JP6017386B2 - Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis - Google Patents

Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis Download PDF

Info

Publication number
JP6017386B2
JP6017386B2 JP2013166528A JP2013166528A JP6017386B2 JP 6017386 B2 JP6017386 B2 JP 6017386B2 JP 2013166528 A JP2013166528 A JP 2013166528A JP 2013166528 A JP2013166528 A JP 2013166528A JP 6017386 B2 JP6017386 B2 JP 6017386B2
Authority
JP
Japan
Prior art keywords
catalyst
butadiene
ethanol
preparation example
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013166528A
Other languages
Japanese (ja)
Other versions
JP2015034151A (en
Inventor
智博 平田
智博 平田
裕介 吉永
裕介 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2013166528A priority Critical patent/JP6017386B2/en
Publication of JP2015034151A publication Critical patent/JP2015034151A/en
Application granted granted Critical
Publication of JP6017386B2 publication Critical patent/JP6017386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、自動車産業分野、電子材料分野を含む多くの産業分野において重要な合成ゴムの原料である1,3−ブタジエンをエタノールからワンパスで製造する新規な1,3−ブタジエンの製造方法に関する。   The present invention relates to a novel 1,3-butadiene production method for producing 1,3-butadiene, which is a raw material of synthetic rubber important in many industrial fields including the automotive industry field and the electronic material field, from ethanol in one pass.

従来、1,3−ブタジエンは主に石油からエチレンを合成(=ナフサクラッキング)する際に副生するC4留分を精製することにより製造されてきた。しかし、近年、石油から得られる化学工業原料に代えて、バイオマス由来原料から誘導された化学工業原料が注目されており、例えば、サトウキビやトウモロコシなどのバイオマス由来のバイオエタノールを1,3−ブタジエンに変換する技術が切望されている。   Conventionally, 1,3-butadiene has been produced mainly by refining a C4 fraction produced as a by-product when ethylene is synthesized from petroleum (= naphtha cracking). However, in recent years, instead of chemical industrial raw materials obtained from petroleum, chemical industrial raw materials derived from biomass-derived raw materials have attracted attention. For example, biomass-derived bioethanol such as sugarcane and corn is converted into 1,3-butadiene. The technology to convert is anxious.

エタノールを原料として1,3−ブタジエンを得る方法としては、触媒としてMgOを使用する方法(特許文献1)、Al23とZnOの混合物(混合比:60/40)を使用する方法(非特許文献1)等が知られている。しかし、製造技術がナフサクラッキングに比べ繊細で確立されていないこと、触媒が熱により劣化し易くリサイクルが困難であるためコストが嵩むこと、エタノールの変換効率が低く、1,3−ブタジエンの収率が低いこと等から、石油から得られる化学工業原料を使用した製造方法に対抗できる利点を見出すことができず、実用化が進まないのが現状である。 As a method for obtaining 1,3-butadiene using ethanol as a raw material, a method using MgO as a catalyst (Patent Document 1) and a method using a mixture of Al 2 O 3 and ZnO (mixing ratio: 60/40) Patent Document 1) and the like are known. However, the manufacturing technology is not as delicate and established as naphtha cracking, the catalyst is easily deteriorated by heat and is difficult to recycle, the cost is increased, the ethanol conversion efficiency is low, and the yield of 1,3-butadiene is low. However, it is difficult to find an advantage that can be opposed to a manufacturing method using chemical industrial raw materials obtained from petroleum, and the practical use is not progressing.

米国特許第2423681号明細書US Pat. No. 2,436,681

ジャーナル・オブ・キャタリスト第5巻152頁(1967年)Journal of Catalyst 5: 152 (1967)

従って、本発明の目的は、簡便且つ工業的に有利な方法でエタノールから1,3−ブタジエンを得る1,3−ブタジエンの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing 1,3-butadiene, which obtains 1,3-butadiene from ethanol by a simple and industrially advantageous method.

本発明者等は上記課題を解決するため鋭意検討した結果、加熱環境下でエタノールを特定の触媒に接触させると、極めて優れた選択率で1,3−ブタジエンが得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to solve the above problems, the present inventors have found that when ethanol is brought into contact with a specific catalyst in a heating environment, 1,3-butadiene can be obtained with extremely excellent selectivity. The present invention has been completed based on these findings.

すなわち、本発明は、加熱下で、少なくともエタノールを含む原料を、水熱合成法で得られたマグネシウムシリケート構造を有する触媒に接触させることにより1,3−ブタジエンを得ることを特徴とする1,3−ブタジエンの製造方法を提供する。   That is, the present invention is characterized in that 1,3-butadiene is obtained by contacting a raw material containing at least ethanol under heating with a catalyst having a magnesium silicate structure obtained by a hydrothermal synthesis method. A method for producing 3-butadiene is provided.

本発明は、また、触媒を構成するマグネシウムと珪素の元素比(モル比:前者/後者)が0.7〜2.0である前記の1,3−ブタジエンの製造方法を提供する。   The present invention also provides the method for producing 1,3-butadiene as described above, wherein the element ratio (molar ratio: former / latter) of magnesium and silicon constituting the catalyst is 0.7 to 2.0.

本発明は、また、触媒を構成する元素として、マグネシウムと珪素以外に、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ニオブ、銀、インジウム、及びセリウムから選択される少なくとも1種を含有する前記の1,3−ブタジエンの製造方法を提供する。   In addition to magnesium and silicon, the present invention also includes at least one element selected from vanadium, manganese, iron, cobalt, nickel, copper, zinc, gallium, niobium, silver, indium, and cerium in addition to magnesium and silicon. A process for producing the aforementioned 1,3-butadiene containing

本発明は、また、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ニオブ、銀、インジウム、及びセリウムから選択される少なくとも1種の元素の含有量(金属元素換算量)が触媒全量の0.1〜5.0重量%である前記の1,3−ブタジエンの製造方法を提供する。   In the present invention, the content (metal element equivalent amount) of at least one element selected from vanadium, manganese, iron, cobalt, nickel, copper, zinc, gallium, niobium, silver, indium, and cerium is also a catalyst. The method for producing 1,3-butadiene is provided in an amount of 0.1 to 5.0% by weight based on the total amount.

本発明に係る1,3−ブタジエンの製造方法によれば、簡便な方法でエタノールから1,3−ブタジエンを選択的に製造することができる。また、本発明において使用する触媒は熱により劣化し難く、繰り返し利用することができる。そのため、本発明に係る1,3−ブタジエンの製造方法は、エタノールから、多くの産業分野において重要な合成ゴムの原料である1,3−ブタジエンを工業的に製造する方法に好適に使用することができる。   According to the method for producing 1,3-butadiene according to the present invention, 1,3-butadiene can be selectively produced from ethanol by a simple method. In addition, the catalyst used in the present invention is hardly deteriorated by heat and can be used repeatedly. Therefore, the method for producing 1,3-butadiene according to the present invention is preferably used in a method for industrially producing 1,3-butadiene, which is an important raw material for synthetic rubber in many industrial fields, from ethanol. Can do.

調製例1〜5で得られた触媒(1)〜(5)のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of catalyst (1)-(5) obtained by the preparation examples 1-5.

本発明に係る1,3−ブタジエンの製造方法は、加熱下で、少なくともエタノールを含む原料を、水熱合成法で得られたマグネシウムシリケート構造を有する触媒に接触させることにより1,3−ブタジエンを得ることを特徴とする。   In the method for producing 1,3-butadiene according to the present invention, 1,3-butadiene is obtained by bringing a raw material containing at least ethanol into contact with a catalyst having a magnesium silicate structure obtained by a hydrothermal synthesis method under heating. It is characterized by obtaining.

本発明の1,3−ブタジエンの製造方法は、下記反応工程を経ると考えられる。

Figure 0006017386
The method for producing 1,3-butadiene of the present invention is considered to undergo the following reaction steps.
Figure 0006017386

[触媒]
本発明の触媒はマグネシウムシリケート構造を有することを特徴とする。前記マグネシウムシリケート構造とは、ブルサイト(Mg(OH)2)層をシリカ(SiO2)層で挟んだ形状であり、電気的に中性な各層が弱いファンデルワールス力でいくつも積み重なって形成されるタルク状の構造である。本発明の触媒は前記構造を有するため、正反応の活性点であるマグネシウムが反応基質との接触面に効率的に配置され、かつ、副反応を促進する強い酸点、塩基点がほとんど存在しないことにより、エタノールから1,3−ブタジエンを選択的に製造することができる。尚、触媒のマグネシウムシリケート構造は、X線回折により確認することができる。
[catalyst]
The catalyst of the present invention is characterized by having a magnesium silicate structure. The magnesium silicate structure is a shape in which a brucite (Mg (OH) 2 ) layer is sandwiched between silica (SiO 2 ) layers, and each electrically neutral layer is formed by stacking several layers with weak van der Waals force Talc-like structure. Since the catalyst of the present invention has the above structure, magnesium, which is the active site of the positive reaction, is efficiently arranged on the contact surface with the reaction substrate, and there are almost no strong acid points and base points that promote side reactions. Thus, 1,3-butadiene can be selectively produced from ethanol. The magnesium silicate structure of the catalyst can be confirmed by X-ray diffraction.

本発明の触媒を構成するマグネシウムと珪素の元素比(モル比:前者/後者)としては、例えば0.7〜2.0、好ましくは0.8〜1.5、特に好ましくは0.9〜1.2である。Mg/Si元素比が上記範囲を上回ると、触媒の比表面積が低下し、エタノール転化率が低下する傾向がある。一方、Mg/Si元素比が上記範囲を下回ると、触媒上の酸点の量が増加し、エタノールからエチレンへの脱水反応(副反応)が促進される傾向がある。   The element ratio (molar ratio: former / latter) of magnesium and silicon constituting the catalyst of the present invention is, for example, 0.7 to 2.0, preferably 0.8 to 1.5, and particularly preferably 0.9 to 1.2. If the Mg / Si element ratio exceeds the above range, the specific surface area of the catalyst tends to decrease and the ethanol conversion tends to decrease. On the other hand, when the Mg / Si element ratio is below the above range, the amount of acid sites on the catalyst increases, and the dehydration reaction (side reaction) from ethanol to ethylene tends to be promoted.

また、本発明の触媒を構成する元素としては、マグネシウムと珪素以外にも他の元素を1種又は2種以上含有していてもよい。本発明の触媒としては、前記他の元素として、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ニオブ、銀、インジウム、及びセリウムから選択される少なくとも1種を含有することが、エタノールの転化率を向上させることにより一層優れた収率で1,3−ブタジエンを製造することができる点で好ましく、特に、コバルト、ニッケル、銅、亜鉛、ガリウム、銀、及びインジウムから選択される少なくとも1種を含有することが、エタノールの転化率と共に1,3-ブタジエンの選択率を向上させることにより特に優れた収率で1,3-ブタジエンを製造することができる点で好ましい。   Moreover, as an element which comprises the catalyst of this invention, you may contain 1 type, or 2 or more types of other elements besides magnesium and silicon. The catalyst of the present invention contains, as the other element, at least one selected from vanadium, manganese, iron, cobalt, nickel, copper, zinc, gallium, niobium, silver, indium, and cerium. It is preferable in that 1,3-butadiene can be produced with a further excellent yield by improving the conversion rate of ethanol, particularly selected from cobalt, nickel, copper, zinc, gallium, silver, and indium. It is preferable to contain at least one kind in that 1,3-butadiene can be produced in a particularly excellent yield by improving the selectivity of 1,3-butadiene together with the conversion of ethanol.

上記他の元素の含有量(金属元素換算量)は、触媒全量(100重量%)において、例えば0.1〜5.0重量%、好ましくは0.5〜5.0重量%、特に好ましくは1.0〜5.0重量%である。他の元素の含有量が上記範囲を上回ると、前述の反応工程の特定の段階のみが促進されすぎたり、副反応が促進されたりして、1,3−ブタジエンの選択率が低下する傾向がある。   The content of other elements (amount in terms of metal element) is, for example, 0.1 to 5.0% by weight, preferably 0.5 to 5.0% by weight, particularly preferably in the total amount of catalyst (100% by weight). 1.0 to 5.0% by weight. When the content of other elements exceeds the above range, only a specific stage of the above-described reaction process is promoted too much, or side reaction is promoted, and the selectivity for 1,3-butadiene tends to decrease. is there.

本発明の触媒の粒径としては、例えば、粒径は20メッシュ(目開き:0.85mm)以上、10メッシュ(目開き:2.0mm)以下(すなわち、10メッシュの篩を通過し、20メッシュの篩上に残る粒子の大きさ)である。   As the particle size of the catalyst of the present invention, for example, the particle size is 20 mesh (aperture: 0.85 mm) or more and 10 mesh (aperture: 2.0 mm) or less (that is, it passes through a 10 mesh sieve, 20 Size of particles remaining on the mesh screen).

本発明の触媒はマグネシウム化合物と珪素化合物を水熱合成に付すことにより合成される。より具体的には、圧力容器中において、均一沈殿剤の存在下でマグネシウムおよび珪素を含む酸性水溶液を加熱することにより合成される。   The catalyst of the present invention is synthesized by subjecting a magnesium compound and a silicon compound to hydrothermal synthesis. More specifically, it is synthesized by heating an acidic aqueous solution containing magnesium and silicon in a pressure vessel in the presence of a uniform precipitant.

前記マグネシウム化合物としては、例えば、水酸化マグネシウム、硝酸マグネシウム、蓚酸マグネシウム等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。   Examples of the magnesium compound include magnesium hydroxide, magnesium nitrate, and magnesium oxalate. These can be used alone or in combination of two or more.

前記珪素化合物としては、例えば、珪酸(例えば、コロイダルシリカ、ヒュームドシリカ等)、テトラエチルオルソシリケート等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。   Examples of the silicon compound include silicic acid (for example, colloidal silica, fumed silica, etc.), tetraethyl orthosilicate, and the like. These can be used alone or in combination of two or more.

構成元素としてマグネシウムと珪素以外に上記他の元素を含有する触媒は、マグネシウム化合物と珪素化合物と共に他の元素を含有する化合物を水熱合成に付すことによって製造することができる。
例えば、他の元素としてコバルトを含有する触媒は、マグネシウム化合物と珪素化合物と共に、コバルトを含有する化合物(例えば、硝酸コバルト(II)六水和物、酢酸コバルト(II)四水和物、硫酸コバルト(II)七水和物等)を水熱合成に付すことにより製造することができる。
他の元素としてニッケルを含有する触媒は、マグネシウム化合物と珪素化合物と共に、ニッケルを含有する化合物(例えば、硝酸ニッケル六水和物、硫酸ニッケル(II)等)を水熱合成に付すことにより製造することができる。
他の元素として銅を含有する触媒は、マグネシウム化合物と珪素化合物と共に、銅を含有する化合物(例えば、硝酸銅(II)三水和物、硫酸銅(II)五水和物等)を水熱合成に付すことにより製造することができる。
他の元素として亜鉛を含有する触媒は、マグネシウム化合物と珪素化合物と共に、亜鉛を含有する化合物(例えば、硝酸亜鉛六水和物、塩基性炭酸亜鉛、硫酸亜鉛七水和物等)を水熱合成に付すことにより製造することができる。
他の元素としてガリウムを含有する触媒は、マグネシウム化合物と珪素化合物と共に、ガリウムを含有する化合物(例えば、硝酸ガリウム水和物、水酸化ガリウム等)を水熱合成に付すことにより製造することができる。
他の元素として銀を含有する触媒は、マグネシウム化合物と珪素化合物と共に、銀を含有する化合物(例えば、硝酸銀、硫酸銀等)を水熱合成に付すことにより製造することができる。
他の元素としてインジウムを含有する触媒は、マグネシウム化合物と珪素化合物と共に、インジウムを含有する化合物(例えば、硝酸インジウム等)を水熱合成に付すことにより製造することができる。
A catalyst containing the above-mentioned other elements in addition to magnesium and silicon as constituent elements can be produced by subjecting a compound containing other elements together with a magnesium compound and a silicon compound to hydrothermal synthesis.
For example, a catalyst containing cobalt as another element is a compound containing cobalt (eg, cobalt nitrate (II) hexahydrate, cobalt acetate (II) tetrahydrate, cobalt sulfate) together with a magnesium compound and a silicon compound. (II) heptahydrate etc.) can be produced by hydrothermal synthesis.
A catalyst containing nickel as another element is produced by subjecting a compound containing nickel (for example, nickel nitrate hexahydrate, nickel (II) sulfate, etc.) together with a magnesium compound and a silicon compound to hydrothermal synthesis. be able to.
The catalyst containing copper as another element is a hydrothermal treatment of a compound containing copper (for example, copper nitrate (II) trihydrate, copper sulfate (II) pentahydrate, etc.) together with a magnesium compound and a silicon compound. It can be manufactured by subjecting it to synthesis.
The catalyst containing zinc as another element is a hydrothermal synthesis of a compound containing zinc (eg, zinc nitrate hexahydrate, basic zinc carbonate, zinc sulfate heptahydrate, etc.) together with a magnesium compound and a silicon compound. It can manufacture by attaching | subjecting to.
A catalyst containing gallium as another element can be produced by hydrothermal synthesis of a compound containing gallium (eg, gallium nitrate hydrate, gallium hydroxide, etc.) together with a magnesium compound and a silicon compound. .
A catalyst containing silver as another element can be produced by subjecting a compound containing silver (for example, silver nitrate, silver sulfate, etc.) together with a magnesium compound and a silicon compound to hydrothermal synthesis.
A catalyst containing indium as another element can be produced by subjecting a compound containing indium (eg, indium nitrate) together with a magnesium compound and a silicon compound to hydrothermal synthesis.

前記均一沈殿剤としては、例えば、尿素、ヘキサミン等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用できる。   Examples of the uniform precipitant include urea and hexamine. These can be used alone or in combination of two or more.

前記均一沈殿剤の使用量としては、マグネシウム化合物1モルに対して、例えば1.2モル以上、好ましくは1.5モル以上である。均一沈殿剤を上記範囲で使用することにより、pHを均一な状態でスイングさせ、結晶核を一様に発生させることができる。   The amount of the uniform precipitant used is, for example, 1.2 mol or more, preferably 1.5 mol or more, per 1 mol of the magnesium compound. By using the uniform precipitant within the above range, the pH can be swung in a uniform state, and crystal nuclei can be generated uniformly.

上記マグネシウム化合物と珪素化合物の水熱合成は酸性水溶液(例えば、硝酸水溶液、硫酸水溶液等)の存在下で行うことが好ましく、酸性水溶液の使用量としては、マグネシウム化合物と珪素化合物の総重量の例えば1〜3重量倍程度、好ましくは1〜1.5重量倍である。   The hydrothermal synthesis of the magnesium compound and the silicon compound is preferably performed in the presence of an acidic aqueous solution (for example, nitric acid aqueous solution, sulfuric acid aqueous solution, etc.). The amount of the acidic aqueous solution used is, for example, the total weight of the magnesium compound and the silicon compound. About 1 to 3 times by weight, preferably 1 to 1.5 times by weight.

上記マグネシウム化合物と珪素化合物の水熱合成時の反応温度は、例えば80℃以上、好ましくは100℃以上である。反応時の圧力は、例えば0.3MPa以上、好ましくは0.5MPa以上である。反応時間は、例えば24時間以上、好ましくは48時間以上である。   The reaction temperature during the hydrothermal synthesis of the magnesium compound and silicon compound is, for example, 80 ° C. or higher, preferably 100 ° C. or higher. The pressure during the reaction is, for example, 0.3 MPa or more, preferably 0.5 MPa or more. The reaction time is, for example, 24 hours or longer, preferably 48 hours or longer.

水熱合成終了後は、例えば、乾燥、焼成(例えば、120〜200℃で0.5〜3.0時間程度加熱し、更に450〜600℃で1〜5時間程度加熱)、粉砕等を施すことにより本発明の触媒を製造することができる。   After completion of hydrothermal synthesis, for example, drying, firing (for example, heating at 120 to 200 ° C. for about 0.5 to 3.0 hours, and further heating at 450 to 600 ° C. for about 1 to 5 hours), pulverization, and the like are performed. Thus, the catalyst of the present invention can be produced.

[原料]
本発明の原料は少なくともエタノールを含む。前記エタノールとしては、特に限定されることが無く、例えば、サトウキビやトウモロコシなどのバイオマス由来のエタノールや、石油若しくは天然ガス由来のエタノールなどを挙げることができる。本発明においては、特に、バイオマス由来のエタノールを使用することが、多くの産業分野において重要な合成ゴムの原料である1,3−ブタジエンを地球温暖化の主な原因とされている温室効果ガスの排出量を抑制しつつ製造することができる点で好ましい。
[material]
The raw material of the present invention contains at least ethanol. The ethanol is not particularly limited, and examples thereof include ethanol derived from biomass such as sugar cane and corn, ethanol derived from petroleum or natural gas, and the like. In the present invention, in particular, the use of biomass-derived ethanol is a greenhouse gas whose main cause of global warming is 1,3-butadiene, which is a raw material for synthetic rubber, which is important in many industrial fields. It is preferable at the point which can manufacture, suppressing the discharge | emission amount.

また、本発明の原料は、エタノールと共にアセトアルデヒドを含有することが好ましい。エタノールと共にアセトアルデヒドを含有することにより、より一層選択的かつ高収率に1,3−ブタジエンを得ることができる。エタノールと共にアセトアルデヒドを含有する場合、エタノールとアセトアルデヒドのモル比(前者:後者)は、例えば9.9:0.1〜5:5程度、好ましくは9:1〜5:5、特に好ましくは7:3〜5:5である。アセトアルデヒドの含有量が上記範囲を上回ると、未反応のアルデヒドが縮合や分解などの副反応で消費される傾向がある。   Moreover, it is preferable that the raw material of this invention contains acetaldehyde with ethanol. By containing acetaldehyde together with ethanol, 1,3-butadiene can be obtained more selectively and with a high yield. When acetaldehyde is contained together with ethanol, the molar ratio of ethanol to acetaldehyde (the former: latter) is, for example, about 9.9: 0.1 to 5: 5, preferably 9: 1 to 5: 5, particularly preferably 7: 3-5: 5. When the content of acetaldehyde exceeds the above range, unreacted aldehyde tends to be consumed by side reactions such as condensation and decomposition.

本発明の原料(100重量%)に占めるエタノール(エタノールと共にアセトアルデヒドを含有する場合は、エタノールとアセトアルデヒド)の割合は、例えば50重量%以上、好ましくは70〜100重量%、特に好ましくは85〜100%である。   The ratio of ethanol (in the case of containing acetaldehyde together with ethanol) in the raw material (100% by weight) of the present invention is, for example, 50% by weight or more, preferably 70 to 100% by weight, particularly preferably 85 to 100%. %.

[1,3−ブタジエンの製造方法]
本発明の1,3−ブタジエンの製造方法は、エタノールから1,3−ブタジエンを得る方法であって、加熱下で、上記原料を上記触媒に接触させることを特徴とする。
[Method for producing 1,3-butadiene]
The method for producing 1,3-butadiene according to the present invention is a method for obtaining 1,3-butadiene from ethanol, wherein the raw material is brought into contact with the catalyst under heating.

前記加熱の程度としては、反応系内の温度が、例えば300〜450℃、好ましくは350〜400℃となる程度である。反応系内の温度が上記範囲を下回ると、触媒活性が十分に得られなくなって反応速度が低下し製造効率が低下する傾向がある。一方、反応系内の温度が上記範囲を上回ると、触媒が劣化し易くなる恐れがある。   The degree of the heating is such that the temperature in the reaction system is, for example, 300 to 450 ° C., preferably 350 to 400 ° C. When the temperature in the reaction system is below the above range, sufficient catalytic activity cannot be obtained, the reaction rate tends to decrease, and the production efficiency tends to decrease. On the other hand, if the temperature in the reaction system exceeds the above range, the catalyst may be easily deteriorated.

本発明の1,3−ブタジエンの製造方法は、回分式、半回分式、連続式等の慣用の方法により行うことができる。回分式又は半回分式を採用した場合は、原料の使用率を極めて高くすることができる。また、本発明に係る1,3−ブタジエンの製造方法は上記触媒を使用するため、連続式を採用しても、従来に比べて効率よく原料のエタノールを転化することができ、更に未反応原料を反応系に再利用することにより原料のエタノールの使用率を極めて高いレベルに向上させることができる。そのため、簡便且つ効率的に1,3−ブタジエンを分離、回収することができる連続式を採用することが好ましい。   The method for producing 1,3-butadiene of the present invention can be carried out by a conventional method such as a batch system, a semi-batch system, or a continuous system. When the batch system or the semi-batch system is employed, the usage rate of the raw material can be made extremely high. In addition, since the method for producing 1,3-butadiene according to the present invention uses the above catalyst, even if a continuous method is employed, ethanol as a raw material can be converted more efficiently than in the past, and unreacted raw material can be further converted. By reusing them in the reaction system, the usage rate of the raw material ethanol can be improved to a very high level. Therefore, it is preferable to employ a continuous system that can separate and recover 1,3-butadiene simply and efficiently.

連続式を採用する場合、触媒に対する原料の仕込み速度(W/F[g・min/mL]=(触媒重量)/(原料仕込速度))は、例えば、0.001〜0.1g・min/mL、好ましくは0.01〜0.05g・min/mL、特に好ましくは0.02〜0.04g・min/mLである。   In the case of adopting the continuous type, the feed rate of the raw material to the catalyst (W / F [g · min / mL] = (catalyst weight) / (raw material feed rate)) is 0.001 to 0.1 g · min / mL, preferably 0.01 to 0.05 g · min / mL, particularly preferably 0.02 to 0.04 g · min / mL.

原料を上記触媒に接触させる方法としては、例えば、懸濁床方式、流動床方式、固定床方式等を挙げることができる。また、本発明は、気相法、液相法のいずれであってもよい。本発明では、特に、大量合成が可能な点、運転作業負荷が軽い点、及び触媒の回収、再生処理が簡便な点で、上記触媒を反応管に充填して触媒層を形成し、原料をガスとして流通させて気相にて反応させる固定床式気相連続流通反応装置を用いることが好ましい。   Examples of the method for bringing the raw material into contact with the catalyst include a suspension bed system, a fluidized bed system, and a fixed bed system. Further, the present invention may be either a gas phase method or a liquid phase method. In the present invention, in particular, the catalyst can be filled into the reaction tube to form a catalyst layer in that mass synthesis is possible, operation workload is light, and catalyst recovery and regeneration are simple. It is preferable to use a fixed bed gas phase continuous flow reaction apparatus that is made to flow as a gas and react in the gas phase.

気相で反応を行う場合、原料ガス(例えば、エタノールガス、好ましくはエタノールガスとアセトアルデヒドガスの混合物)は、希釈することなく反応器に供給してもよく、窒素、ヘリウム、アルゴン、炭酸ガスなどの不活性ガスにより適宜希釈して反応器に供給してもよい。また、未反応原料は回収し、再利用してもよい。   When the reaction is performed in the gas phase, the raw material gas (for example, ethanol gas, preferably a mixture of ethanol gas and acetaldehyde gas) may be supplied to the reactor without dilution, such as nitrogen, helium, argon, carbon dioxide gas, etc. It may be appropriately diluted with an inert gas and supplied to the reactor. Unreacted raw materials may be recovered and reused.

反応圧力は、減圧から高圧の広い範囲で適宜設定できる。製造効率や装置構成などの観点から、1MPa(ゲージ圧)以下に設定することが好ましい。   The reaction pressure can be appropriately set within a wide range from reduced pressure to high pressure. From the viewpoint of production efficiency and apparatus configuration, it is preferable to set the pressure to 1 MPa (gauge pressure) or less.

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出等の分離手段や、これらを組み合わせた分離手段により分離精製することができる。   After completion of the reaction, the reaction product can be separated and purified by, for example, separation means such as filtration, concentration, distillation, and extraction, or a separation means that combines these.

本発明の触媒は触媒活性成分が反応溶液中に溶出しにくく、懸濁床方式や流動床方式で触媒と原料を接触させた場合であっても、反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。   In the catalyst of the present invention, the catalytically active component is hardly eluted in the reaction solution, and even when the catalyst and the raw material are contacted by a suspension bed method or a fluidized bed method, physical reaction such as filtration or centrifugation from the reaction solution is performed. It can be easily recovered by a simple separation method.

また、本発明の触媒は、反応器内において、例えば350〜500℃程度、好ましくは450〜500℃の加熱下において空気を流通させ、例えば1〜24時間、好ましくは3〜6時間の再生処理を行うことで、触媒活性が未使用の触媒に対して90%以上まで回復し、再利用することができる。   The catalyst of the present invention is circulated in a reactor, for example, at a temperature of about 350 to 500 ° C., preferably 450 to 500 ° C., for example, for 1 to 24 hours, preferably 3 to 6 hours. By performing the above, the catalyst activity is recovered to 90% or more with respect to the unused catalyst, and can be reused.

本発明に係る1,3−ブタジエンの製造方法は、加熱下で、エタノールを含む原料を上記触媒に接触させるため、エタノールの転化率に優れ、且つ、優れた選択率で1,3−ブタジエンを製造することができる。   In the method for producing 1,3-butadiene according to the present invention, since the raw material containing ethanol is brought into contact with the catalyst under heating, 1,3-butadiene is excellent in ethanol conversion and excellent in selectivity. Can be manufactured.

本発明の1,3−ブタジエンの製造方法は、1,3−ブタジエンを選択的に製造することができ、反応温度350℃、W/F=0.03g・min/mLの条件で反応させた際の反応開始後10分後の1,3−ブタジエンの選択率は、例えば20%以上、好ましくは30%以上、特に好ましくは40%以上、最も好ましくは45%以上である。また、本発明の1,3−ブタジエンの製造方法はエタノールの転化率に優れ、反応温度350℃、W/F=0.03g・min/mLの条件で反応させた際の反応開始後10分後のエタノールの転化率は、例えば18%以上、好ましくは25%以上である。   In the method for producing 1,3-butadiene of the present invention, 1,3-butadiene can be selectively produced, and the reaction is performed under the conditions of a reaction temperature of 350 ° C. and W / F = 0.03 g · min / mL. The selectivity for 1,3-butadiene 10 minutes after the start of the reaction is, for example, 20% or more, preferably 30% or more, particularly preferably 40% or more, and most preferably 45% or more. Further, the method for producing 1,3-butadiene of the present invention is excellent in the conversion rate of ethanol, and 10 minutes after the start of the reaction when the reaction is performed under the conditions of a reaction temperature of 350 ° C. and W / F = 0.03 g · min / mL. The subsequent ethanol conversion is, for example, 18% or more, preferably 25% or more.

本発明の1,3−ブタジエンの製造方法は、上記のように1,3−ブタジエンの選択率が非常に高いので、未反応エタノールを反応系に再利用することにより、エタノール使用率を向上することができ、工業的に効率よく1,3−ブタジエンを製造することができる。   Since the 1,3-butadiene production method of the present invention has a very high selectivity for 1,3-butadiene as described above, the ethanol usage rate is improved by reusing unreacted ethanol in the reaction system. 1,3-butadiene can be produced industrially efficiently.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

調製例1(水熱合成法による触媒の調製)
0.1M硝酸水溶液10mLに硝酸マグネシウム六水和物(和光純薬工業(株)製)5.63g(0.02モル)、及び尿素2.00gを加え溶解するまで撹拌した。
得られた溶液にテトラエチルオルソシリケート(東京化成工業(株)製)5mL(0.02モル)を加え、溶液が均一になるまで撹拌した。
均一化した溶液を100mL圧力容器に移液し、密閉した後に、自圧下、100℃で48時間加熱した。圧力容器中に形成したゲルを濾過することにより回収し、60℃で2日間、乾燥させ白色固体を得た。この固体を粉砕し、170℃で1時間、500℃で2時間焼成して酸化物を得た。この酸化物を打錠して固めた後に破砕し、10−20メッシュで分級して触媒(1)(MgO−SiO2:Mg/Si=1)を得た。
Preparation Example 1 (Preparation of catalyst by hydrothermal synthesis method)
To 10 mL of 0.1 M nitric acid aqueous solution, 5.63 g (0.02 mol) of magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 2.00 g of urea were added and stirred until dissolved.
To the obtained solution, 5 mL (0.02 mol) of tetraethyl orthosilicate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred until the solution became uniform.
The homogenized solution was transferred to a 100 mL pressure vessel and sealed, and then heated at 100 ° C. for 48 hours under self-pressure. The gel formed in the pressure vessel was recovered by filtration and dried at 60 ° C. for 2 days to obtain a white solid. This solid was pulverized and calcined at 170 ° C. for 1 hour and at 500 ° C. for 2 hours to obtain an oxide. The oxide was tableted and hardened, then crushed and classified with 10-20 mesh to obtain catalyst (1) (MgO—SiO 2 : Mg / Si = 1).

調製例2(共沈法による触媒の調製)
0.1M硝酸水溶液10mLに硝酸マグネシウム六水和物(和光純薬工業(株)製)5.63gを加え溶解するまで撹拌した。
得られた溶液にテトラエチルオルソシリケート(東京化成工業(株)製)5mLを加え、溶液が均一になるまで撹拌した。
均一化した溶液に、撹拌下、10%アンモニア水溶液5.7mLを滴下し、ゲルを形成させた。得られたゲルを濾過することにより回収し、60℃で2日間乾燥させ白色固体を得た。
この固体を粉砕し、170℃で1時間、500℃で2時間焼成して酸化物を得た。この酸化物を打錠して固めた後に破砕し、10−20メッシュで分級して触媒(2)(MgO−SiO2:Mg/Si=1)を得た。
Preparation Example 2 (Preparation of catalyst by coprecipitation method)
To 10 mL of 0.1 M nitric acid aqueous solution, 5.63 g of magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred until dissolved.
To the resulting solution, 5 mL of tetraethyl orthosilicate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred until the solution became uniform.
To the homogenized solution, 5.7 mL of a 10% aqueous ammonia solution was added dropwise with stirring to form a gel. The obtained gel was collected by filtration and dried at 60 ° C. for 2 days to obtain a white solid.
This solid was pulverized and calcined at 170 ° C. for 1 hour and at 500 ° C. for 2 hours to obtain an oxide. This oxide was tableted and hardened, then crushed and classified with 10-20 mesh to obtain catalyst (2) (MgO—SiO 2 : Mg / Si = 1).

調製例3(含浸法による触媒の調製)
0.1M硝酸水溶液10mLに硝酸マグネシウム六水和物(和光純薬工業(株)製)5.63gを加え溶解するまで撹拌した。
得られた溶液にフュームドシリカ(商品名「Aerosil 380PE」、日本アエロジル(株)製)を1.32g添加し、80℃温水バス上で撹拌しながら蒸発乾固させて粉末を得た。
得られた粉末を170℃で1時間、500℃で2時間焼成して酸化物を得た。この酸化物を打錠して固めた後に破砕し、10−20メッシュで分級して触媒(3)(MgO−SiO2:Mg/Si=1)を得た。
Preparation Example 3 (Preparation of catalyst by impregnation method)
To 10 mL of 0.1 M nitric acid aqueous solution, 5.63 g of magnesium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred until dissolved.
1.32 g of fumed silica (trade name “Aerosil 380PE”, manufactured by Nippon Aerosil Co., Ltd.) was added to the obtained solution and evaporated to dryness while stirring on an 80 ° C. hot water bath to obtain a powder.
The obtained powder was calcined at 170 ° C. for 1 hour and at 500 ° C. for 2 hours to obtain an oxide. This oxide was tableted and hardened, then crushed and classified with 10-20 mesh to obtain catalyst (3) (MgO—SiO 2 : Mg / Si = 1).

調製例4(湿式混練法による触媒の調製)
0.1M硝酸水溶液10mLに、純水20mL、硝酸マグネシウム六水和物(和光純薬工業(株)製)5.63g、フュームドシリカ(商品名「Aerosil 380PE」、日本アエロジル(株)製)1.32gを加え、オートミルで4時間混練した。
得られたゾルを170℃で1時間、500℃で2時間焼成して酸化物を得た。この酸化物を打錠して固めた後に破砕し、10−20メッシュで分級して触媒(4)(MgO−SiO2:Mg/Si=1)を得た。
Preparation Example 4 (Preparation of catalyst by wet kneading method)
10 mL of 0.1 M nitric acid aqueous solution, pure water 20 mL, magnesium nitrate hexahydrate (made by Wako Pure Chemical Industries, Ltd.) 5.63 g, fumed silica (trade name “Aerosil 380PE”, manufactured by Nippon Aerosil Co., Ltd.) 1.32 g was added and kneaded with an auto mill for 4 hours.
The obtained sol was calcined at 170 ° C. for 1 hour and at 500 ° C. for 2 hours to obtain an oxide. This oxide was tableted and hardened, then crushed and classified with 10-20 mesh to obtain catalyst (4) (MgO—SiO 2 : Mg / Si = 1).

調製例5(物理的混合による触媒の調製)
酸化マグネシウム(ナカライテスク(株)製)0.89g、フュームドシリカ(商品名「Aerosil 380PE」、日本アエロジル(株)製)1.32gを、オートミルで4時間擦り合わせて混合酸化物粉末を得た。
得られた混合酸化物粉末を打錠して固めた後に破砕し、10−20メッシュで分級して触媒(5)(MgO−SiO2:Mg/Si=1)を得た。
Preparation Example 5 (Preparation of catalyst by physical mixing)
Magnesium oxide (manufactured by Nacalai Tesque Co., Ltd.) 0.89 g, fumed silica (trade name “Aerosil 380PE”, Nippon Aerosil Co., Ltd.) 1.32 g are mixed with an auto mill for 4 hours to obtain a mixed oxide powder. It was.
The obtained mixed oxide powder was tableted and hardened, then crushed and classified with 10-20 mesh to obtain catalyst (5) (MgO—SiO 2 : Mg / Si = 1).

上記調製例1〜5で得られた触媒についてX線回折を行った。結果を図1に示す。図1より、水熱合成法により得られた触媒(1)(調製例1で得られた触媒)のみにマグネシウムシリケートの結晶相が形成されていることがわかる。   X-ray diffraction was performed on the catalysts obtained in Preparation Examples 1 to 5. The results are shown in FIG. From FIG. 1, it can be seen that a magnesium silicate crystal phase is formed only on the catalyst (1) obtained by the hydrothermal synthesis method (the catalyst obtained in Preparation Example 1).

調製例6
テトラエチルオルソシリケートの使用量を3.3mL(0.15モル)に変更した以外は調製例1と同様にして、触媒(6)(MgO−SiO2:Mg/Si=1.5)を得た。
Preparation Example 6
A catalyst (6) (MgO—SiO 2 : Mg / Si = 1.5) was obtained in the same manner as in Preparation Example 1, except that the amount of tetraethylorthosilicate used was changed to 3.3 mL (0.15 mol). .

調製例7
テトラエチルオルソシリケートの使用量を2.5mL(0.01モル)に変更した以外は調製例1と同様にして、触媒(7)(MgO−SiO2:Mg/Si=2)を得た
Preparation Example 7
A catalyst (7) (MgO—SiO 2 : Mg / Si = 2) was obtained in the same manner as in Preparation Example 1, except that the amount of tetraethylorthosilicate used was changed to 2.5 mL (0.01 mol).

調製例8
硝酸マグネシウム六水和物と共にバナジン酸アンモニウム(和光純薬工業(株)製)を0.30g使用した以外は調製例1と同様にして、触媒(8)(V25−MgO−SiO2:Mg/Si=1、V:5.0重量%)を得た。
Preparation Example 8
Catalyst (8) (V 2 O 5 —MgO—SiO 2 ) was prepared in the same manner as in Preparation Example 1 except that 0.30 g of ammonium vanadate (manufactured by Wako Pure Chemical Industries, Ltd.) was used together with magnesium nitrate hexahydrate. : Mg / Si = 1, V: 5.0% by weight).

調製例9
バナジン酸アンモニウムに代えて、硝酸マンガン(II)五水和物(和光純薬工業(株)製)を0.51g使用した以外は調製例8と同様にして、触媒(9)(MnO−MgO−SiO2:Mg/Si=1、Mn:5.0重量%)を得た。
Preparation Example 9
Catalyst (9) (MnO-MgO) was prepared in the same manner as in Preparation Example 8, except that 0.51 g of manganese nitrate (II) pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. -SiO 2: Mg / Si = 1 , Mn: 5.0 wt%) was obtained.

調製例10
バナジン酸アンモニウムに代えて、硝酸鉄(III)九水和物(和光純薬工業(株)製)を0.91g使用した以外は調製例8と同様にして、触媒(10)(Fe23−MgO−SiO2:Mg/Si=1、Fe:5.0重量%)を得た。
Preparation Example 10
Catalyst (10) (Fe 2 O) was prepared in the same manner as in Preparation Example 8 except that 0.91 g of iron (III) nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. 3 -MgO—SiO 2 : Mg / Si = 1, Fe: 5.0% by weight).

調製例11
バナジン酸アンモニウムに代えて、硝酸コバルト(II)六水和物(和光純薬工業(株)製)を0.30g使用した以外は調製例8と同様にして、触媒(11)(CoO−MgO−SiO2:Mg/Si=1、Co:2.5重量%)を得た。
Preparation Example 11
Catalyst (11) (CoO-MgO) was prepared in the same manner as in Preparation Example 8, except that 0.30 g of cobalt nitrate (II) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. -SiO 2: Mg / Si = 1 , Co: 2.5 wt%) was obtained.

調製例12
バナジン酸アンモニウムに代えて、硝酸ニッケル六水和物(和光純薬工業(株)製)を0.57g使用した以外は調製例8と同様にして、触媒(12)(NiO−MgO−SiO2:水熱、Mg/Si=1、Ni:5.0重量%)を得た。
Preparation Example 12
Catalyst (12) (NiO—MgO—SiO 2 ) was prepared in the same manner as in Preparation Example 8, except that 0.57 g of nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. : Hydrothermal, Mg / Si = 1, Ni: 5.0% by weight).

調製例13
バナジン酸アンモニウムに代えて、硝酸銅(II)三水和物(和光純薬工業(株)製)を0.44g使用した以外は調製例8と同様にして、触媒(13)(CuO−MgO−SiO2:Mg/Si=1、Cu:5.0重量%)を得た。
Preparation Example 13
Catalyst (13) (CuO-MgO) was prepared in the same manner as in Preparation Example 8 except that 0.44 g of copper (II) nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. -SiO 2: Mg / Si = 1 , Cu: 5.0 wt%) was obtained.

調製例14
バナジン酸アンモニウムに代えて、硝酸亜鉛六水和物(和光純薬工業(株)製)を0.21g使用した以外は調製例8と同様にして、触媒(14)(ZnO−MgO-SiO2:Mg/Si=1、Zn:2.5重量%)を得た。
Preparation Example 14
Catalyst (14) (ZnO—MgO—SiO 2 ) was prepared in the same manner as in Preparation Example 8, except that 0.21 g of zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. : Mg / Si = 1, Zn: 2.5% by weight).

調製例15
バナジン酸アンモニウムに代えて、硝酸ガリウム水和物(和光純薬工業(株)製)を0.71g使用した以外は調製例8と同様にして、触媒(15)(Ga23−MgO−SiO2:Mg/Si=1、Ga:5.0重量%)を得た。
Preparation Example 15
Catalyst (15) (Ga 2 O 3 —MgO—) was prepared in the same manner as in Preparation Example 8 except that 0.71 g of gallium nitrate hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. SiO 2 : Mg / Si = 1, Ga: 5.0% by weight).

調製例16
バナジン酸アンモニウムに代えて、ペンタキス蓚酸水素ニオブ(三津和化学薬品(株)製)を0.94g使用した以外は調製例8と同様にして、触媒(16)(Nb25−MgO−SiO2:Mg/Si=1、Nb:5.0重量%)を得た。
Preparation Example 16
Catalyst (16) (Nb 2 O 5 —MgO—SiO) was prepared in the same manner as in Preparation Example 8 except that 0.94 g of pentakis hydrogen niobium oxalate (manufactured by Mitsuwa Chemicals Co., Ltd.) was used instead of ammonium vanadate. 2 : Mg / Si = 1, Nb: 5.0% by weight).

調製例17
バナジン酸アンモニウムに代えて、硝酸銀(和光純薬工業(株)製)を0.09g使用した以外は調製例8と同様にして、触媒(17)(Ag2O−MgO−SiO2:Mg/Si=1、Ag:2.5重量%)を得た。
Preparation Example 17
Catalyst (17) (Ag 2 O—MgO—SiO 2 : Mg /) was prepared in the same manner as in Preparation Example 8 except that 0.09 g of silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. Si = 1, Ag: 2.5% by weight).

調製例18
バナジン酸アンモニウムに代えて、硝酸インジウム三水和物(和光純薬工業(株)製)を0.18g使用した以外は調製例8と同様にして、触媒(18)(In23−MgO−SiO2:Mg/Si=1、In:2.5重量%)を得た。
Preparation Example 18
Catalyst (18) (In 2 O 3 —MgO) was prepared in the same manner as in Preparation Example 8 except that 0.18 g of indium nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. -SiO 2: Mg / Si = 1 , In: 2.5 wt%) was obtained.

調製例19
バナジン酸アンモニウムに代えて、硝酸セリウム(III)六水和物(和光純薬工業(株)製)を0.36g使用した以外は調製例8と同様にして、触媒(19)(CeO2−MgO−SiO2:Mg/Si=1、Ce:5.0重量%)を得た。
Preparation Example 19
Catalyst (19) (CeO 2 —) was prepared in the same manner as in Preparation Example 8 except that 0.36 g of cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium vanadate. MgO—SiO 2 : Mg / Si = 1, Ce: 5.0% by weight).

実施例1、比較例1〜4
調製例で得られた触媒を固定床式気相連続流通反応装置(反応器)に接続した6mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後、電気炉温度を400℃に保持し、6.5%エタノール/N2ガスをW/F=0.03g・min・mL-1の速度で反応器に流通させて、反応させた。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
反応開始後10分、及び360分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計を使用して分析した。
尚、実施例1は調製例1、比較例1は調製例2、比較例2は調製例3,比較例3は調製例4、比較例4は調製例5で得られた触媒を使用した。結果を下記表1に示す。
Example 1 and Comparative Examples 1 to 4
The catalyst obtained in the preparation example was filled in a 6 mmφ SUS reaction tube connected to a fixed bed type gas-phase continuous flow reactor (reactor), and heated to 500 ° C. in an electric furnace under N 2 flow of 100 mL / min. did.
After pretreatment for 1 hour, the electric furnace temperature was kept at 400 ° C., and 6.5% ethanol / N 2 gas was passed through the reactor at a rate of W / F = 0.03 g · min · mL −1. Allowed to react. The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The reactor outlet gas composition was analyzed for 10 minutes and 360 minutes after the start of the reaction using a gas chromatograph and a Karl Fischer moisture meter.
In Example 1, the catalyst obtained in Preparation Example 1, Comparative Example 1 in Preparation Example 2, Comparative Example 2 in Preparation Example 3, Comparative Example 3 in Preparation Example 4, and Comparative Example 4 in Catalyst 5 were used. The results are shown in Table 1 below.

Figure 0006017386
Figure 0006017386

実施例2〜4
調製例で得られた触媒を、固定床式気相連続流通反応装置(反応器)に接続した6mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後に電気炉温度を350℃に保持し、6.5%エタノール/N2ガスをW/F=0.03g・min・mL-1の速度で反応器に流通させて、反応させた。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
尚、実施例2は調製例1、実施例3は調製例6、実施例4は調製例7で得られた触媒を使用した。
反応開始後360分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。結果を下記表2に示す。
Examples 2-4
The catalyst obtained in the preparation example was filled into a 6 mmφ SUS reaction tube connected to a fixed bed type gas-phase continuous flow reactor (reactor), and heated to 500 ° C. with an electric furnace under N 2 flow of 100 mL / min. Heated.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at 350 ° C., and 6.5% ethanol / N 2 gas was passed through the reactor at a rate of W / F = 0.03 g · min · mL −1. And reacted. The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
In Example 2, the catalyst obtained in Preparation Example 1, Example 3 in Preparation Example 6 and Example 4 in Preparation Example 7 were used.
The gas composition at the outlet of the reactor 360 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are shown in Table 2 below.

Figure 0006017386
Figure 0006017386

実施例5〜17
調製例で得られた触媒を、固定床式気相連続流通反応装置(反応器)に接続した6mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後に電気炉温度を350℃に保持し、6.5%エタノール/N2ガスをW/F=0.03g・min・mL-1の速度で反応器に流通させて、反応させた。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
尚、実施例5は調製例1、実施例6は調製例8、実施例7は調製例9、実施例8は調製例10、実施例9は調製例11、実施例10は調製例12、実施例11は調製例13、実施例12は調製例14、実施例13は調製例15、実施例14は調製例16、実施例15は調製例17、実施例16は調製例18、実施例17は調製例19で得られた触媒を使用した。
反応開始後10分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。結果を下記表3に示す。
Examples 5-17
The catalyst obtained in the preparation example was filled into a 6 mmφ SUS reaction tube connected to a fixed bed type gas-phase continuous flow reactor (reactor), and heated to 500 ° C. with an electric furnace under N 2 flow of 100 mL / min. Heated.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at 350 ° C., and 6.5% ethanol / N 2 gas was passed through the reactor at a rate of W / F = 0.03 g · min · mL −1. And reacted. The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
In addition, Example 5 is Preparation Example 1, Example 6 is Preparation Example 8, Example 7 is Preparation Example 9, Example 8 is Preparation Example 10, Example 9 is Preparation Example 11, Example 10 is Preparation Example 12, Example 11 is Preparation Example 13, Example 12 is Preparation Example 14, Example 13 is Preparation Example 15, Example 14 is Preparation Example 16, Example 15 is Preparation Example 17, Example 16 is Preparation Example 18, Example 17 used the catalyst obtained in Preparation Example 19.
The gas composition at the outlet of the reactor 10 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are shown in Table 3 below.

Figure 0006017386
Figure 0006017386

実施例18、19、比較例5〜7
調製例1で得られた触媒を、固定床式気相連続流通反応装置(反応器)に接続した6mmφのSUS製反応管に充填し、100mL/minのN2流通下で電気炉により500℃に加熱した。
1時間の前処理を行った後に電気炉温度を350℃に保持し、表に記載の基質/N2ガスをW/F=0.03g・min・mL-1の速度で反応器に流通させて、反応させた。反応器出口ガスは気液分離した後にクーラーにて冷却し凝縮液を回収した。
反応開始後10分の反応器出口ガス組成をガスクロマトグラフおよびカールフィッシャー水分計にて分析した。結果を下記表4に示す。
Examples 18, 19 and Comparative Examples 5-7
The catalyst obtained in Preparation Example 1 was filled in a 6 mmφ SUS reaction tube connected to a fixed bed gas-phase continuous flow reactor (reactor), and 500 ° C. in an electric furnace under N 2 flow of 100 mL / min. Heated.
After the pretreatment for 1 hour, the electric furnace temperature was maintained at 350 ° C., and the substrate / N 2 gas shown in the table was passed through the reactor at a rate of W / F = 0.03 g · min · mL −1. And reacted. The reactor outlet gas was gas-liquid separated and then cooled by a cooler to recover the condensate.
The gas composition at the outlet of the reactor 10 minutes after the start of the reaction was analyzed with a gas chromatograph and a Karl Fischer moisture meter. The results are shown in Table 4 below.

Figure 0006017386
Figure 0006017386

Claims (4)

加熱下で、少なくともエタノールを含む原料を、水熱合成法で得られたマグネシウムシリケート構造を有する触媒に接触させることにより1,3−ブタジエンを得ることを特徴とする1,3−ブタジエンの製造方法。   1. A process for producing 1,3-butadiene, characterized in that 1,3-butadiene is obtained by bringing a raw material containing at least ethanol under heating into contact with a catalyst having a magnesium silicate structure obtained by a hydrothermal synthesis method . 触媒を構成するマグネシウムと珪素の元素比(モル比:前者/後者)が0.7〜2.0である請求項1に記載の1,3−ブタジエンの製造方法。   2. The method for producing 1,3-butadiene according to claim 1, wherein an element ratio (molar ratio: former / latter) of magnesium and silicon constituting the catalyst is 0.7 to 2.0. 触媒を構成する元素として、マグネシウムと珪素以外に、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ニオブ、銀、インジウム、及びセリウムから選択される少なくとも1種を含有する請求項1又は2に記載の1,3−ブタジエンの製造方法。   The element constituting the catalyst contains at least one selected from vanadium, manganese, iron, cobalt, nickel, copper, zinc, gallium, niobium, silver, indium, and cerium in addition to magnesium and silicon. Or the manufacturing method of 1, 3- butadiene of 2. バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ニオブ、銀、インジウム、及びセリウムから選択される少なくとも1種の元素の含有量(金属元素換算量)が触媒全量の0.1〜5.0重量%である請求項3に記載の1,3−ブタジエンの製造方法。   The content of the at least one element selected from vanadium, manganese, iron, cobalt, nickel, copper, zinc, gallium, niobium, silver, indium, and cerium (amount in terms of metal element) is 0.1 to 0.1 of the total amount of the catalyst. The method for producing 1,3-butadiene according to claim 3, wherein the content is 5.0% by weight.
JP2013166528A 2013-08-09 2013-08-09 Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis Active JP6017386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013166528A JP6017386B2 (en) 2013-08-09 2013-08-09 Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166528A JP6017386B2 (en) 2013-08-09 2013-08-09 Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis

Publications (2)

Publication Number Publication Date
JP2015034151A JP2015034151A (en) 2015-02-19
JP6017386B2 true JP6017386B2 (en) 2016-11-02

Family

ID=52542943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166528A Active JP6017386B2 (en) 2013-08-09 2013-08-09 Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis

Country Status (1)

Country Link
JP (1) JP6017386B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090801B1 (en) * 2015-05-08 2018-07-25 The Siam Cement Public Company Limited Catalyst for 1,3-butadiene production from ethanol
CN105854859A (en) * 2016-04-27 2016-08-17 上海工程技术大学 Efficient bifunctional catalyst as well as preparation and application thereof
WO2021006250A1 (en) 2019-07-05 2021-01-14 積水化学工業株式会社 Method for producing 1,3-butadiene
JP6944065B2 (en) * 2019-07-05 2021-10-06 積水化学工業株式会社 Method for producing 1,3-butadiene
JP6816241B2 (en) * 2019-11-14 2021-01-20 積水化学工業株式会社 1,3-butadiene synthesis catalyst, 1,3-butadiene production equipment and 1,3-butadiene production method
BR102021018172A2 (en) 2021-09-13 2023-03-28 Petróleo Brasileiro S.A. - Petrobras METHOD OF PREPARING THE CATALYST FOR THE PRODUCTION OF BUTADIENE FROM ETHANOL IN ONE STAGE, CATALYST AND USE
CN114452997A (en) * 2022-01-25 2022-05-10 浙江工业大学 Nitrogen-doped supported oxide catalyst and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102822A (en) * 1980-12-16 1982-06-26 Takeda Chem Ind Ltd Preparation of butadiene
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene
US4623530A (en) * 1985-02-20 1986-11-18 United States Steel Corporation Crystalline magnesia-silica composites and process for producing same
JP2008088140A (en) * 2006-10-05 2008-04-17 Sangi Co Ltd Method for synthesizing chemical industry feedstock and fuel composition
JP6084963B2 (en) * 2012-02-20 2017-02-22 株式会社ダイセル Method for producing 1,3-butadiene

Also Published As

Publication number Publication date
JP2015034151A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6017386B2 (en) Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
JP6084963B2 (en) Method for producing 1,3-butadiene
KR101772249B1 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
JP6417009B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
JP6629394B2 (en) Improved selective ammoxidation catalyst
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
KR101772248B1 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
JP2015168644A (en) IMPROVEMENT OF PREPARATION CONDITIONS OF METAL-ADDED MgO-SiO2 CATALYST EFFECTIVE FOR BUTADIENE SYNTHESIS FROM ETHANOL
KR20130038249A (en) Attrition resistant mixed metal oxide ammoxidation catalysts
CN107771101B (en) Preparation method of ferrite metal oxide catalyst
CN108160104A (en) A kind of carbon dioxide one-step Hydrogenation that is used for is for catalyst of aromatic hydrocarbons and its preparation method and application
Meng et al. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone
US10130935B2 (en) Enhanced dispersion of two-dimensional metal oxide surface species on silica using an alkali promoter
CN107073455B (en) Improved selective ammonia oxidation catalyst
CN104549435A (en) Rare-earth modified ZSM-5 molecular sieve based catalyst and preparation method and application thereof
WO2014129248A1 (en) Method for producing 1,3-butadiene from ethanol in selective manner
US20220009871A1 (en) Process of selective oxidation of glycerol
US9873653B2 (en) Heterogeneous catalyst for production of 3-hydroxypropionic acid from allyl alcohol, and method for preparation of 3-hydroxypropionic acid from allyl alcohol using the same
JP2006088061A (en) Composition composed of salt of heteropoly acid and inorganic oxide, and method for producing the same
US9193655B2 (en) Method for producing 7-octenal
JP6652364B2 (en) Method for producing 1,3-butadiene
CN104549436A (en) Hydrogen type ZSM-5 molecular sieve catalyst as well as preparation method and application thereof
JP6704581B2 (en) Metal oxide catalyst, method for producing butadiene and method for producing metal oxide catalyst
JP7316801B2 (en) Method for producing 1,3-butadiene
JP6085780B2 (en) Method for preparing catalyst for olefin production and method for producing olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150