invention, it is possible to suppress the production of benzene and mainly produce terephthalic acid and benzoic acid. Furthermore, according to the present invention, since benzoic acid can be produced in a high yield, the amount of terephthalic acid produced can be suppressed to 30% by mass or less with respect to the obtained decomposition product, and the piping during the pyrolysis reaction can be reduced. The problem of blockage can be effectively prevented.
More specifically, the chemical recycling method of the present invention includes a step of mixing a phthalic plastic and a nickel catalyst, and a step of decomposing the phthalic plastic by heating the mixture obtained in the mixing step. Have.

<ニッケル触媒>
ニッケル触媒としては、純粋のニッケルのみに限られず、酸化ニッケル、水酸化ニッケルであってもよい。また、シリカやアルミナ等の担体を用いたシリカ担持ニッケルやアルミナ担持ニッケルであってもよい。
ニッケルは単独で用いるとシンタリングにより凝集するため表面積の減少すなわち活性点の減少が懸念されることから表面積の増大すなわち活性点を増大することができる担持ニッケルであることが好ましい。担体としては特に制限はなく、目的に応じて適宜選択することができるが、熱、化学的に安定であり、毒性がないシリカ、アルミナであることが好ましい。
ニッケル触媒は、1種類単独で用いてもよいし、2種類以上を併用してもよい。
また、ニッケル触媒の他に他の金属触媒を用い、これらを併用してもよい。
<Nickel catalyst>
The nickel catalyst is not limited to pure nickel, but may be nickel oxide or nickel hydroxide. Further, it may be silica-supported nickel or alumina-supported nickel using a support such as silica or alumina.
Since nickel aggregates due to sintering when used alone, there is a concern about a decrease in surface area, that is, a decrease in active sites. Therefore, supported nickel that can increase the surface area, that is, increase the active points is preferable. The carrier is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably silica or alumina that is thermally and chemically stable and has no toxicity.
A nickel catalyst may be used individually by 1 type and may use 2 or more types together.
In addition to the nickel catalyst, another metal catalyst may be used, and these may be used in combination.

前記シリカ担持ニッケル、及び前記アルミナ担持ニッケルにおいて、ニッケルを担持する、シリカ担体及びアルミナ担体のBET比表面積としては、特に制限はなく、目的に応じて適宜選択することができる。但し、100m/g〜700m/gであると好ましく、300m/g〜600m/gであるとより好ましい。
比表面積が小さいと触媒の活性点減少してしまい、十分に触媒効果を得ることができないため、テレフタル酸の生成率が増加し、配管閉塞を引き起こす可能性がある。大きすぎる場合は活性点の増大による過剰な触媒効果により熱分解が進行しすぎてしまい、芳香族化合物が十分得られない。
担体のBET比表面積が100m/g以上であれば、十分に触媒効果を得ることができ、700m/g以下であれば、過剰な触媒効果により熱分解反応が進行しすぎてしまい、テレフタル酸、安息香酸の収率が低下し、ベンゼンが生成されてしまうという問題を有効に防止することができる。
前記BET比表面積の範囲を実現するものであれば担体の形状としては特に制限はなく、球、ペレット、中空、ハニカム、多孔質等目的、反応スケールに合わせて選択することができる。
In the silica-supported nickel and the alumina-supported nickel, the BET specific surface areas of the silica support and the alumina support supporting nickel are not particularly limited and can be appropriately selected depending on the purpose. However, preferable to be 100m 2 / g~700m 2 / g, more preferably a 300m 2 / g~600m 2 / g.
If the specific surface area is small, the active point of the catalyst is reduced, and a sufficient catalytic effect cannot be obtained. Therefore, the production rate of terephthalic acid increases, which may cause clogging of the pipe. If it is too large, thermal decomposition proceeds excessively due to an excessive catalytic effect due to an increase in active sites, and an aromatic compound cannot be obtained sufficiently.
If the BET specific surface area of the support is 100 m 2 / g or more, a sufficient catalytic effect can be obtained. If the BET specific surface area is 700 m 2 / g or less, the thermal decomposition reaction proceeds excessively due to an excessive catalytic effect, and terephthalate The yield of acid and benzoic acid decreases, and the problem that benzene is produced can be effectively prevented.
The shape of the carrier is not particularly limited as long as the BET specific surface area is realized, and can be selected according to the purpose and reaction scale such as sphere, pellet, hollow, honeycomb, porous and the like.

本発明において、BET比表面積は以下のようにして測定することができる。
[BET比表面積測定方法]
全自動BET比表面積測定装置(株式会社マウンテック製「Macsorb Model−1201」)を用いて、窒素吸着1点法により測定する。測定試料は200℃で2時間加熱する前処理を施す。
In the present invention, the BET specific surface area can be measured as follows.
[Method for measuring BET specific surface area]
Using a fully automatic BET specific surface area measuring apparatus ("Macsorb Model-1201" manufactured by Mountec Co., Ltd.), the measurement is performed by the nitrogen adsorption one-point method. The measurement sample is pretreated by heating at 200 ° C. for 2 hours.

前記シリカ担持ニッケル触媒の添加量としては、特に制限はなく、目的に応じて適宜選択することができる。但し、前記フタル酸系プラスチックに対し前記ニッケル触媒の添加量が2質量%〜40質量%であると好ましく、2質量%〜30質量%であるとより好ましい。
触媒添加量が少なすぎる場合、十分に触媒効果を得ることができないため、テレフタル酸の生成率が増加し、配管閉塞を引き起こす可能性がある。多すぎる場合は過剰な触媒効果により熱分解が進行しすぎてしまい、芳香族化合物を十分得ることができない。
シリカ担持ニッケル触媒の添加量が、2質量%以上であれば、反応速度の低下を防止でき、効率よく分解反応を行わせることができる。添加量が、40質量%以下であれば、熱分解反応が進行しすぎてしまいCO等気体成分、ベンゼンの生産量が増大し、芳香族化合物が十分得られないという問題を有効に防止することができる。また、2質量%〜30質量%であれば、ベンゼンの生産量を抑えながらも芳香族化合物を十分得ることができる。
There is no restriction | limiting in particular as addition amount of the said silica carrying nickel catalyst, According to the objective, it can select suitably. However, the addition amount of the nickel catalyst is preferably 2% by mass to 40% by mass and more preferably 2% by mass to 30% by mass with respect to the phthalic acid-based plastic.
If the amount of the catalyst added is too small, the catalyst effect cannot be sufficiently obtained, so that the production rate of terephthalic acid increases and there is a possibility that the piping is blocked. When the amount is too large, thermal decomposition proceeds excessively due to an excessive catalytic effect, and a sufficient aromatic compound cannot be obtained.
When the addition amount of the silica-supported nickel catalyst is 2% by mass or more, the reaction rate can be prevented from being lowered, and the decomposition reaction can be performed efficiently. If the addition amount is 40% by mass or less, the thermal decomposition reaction proceeds excessively, and the production amount of gaseous components such as CO 2 and benzene is increased, thereby effectively preventing the problem that aromatic compounds cannot be obtained sufficiently. be able to. Moreover, if it is 2 mass%-30 mass%, an aromatic compound can fully be obtained, suppressing the production amount of benzene.

<フタル酸系プラスチック>
フタル酸系プラスチックとしては、純粋なものに限らず、前記フタル酸系プラスチックを主成分として含む各物品を用いることができる。フタル酸系プラスチックの原料としては、芳香族ジカルボン酸を主たるジカルボン酸成分とする芳香族プラスチックが挙げられる。
芳香族プラスチックとしては、例えばエチレンテレフタレートを主たる繰返し単位としてなるポリエチレンテレフタレート(PET)、ポリ(エチレンテレフタレート/イソフタレート);テトラメチレンテレフタレートを主たる繰返し単位としてなるポリテトラメチレンテレフタレート;1,3−フェニレンテレフタレートを主たる繰返し単位としてなるポリ(1,3−フェニレンテレフタレート)等を挙げることができる。
これらは単独重合体でも共重合体のいずれでもよく、共重合体は芳香族ジカルボン酸を主たるジカルボン酸成分とするかぎり、脂肪族ジカルボン酸、例えばアジピン酸等をジカルボン酸成分として含有するものであってもよい。
前記フタル酸系プラスチックは添加剤を含有していてもよい。添加剤としては、特に制限はなく、酸化防止剤、難燃剤、核剤など公知のものであれば何れを用いてもよい。
本発明はフタル酸系プラスチックを対象とするが、例えばポリエチレン、ポリプロピレン、ポリスチレンなどフタル酸系プラスチック以外を含有するものであってもよい。
<Phthalic acid plastic>
The phthalic acid plastic is not limited to a pure one, and each article containing the phthalic plastic as a main component can be used. Examples of raw materials for phthalic acid plastics include aromatic plastics containing aromatic dicarboxylic acid as the main dicarboxylic acid component.
Aromatic plastics include, for example, polyethylene terephthalate (PET) having ethylene terephthalate as the main repeating unit; poly (ethylene terephthalate / isophthalate); polytetramethylene terephthalate having tetramethylene terephthalate as the main repeating unit; 1,3-phenylene terephthalate And poly (1,3-phenylene terephthalate) having a main repeating unit.
These may be either homopolymers or copolymers, and the copolymer contains an aliphatic dicarboxylic acid such as adipic acid as a dicarboxylic acid component as long as the aromatic dicarboxylic acid is the main dicarboxylic acid component. May be.
The phthalic acid plastic may contain an additive. The additive is not particularly limited, and any known additive such as an antioxidant, a flame retardant, and a nucleating agent may be used.
Although the present invention is directed to phthalic plastics, it may contain materials other than phthalic plastics such as polyethylene, polypropylene, and polystyrene.

<混合工程、及び熱分解工程>
熱分解温度は、フタル酸系プラスチックを熱分解出来る温度であれば適宜設定することができるが、300℃〜700℃が好ましく、350℃〜600℃がより好ましい。熱分解温度が300℃以上であれば、熱分解生成物を生成でき、十分に芳香族化合物を回収することができる。一方、熱分解温度が700℃以下であれば、脱酸素及び脱水素反応が進行しすぎてしまい炭化物やベンゼンの生成量が増大し、十分に目的の芳香族化合物を回収することができないという問題を有効に防止することができる。
350℃〜600℃であれば、フタル酸系プラスチックが溶融し触媒と均一に接触することで、分解生成物の反応むらを抑制することができる。
熱分解時の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、分解生成物の反応むらを抑制することができることから加圧状態であることが好ましい。加圧は、熱分解反応装置である反応容器に不活性気体を封入してもよいし、熱分解で発生した気体を反応容器内に留めることで行ってもよい。圧力は排圧弁を用いて制御することができる。
熱分解反応装置における熱分解槽の加熱方法としては、所定の熱分解温度まで昇温が可能であり且つその温度を保持出来る方法であれば、特に制限はなく、公知の何れの方法も使用することができる。例えば、気体あるいは液体燃料を燃焼させて燃焼熱を利用するバーナ方式や、抵抗加熱、誘電加熱、アーク加熱などの電気加熱を用いることができる。
熱分解時に原料化合物への熱効率向上を目的として鉱油などの液体、砂などの粉体等の熱媒体を混合してもよい。熱媒体を混合した場合、熱分解反応時に局所加熱を防止することができ、炭化物の生成抑制効果が得られる。
前記熱分解にて生成された熱分解物は、気化された後、凝縮槽で回収することができる。凝縮槽には排圧弁を連結させ、テドラーバッグを用いて気体成分を回収することができる。気体成分には二酸化炭素など不燃性気体と一酸化炭素、メタン、ブタンなど可燃性気体が含有される。
凝縮槽の冷却方法としては、熱分解物を冷却することが可能である限り、特に制限は無く、冷却ファンなどを用いた空冷方式、冷却媒体及び熱交換器を用いた方式、ペルチェ効果を利用し電圧差から温度勾配を作り出す冷却する方法等、公知の何れの方法を用いてもよい。
<Mixing process and pyrolysis process>
The thermal decomposition temperature can be appropriately set as long as it is a temperature at which the phthalic acid plastic can be thermally decomposed, but is preferably 300 ° C to 700 ° C, more preferably 350 ° C to 600 ° C. When the thermal decomposition temperature is 300 ° C. or higher, a thermal decomposition product can be generated, and an aromatic compound can be sufficiently recovered. On the other hand, if the thermal decomposition temperature is 700 ° C. or lower, the deoxygenation and dehydrogenation reactions proceed too much, increasing the amount of carbides and benzene produced, and the target aromatic compound cannot be sufficiently recovered. Can be effectively prevented.
If it is 350 to 600 degreeC, a phthalic acid type plastic will fuse | melt and it can contact the catalyst uniformly, and can suppress the reaction nonuniformity of a decomposition product.
There is no restriction | limiting in particular as a pressure at the time of thermal decomposition, Although it can select suitably according to the objective, Since the reaction nonuniformity of a decomposition product can be suppressed, it is preferable that it is a pressurized state. The pressurization may be performed by enclosing an inert gas in a reaction vessel which is a thermal decomposition reaction apparatus, or by keeping the gas generated by the thermal decomposition in the reaction vessel. The pressure can be controlled using a pressure relief valve.
The method for heating the pyrolysis tank in the pyrolysis reactor is not particularly limited as long as it can raise the temperature to a predetermined pyrolysis temperature and can maintain the temperature, and any known method can be used. be able to. For example, a burner method in which gas or liquid fuel is burned to use combustion heat, or electrical heating such as resistance heating, dielectric heating, or arc heating can be used.
A heat medium such as a liquid such as mineral oil or a powder such as sand may be mixed for the purpose of improving the thermal efficiency of the raw material compound during pyrolysis. When a heat medium is mixed, local heating can be prevented during the thermal decomposition reaction, and an effect of suppressing the formation of carbides can be obtained.
The pyrolyzate produced by the thermal decomposition can be recovered in a condensing tank after being vaporized. An exhaust pressure valve is connected to the condensing tank, and a gas component can be recovered using a Tedlar bag. The gaseous components include non-flammable gases such as carbon dioxide and flammable gases such as carbon monoxide, methane, and butane.
The cooling method of the condensing tank is not particularly limited as long as the pyrolyzate can be cooled, and uses an air cooling method using a cooling fan, a method using a cooling medium and a heat exchanger, and a Peltier effect. Any known method such as a cooling method for generating a temperature gradient from the voltage difference may be used.

<生成される芳香族化合物>
本発明のケミカルリサイクル法により、前記フタル酸系プラスチックの熱分解で得られる芳香族化合物としては、特に制限はなく、例えば、テレフタル酸、イソフタル酸、安息香酸、ベンゼン、トルエン、ビフェニル、トルイル酸などが挙げられる。
但し、本発明によると、ベンゼンの生成を抑えることができ、主としてテレフタル酸や安息香酸を得ることができる。
化学製品の原材料として芳香族化合物を使用する場合、例えばベンゼンを原材料としてポリスチレンを製造する場合には、ベンゼンからエチルベンゼン、エチルベンゼンからスチレンを合成し、さらに重合反応を経由する必要がある。各反応には、ベンゼン以外の物質やエネルギーの供給が必要となる。このような多段階の反応を経由せずに化学製品を得るためには、PETや添加剤である安息香酸ナトリウムなどの化学製品の原材料として直接利用可能であるテレフタル酸、安息香酸を得ることが好ましい。
本発明により、ベンゼンの生成を抑え、テレフタル酸や安息香酸を主に生成させることができる。よりリサイクル製品の原材料に近い物質が生成できるという点で、本発明の方法は、より実用的なケミカルリサイクル方法となっている。
さらに、本発明では、安息香酸をより高収率で得ることができ、得られる分解生成物に対しテレフタル酸の生成率を30%以下に抑えることができる。
テレフタル酸は、高融点かつ昇華性を持つため、熱分解生成物中に大量に含まれた場合、熱分解反応装置の配管を閉塞するおそれがある。そのため、比較的融点が低い安息香酸が生成されることが好ましい。テレフタル酸の生成量としては、配管閉塞が生じなければ特に制限はない。しかし、配管閉塞が発生した場合、熱分解で発生する可燃性ガスが発火することで装置が爆発する危険性があるため、配管閉塞が生じ難い発生量、即ち熱分解生成物中の含有量が30%以下であることが好ましい。
比較的融点が低い安息香酸がより高収率で得られる本発明の方法は、熱分解反応中における配管の閉塞の問題を有効に防止できるケミカルリサイクル方法となっている。
<Aromatic compound produced>
The aromatic compound obtained by the thermal decomposition of the phthalic acid plastic by the chemical recycling method of the present invention is not particularly limited, for example, terephthalic acid, isophthalic acid, benzoic acid, benzene, toluene, biphenyl, toluic acid, etc. Is mentioned.
However, according to the present invention, the production of benzene can be suppressed, and mainly terephthalic acid and benzoic acid can be obtained.
When an aromatic compound is used as a raw material for a chemical product, for example, when polystyrene is produced using benzene as a raw material, it is necessary to synthesize ethylbenzene from benzene, styrene from ethylbenzene, and further pass through a polymerization reaction. Each reaction requires the supply of substances and energy other than benzene. In order to obtain a chemical product without going through such a multi-step reaction, it is necessary to obtain terephthalic acid and benzoic acid that can be directly used as raw materials for chemical products such as PET and sodium benzoate as an additive. preferable.
According to the present invention, production of benzene can be suppressed, and terephthalic acid and benzoic acid can be mainly produced. The method of the present invention is a more practical chemical recycling method in that a substance closer to the raw material of the recycled product can be generated.
Furthermore, in the present invention, benzoic acid can be obtained in a higher yield, and the production rate of terephthalic acid can be suppressed to 30% or less with respect to the obtained decomposition product.
Since terephthalic acid has a high melting point and a sublimation property, when it is contained in a large amount in the pyrolysis product, there is a risk of blocking the piping of the pyrolysis reactor. Therefore, it is preferable to produce benzoic acid having a relatively low melting point. The amount of terephthalic acid produced is not particularly limited as long as the pipe is not clogged. However, when a piping blockage occurs, there is a risk that the device may explode due to the ignition of flammable gas generated by pyrolysis.Therefore, the generation amount that does not easily cause piping blockage, that is, the content in the pyrolysis product is small. It is preferable that it is 30% or less.
The method of the present invention in which benzoic acid having a relatively low melting point is obtained in a higher yield is a chemical recycling method that can effectively prevent the problem of clogging of piping during the thermal decomposition reaction.

<生成される分解生成物>
フタル酸系プラスチックに対して、本発明のケミカルリサイクル方法を適用すると、ベンゼンの生成は抑えられる。また、テレフタル酸や安息香酸は、好ましいバランスの生成量で生成される。安息香酸の生成が高められることで、テレフタル酸の生成量は、配管が閉塞するおそれがない程度に抑えられる。
フタル酸系プラスチックを熱分解すると、得られる分解生成物は、テレフタル酸、安息香酸、ビフェニル、トルイル酸、ベンゼン等の芳香族化合物や、ガス、残渣、揮発分、及びその他の成分等を含む。
本発明のケミカルリサイクル方法でフタル酸系プラスチックを熱分解すると、得られる本発明の分解生成物の構成は、以下のとおりとなる。
本発明の分解生成物は、テレフタル酸、及び安息香酸の芳香族化合物を含む。
本発明の分解生成物において、ベンゼンの占める割合は、5質量%以下である。より好ましくは1質量%以下、さらに好ましくは検出限界値(0.05質量%)以下である。
本発明の分解生成物において、テレフタル酸の占める割合は、30質量%以下である。より好ましくは、20質量%以上25質量%未満の範囲内である。
本発明の分解生成物において、テレフタル酸の占める割合が、20質量%以上25質量%未満の範囲内であるか、安息香酸の占める割合が、10質量%以上であると、テレフタル酸及び安息香酸の生成量のバランスがよく、より好ましい。
<Decomposition product to be produced>
When the chemical recycling method of the present invention is applied to a phthalic acid plastic, the production of benzene can be suppressed. In addition, terephthalic acid and benzoic acid are produced in a preferable balance. By increasing the production of benzoic acid, the amount of terephthalic acid produced is suppressed to such an extent that the piping is not likely to be clogged.
When a phthalic acid plastic is thermally decomposed, the resulting decomposition product contains aromatic compounds such as terephthalic acid, benzoic acid, biphenyl, toluic acid, and benzene, gas, residue, volatile matter, and other components.
When the phthalic acid plastic is pyrolyzed by the chemical recycling method of the present invention, the structure of the resulting decomposition product of the present invention is as follows.
The decomposition product of the present invention includes an aromatic compound of terephthalic acid and benzoic acid.
In the decomposition product of the present invention, the proportion of benzene is 5% by mass or less. More preferably, it is 1 mass% or less, More preferably, it is below a detection limit value (0.05 mass%).
In the decomposition product of the present invention, the proportion of terephthalic acid is 30% by mass or less. More preferably, it is in the range of 20% by mass or more and less than 25% by mass.
In the decomposition product of the present invention, when the proportion of terephthalic acid is in the range of 20% by mass or more and less than 25% by mass, or the proportion of benzoic acid is 10% by mass or more, terephthalic acid and benzoic acid The production amount is well balanced and more preferable.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
熱分解対象であるフタル酸系プラスチックには、PETを用い、熱分解反応装置としては、図1に示す装置を用いた。図1中、符号Xは試料・触媒を、符号1は熱分解槽を、符号2は電気炉を、符号3は撹拌機を、符号4は凝縮槽を、符号5は排圧弁を、符号6はテドラーバックを示す。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
PET was used for the phthalic acid plastic to be thermally decomposed, and the apparatus shown in FIG. 1 was used as the thermal decomposition reaction apparatus. In FIG. 1, reference numeral X denotes a sample / catalyst, reference numeral 1 denotes a thermal decomposition tank, reference numeral 2 denotes an electric furnace, reference numeral 3 denotes a stirrer, reference numeral 4 denotes a condensing tank, reference numeral 5 denotes an exhaust pressure valve, reference numeral 6. Indicates Tedlar back.

(製造例1)
<Ni/SiO−1の調整>
200mLビーカーにギ酸ニッケル(II)二水和物 1.5質量部、純水98.5質量部を量り取り、80℃に加熱し溶解させ0.08mol/Lギ酸ニッケル水溶液を得た。300mLナスフラスコにギ酸ニッケル水溶液96質量部とシリカゲル4質量部(BET比表面積300m/g、粒径40〜75μm)を加え、80℃で6時間含浸させ、その後減圧蒸留にて乾固し、乾固物を120℃で6時間乾燥した。
上記で調整した触媒を管状電気炉に封入し、窒素雰囲気下、550℃で2時間焼結させた。焼結後、系内気体を水素に変更し、500℃で2時間還元させ、シリカ担持ニッケルNi/SiO−1を得た。
(Production Example 1)
<Adjustment of Ni / SiO 2 -1>
In a 200 mL beaker, 1.5 parts by mass of nickel (II) formate dihydrate and 98.5 parts by mass of pure water were weighed, heated to 80 ° C. and dissolved to obtain a 0.08 mol / L nickel formate aqueous solution. Add 96 parts by mass of nickel formate aqueous solution and 4 parts by mass of silica gel (BET specific surface area 300 m 2 / g, particle size 40-75 μm) to a 300 mL eggplant flask, impregnate at 80 ° C. for 6 hours, and then dry by vacuum distillation. The dried product was dried at 120 ° C. for 6 hours.
The catalyst prepared above was sealed in a tubular electric furnace and sintered at 550 ° C. for 2 hours in a nitrogen atmosphere. After sintering, the gas in the system was changed to hydrogen and reduced at 500 ° C. for 2 hours to obtain silica-supported nickel Ni / SiO 2 -1.

(製造例2)
<Ni/SiO−2の調整>
製造例1においてシリカゲル(BET比表面積300m/g、粒径40〜75μm)をシリカゲル(BET比表面積300m/g、粒径75〜150μm)に代えた以外は同様にして、シリカ担持ニッケルNi/SiO−2を得た。
(Production Example 2)
<Adjustment of Ni / SiO 2 -2>
Except that silica gel (BET specific surface area 300 meters 2 / g, particle size 40~75Myuemu) Production Example 1 was changed to silica gel (BET specific surface area 300 meters 2 / g, particle size 75-150) in a similar manner, a silica supported nickel Ni / SiO 2 -2 was obtained.

(製造例3)
<Ni/SiO−3の調整>
製造例1においてシリカゲル(BET比表面積300m/g、粒径40〜75μm)をシリカゲル(BET比表面積550m/g、粒径75〜150μm)に代えた以外は同様にして、シリカ担持ニッケルNi/SiO−3を得た。
(Production Example 3)
<Preparation of Ni / SiO 2 -3>
In the same manner as in Production Example 1, except that silica gel (BET specific surface area 300 m 2 / g, particle size 40 to 75 μm) was replaced with silica gel (BET specific surface area 550 m 2 / g, particle size 75 to 150 μm), silica-supported nickel Ni / SiO 2 -3 was obtained.

(製造例4)
<Ni/SiO−4の調整>
製造例1においてシリカゲル(BET比表面積300m/g、粒径40〜75μm)をシリカゲル(BET比表面積700m/g、粒径75〜150μm)に代えた以外は同様にして、シリカ担持ニッケルNi/SiO−4を得た。
(Production Example 4)
<Adjustment of Ni / SiO 2 -4>
In the same manner as in Production Example 1, except that silica gel (BET specific surface area 300 m 2 / g, particle size 40 to 75 μm) was replaced with silica gel (BET specific surface area 700 m 2 / g, particle size 75 to 150 μm), silica-supported nickel Ni / SiO 2 -4 was obtained.

(製造例5)
<Ni/SiO−5の調整>
製造例1においてシリカゲル(BET比表面積300m/g、粒径40〜75μm)をシリカゲル(BET比表面積80m/g、粒径40〜75μm)に代えた以外は同様にして、シリカ担持ニッケルNi/SiO−5を得た。
(Production Example 5)
<Preparation of Ni / SiO 2 -5>
In the same manner as in Production Example 1, except that silica gel (BET specific surface area 300 m 2 / g, particle size 40 to 75 μm) was replaced with silica gel (BET specific surface area 80 m 2 / g, particle size 40 to 75 μm), silica-supported nickel Ni / to obtain a SiO 2 -5.

(製造例6)
<Ni/Alの調整>
製造例1において、シリカゲル(BET比表面積300m/g、粒径40〜75μm)をアルミナ(BET比表面積200m/g、粒径75μm)に変更した以外は同様にして、アルミナ担持ニッケルNi/Alを得た。
(Production Example 6)
<Adjustment of Ni / Al 2 O 3 >
In the same manner as in Production Example 1, except that silica gel (BET specific surface area 300 m 2 / g, particle size 40 to 75 μm) was changed to alumina (BET specific surface area 200 m 2 / g, particle size 75 μm), alumina-supported nickel Ni / Al 2 O 3 was obtained.

(実施例1)
凝縮器、テドラーバッグを備えた熱分解反応装置に、PETを30g、Ni/SiO−1を対PET質量部で5質量%封入し、350℃で1時間反応させた。反応終了後直ちに空冷し、分解生成物は凝集槽、熱分解槽、テドラーバッグにて捕集した。
凝集槽、熱分解槽で捕集した分解生成物をアセトンで抽出し、アセトン可溶分をGC−FID、GC−MSにより定性、定量分析を行った。アセトン不溶分は水酸化ナトリウム水溶液により抽出、固液分離を行った。固相は残渣とし、液相に塩酸を添加し生成した析出物をテレフタル酸(TPA)として捕集した。
実施例1の触媒、熱分解温度条件、及び得られた分解生成物のGC−FID、GC−MSによる定性、定量分析を行った結果を下記表1に示す。
Example 1
In a thermal decomposition reaction apparatus equipped with a condenser and a Tedlar bag, 30 g of PET and 5 mass% of Ni / SiO 2 -1 were encapsulated in a mass part of PET and reacted at 350 ° C. for 1 hour. Immediately after completion of the reaction, the reaction product was air-cooled, and the decomposition product was collected in a coagulation tank, a thermal decomposition tank, and a Tedlar bag.
The decomposition products collected in the coagulation tank and the thermal decomposition tank were extracted with acetone, and the acetone soluble components were qualitatively and quantitatively analyzed by GC-FID and GC-MS. Acetone insolubles were extracted with an aqueous sodium hydroxide solution and subjected to solid-liquid separation. The solid phase was a residue, and the precipitate formed by adding hydrochloric acid to the liquid phase was collected as terephthalic acid (TPA).
Table 1 below shows the results of qualitative and quantitative analysis by GC-FID and GC-MS of the catalyst of Example 1, thermal decomposition temperature conditions, and the obtained decomposition product.

表1の定量結果におけるテレフタル酸(TPA)、安息香酸、ベンゼンの評価基準は以下の通りである。
分解生成物における、テレフタル酸(TPA)の占める割合が、30質量%以上であると配管が閉塞するおそれがある。また、テレフタル酸の占める割合が、5質量%未満であると、他の芳香族化合物、特にベンゼンの占める割合が高くなるため、好ましくない。一方、テレフタル酸の占める割合が20質量%以上25質量%未満であると、安息香酸との生成量のバランスがよく、最も好ましい。テレフタル酸、安息香酸、ベンゼン等の芳香族化合物間での生成量のバランスを考慮し、評価基準を以下のように設定した。
The evaluation criteria for terephthalic acid (TPA), benzoic acid, and benzene in the quantitative results in Table 1 are as follows.
If the proportion of terephthalic acid (TPA) in the decomposition product is 30% by mass or more, the piping may be blocked. Further, if the proportion of terephthalic acid is less than 5% by mass, the proportion of other aromatic compounds, particularly benzene, is not preferable. On the other hand, when the proportion of terephthalic acid is 20% by mass or more and less than 25% by mass, the production amount balance with benzoic acid is good and the most preferable. Considering the balance of the amount of production between aromatic compounds such as terephthalic acid, benzoic acid and benzene, the evaluation criteria were set as follows.

<<テレフタル酸(TPA)>>
◎:20質量%以上25質量%未満
○:15質量%以上20質量%未満 又は 25質量%以上30質量%未満
△:5質量%以上15質量%未満
×:5質量%未満 又は 30質量%以上
<< Terephthalic acid (TPA) >>
: 20% by mass or more and less than 25% by mass ○: 15% by mass or more and less than 20% by mass or 25% by mass or more and less than 30% by mass Δ: 5% by mass or more and less than 15% by mass ×: Less than 5% by mass or 30% by mass or more

<<安息香酸>>
◎:10質量%以上25質量%未満
○:5質量%以上10質量%未満 又は 25質量%以上30質量%未満
△:5質量%未満
×:未検出
<< benzoic acid >>
◎: 10% by mass or more and less than 25% by mass ○: 5% by mass or more and less than 10% by mass or 25% by mass or more and less than 30% by mass Δ: Less than 5% by mass ×: Not detected

<<ベンゼン>>
○:未検出(検出限界(0.05質量%))以下
△:測定可能値以上5質量%未満
×:5質量%以上
<< benzene >>
○: not detected (detection limit (0.05% by mass)) or less Δ: measurable value or more and less than 5% by mass ×: 5% by mass or more

(実施例2)
実施例1において、反応温度を350℃から400℃に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 2)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the reaction temperature was changed from 350 ° C to 400 ° C. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例3)
実施例1において、Ni/SiO−1をNi/SiO−2に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 3)
In Example 1, except for changing the Ni / SiO 2 -1 to Ni / SiO 2 -2 was obtained decomposition product in the same manner as in Example 1. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例4)
実施例1において、Ni/SiO−1をNi/SiO−3に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 4)
A decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was replaced with Ni / SiO 2 -3 in Example 1. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例5)
実施例1において、Ni/SiO−1をNi/SiO−4に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 5)
A decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was replaced with Ni / SiO 2 -4 in Example 1. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例6)
実施例1において、Ni/SiO−1をNi/Alに代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 6)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was replaced with Ni / Al 2 O 3 . The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例7)
実施例1において、Ni/SiO−1の添加量を5質量%から2質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 7)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 2% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例8)
実施例1において、Ni/SiO−1の添加量を5質量%から10質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 8)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 10% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例9)
実施例1において、Ni/SiO−1の添加量を5質量%から20質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
Example 9
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 20% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例10)
実施例1において、Ni/SiO−1の添加量を5質量%から30質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 10)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 30% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例11)
実施例1において、Ni/SiO−1の添加量を5質量%から40質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 11)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 40% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例12)
実施例1において、Ni/SiO−1の添加量を5質量%から50質量%に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 12)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that the addition amount of Ni / SiO 2 -1 was changed from 5% by mass to 50% by mass. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例13)
実施例1において、Ni/SiO−1をニッケル単体に代えた以外は、実施例1と同様にして、分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 13)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was replaced with nickel alone. The analysis results of the obtained decomposition products are shown in Table 1 below.

(実施例14)
実施例1において、Ni/SiO−1をNi/SiO−5に代えた以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Example 14)
A decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was replaced with Ni / SiO 2 -5 in Example 1. The analysis results of the obtained decomposition products are shown in Table 1 below.

(比較例1)
実施例1において、Ni/SiO−1を添加しない以外は、実施例1と同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Comparative Example 1)
In Example 1, a decomposition product was obtained in the same manner as in Example 1 except that Ni / SiO 2 -1 was not added. The analysis results of the obtained decomposition products are shown in Table 1 below.

(比較例2)
実施例1において、Ni/SiO−1をCa(OH)に、添加量を5質量%から50質量%に、反応温度を350℃から700℃に代えた以外は、同様にして分解生成物を得た。得られた分解生成物の分析結果を下記表1に示す。
(Comparative Example 2)
In Example 1, Ni / SiO 2 -1 was decomposed in the same manner except that Ca (OH) 2 was added, the addition amount was changed from 5% by mass to 50% by mass, and the reaction temperature was changed from 350 ° C. to 700 ° C. I got a thing. The analysis results of the obtained decomposition products are shown in Table 1 below.


上記実施例の結果から、ニッケル触媒を使用するとベンゼンの生成が抑えられ、安息香酸を高収率で回収できることが確認できた。テレフタル酸(TPA)の生成量は配管閉塞が起こる可能性の少ない30質量%以下に抑えることができる。
一方、触媒を用いない比較例1については、TPA、安息香酸の生成が認められるものの、TPAの生成量が30質量%を超えており、熱分解反応中に配管の閉塞を起こす危険性が高いものとなっていた。
また、特許文献1に記載の「水酸化カルシウムの存在下、600℃から900℃の高温下で熱分解する」方法に類する比較例2の場合には、ベンゼンが多く生成されていた。TPAや安息香酸は得られなかった。

From the result of the said Example, when the nickel catalyst was used, the production | generation of benzene was suppressed and it has confirmed that benzoic acid could be collect | recovered with a high yield. The amount of terephthalic acid (TPA) produced can be suppressed to 30% by mass or less with a low possibility of pipe clogging.
On the other hand, in Comparative Example 1 using no catalyst, although TPA and benzoic acid are produced, the amount of TPA produced exceeds 30% by mass, and there is a high risk of clogging the piping during the thermal decomposition reaction. It was a thing.
Further, in the case of Comparative Example 2 similar to the method of “decomposing at a high temperature of 600 ° C. to 900 ° C. in the presence of calcium hydroxide” described in Patent Document 1, a large amount of benzene was produced. TPA and benzoic acid were not obtained.

以上示したように本発明によれば、リサイクル製品を効率よく生成できる原料となる物質であって、熱分解反応装置内における配管の閉塞等の問題を生じにくい物質を高収率に生成することができる。   As described above, according to the present invention, a substance that is a raw material capable of efficiently generating a recycled product and that is unlikely to cause problems such as blockage of piping in the thermal decomposition reaction apparatus is generated in a high yield. Can do.

本発明の態様は、例えば、以下のとおりである。
<1> フタル酸系プラスチックをニッケル触媒の存在下で熱分解することにより、芳香族化合物を得ることを特徴とするフタル酸系プラスチックのケミカルリサイクル方法。
<2> 前記ニッケル触媒が、シリカ担持ニッケル、アルミナ担持ニッケル、及びニッケルの少なくともいずれかを含有する前記<1>に記載のフタル酸系プラスチックのケミカルリサイクル方法である。
<3> 前記ニッケル触媒が、シリカ担持ニッケル、及びアルミナ担持ニッケルの少なくともいずれかである担持ニッケルを含有し、
前記担持ニッケルにおける担体のBET比表面積が、100m/g〜700m/gである前記<2>に記載のフタル酸系プラスチックのケミカルリサイクル方法である。
<4> 前記シリカ担持ニッケル触媒の添加量が、前記フタル酸系プラスチックに対して2質量%〜40質量%である前記<1>から<3>のいずれかに記載のフタル酸系プラスチックのケミカルリサイクル方法である。
<5> テレフタル酸、及び安息香酸を含有する組成物であって、
前記組成物のうち、ベンゼンの占める割合が、5質量%以下であり、テレフタル酸の占める割合が、30質量%以下であることを特徴とする組成物である。
<6> 前記組成物のうち、テレフタル酸の占める割合が、20質量%以上25質量%未満である、又は安息香酸の占める割合が、10質量%以上である前記<5>に記載の組成物である。
<7> フタル酸系プラスチックの熱分解物である前記<5>から<6>のいずれかに記載の組成物である。
Aspects of the present invention are as follows, for example.
<1> A chemical recycling method for phthalic acid plastics, wherein an aromatic compound is obtained by thermally decomposing phthalic acid plastics in the presence of a nickel catalyst.
<2> The chemical recycling method for a phthalic acid plastic according to <1>, wherein the nickel catalyst contains at least one of silica-supported nickel, alumina-supported nickel, and nickel.
<3> The nickel catalyst contains supported nickel that is at least one of silica-supported nickel and alumina-supported nickel,
The BET specific surface area of the carrier in the supported nickel is a chemical recycling process of phthalate-based plastic according to the a 100m 2 / g~700m 2 / g < 2>.
<4> The phthalic acid plastic chemical according to any one of <1> to <3>, wherein the addition amount of the silica-supported nickel catalyst is 2% by mass to 40% by mass with respect to the phthalic acid plastic. Recycling method.
<5> A composition containing terephthalic acid and benzoic acid,
In the composition, the proportion of benzene is 5% by mass or less, and the proportion of terephthalic acid is 30% by mass or less.
<6> The composition according to <5>, wherein the proportion of terephthalic acid in the composition is 20% by mass or more and less than 25% by mass, or the proportion of benzoic acid is 10% by mass or more. It is.
<7> The composition according to any one of <5> to <6>, wherein the composition is a thermal decomposition product of a phthalic acid plastic.

前記<1>から<4>のいずれかに記載のケミカルリサイクル方法、及び前記<5>から<7>のいずれかに記載の組成物によれば、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。   According to the chemical recycling method according to any one of <1> to <4> and the composition according to any one of <5> to <7>, the conventional problems are solved, and the book The object of the invention can be achieved.

特許第4565223号公報Japanese Patent No. 4565223 特許第5099416号公報Japanese Patent No. 5099416

Claims (7)

フタル酸系プラスチックをニッケル触媒の存在下で熱分解することにより、芳香族化合物を得ることを特徴とするフタル酸系プラスチックのケミカルリサイクル方法。   A chemical recycling method for phthalic acid plastics, characterized in that an aromatic compound is obtained by thermally decomposing phthalic acid plastics in the presence of a nickel catalyst. 前記ニッケル触媒が、シリカ担持ニッケル、アルミナ担持ニッケル、及びニッケルの少なくともいずれかを含有する請求項1に記載のフタル酸系プラスチックのケミカルリサイクル方法。   2. The chemical recycling method for a phthalic acid plastic according to claim 1, wherein the nickel catalyst contains at least one of silica-supported nickel, alumina-supported nickel, and nickel. 前記ニッケル触媒が、シリカ担持ニッケル、及びアルミナ担持ニッケルの少なくともいずれかである担持ニッケルを含有し、
前記担持ニッケルにおける担体のBET比表面積が、100m/g〜700m/gである請求項2に記載のフタル酸系プラスチックのケミカルリサイクル方法。
The nickel catalyst contains supported nickel that is at least one of silica-supported nickel and alumina-supported nickel;
The BET specific surface area of the carrier in the supported nickel, 100m 2 / g~700m 2 / g a chemical recycling process of phthalate-based plastic according to claim 2.
前記シリカ担持ニッケル触媒の添加量が、前記フタル酸系プラスチックに対して2質量%〜40質量%である請求項1から3のいずれかに記載のフタル酸系プラスチックのケミカルリサイクル方法。   4. The chemical recycling method for a phthalic acid plastic according to claim 1, wherein an addition amount of the silica-supported nickel catalyst is 2% by mass to 40% by mass with respect to the phthalic acid plastic. テレフタル酸、及び安息香酸を含有する組成物であって、
前記組成物のうち、ベンゼンの占める割合が、5質量%以下であり、テレフタル酸の占める割合が、30質量%以下であることを特徴とする組成物。
A composition containing terephthalic acid and benzoic acid,
The composition which the ratio for which benzene accounts among the said compositions is 5 mass% or less, and the ratio for which a terephthalic acid accounts is 30 mass% or less.
前記組成物のうち、テレフタル酸の占める割合が、20質量%以上25質量%未満である、又は安息香酸の占める割合が、10質量%以上である請求項5に記載の組成物。   The composition according to claim 5, wherein the proportion of terephthalic acid in the composition is 20% by mass or more and less than 25% by mass, or the proportion of benzoic acid is 10% by mass or more. フタル酸系プラスチックの熱分解物である請求項5から6のいずれかに記載の組成物。   The composition according to any one of claims 5 to 6, which is a thermal decomposition product of a phthalic acid plastic.
JP2018023293A 2017-02-28 2018-02-13 Phthalate plastic chemical recycling method, and composition Withdrawn JP2018141140A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036184 2017-02-28
JP2017036184 2017-02-28

Publications (1)

Publication Number Publication Date
JP2018141140A true JP2018141140A (en) 2018-09-13

Family

ID=63527781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023293A Withdrawn JP2018141140A (en) 2017-02-28 2018-02-13 Phthalate plastic chemical recycling method, and composition

Country Status (1)

Country Link
JP (1) JP2018141140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835551A (en) * 2022-05-19 2022-08-02 中国科学院广州能源研究所 Method for preparing monocyclic aromatic hydrocarbon by selective catalysis of PET waste plastics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523631A (en) * 2010-03-26 2013-06-17 ビーエーエスエフ コーポレーション Fatty acid hydrogenation process using promoted supported nickel catalyst
JP2014156408A (en) * 2013-02-14 2014-08-28 Jx Nippon Oil & Energy Corp Method for producing conjugated diene compound
JP2016515470A (en) * 2013-03-28 2016-05-30 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Methanation catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523631A (en) * 2010-03-26 2013-06-17 ビーエーエスエフ コーポレーション Fatty acid hydrogenation process using promoted supported nickel catalyst
JP2014156408A (en) * 2013-02-14 2014-08-28 Jx Nippon Oil & Energy Corp Method for producing conjugated diene compound
JP2016515470A (en) * 2013-03-28 2016-05-30 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Methanation catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
竹田徹: "NiO/SiO2を用いた廃プラスチックの油化における配管閉塞物質の分解に対する触媒効果", 日本大学理工学部学術講演予稿集, JPN6021051836, 28 November 2012 (2012-11-28), JP, pages 1201 - 1202, ISSN: 0004671285 *
飯島史彬: "シリカ担持酸化ニッケル触媒を用いた廃プラスチックの油化における配管閉塞物質の分解効果", 日本科学会第93春季年会講演予稿集2, JPN6021051835, 8 March 2013 (2013-03-08), JP, pages 234, ISSN: 0004671286 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835551A (en) * 2022-05-19 2022-08-02 中国科学院广州能源研究所 Method for preparing monocyclic aromatic hydrocarbon by selective catalysis of PET waste plastics

Similar Documents

Publication Publication Date Title
Dave et al. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst
Lan et al. Ionothermal synthesis of covalent triazine frameworks in a NaCl‐KCl‐ZnCl2 eutectic salt for the hydrogen evolution reaction
Duong-Viet et al. Silicon carbide foam as a porous support platform for catalytic applications
Ermakova et al. Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts
Tan et al. Propane dehydrogenation over In2O3–Ga2O3–Al2O3 mixed oxides
Montebelli et al. Washcoating and chemical testing of a commercial Cu/ZnO/Al2O3 catalyst for the methanol synthesis over copper open-cell foams
Guler et al. Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system
Cao et al. Isosorbide production from sorbitol over porous zirconium phosphate catalyst
Pham et al. Facile method for synthesis of nanosized β–MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde
Lu et al. The study of bimetallic Ni–Co/cordierite catalyst for cracking of tar from biomass pyrolysis
Marco et al. Carbon Nanofibers Modified with Heteroatoms as Metal‐Free Catalysts for the Oxidative Dehydrogenation of Propane
Han et al. Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1, 1-difluoroethane
Ghorbani et al. Mechanochemical preparation method for the fabrication of the mesoporous Ni–Al2O3 catalysts for hydrogen production via acetic acid steam reforming
CN101198546B (en) Method for producing nanoparticulate lanthanoide/boron compounds or solid substance mixtures containing nanoparticulate lanthanoide/boron compounds
JP2018141140A (en) Phthalate plastic chemical recycling method, and composition
Liu et al. Basic molten salt route to prepare porous SrTiO3 nanocrystals for efficient photocatalytic hydrogen production
Zhang et al. MoOx‐Doped Ordered Mesoporous Ni/Al2O3 Catalyst for CO Methanation
Cheng et al. Enhancing the selectivity of the hydrogenation of naphthalene to tetralin by high temperature water
Tsyrul’nikov et al. Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: A review
Hu et al. Microwave‐Assisted Rapid Preparation of Vermiculite‐Loaded Nano‐Nickel Oxide As a Highly Efficient Catalyst for Acetylene Carbonylation to Synthesize Acrylic Acid
Nguyen et al. Direct amination of poly (p-phenylene oxide) to substituted anilines over bimetallic Pd–Ru catalysts
Deka et al. Kinetic analysis of ceria nanoparticle catalysed efficient biomass pyrolysis for obtaining high-quality bio-oil
Joshi et al. Sustainable production of styrene from catalytic recycling of polystyrene over potassium promoted Fe–Al 2 O 3 catalyst
CN112675834B (en) Preparation method of uranium-based catalyst, catalyst prepared by preparation method and application of catalyst in preparation of chlorine gas by hydrogen chloride oxidation
Sohail et al. Thermal effect of ceramic nanofiller aluminium nitride on polyethylene properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220426