WO2014129248A1 - Method for producing 1,3-butadiene from ethanol in selective manner - Google Patents

Method for producing 1,3-butadiene from ethanol in selective manner Download PDF

Info

Publication number
WO2014129248A1
WO2014129248A1 PCT/JP2014/051094 JP2014051094W WO2014129248A1 WO 2014129248 A1 WO2014129248 A1 WO 2014129248A1 JP 2014051094 W JP2014051094 W JP 2014051094W WO 2014129248 A1 WO2014129248 A1 WO 2014129248A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
butadiene
producing
ethanol
weight
Prior art date
Application number
PCT/JP2014/051094
Other languages
French (fr)
Japanese (ja)
Inventor
中谷哲
馬場俊秀
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2015501364A priority Critical patent/JPWO2014129248A1/en
Publication of WO2014129248A1 publication Critical patent/WO2014129248A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead

Definitions

  • the present invention relates to a novel 1,3-butadiene production method for producing 1,3-butadiene, which is a raw material for synthetic rubber, which is important in many industrial fields including the automotive industry field and the electronic material field, from ethanol in one pass.
  • This application claims the priority of Japanese Patent Application No. 2013-031930 for which it applied to Japan on February 21, 2013, and uses the content here.
  • 1,3-butadiene has been produced mainly by refining the C4 fraction produced as a by-product during the synthesis of ethylene from petroleum.
  • biomass-derived raw materials instead of petroleum-derived chemical industrial raw materials, attempts to derive chemical industrial raw materials from biomass-derived raw materials have attracted attention.
  • bioethanol derived from biomass such as sugar cane and corn is 1,3-
  • the technology to convert to butadiene is eagerly desired.
  • Patent Document 1 As a method for obtaining 1,3-butadiene using alcohol as a raw material, a method using MgO as a catalyst (Patent Document 1), a method using a mixture of Al 2 O 3 and ZnO (mixing ratio: 60/40) (non-patent document) Patent Document 1) and the like are known.
  • the manufacturing technology is not as delicate and established as compared to naphtha cracking, the catalyst is easily deteriorated by heat and difficult to recycle, resulting in high costs, low alcohol conversion efficiency, and yield of 1,3-butadiene.
  • an object of the present invention is to provide a method for producing 1,3-butadiene which obtains 1,3-butadiene from ethanol by a simple and industrially advantageous method.
  • the present invention is a method for producing 1,3-butadiene that obtains 1,3-butadiene from ethanol, and is characterized in that ethanol is brought into contact with a catalyst containing germanium oxide and magnesium oxide under heating.
  • a method for producing 1,3-butadiene is provided.
  • content of each component in a catalyst is in the following range.
  • Germanium oxide content 0.1-90% by weight
  • Magnesium oxide content 10-90% by weight
  • the weight ratio of magnesium oxide / germanium oxide in the catalyst is preferably 0.1 to 200.
  • the catalyst containing germanium oxide and magnesium oxide preferably further contains an inorganic oxide other than the above having a specific surface area of 10 m 2 / g or more.
  • content of each component in a catalyst is in the following range.
  • Germanium oxide content 0.1-30% by weight
  • Magnesium oxide content 10-90% by weight
  • the inorganic oxide other than germanium oxide and magnesium oxide is preferably silicon dioxide.
  • the raw material is brought into contact with the catalyst under hydrogen conditions.
  • the method for producing 1,3-butadiene of the present invention preferably uses a fixed bed type gas phase continuous flow reactor.
  • the present invention relates to the following.
  • the catalyst containing germanium oxide and magnesium oxide is a catalyst further containing an inorganic oxide other than the above having a specific surface area of 10 m 2 / g or more.
  • the method for producing 1,3-butadiene according to (5), wherein the content of each component in the catalyst (100% by weight) is as follows.
  • Germanium oxide content 0.1-30% by weight
  • Magnesium oxide content 10-90% by weight
  • Manufacturing method (8) The method for producing 1,3-butadiene according to any one of (5) to (7), wherein the inorganic oxide other than germanium oxide and magnesium oxide is silicon dioxide.
  • the catalyst is prepared by mixing germanium oxide, a magnesium compound and an inorganic oxide other than the above, suspending in a solvent, kneading using an auto mill, drying, and firing (heat treatment)
  • the contact time between ethanol and the catalyst is 1 to 50 seconds, and the ethanol gas space velocity is in the range of 50 to 5000 hr ⁇ 1.
  • the selectivity of 1,3-butadiene 75 minutes after the start of the reaction at the reaction temperature of 400 ° C. and the space velocity of 360 hr ⁇ 1 is 55% or more, and the reaction temperature is 400 ° C. and the space velocity.
  • 1,3-butadiene can be selectively produced from ethanol by a simple method.
  • the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.
  • the method for producing 1,3-butadiene according to the present invention is characterized in that ethanol is brought into contact with a catalyst containing germanium oxide and magnesium oxide under heating.
  • the catalyst of the present invention is characterized by containing germanium oxide and magnesium oxide, and is preferably a joined catalyst.
  • Magnesium oxide is an active species in the catalytic reaction for obtaining 1,3-butadiene from ethanol.
  • Germanium oxide acts as a co-catalyst and exhibits the effect of improving the selectivity of 1,3-butadiene.
  • a specific surface area of a catalyst it is 10 m ⁇ 2 > / g or more, for example, Preferably it is 80 m ⁇ 2 > / g or more, More preferably, it is 100 m ⁇ 2 > / g or more, More preferably, it is 120 m ⁇ 2 > / g or more.
  • an upper limit does not have a restriction
  • the catalyst of this application may contain the inorganic oxide whose specific surface areas other than a germanium oxide and a magnesium oxide are 10 m ⁇ 2 > / g or more. In order to improve the surface area, it is preferable to use a catalyst in which the inorganic oxide is used as a carrier or a binder and germanium oxide and magnesium oxide are joined.
  • silicon dioxide can be preferably used as the inorganic oxide other than germanium oxide and magnesium oxide.
  • the specific surface area (BET specific surface area) of the inorganic oxide is, for example, about 10 to 1000 m 2 / g, preferably 50 to 1000 m 2 / g, more preferably 100 to 1000 m 2 / g. If the specific surface area of the inorganic oxide is out of the above range, it tends to be difficult to stabilize fine particles of the mixed oxide of germanium oxide and magnesium oxide which are active species. For example, if the specific surface area of the inorganic oxide exceeds the above range, the pore diameter becomes extremely small, so that pore clogging due to carbon deposition is liable to occur and the diffusion of the substrate to the active site is inhibited. There is a tendency to increase speed.
  • the shape of the inorganic oxide is not particularly limited, and various shapes such as a granular material, a lump, a layer, a porous shape, a so-called honeycomb structure can be used.
  • inorganic oxide examples include colloidal silica (silica sol), silica gel, fumed silica, diatomaceous earth, mica, mesoporous silica (MCM-41), zeolite, and silicoaluminophosphate. These can be used alone or in admixture of two or more.
  • the inorganic oxide for example, trade name “Snowtex 30” (silicon dioxide content ratio: 30 wt%, specific surface area: 300 ⁇ 100 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), product Name “Snowtex XS” (silicon dioxide content: 20% by weight, specific surface area: 800 ⁇ 200 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), trade name “AEROSIL380PE” (silicon dioxide content: 99.9% by weight) %, Specific surface area: 380 ⁇ 30 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) and the like may be used.
  • the catalyst of the present invention is preferably a catalyst obtained by joining germanium oxide and magnesium oxide, or a catalyst obtained by further joining the above catalyst to an inorganic oxide other than the above.
  • Germanium oxide content for example 0.1 to 90% by weight, preferably 5 to 80% by weight, particularly preferably 30 to 70% by weight
  • Magnesium oxide content for example 10 to 90% by weight, preferably 20 to 80% by weight, particularly preferably 30 to 70% by weight
  • the weight ratio of magnesium oxide / germanium oxide in the catalyst is, for example, 0.1 to 200, preferably 0.3 to 20, and more preferably 0.5 to 5.
  • the content of each component in the catalyst (100% by weight) is preferably in the following range.
  • Germanium oxide content for example 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 5 to 10% by weight
  • Magnesium oxide content for example, 10 to 90% by weight, preferably 65 to 87% by weight, particularly preferably 70 to 85% by weight
  • Inorganic oxide content other than the above for example, 0.1 to 89.9% by weight, preferably 3 to 25% by weight, particularly preferably 5 to 20% by weight
  • the weight ratio of magnesium oxide / germanium oxide in the catalyst is, for example, 0.1 to 200, preferably 1 to 170, and more preferably 6 to 18.
  • germanium oxide content in the catalyst is below the above range, the effect of improving the 1,3-butadiene selectivity tends to be difficult to obtain.
  • germanium oxide content exceeds the above range, the catalyst activity is not easily dispersed on the catalyst, but rather the catalytic activity tends to be reduced by blocking the active sites.
  • magnesium oxide content in the catalyst is below the above range, the active sites are reduced, and the butadiene yield tends to be greatly reduced.
  • the magnesium oxide content exceeds the above range, the basicity of the catalyst tends to increase and the n-butanol selectivity tends to increase.
  • Examples of the method for preparing the catalyst include a kneading method, an impregnation method, a vapor deposition method, and a supported complex decomposition method.
  • a kneading method it is preferable to employ a kneading method because a catalyst capable of producing 1,3-butadiene with an excellent selectivity can be prepared.
  • germanium oxide and a magnesium compound for example, magnesium hydroxide, magnesium nitrate, magnesium oxalate, etc.
  • an inorganic oxide other than the above for example, silicon dioxide
  • a solvent for example, water, Suspended in acetone, alcohol, or a mixture thereof, etc., kneaded using an auto mill, etc., dried and baked (heat treatment), and germanium oxide and magnesium oxide are bonded with a binder containing the inorganic oxide.
  • Prepared catalysts can be prepared.
  • the method for producing 1,3-butadiene according to the present invention is a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol, wherein ethanol is converted into the above catalyst (germanium oxide and magnesium oxide under heating). A catalyst obtained by bonding, or a catalyst obtained by bonding the catalyst to an inorganic oxide other than the above is contacted.
  • the raw material ethanol is not particularly limited, and examples thereof include bioethanol derived from biomass such as sugar cane and corn, and synthetic ethanol derived from petroleum or natural gas.
  • biomass-derived bioethanol 1,3-butadiene useful as a raw material for synthetic rubber is industrially produced from bioethanol in place of conventional petroleum-derived chemical industrial materials. It is preferable in that it can greatly contribute to the reduction of greenhouse gases.
  • the method for producing 1,3-butadiene of the present invention can be performed by a conventional method such as a batch method, a semi-batch method, or a continuous method.
  • a conventional method such as a batch method, a semi-batch method, or a continuous method.
  • the usage rate of the raw material ethanol can be made extremely high.
  • the method for producing 1,3-butadiene according to the present invention uses the above catalyst, raw ethanol can be converted at a higher conversion rate than in the past even if a continuous method is adopted, and unreacted raw material can be converted.
  • the usage rate of the raw material ethanol can be improved to an extremely high level. Therefore, a continuous system capable of separating and recovering 1,3-butadiene simply and efficiently can be suitably employed.
  • examples of the method of bringing ethanol into contact with the catalyst include a suspension bed method, a fluidized bed method, and a fixed bed method.
  • the present invention may be either a gas phase method or a liquid phase method.
  • the catalyst layer is formed by filling the above-mentioned catalyst into a reaction tube, particularly in that mass synthesis is possible, operation workload is low, and catalyst recovery and regeneration treatment is simple. It is preferable to use a fixed bed type gas phase continuous flow reaction apparatus in which a gas is circulated and reacted in the gas phase.
  • the raw ethanol gas may be supplied to the reactor without dilution, and is appropriately determined depending on the inert gas such as nitrogen, helium, argon, carbon dioxide, or hydrogen partially involved in the reaction. It may be diluted and fed to the reactor.
  • the inert gas such as nitrogen, helium, argon, carbon dioxide, or hydrogen partially involved in the reaction. It may be diluted and fed to the reactor.
  • contacting the raw material with a catalyst in the presence of hydrogen promotes a selective hydrogenation reaction of crotonaldehyde to crotyl alcohol in the reaction step, Since condensation and decomposition of crotonaldehyde are suppressed, it is preferable in that the selectivity of 1,3 butadiene can be improved.
  • the molar ratio of the raw material to be brought into contact with the catalyst and hydrogen is, for example, about 10/90 to 90/10, preferably 20/80 to 80/20, and particularly preferably 40/60 to 60/40. .
  • the reaction temperature is, for example, about 300 to 500 ° C., preferably 350 to 450 ° C. If the reaction temperature is lower than the above range, sufficient catalytic activity may not be obtained, the reaction rate may be reduced, and the production efficiency may be reduced. On the other hand, when the reaction temperature exceeds the above range, the catalytic activity may be deteriorated.
  • the reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. In addition, it is preferable to set to 1 Mpa or less from viewpoints of manufacturing efficiency, apparatus configuration, and the like.
  • the contact time between the raw ethanol and the catalyst is, for example, about 1 to 50 seconds, preferably 5 to 30 seconds. If the contact time is too short, ethanol does not convert to butadiene, and unreacted ethanol and acetaldehyde, crotonaldehyde, and the like as intermediates tend to increase at the reactor outlet. On the other hand, if the contact time with the catalyst becomes too long, condensation or polymerization of acetaldehyde, butadiene or the like proceeds and a large amount of high-boiling components tend to be generated.
  • Contact time between feedstock ethanol and the catalyst can be controlled by adjusting the feed rate of the raw material ethanol, for example, ethanol gas space velocity 50 ⁇ 5000 hr -1 (preferably 100 ⁇ 1000 hr -1, particularly preferably It is preferable to adjust within the range of 200 to 500 hr ⁇ 1 ).
  • reaction product After completion of the reaction, the reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, extraction, etc., or a separation means combining these.
  • separation means such as filtration, concentration, distillation, extraction, etc., or a separation means combining these.
  • the catalyst of the present invention has a structure in which magnesium oxide and germanium oxide, which are catalytic active components, are joined, the catalytic active component is difficult to elute in the reaction solution even in an organic synthesis reaction. It can be easily recovered by a physical separation technique such as separation. Moreover, unreacted raw material ethanol may be recovered and reused.
  • air is circulated in the reactor under heating at, for example, about 350 to 500 ° C., preferably 450 to 500 ° C., for example, for 1 to 24 hours, preferably 2 to 4 hours.
  • the catalyst activity is recovered to 90% or more with respect to the unused catalyst, and can be reused in the reaction as it is.
  • ethanol is brought into contact with the catalyst under heating, so that 1,3-butadiene is produced with excellent ethanol conversion and excellent selectivity. Can do.
  • the method for producing 1,3-butadiene according to the present invention can selectively produce 1,3-butadiene, for example, after the start of the reaction when the reaction is carried out under conditions of a reaction temperature of 400 ° C. and a space velocity of 360 hr ⁇ 1.
  • the selectivity for 1,3-butadiene after 75 minutes is, for example, 55% or more, preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more.
  • the method for producing 1,3-butadiene of the present invention is excellent in the conversion rate of ethanol.
  • the rate is, for example, 40% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the 1,3-butadiene production method of the present invention has a very high selectivity for 1,3-butadiene as described above, the ethanol usage rate is improved by reusing unreacted ethanol in the reaction system. 1,3-butadiene can be produced industrially efficiently.
  • Example 1 used the catalyst obtained in Preparation Example 1, Example 2 used in Preparation Example 2, and Comparative Example 1 used in Preparation Example 3.
  • Example 3 used the catalyst obtained in Preparation Example 4
  • Example 4 used the preparation obtained in Preparation Example 2
  • Examples 5 to 7 used the catalysts obtained in Preparation Examples 5 to 7, respectively.
  • 1,3-butadiene can be selectively produced from ethanol by a simple method.
  • the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.

Abstract

Provided is a 1,3-butadiene production method for producing 1,3-butadiene from ethanol in a selective manner utilizing a simple and industrially advantageous process. The 1,3-butadiene production method according to the present invention is a method for producing 1,3-butadiene from ethanol in a selective manner, and is characterized in that a raw material as mentioned below is brought into contact with a catalyst as mentioned below while heating. The raw material: a raw material containing ethanol. The catalyst: a catalyst comprising germanium oxide and magnesium oxide.

Description

エタノールから1,3-ブタジエンを選択的に製造する方法Method for selectively producing 1,3-butadiene from ethanol
 本発明は、自動車産業分野、電子材料分野を含む多くの産業分野において重要な合成ゴムの原料である1,3-ブタジエンをエタノールからワンパスで製造する新規な1,3-ブタジエンの製造方法に関する。本願は、2013年2月21日に日本に出願した特願2013-031930号の優先権を主張し、その内容をここに援用する。 The present invention relates to a novel 1,3-butadiene production method for producing 1,3-butadiene, which is a raw material for synthetic rubber, which is important in many industrial fields including the automotive industry field and the electronic material field, from ethanol in one pass. This application claims the priority of Japanese Patent Application No. 2013-031930 for which it applied to Japan on February 21, 2013, and uses the content here.
 従来、1,3-ブタジエンは主に石油からエチレンを合成する際に副生するC4留分を精製することにより製造されてきた。しかし、近年、石油由来の化学工業原料に代わって、バイオマス由来原料から化学工業原料を誘導しようとする試みが注目されており、例えば、サトウキビやトウモロコシなどのバイオマス由来のバイオエタノールを1,3-ブタジエンに変換する技術が切望されている。 Conventionally, 1,3-butadiene has been produced mainly by refining the C4 fraction produced as a by-product during the synthesis of ethylene from petroleum. However, in recent years, instead of petroleum-derived chemical industrial raw materials, attempts to derive chemical industrial raw materials from biomass-derived raw materials have attracted attention. For example, bioethanol derived from biomass such as sugar cane and corn is 1,3- The technology to convert to butadiene is eagerly desired.
 アルコールを原料として1,3-ブタジエンを得る方法としては、触媒としてMgOを使用する方法(特許文献1)、Al23とZnOの混合物(混合比:60/40)を使用する方法(非特許文献1)等が知られている。しかし、製造技術がナフサクラッキングに比べ繊細で確立されていないこと、触媒が熱により劣化し易くリサイクルが困難であるためコストが嵩むこと、アルコールの変換効率が低く、1,3-ブタジエンの収率が悪いこと等から、石油由来の化学工業原料を使用した製造方法に対抗できる利点を見出すことができず、実用化が進まないのが現状である。 As a method for obtaining 1,3-butadiene using alcohol as a raw material, a method using MgO as a catalyst (Patent Document 1), a method using a mixture of Al 2 O 3 and ZnO (mixing ratio: 60/40) (non-patent document) Patent Document 1) and the like are known. However, the manufacturing technology is not as delicate and established as compared to naphtha cracking, the catalyst is easily deteriorated by heat and difficult to recycle, resulting in high costs, low alcohol conversion efficiency, and yield of 1,3-butadiene. However, it is difficult to find an advantage that can compete with the manufacturing method using petroleum-derived chemical industrial raw materials, and the practical use is not progressing.
米国特許第2423681号明細書US Pat. No. 2,436,681
 従って、本発明の目的は、簡便且つ工業的に有利な方法でエタノールから1,3-ブタジエンを得る1,3-ブタジエンの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing 1,3-butadiene which obtains 1,3-butadiene from ethanol by a simple and industrially advantageous method.
 本発明者等は、上記課題を解決するため鋭意検討した結果、加熱環境下でエタノールを特定の触媒に接触させると、極めて優れた選択率で1,3-ブタジエンが得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors have found that 1,3-butadiene can be obtained with extremely excellent selectivity when ethanol is brought into contact with a specific catalyst under a heating environment. The present invention has been completed based on these findings.
 すなわち、本発明は、エタノールから1,3-ブタジエンを得る1,3-ブタジエンの製造方法であって、加熱下で、エタノールを酸化ゲルマニウムと酸化マグネシウムと含有する触媒に接触させることを特徴とする1,3-ブタジエンの製造方法を提供する。 That is, the present invention is a method for producing 1,3-butadiene that obtains 1,3-butadiene from ethanol, and is characterized in that ethanol is brought into contact with a catalyst containing germanium oxide and magnesium oxide under heating. A method for producing 1,3-butadiene is provided.
 本発明では、触媒(100重量%)における各成分の含有量が下記範囲内であることが好ましい。
 酸化ゲルマニウムの含有量:0.1~90重量%
 酸化マグネシウム含有量:10~90重量%
In this invention, it is preferable that content of each component in a catalyst (100 weight%) is in the following range.
Germanium oxide content: 0.1-90% by weight
Magnesium oxide content: 10-90% by weight
 また、本発明では、触媒における酸化マグネシウム/酸化ゲルマニウムの重量比率としては、0.1~200が好ましい。 In the present invention, the weight ratio of magnesium oxide / germanium oxide in the catalyst is preferably 0.1 to 200.
 また、本発明では、前記酸化ゲルマニウムと酸化マグネシウムとを含有する触媒が、さらに比表面積が10m2/g以上である上記以外の無機酸化物を含有することが好ましい。 In the present invention, the catalyst containing germanium oxide and magnesium oxide preferably further contains an inorganic oxide other than the above having a specific surface area of 10 m 2 / g or more.
 また、本発明では、触媒(100重量%)における各成分の含有量が下記範囲内であることが好ましい。
 酸化ゲルマニウムの含有量:0.1~30重量%
 酸化マグネシウム含有量:10~90重量%
 前記以外の無機酸化物含有量:0.1~89.9重量%
Moreover, in this invention, it is preferable that content of each component in a catalyst (100 weight%) is in the following range.
Germanium oxide content: 0.1-30% by weight
Magnesium oxide content: 10-90% by weight
Inorganic oxide content other than the above: 0.1 to 89.9% by weight
 また、本発明では、前記酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物が、二酸化珪素であることが好ましい。 In the present invention, the inorganic oxide other than germanium oxide and magnesium oxide is preferably silicon dioxide.
 また、本発明の1,3-ブタジエンの製造方法は、水素条件下で原料を触媒に接触させることが好ましい。 Further, in the method for producing 1,3-butadiene of the present invention, it is preferable that the raw material is brought into contact with the catalyst under hydrogen conditions.
 また、本発明の1,3-ブタジエンの製造方法は、固定床式気相連続流通反応装置を使用することが好ましい。 In addition, the method for producing 1,3-butadiene of the present invention preferably uses a fixed bed type gas phase continuous flow reactor.
 すなわち、本発明は以下に関する。 
(1)エタノールから1,3-ブタジエンを得る1,3-ブタジエンの製造方法であって、加熱下で、エタノールを酸化ゲルマニウムと酸化マグネシウムとを含有する触媒に接触させることを特徴とする1,3-ブタジエンの製造方法。
(2)触媒(100重量%)における各成分の含有量が下記の通りである(1)に記載の1,3-ブタジエンの製造方法。
 酸化ゲルマニウムの含有量:0.1~90重量%
 酸化マグネシウム含有量:10~90重量%
(3)触媒における酸化マグネシウム/酸化ゲルマニウムの重量比率が0.1~200である(1)又は(2)に記載の1,3-ブタジエンの製造方法。
(4)触媒の比表面積が、10m2/g以上である(1)~(3)の何れかに記載の1,3-ブタジエンの製造方法。
(5)前記酸化ゲルマニウムと酸化マグネシウムとを含有する触媒が、さらに比表面積が10m2/g以上である上記以外の無機酸化物を含有する触媒である(1)~(4)の何れかに記載の1,3-ブタジエンの製造方法。
(6)触媒(100重量%)における各成分の含有量が下記の通りである(5)に記載の1,3-ブタジエンの製造方法。
 酸化ゲルマニウムの含有量:0.1~30重量%
 酸化マグネシウム含有量:10~90重量%
 前記以外の無機酸化物含有量:0.1~89.9重量%
(7)触媒が、酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物を担体もしくはバインダーとして用い、酸化ゲルマニウムと酸化マグシウムとを接合した触媒である(5)又は(6)に記載の1,3-ブタジエンの製造方法。
(8)酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物が、二酸化珪素である(5)~(7)の何れかに記載の1,3-ブタジエンの製造方法。
(9)酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物の比表面積(BET比表面積)が10~1000m2/gである(5)~(8)の何れかに記載の1,3-ブタジエンの製造方法。
(10)酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物が、コロイダルシリカ(シリカゾル)、シリカゲル、フュームドシリカ、珪藻土、雲母、メソポーラスシリカ(MCM-41)、ゼオライト、及びシリコアルミノリン酸塩からなる群より選ばれた少なくとも1つである(5)~(9)の何れかに記載の1,3-ブタジエンの製造方法。
(11)前記触媒の調製方法が、混練法、含浸法、気相蒸着法、又は担持錯体分解法である(1)~(10)の何れかに記載の1,3-ブタジエンの製造方法。
(12)前記触媒の調製方法が、混練法である(1)~(11)の何れかに記載の1,3-ブタジエンの製造方法。
(13)前記触媒の調製方法が、酸化ゲルマニウムとマグネシウム化合物と前記以外の無機酸化物とを混合して、溶媒中に懸濁させ、オートミルを使用して混練し、乾燥、焼成(加熱処理)を経て酸化ゲルマニウムと酸化マグネシウムが該無機酸化物を含むバインダーにより接合される方法である(1)~(12)の何れかに記載の1,3-ブタジエンの製造方法。
(14)エタノールが、バイオマス由来のバイオエタノールである(1)~(13)の何れかに記載の1,3-ブタジエンの製造方法。
(15)1,3-ブタジエンの製造方法が、回分式、半回分式、又は連続式の方法である(1)~(14)の何れかに記載の1,3-ブタジエンの製造方法。
(16)水素条件下で原料を触媒に接触させる(1)~(15)の何れかに記載の1,3-ブタジエンの製造方法。
(17)触媒に接触させる原料と水素のモル比[前者/後者]が10/90~90/10である(16)に記載の1,3-ブタジエンの製造方法。
(18)固定床式気相連続流通反応装置を使用して反応を行う(1)~(17)の何れかに記載の1,3-ブタジエンの製造方法。
(19)反応温度が300~500℃、反応圧力が1MPa以下である(1)~(18)の何れかに記載の1,3-ブタジエンの製造方法。

(20)連続式の場合、エタノールと触媒との接触時間が1~50秒であり、エタノールガス空間速度が50~5000hr-1の範囲内である(15)~(19)の何れかに記載の1,3-ブタジエンの製造方法。
(21)反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後の1,3-ブタジエンの選択率が55%以上であり、反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後のエタノールの転化率が40%以上である(1)~(20)の何れかに記載の1,3-ブタジエンの製造方法。
That is, the present invention relates to the following.
(1) A method for producing 1,3-butadiene, wherein 1,3-butadiene is obtained from ethanol, wherein ethanol is brought into contact with a catalyst containing germanium oxide and magnesium oxide under heating. 3-Method for producing butadiene.
(2) The method for producing 1,3-butadiene according to (1), wherein the content of each component in the catalyst (100% by weight) is as follows.
Germanium oxide content: 0.1-90% by weight
Magnesium oxide content: 10-90% by weight
(3) The method for producing 1,3-butadiene according to (1) or (2), wherein the weight ratio of magnesium oxide / germanium oxide in the catalyst is 0.1 to 200.
(4) The method for producing 1,3-butadiene according to any one of (1) to (3), wherein the specific surface area of the catalyst is 10 m 2 / g or more.
(5) The catalyst containing germanium oxide and magnesium oxide is a catalyst further containing an inorganic oxide other than the above having a specific surface area of 10 m 2 / g or more. The method for producing 1,3-butadiene as described.
(6) The method for producing 1,3-butadiene according to (5), wherein the content of each component in the catalyst (100% by weight) is as follows.
Germanium oxide content: 0.1-30% by weight
Magnesium oxide content: 10-90% by weight
Inorganic oxide content other than the above: 0.1 to 89.9% by weight
(7) The 1,3-butadiene according to (5) or (6), wherein the catalyst is a catalyst obtained by bonding germanium oxide and magnesium oxide using an inorganic oxide other than germanium oxide and magnesium oxide as a carrier or binder. Manufacturing method.
(8) The method for producing 1,3-butadiene according to any one of (5) to (7), wherein the inorganic oxide other than germanium oxide and magnesium oxide is silicon dioxide.
(9) The production of 1,3-butadiene according to any one of (5) to (8), wherein the specific surface area (BET specific surface area) of an inorganic oxide other than germanium oxide and magnesium oxide is 10 to 1000 m 2 / g. Method.
(10) A group in which the inorganic oxide other than germanium oxide and magnesium oxide is composed of colloidal silica (silica sol), silica gel, fumed silica, diatomaceous earth, mica, mesoporous silica (MCM-41), zeolite, and silicoaluminophosphate The method for producing 1,3-butadiene according to any one of (5) to (9), which is at least one selected from the above.
(11) The method for producing 1,3-butadiene according to any one of (1) to (10), wherein the catalyst is prepared by a kneading method, an impregnation method, a vapor deposition method, or a supported complex decomposition method.
(12) The method for producing 1,3-butadiene according to any one of (1) to (11), wherein the catalyst is prepared by a kneading method.
(13) The catalyst is prepared by mixing germanium oxide, a magnesium compound and an inorganic oxide other than the above, suspending in a solvent, kneading using an auto mill, drying, and firing (heat treatment) The method for producing 1,3-butadiene according to any one of (1) to (12), wherein germanium oxide and magnesium oxide are joined together by a binder containing the inorganic oxide via the step.
(14) The method for producing 1,3-butadiene according to any one of (1) to (13), wherein the ethanol is biomass-derived bioethanol.
(15) The method for producing 1,3-butadiene according to any one of (1) to (14), wherein the method for producing 1,3-butadiene is a batch, semi-batch, or continuous method.
(16) The method for producing 1,3-butadiene according to any one of (1) to (15), wherein the raw material is brought into contact with the catalyst under hydrogen conditions.
(17) The method for producing 1,3-butadiene according to (16), wherein the molar ratio of the raw material to be brought into contact with the catalyst and hydrogen [the former / the latter] is 10/90 to 90/10.
(18) The method for producing 1,3-butadiene according to any one of (1) to (17), wherein the reaction is carried out using a fixed bed gas phase continuous flow reactor.
(19) The process for producing 1,3-butadiene according to any one of (1) to (18), wherein the reaction temperature is 300 to 500 ° C. and the reaction pressure is 1 MPa or less.

(20) In the case of a continuous system, the contact time between ethanol and the catalyst is 1 to 50 seconds, and the ethanol gas space velocity is in the range of 50 to 5000 hr −1. Of 1,3-butadiene.
(21) The selectivity of 1,3-butadiene 75 minutes after the start of the reaction at the reaction temperature of 400 ° C. and the space velocity of 360 hr −1 is 55% or more, and the reaction temperature is 400 ° C. and the space velocity. The method for producing 1,3-butadiene according to any one of (1) to (20), wherein the conversion rate of ethanol 75 minutes after the start of the reaction when reacted under the condition of 360 hr −1 is 40% or more.
 本発明に係る1,3-ブタジエンの製造方法によれば、簡便な方法でエタノールから1,3-ブタジエンを選択的に製造することができる。また、本発明において使用する触媒は熱により劣化し難く、且つ繰り返し利用することができる。そのため、本発明に係る1,3-ブタジエンの製造方法は、エタノールから、多くの産業分野において重要な合成ゴムの原料である1,3-ブタジエンを工業的に製造する方法に好適に使用することができる。 According to the method for producing 1,3-butadiene according to the present invention, 1,3-butadiene can be selectively produced from ethanol by a simple method. In addition, the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.
 本発明に係る1,3-ブタジエンの製造方法は、加熱下で、エタノールを酸化ゲルマニウムと酸化マグネシウムとを含有する触媒に接触させることを特徴とする。 The method for producing 1,3-butadiene according to the present invention is characterized in that ethanol is brought into contact with a catalyst containing germanium oxide and magnesium oxide under heating.
 [触媒]
 本発明の触媒は、酸化ゲルマニウムと酸化マグネシウムを含有することを特徴としており、特に接合された触媒であることが好ましい。
[catalyst]
The catalyst of the present invention is characterized by containing germanium oxide and magnesium oxide, and is preferably a joined catalyst.
 酸化マグネシウムは、エタノールから1,3-ブタジエンを得る触媒反応における活性種である。 Magnesium oxide is an active species in the catalytic reaction for obtaining 1,3-butadiene from ethanol.
 酸化ゲルマニウムは、助触媒として作用し、1,3-ブタジエンの選択率を向上させる効果を発揮するものである。 Germanium oxide acts as a co-catalyst and exhibits the effect of improving the selectivity of 1,3-butadiene.
 触媒の比表面積としては、例えば10m2/g以上、好ましくは80m2/g以上、より好ましくは100m2/g以上、さらに好ましくは120m2/g以上である。また、上限は特に制限はないが、例えば1000m2/g、好ましくは500m2/gである。 As a specific surface area of a catalyst, it is 10 m < 2 > / g or more, for example, Preferably it is 80 m < 2 > / g or more, More preferably, it is 100 m < 2 > / g or more, More preferably, it is 120 m < 2 > / g or more. Moreover, although an upper limit does not have a restriction | limiting in particular, For example, it is 1000 m < 2 > / g, Preferably it is 500 m < 2 > / g.
 また、本願の触媒は、酸化ゲルマニウムと酸化マグシウム以外の比表面積が10m2/g以上である無機酸化物を含有していてもよい。また、表面積を向上させるために、該無機酸化物を担体もしくはバインダーとして用い、酸化ゲルマニウムと酸化マグシウムとを接合した触媒を用いることが好ましい。 Moreover, the catalyst of this application may contain the inorganic oxide whose specific surface areas other than a germanium oxide and a magnesium oxide are 10 m < 2 > / g or more. In order to improve the surface area, it is preferable to use a catalyst in which the inorganic oxide is used as a carrier or a binder and germanium oxide and magnesium oxide are joined.
 酸化ゲルマニウムと酸化マグシウム以外の無機酸化物としては、二酸化珪素を好適に使用することができる。 As the inorganic oxide other than germanium oxide and magnesium oxide, silicon dioxide can be preferably used.
 前記無機酸化物の比表面積(BET比表面積)としては、例えば10~1000m2/g程度、好ましくは50~1000m2/g、さらに好ましくは100~1000m2/gである。該無機酸化物の比表面積が上記範囲を外れると、活性種である酸化ゲルマニウムと酸化マグネシウムの混合酸化物を微粒子安定化することが困難となる傾向がある。例えば、該無機酸化物の比表面積が上記範囲を上回ると、細孔径が極端に小さくなる為、炭素析出による細孔閉塞を起こし易くなり、活性点への基質の拡散を阻害するため、失活速度が速くなる傾向がある。 The specific surface area (BET specific surface area) of the inorganic oxide is, for example, about 10 to 1000 m 2 / g, preferably 50 to 1000 m 2 / g, more preferably 100 to 1000 m 2 / g. If the specific surface area of the inorganic oxide is out of the above range, it tends to be difficult to stabilize fine particles of the mixed oxide of germanium oxide and magnesium oxide which are active species. For example, if the specific surface area of the inorganic oxide exceeds the above range, the pore diameter becomes extremely small, so that pore clogging due to carbon deposition is liable to occur and the diffusion of the substrate to the active site is inhibited. There is a tendency to increase speed.
 また、前記無機酸化物の形状は特に制限はなく、粉粒体や塊状物、層状、多孔質形状、いわゆるハニカム構造物など、各種形状のものを利用できる。 Further, the shape of the inorganic oxide is not particularly limited, and various shapes such as a granular material, a lump, a layer, a porous shape, a so-called honeycomb structure can be used.
 前記無機酸化物としては、例えば、コロイダルシリカ(シリカゾル)、シリカゲル、フュームドシリカ、珪藻土、雲母、メソポーラスシリカ(MCM-41)、ゼオライト、シリコアルミノリン酸塩等を挙げることができる。これらは、単独で、または2種以上を混合して用いることができる。 Examples of the inorganic oxide include colloidal silica (silica sol), silica gel, fumed silica, diatomaceous earth, mica, mesoporous silica (MCM-41), zeolite, and silicoaluminophosphate. These can be used alone or in admixture of two or more.
 本発明においては、前記無機酸化物として、例えば、商品名「スノーテックス30」(二酸化珪素含有割合:30重量%、比表面積:300±100m2/g、日産化学工業(株)製)、商品名「スノーテックスXS」(二酸化珪素含有割合:20重量%、比表面積:800±200m2/g、日産化学工業(株)製)、商品名「AEROSIL380PE」(二酸化珪素含有割合:99.9重量%、比表面積:380±30m2/g、日本アエロジル(株)製)等の市販品を使用してもよい。 In the present invention, as the inorganic oxide, for example, trade name “Snowtex 30” (silicon dioxide content ratio: 30 wt%, specific surface area: 300 ± 100 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), product Name “Snowtex XS” (silicon dioxide content: 20% by weight, specific surface area: 800 ± 200 m 2 / g, manufactured by Nissan Chemical Industries, Ltd.), trade name “AEROSIL380PE” (silicon dioxide content: 99.9% by weight) %, Specific surface area: 380 ± 30 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) and the like may be used.
 すなわち、本発明の触媒としては、酸化ゲルマニウムと酸化マグネシウムとを接合して得られる触媒、または、上記触媒をさらに上記以外の無機酸化物に接合して得られる触媒が好ましい。 That is, the catalyst of the present invention is preferably a catalyst obtained by joining germanium oxide and magnesium oxide, or a catalyst obtained by further joining the above catalyst to an inorganic oxide other than the above.
 本発明の触媒(100重量%)における各成分の含有量としては、下記の範囲が好ましい。
 酸化ゲルマニウム含有量:例えば0.1~90重量%、好ましくは5~80重量%、特に好ましくは30~70重量%
 酸化マグネシウム含有量:例えば10~90重量%、好ましくは20~80重量%、特に好ましくは30~70重量%
 また、触媒における酸化マグネシウム/酸化ゲルマニウムの重量比率としては、例えば0.1~200、好ましくは0.3~20、さらに好ましくは0.5~5である。
As content of each component in the catalyst (100 weight%) of this invention, the following range is preferable.
Germanium oxide content: for example 0.1 to 90% by weight, preferably 5 to 80% by weight, particularly preferably 30 to 70% by weight
Magnesium oxide content: for example 10 to 90% by weight, preferably 20 to 80% by weight, particularly preferably 30 to 70% by weight
The weight ratio of magnesium oxide / germanium oxide in the catalyst is, for example, 0.1 to 200, preferably 0.3 to 20, and more preferably 0.5 to 5.
 本発明の触媒において、酸化ゲルマニウムと酸化マグネシウムを含有し、さらに、前記以外の無機酸化物含有量を含む場合、触媒(100重量%)における各成分の含有量としては、下記の範囲が好ましい。
 酸化ゲルマニウム含有量:例えば0.1~30重量%、好ましくは0.5~20重量%、特に好ましくは5~10重量%
 酸化マグネシウム含有量:例えば10~90重量%、好ましくは65~87重量%、特に好ましくは70~85重量%
 前記以外の無機酸化物含有量:例えば0.1~89.9重量%、好ましくは3~25重量%、特に好ましくは5~20重量%
また、触媒における酸化マグネシウム/酸化ゲルマニウムの重量比率としては、例えば0.1~200、好ましくは1~170、さらに好ましくは6~18である。
When the catalyst of the present invention contains germanium oxide and magnesium oxide and further contains an inorganic oxide content other than the above, the content of each component in the catalyst (100% by weight) is preferably in the following range.
Germanium oxide content: for example 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 5 to 10% by weight
Magnesium oxide content: for example, 10 to 90% by weight, preferably 65 to 87% by weight, particularly preferably 70 to 85% by weight
Inorganic oxide content other than the above: for example, 0.1 to 89.9% by weight, preferably 3 to 25% by weight, particularly preferably 5 to 20% by weight
Further, the weight ratio of magnesium oxide / germanium oxide in the catalyst is, for example, 0.1 to 200, preferably 1 to 170, and more preferably 6 to 18.
 触媒における酸化ゲルマニウム含有量が上記範囲を下回ると、1,3-ブタジエン選択性を向上させる効果が得られにくくなる傾向がある。一方、酸化ゲルマニウム含有量が上記範囲を上回ると、うまく触媒上に分散せず、むしろ活性点を塞ぐことにより触媒活性を低下させる傾向がある。 If the germanium oxide content in the catalyst is below the above range, the effect of improving the 1,3-butadiene selectivity tends to be difficult to obtain. On the other hand, when the germanium oxide content exceeds the above range, the catalyst activity is not easily dispersed on the catalyst, but rather the catalytic activity tends to be reduced by blocking the active sites.
 触媒における酸化マグネシウム含有量が上記範囲を下回ると、活性点が減少するため、ブタジエン収率が大きく低下する傾向がある。一方、酸化マグネシウム含有量が上記範囲を上回ると、触媒の塩基性度が増加し、n-ブタノール選択性が増加する傾向がある。 If the magnesium oxide content in the catalyst is below the above range, the active sites are reduced, and the butadiene yield tends to be greatly reduced. On the other hand, when the magnesium oxide content exceeds the above range, the basicity of the catalyst tends to increase and the n-butanol selectivity tends to increase.
 酸化ゲルマニウム、酸化マグネシウム及び前記以外の無機酸化物を含有する触媒を反応に用いる場合、触媒における該無機酸化物含有量が上記範囲を下回ると、酸化ゲルマニウムや酸化マグネシウム結晶の凝集により表面積が低下し、エタノール転化率が低下する傾向がある。一方、該無機酸化物含有量が上記範囲を上回ると、酸点が増加し、エタノールの脱水によるエチレンの生成量が増加する傾向がある。 When a catalyst containing germanium oxide, magnesium oxide and an inorganic oxide other than the above is used for the reaction, if the inorganic oxide content in the catalyst falls below the above range, the surface area decreases due to aggregation of germanium oxide or magnesium oxide crystals. The ethanol conversion tends to decrease. On the other hand, when the content of the inorganic oxide exceeds the above range, the acid point increases and the amount of ethylene produced by ethanol dehydration tends to increase.
 触媒の調製方法としては、例えば、混練法、含浸法、気相蒸着法、担持錯体分解法等を挙げることができる。本発明においては、なかでも、1,3-ブタジエンを優れた選択率で生成する触媒を調製できる点で、混練法を採用することが好ましい。混練法では、例えば、酸化ゲルマニウムとマグネシウム化合物(例えば、水酸化マグネシウム、硝酸マグネシウム、蓚酸マグネシウム等)と前記以外の無機酸化物(例えば、二酸化珪素)とを混合して、溶媒(例えば、水、アセトン、アルコール、又はこれらの混合液等)中に懸濁させ、オートミル等を使用して混練し、乾燥、焼成(加熱処理)を経て酸化ゲルマニウムと酸化マグネシウムが該無機酸化物を含むバインダーにより接合された触媒を調製することができる。 Examples of the method for preparing the catalyst include a kneading method, an impregnation method, a vapor deposition method, and a supported complex decomposition method. In the present invention, it is preferable to employ a kneading method because a catalyst capable of producing 1,3-butadiene with an excellent selectivity can be prepared. In the kneading method, for example, germanium oxide and a magnesium compound (for example, magnesium hydroxide, magnesium nitrate, magnesium oxalate, etc.) and an inorganic oxide other than the above (for example, silicon dioxide) are mixed, and a solvent (for example, water, Suspended in acetone, alcohol, or a mixture thereof, etc., kneaded using an auto mill, etc., dried and baked (heat treatment), and germanium oxide and magnesium oxide are bonded with a binder containing the inorganic oxide. Prepared catalysts can be prepared.
 [1,3-ブタジエンの製造方法]
 本発明の1,3-ブタジエンの製造方法は、エタノールから1,3-ブタジエンを得る1,3-ブタジエンの製造方法であって、加熱下で、エタノールを上記触媒(酸化ゲルマニウムと酸化マグネシウムとを接合して得られる触媒、または前記触媒を前記以外の無機酸化物と接合して得られる触媒)に接触させることを特徴とする。
[Production method of 1,3-butadiene]
The method for producing 1,3-butadiene according to the present invention is a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol, wherein ethanol is converted into the above catalyst (germanium oxide and magnesium oxide under heating). A catalyst obtained by bonding, or a catalyst obtained by bonding the catalyst to an inorganic oxide other than the above is contacted.
 原料エタノールとしては、特に限定されることが無く、サトウキビやトウモロコシなどのバイオマス由来のバイオエタノールや、石油若しくは天然ガス由来の合成エタノールなどを挙げることができる。本発明においては、特に、バイオマス由来のバイオエタノールを使用すると、合成ゴムの原料として有用な1,3-ブタジエンを、従来の石油由来の化学工業原料に代えてバイオエタノールから工業的に製造することができ、温室効果ガス削減に大いに貢献することができる点で好ましい。 The raw material ethanol is not particularly limited, and examples thereof include bioethanol derived from biomass such as sugar cane and corn, and synthetic ethanol derived from petroleum or natural gas. In the present invention, in particular, when biomass-derived bioethanol is used, 1,3-butadiene useful as a raw material for synthetic rubber is industrially produced from bioethanol in place of conventional petroleum-derived chemical industrial materials. It is preferable in that it can greatly contribute to the reduction of greenhouse gases.
 本発明の1,3-ブタジエンの製造方法は、回分式、半回分式、連続式等の慣用の方法により行うことができる。回分式又は半回分式を採用した場合は、原料エタノールの使用率を極めて高くすることができる。また、本発明に係る1,3-ブタジエンの製造方法は上記触媒を使用するため、連続式を採用しても、従来に比べて高い転化率で原料エタノールを転化することができ、未反応原料エタノールを反応系に再利用することにより原料エタノールの使用率を極めて高いレベルに向上させることができる。そのため、簡便且つ効率的に1,3-ブタジエンを分離、回収することができる連続式を好適に採用することができる。 The method for producing 1,3-butadiene of the present invention can be performed by a conventional method such as a batch method, a semi-batch method, or a continuous method. When the batch system or the semi-batch system is adopted, the usage rate of the raw material ethanol can be made extremely high. In addition, since the method for producing 1,3-butadiene according to the present invention uses the above catalyst, raw ethanol can be converted at a higher conversion rate than in the past even if a continuous method is adopted, and unreacted raw material can be converted. By reusing ethanol in the reaction system, the usage rate of the raw material ethanol can be improved to an extremely high level. Therefore, a continuous system capable of separating and recovering 1,3-butadiene simply and efficiently can be suitably employed.
 また、エタノールを上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよい。本発明では、特に、大量合成が可能な点、運転作業負荷の低い点、及び触媒の回収、再生処理が簡便な点で、上記触媒を反応管に充填して触媒層を形成し、原料エタノールガスを流通させて気相にて反応させる固定床式気相連続流通反応装置を用いることが好ましい。 In addition, examples of the method of bringing ethanol into contact with the catalyst include a suspension bed method, a fluidized bed method, and a fixed bed method. Further, the present invention may be either a gas phase method or a liquid phase method. In the present invention, the catalyst layer is formed by filling the above-mentioned catalyst into a reaction tube, particularly in that mass synthesis is possible, operation workload is low, and catalyst recovery and regeneration treatment is simple. It is preferable to use a fixed bed type gas phase continuous flow reaction apparatus in which a gas is circulated and reacted in the gas phase.
 気相で反応を行う場合、原料エタノールガスは、希釈することなく反応器に供給してもよく、窒素、ヘリウム、アルゴン、炭酸ガスなどの不活性ガスや部分的に反応に関与する水素により適宜希釈して反応器に供給してもよい。 When the reaction is carried out in the gas phase, the raw ethanol gas may be supplied to the reactor without dilution, and is appropriately determined depending on the inert gas such as nitrogen, helium, argon, carbon dioxide, or hydrogen partially involved in the reaction. It may be diluted and fed to the reactor.
 また、本発明の1,3-ブタジエンの製造方法においては、水素存在下で原料を触媒に接触させることが、反応工程において、クロトンアルデヒドのクロチルアルコールへの選択的水素化反応が促進され、クロトンアルデヒドの縮合や分解が抑制されるため、1,3ブタジエンの選択性を向上することができる点で好ましい。 In the method for producing 1,3-butadiene of the present invention, contacting the raw material with a catalyst in the presence of hydrogen promotes a selective hydrogenation reaction of crotonaldehyde to crotyl alcohol in the reaction step, Since condensation and decomposition of crotonaldehyde are suppressed, it is preferable in that the selectivity of 1,3 butadiene can be improved.
 触媒に接触させる原料と水素のモル比[前者/後者]としては、例えば10/90~90/10程度、好ましくは20/80~80/20、特に好ましくは40/60~60/40である。 The molar ratio of the raw material to be brought into contact with the catalyst and hydrogen [the former / the latter] is, for example, about 10/90 to 90/10, preferably 20/80 to 80/20, and particularly preferably 40/60 to 60/40. .
 触媒に接触させる原料と水素のモル比[前者/後者]が上記範囲を上回ると、クロトンアルデヒドの縮合や分解が促進され、上記範囲を下回るとエタノールからアルデヒドへの脱水素反応が抑制されて、エタノールからエチレンへの脱水反応が促進されるため、1,3ブタジエンの選択性が低下する傾向がある。 When the molar ratio of the raw material to be brought into contact with the catalyst and hydrogen [the former / the latter] exceeds the above range, the condensation and decomposition of crotonaldehyde is promoted, and when below the above range, the dehydrogenation reaction from ethanol to the aldehyde is suppressed, Since the dehydration reaction from ethanol to ethylene is promoted, the selectivity of 1,3 butadiene tends to decrease.
 反応温度としては、例えば、300~500℃程度、好ましくは350~450℃である。反応温度が上記範囲を下回ると、触媒活性が十分に得られなくなって反応速度が低下し製造効率が低下するおそれがある。一方、反応温度が上記範囲を上回ると、触媒活性の劣化を生じる恐れがある。 The reaction temperature is, for example, about 300 to 500 ° C., preferably 350 to 450 ° C. If the reaction temperature is lower than the above range, sufficient catalytic activity may not be obtained, the reaction rate may be reduced, and the production efficiency may be reduced. On the other hand, when the reaction temperature exceeds the above range, the catalytic activity may be deteriorated.
 反応圧力は、常圧から高圧までの広い範囲で適宜設定できる。なお、製造効率や装置構成などの観点から、1MPa以下に設定することが好ましい。 The reaction pressure can be appropriately set within a wide range from normal pressure to high pressure. In addition, it is preferable to set to 1 Mpa or less from viewpoints of manufacturing efficiency, apparatus configuration, and the like.
 連続式の場合、原料エタノールと触媒との接触時間は、例えば1~50秒程度、好ましくは5~30秒である。接触時間が短すぎると、エタノールがブタジエンまで転化せず、反応器出口において、未反応エタノール、及び中間体であるアセトアルデヒド、クロトンアルデヒド等が増加する傾向がある。一方、触媒との接触時間が長くなりすぎると、アセトアルデヒドやブタジエン等の縮合や重合が進行し、高沸点成分が多量に生成する傾向がある。原料エタノールと触媒との接触時間は、原料エタノールの供給速度を調整することによりコントロールすることができ、例えば、エタノールガス空間速度を50~5000hr-1(好ましくは100~1000hr-1、特に好ましくは200~500hr-1)の範囲内に調整することが好ましい。 In the case of the continuous system, the contact time between the raw ethanol and the catalyst is, for example, about 1 to 50 seconds, preferably 5 to 30 seconds. If the contact time is too short, ethanol does not convert to butadiene, and unreacted ethanol and acetaldehyde, crotonaldehyde, and the like as intermediates tend to increase at the reactor outlet. On the other hand, if the contact time with the catalyst becomes too long, condensation or polymerization of acetaldehyde, butadiene or the like proceeds and a large amount of high-boiling components tend to be generated. Contact time between feedstock ethanol and the catalyst can be controlled by adjusting the feed rate of the raw material ethanol, for example, ethanol gas space velocity 50 ~ 5000 hr -1 (preferably 100 ~ 1000 hr -1, particularly preferably It is preferable to adjust within the range of 200 to 500 hr −1 ).
 反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出等の分離手段や、これらを組み合わせた分離手段により分離精製することができる。 After completion of the reaction, the reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, extraction, etc., or a separation means combining these.
 本発明の触媒は、触媒活性成分である酸化マグネシウムと酸化ゲルマニウムとが接合された構造を有するため、有機合成反応においても前記触媒活性成分が反応溶液中に溶出しにくく、反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。また、未反応原料エタノールは回収し、再利用してもよい。 Since the catalyst of the present invention has a structure in which magnesium oxide and germanium oxide, which are catalytic active components, are joined, the catalytic active component is difficult to elute in the reaction solution even in an organic synthesis reaction. It can be easily recovered by a physical separation technique such as separation. Moreover, unreacted raw material ethanol may be recovered and reused.
 また、本発明の触媒は、反応器内において、例えば、350~500℃程度、好ましくは450~500℃の加熱下において、空気を流通させ、例えば、1~24時間、好ましくは2~4時間の再生処理を行うことで、触媒活性が未使用の触媒に対して90%以上まで回復し、そのまま反応に再利用することができる。 In the catalyst of the present invention, air is circulated in the reactor under heating at, for example, about 350 to 500 ° C., preferably 450 to 500 ° C., for example, for 1 to 24 hours, preferably 2 to 4 hours. By performing this regeneration treatment, the catalyst activity is recovered to 90% or more with respect to the unused catalyst, and can be reused in the reaction as it is.
 本発明に係る1,3-ブタジエンの製造方法は、加熱下で、エタノールを上記触媒に接触させるため、エタノールの転化率に優れ、且つ、優れた選択率で1,3-ブタジエンを製造することができる。 In the method for producing 1,3-butadiene according to the present invention, ethanol is brought into contact with the catalyst under heating, so that 1,3-butadiene is produced with excellent ethanol conversion and excellent selectivity. Can do.
 本発明の1,3-ブタジエンの製造方法は、1,3-ブタジエンを選択的に製造することができ、例えば反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後の1,3-ブタジエンの選択率は、例えば55%以上、好ましくは60%以上、さらに好ましくは65%以上、特に好ましくは70%以上である。また、本発明の1,3-ブタジエンの製造方法はエタノールの転化率に優れ、例えば反応温度400℃、空間速度360hr-1の条件で反応させた際の反応開始後75分後のエタノールの転化率は、例えば40%以上、好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上である。 The method for producing 1,3-butadiene according to the present invention can selectively produce 1,3-butadiene, for example, after the start of the reaction when the reaction is carried out under conditions of a reaction temperature of 400 ° C. and a space velocity of 360 hr −1. The selectivity for 1,3-butadiene after 75 minutes is, for example, 55% or more, preferably 60% or more, more preferably 65% or more, and particularly preferably 70% or more. Further, the method for producing 1,3-butadiene of the present invention is excellent in the conversion rate of ethanol. For example, the conversion of ethanol 75 minutes after the start of the reaction when the reaction is carried out under conditions of a reaction temperature of 400 ° C. and a space velocity of 360 hr −1. The rate is, for example, 40% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 本発明の1,3-ブタジエンの製造方法は、上記のように1,3-ブタジエンの選択率が非常に高いので、未反応エタノールを反応系に再利用することにより、エタノール使用率を向上することができ、工業的に効率よく1,3-ブタジエンを製造することができる。 Since the 1,3-butadiene production method of the present invention has a very high selectivity for 1,3-butadiene as described above, the ethanol usage rate is improved by reusing unreacted ethanol in the reaction system. 1,3-butadiene can be produced industrially efficiently.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 調製例1
 硝酸マグネシウム六水和物(関東化学(株)製) 30.41gを水に溶解し、攪拌下で酸化ゲルマニウム(関東化学(株)製、4N)5.27gを少量ずつ添加した。さらに攪拌下で10%アンモニア水溶液57.05gを滴下し、60分攪拌後、得られた懸濁液を濾過し、洗浄液のpHが8になるまで洗浄を行った。得られた沈殿を、110℃で一晩乾燥後、1℃/minで400℃まで昇温し、400℃で5時間焼成してケークを得た。得られたケークを破砕し、10-20メッシュで分級して触媒(1)(MgO/GeO2)を得た(MgO/GeO2(重量比)=47/53)。
Preparation Example 1
30.41 g of magnesium nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd.) was dissolved in water, and 5.27 g of germanium oxide (manufactured by Kanto Chemical Co., Ltd., 4N) was added little by little with stirring. Further, 57.05 g of a 10% aqueous ammonia solution was added dropwise with stirring, and after stirring for 60 minutes, the resulting suspension was filtered and washed until the pH of the washing solution reached 8. The obtained precipitate was dried at 110 ° C. overnight, heated to 400 ° C. at 1 ° C./min, and calcined at 400 ° C. for 5 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (1) (MgO / GeO 2 ) (MgO / GeO 2 (weight ratio) = 47/53).
 調製例2
 ゲルマニウムエトキシド0.48g、水酸化マグネシウム(関東化学(株)製) 12.05g、コロイダルシリカ(商品名「スノーテックスXS」、日産化学工業(株)製、14.5%) 10.13gを水に懸濁し、オートミルにて4時間混練してゾルを得た。得られたゾルを、80℃で16時間、その後110℃で4時間乾燥した後に1℃/minで500℃まで昇温し、500℃で2時間焼成してケークを得た。得られたケークを破砕し、10-20メッシュで分級して触媒(2)(MgO/GeO2/SiO2)を得た(MgO/GeO2/SiO2(重量比)=83.3/2.0/14.7)。
Preparation Example 2
0.48 g of germanium ethoxide, 12.05 g of magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd.), 10.13 g of colloidal silica (trade name “Snowtex XS”, manufactured by Nissan Chemical Industries, Ltd., 14.5%) It was suspended in water and kneaded in an auto mill for 4 hours to obtain a sol. The obtained sol was dried at 80 ° C. for 16 hours and then at 110 ° C. for 4 hours, then heated to 500 ° C. at 1 ° C./min and calcined at 500 ° C. for 2 hours to obtain a cake. The obtained cake was crushed and classified with 10-20 mesh to obtain catalyst (2) (MgO / GeO 2 / SiO 2 ) (MgO / GeO 2 / SiO 2 (weight ratio) = 83.3 / 2. 0.0 / 14.7).
 調製例3
 ゲルマニウムエトキシドを使用しなかった以外は調製例2と同様にして、触媒(3)(MgO/SiO2)を得た(MgO/SiO2(重量比)=85/15)。
Preparation Example 3
Catalyst (3) (MgO / SiO 2 ) was obtained in the same manner as in Preparation Example 2 except that germanium ethoxide was not used (MgO / SiO 2 (weight ratio) = 85/15).
 調製例4
 ゲルマニウムエトキシド を0.05gとした以外は調製例2と同様にして、触媒(4)(MgO/GeO2/SiO2)を得た(MgO/GeO2/SiO2(重量比)=84.6/0.5/14.9)。
Preparation Example 4
Catalyst (4) (MgO / GeO 2 / SiO 2 ) was obtained in the same manner as in Preparation Example 2 except that 0.05 g of germanium ethoxide was used (MgO / GeO 2 / SiO 2 (weight ratio)) = 84. 6 / 0.5 / 14.9).
 調製例5
 ゲルマニウムエトキシド を0.52gとした以外は調製例2と同様にして、触媒(5)(MgO/GeO2/SiO2)を得た(MgO/GeO2/SiO2(重量比)=80.7/5.0/14.3)。
Preparation Example 5
A catalyst (5) (MgO / GeO 2 / SiO 2 ) was obtained in the same manner as in Preparation Example 2 except that germanium ethoxide was changed to 0.52 g (MgO / GeO 2 / SiO 2 (weight ratio)) = 80. 7 / 5.0 / 14.3).
 調製例6
 ゲルマニウムエトキシド を1.09gとした以外は調製例2と同様にして、触媒(6)(MgO/GeO2/SiO2)を得た(MgO/GeO2/SiO2(重量比)=76.5/10.0/13.5)。
Preparation Example 6
A catalyst (6) (MgO / GeO 2 / SiO 2 ) was obtained in the same manner as in Preparation Example 2 except that germanium ethoxide was changed to 1.09 g (MgO / GeO 2 / SiO 2 (weight ratio)) = 76. 5 / 10.0 / 13.5).
 調製例7
 ゲルマニウムエトキシド を2.45gとした以外は調製例2と同様にして、触媒(7)(MgO/GeO2/SiO2)を得た(MgO/GeO2/SiO2(重量比)=68.0/20.0/12.0)。
Preparation Example 7
A catalyst (7) (MgO / GeO 2 / SiO 2 ) was obtained (MgO / GeO 2 / SiO 2 (weight ratio) = 68.) In the same manner as in Preparation Example 2, except that 2.45 g of germanium ethoxide was used. 0 / 20.0 / 12.0).
 実施例1~2、比較例1
 表1中に記載の触媒を、固定床式気相連続流通反応装置(反応器)に接続した10mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
 1時間の前処理を行った後に電気炉温度を表中に400℃に保持し、表1中に記載の組成のエタノール/N2ガスをGHSV=360~1565hr-1の速度で反応器に流通させて、反応させた(エタノールの触媒接触時間:表1中に記載)。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
 反応開始後60~75分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。
 尚、触媒としては、実施例1はそれぞれ調製例1、実施例2は調製例2、比較例1は調製例3で得られた触媒を使用した。
Examples 1 and 2, Comparative Example 1
The catalyst described in Table 1 was filled into a 10 mmφ SUS reaction tube connected to a fixed bed type gas-phase continuous flow reactor (reactor), and heated to 500 ° C. by an electric furnace under N 2 flow of 100 mL / min. Heated.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at 400 ° C. in the table, and ethanol / N 2 gas having the composition described in Table 1 was passed through the reactor at a rate of GHSV = 360 to 1565 hr −1. And reacted (ethanol catalyst contact time: listed in Table 1). The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The composition of the gas at the outlet of the reactor 60 to 75 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter.
As the catalyst, Example 1 used the catalyst obtained in Preparation Example 1, Example 2 used in Preparation Example 2, and Comparative Example 1 used in Preparation Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例3~7
 表2中に記載の触媒を用い、表2中に記載の組成のエタノール/水素ガスをGHSV=360hr-1の速度で反応器に流通させて、反応させた(エタノールの触媒接触時間:表1中に記載)以外は実施例1~2、比較例1と同様にした。
 なお、触媒としては、実施例3はそれぞれ調製例4、実施例4は調製例2、実施例5~7はそれぞれ調製例5~7で得られた触媒を使用した。
Examples 3-7
Using the catalyst described in Table 2, ethanol / hydrogen gas having the composition described in Table 2 was passed through the reactor at a rate of GHSV = 360 hr −1 and reacted (ethanol catalyst contact time: Table 1). Examples 1 and 2 and Comparative Example 1 were the same except for the above.
As the catalyst, Example 3 used the catalyst obtained in Preparation Example 4, Example 4 used the preparation obtained in Preparation Example 2, and Examples 5 to 7 used the catalysts obtained in Preparation Examples 5 to 7, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る1,3-ブタジエンの製造方法によれば、簡便な方法でエタノールから1,3-ブタジエンを選択的に製造することができる。また、本発明において使用する触媒は熱により劣化し難く、且つ繰り返し利用することができる。そのため、本発明に係る1,3-ブタジエンの製造方法は、エタノールから、多くの産業分野において重要な合成ゴムの原料である1,3-ブタジエンを工業的に製造する方法に好適に使用することができる。 According to the method for producing 1,3-butadiene according to the present invention, 1,3-butadiene can be selectively produced from ethanol by a simple method. In addition, the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.

Claims (8)

  1.  エタノールから1,3-ブタジエンを得る1,3-ブタジエンの製造方法であって、加熱下で、エタノールを酸化ゲルマニウムと酸化マグネシウムとを含有する触媒に接触させることを特徴とする1,3-ブタジエンの製造方法。 A process for producing 1,3-butadiene from ethanol, which comprises contacting ethanol with a catalyst containing germanium oxide and magnesium oxide under heating. Manufacturing method.
  2.  触媒(100重量%)における各成分の含有量が下記の通りである請求項1に記載の1,3-ブタジエンの製造方法。
     酸化ゲルマニウムの含有量:0.1~90重量%
     酸化マグネシウム含有量:10~90重量%
    The method for producing 1,3-butadiene according to claim 1, wherein the content of each component in the catalyst (100% by weight) is as follows.
    Germanium oxide content: 0.1-90% by weight
    Magnesium oxide content: 10-90% by weight
  3.  触媒における酸化マグネシウム/酸化ゲルマニウムの重量比率が0.1~200である請求項1又は2に記載の1,3-ブタジエンの製造方法。 3. The method for producing 1,3-butadiene according to claim 1, wherein the weight ratio of magnesium oxide / germanium oxide in the catalyst is 0.1 to 200.
  4.  前記酸化ゲルマニウムと酸化マグネシウムとを含有する触媒が、さらに比表面積が10m2/g以上である上記以外の無機酸化物を含有する触媒である請求項1~3の何れか1項に記載の1,3-ブタジエンの製造方法。 The catalyst according to any one of claims 1 to 3, wherein the catalyst containing germanium oxide and magnesium oxide is a catalyst further containing an inorganic oxide other than the above having a specific surface area of 10 m 2 / g or more. , 3-butadiene production method.
  5.  触媒(100重量%)における各成分の含有量が下記の通りである請求項4に記載の1,3-ブタジエンの製造方法。
     酸化ゲルマニウムの含有量:0.1~30重量%
     酸化マグネシウム含有量:10~90重量%
     前記以外の無機酸化物含有量:0.1~89.9重量%
    The method for producing 1,3-butadiene according to claim 4, wherein the content of each component in the catalyst (100% by weight) is as follows.
    Germanium oxide content: 0.1-30% by weight
    Magnesium oxide content: 10-90% by weight
    Inorganic oxide content other than the above: 0.1 to 89.9% by weight
  6.  酸化ゲルマニウムと酸化マグネシウム以外の無機酸化物が、二酸化珪素である請求項4又は5に記載の1,3-ブタジエンの製造方法。 6. The method for producing 1,3-butadiene according to claim 4, wherein the inorganic oxide other than germanium oxide and magnesium oxide is silicon dioxide.
  7.  水素条件下で原料を触媒に接触させる請求項1~6の何れか1項に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 6, wherein the raw material is brought into contact with the catalyst under hydrogen conditions.
  8.  固定床式気相連続流通反応装置を使用して反応を行う請求項1~7の何れか1項に記載の1,3-ブタジエンの製造方法。 The method for producing 1,3-butadiene according to any one of claims 1 to 7, wherein the reaction is carried out using a fixed bed gas phase continuous flow reactor.
PCT/JP2014/051094 2013-02-21 2014-01-21 Method for producing 1,3-butadiene from ethanol in selective manner WO2014129248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501364A JPWO2014129248A1 (en) 2013-02-21 2014-01-21 Method for selectively producing 1,3-butadiene from ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-031930 2013-02-21
JP2013031930 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014129248A1 true WO2014129248A1 (en) 2014-08-28

Family

ID=51391045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051094 WO2014129248A1 (en) 2013-02-21 2014-01-21 Method for producing 1,3-butadiene from ethanol in selective manner

Country Status (2)

Country Link
JP (1) JPWO2014129248A1 (en)
WO (1) WO2014129248A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147934A1 (en) * 2017-02-07 2018-08-16 Battelle Memorial Institute Single step conversion of ethanol to butadiene
WO2019065924A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
JPWO2019098208A1 (en) * 2017-11-17 2020-04-02 三井化学株式会社 Semiconductor element intermediate, metal-containing film forming composition, method of manufacturing semiconductor element intermediate, method of manufacturing semiconductor element
US11446635B2 (en) 2017-12-27 2022-09-20 Sekisui Chemical Co., Ltd. Catalyst and method for producing same, and method for producing diene compound using said catalyst
US11465128B2 (en) 2018-01-12 2022-10-11 Sekisui Chemical Co., Ltd. Catalyst, method for producing same, and method for producing diene compound using said catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.V. MAKSHINA ET AL.: "Catalytic study of the conversion of ethanol into 1,3-butadiene", CATALYSIS TODAY, vol. 198, 2012, pages 338 - 344, XP028958465, DOI: doi:10.1016/j.cattod.2012.05.031 *
S. K. BHATTACHARYYA ET AL.: "Catalytic production of butadiene from ethyl alcohol by single-step process in fixed bed", JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, vol. 19 B, 1960, pages 33 - 34 *
YOSHIE KITAYAMA ET AL.: "Preparation of large surface area nickel magnesium silicate and its catalytic activity for conversion", CATALYSIS LETTERS, vol. 36, 1996, pages 95 - 97 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147934A1 (en) * 2017-02-07 2018-08-16 Battelle Memorial Institute Single step conversion of ethanol to butadiene
US10647625B2 (en) 2017-02-07 2020-05-12 Battelle Memorial Institute Single step conversion of ethanol to butadiene
WO2019065924A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
US11352307B2 (en) 2017-09-27 2022-06-07 Sekisui Chemical Co., Ltd. Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
JPWO2019098208A1 (en) * 2017-11-17 2020-04-02 三井化学株式会社 Semiconductor element intermediate, metal-containing film forming composition, method of manufacturing semiconductor element intermediate, method of manufacturing semiconductor element
JP7070935B2 (en) 2017-11-17 2022-05-18 三井化学株式会社 Semiconductor device intermediates, metal-containing film forming compositions, semiconductor device intermediate manufacturing methods, semiconductor device manufacturing methods
US11446635B2 (en) 2017-12-27 2022-09-20 Sekisui Chemical Co., Ltd. Catalyst and method for producing same, and method for producing diene compound using said catalyst
US11465128B2 (en) 2018-01-12 2022-10-11 Sekisui Chemical Co., Ltd. Catalyst, method for producing same, and method for producing diene compound using said catalyst

Also Published As

Publication number Publication date
JPWO2014129248A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6084963B2 (en) Method for producing 1,3-butadiene
KR102178406B1 (en) Dual catalyst system for propylene production
CN105682800B (en) Catalyst And Method for olefin metathesis reaction
JP5698142B2 (en) Method of purifying alcohol in the presence of acid catalyst before use
CN101565346B (en) Method for preparing ethylene by ethanol dehydration
WO2014129248A1 (en) Method for producing 1,3-butadiene from ethanol in selective manner
US10010870B2 (en) Synthesis of catalytic materials for metathesis and isomerization reactions and other catalytic applications via well controlled aerosol processing
RU2656602C1 (en) One-step method of obtaining butadiene
JP6017386B2 (en) Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
US20210104442A1 (en) Stable mixed oxide catalysts for direct conversion of ethanol to isobutene and process for making
CN103896302A (en) Silicon molecular sieve and preparation method thereof
CN104056652A (en) Core-shell ZSM-5 molecular sieve microsphere catalyst
JP2006116439A (en) Catalyst for producing ethylene and method for producing ethylene by using the catalyst
JP4734671B2 (en) Catalyst for ethylene production
US7442845B2 (en) Conversion of ethers to olefins
TWI645899B (en) Method for producing ethylene from ethanol raw material
CN114602545A (en) Preparation and application of hierarchical porous composite molecular sieve catalyst
JP6652364B2 (en) Method for producing 1,3-butadiene
JP2012157794A (en) Catalyst for dehydrating glycerin, method for preparing the same and method for producing acrolein using the same
JP7109018B2 (en) Solid catalyst and method for producing butadiene
JP6704581B2 (en) Metal oxide catalyst, method for producing butadiene and method for producing metal oxide catalyst
WO2023071891A1 (en) Method for selectively and continuously producing 2-methylpyridine and diphenylamine from aniline
US11517892B2 (en) Methods of producing isomerization catalysts
RU2635110C1 (en) Method of producing petrol factions from olefin-containing gases
RU2421441C1 (en) Single-step method of producing isoprene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754034

Country of ref document: EP

Kind code of ref document: A1