JP6085780B2 - Method for preparing catalyst for olefin production and method for producing olefin - Google Patents

Method for preparing catalyst for olefin production and method for producing olefin Download PDF

Info

Publication number
JP6085780B2
JP6085780B2 JP2013116304A JP2013116304A JP6085780B2 JP 6085780 B2 JP6085780 B2 JP 6085780B2 JP 2013116304 A JP2013116304 A JP 2013116304A JP 2013116304 A JP2013116304 A JP 2013116304A JP 6085780 B2 JP6085780 B2 JP 6085780B2
Authority
JP
Japan
Prior art keywords
catalyst
olefin
alcohol
solution
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013116304A
Other languages
Japanese (ja)
Other versions
JP2014233670A (en
Inventor
正和 岩本
正和 岩本
麻希 村上
麻希 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Tokyo Institute of Technology NUC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2013116304A priority Critical patent/JP6085780B2/en
Publication of JP2014233670A publication Critical patent/JP2014233670A/en
Application granted granted Critical
Publication of JP6085780B2 publication Critical patent/JP6085780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、アルコールを原料として、そのアルコールの炭素原子数より1以上多いオレフィンを製造するためのオレフィン製造用触媒の調製方法及びオレフィン製造用触媒、並びにオレフィンの製造方法に関する。   The present invention relates to a preparation method of an olefin production catalyst, an olefin production catalyst, and an olefin production method for producing an olefin having one or more carbon atoms of the alcohol as a raw material.

様々な化学品原料となるオレフィンの現在の主要な製法は、石油留分の熱分解法である。しかし、近年の化学品原料の製造分野では、炭酸ガス発生抑制、及び将来の石油資源の高騰又は枯渇に備え、化学品原料を石油系資源から非可食性バイオマス資源に転換することが求められている。特に、代表的な汎用樹脂であるポリプロピレンを、バイオマス資源であるバイオエタノールからより効率よく製造する技術が要求されている。   The current main process for producing olefins, which are various chemical raw materials, is the pyrolysis of petroleum fractions. However, in recent years, in the field of manufacturing chemical raw materials, it is required to convert chemical raw materials from petroleum-based resources to non-edible biomass resources in preparation for the suppression of carbon dioxide generation and future rise or depletion of petroleum resources. Yes. In particular, there is a demand for a technique for more efficiently producing polypropylene, which is a typical general-purpose resin, from bioethanol, which is a biomass resource.

特許文献1には、エタノールからのオレフィン製造方法として、酸触媒、特にゼオライトが用いられている。しかし、酸触媒を用いるとエタノールの脱水反応が併発し、エチレンが多量に生成するためプロピレンの選択率が低いという問題点がある。   In Patent Document 1, an acid catalyst, particularly zeolite, is used as a method for producing olefin from ethanol. However, when an acid catalyst is used, the dehydration reaction of ethanol is accompanied and there is a problem that propylene selectivity is low because a large amount of ethylene is produced.

また、非特許文献1、非特許文献2及び特許文献2には、酸化インジウムを触媒として用いて、エタノールからプロピレンが得られることが報告されている。酸化インジウム粉末の製造方法に関しては古くから種々の方法が知られているが、いずれも電子材料用のITO(Indium−Tin−Oxide)として高密度焼結体を得るためのものである(例えば、特許文献3〜6参照)。   Non-Patent Document 1, Non-Patent Document 2 and Patent Document 2 report that propylene can be obtained from ethanol using indium oxide as a catalyst. Various methods for producing indium oxide powder have been known for a long time, and all are for obtaining a high-density sintered body as ITO (Indium-Tin-Oxide) for electronic materials (for example, (See Patent Documents 3 to 6).

特開2007−290991号公報JP 2007-290991 A 特開2013−6831号公報JP 2013-6831 A 特開平5−193939号公報JP-A-5-193939 特開2003−277052号公報JP 2003-277052 A 特開2006−264989号公報JP 2006-264989 A 特開2006−306669号公報JP 2006-306669 A

Masakazu Iwamoto et.al.,「Selective conversion of ethanol to propene on In2O3−based catalysts」,Europacat X,PM149(2011)Masakazu Iwamoto et. al. , “Selective conversion of ethanol to proposal on In 2 O 3 -based catalyst”, Europac X, PM 149 (2011) 岩本正和ら、「In2O3触媒によるエタノールのプロピレンへの選択的変換」、第108回触媒討論会、2F04(2011)Masakazu Iwamoto et al., “Selective Conversion of Ethanol to Propylene with In 2 O 3 Catalyst”, 108th Catalysis Conference, 2F04 (2011)

本発明者らはこれまでに、アルコールから、該アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造する触媒として酸化インジウムが有効であることを見出した。しかし、当該酸化インジウム触媒においては、触媒活性及び触媒寿命の点で未だ改善の余地があった。
特許文献2では、酸化インジウム含有触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法が開示されている。該文献での触媒調製方法としては、金属成分を含む塩(硝酸塩、硫酸塩、塩化物など)を空気中でそのまま焼成する方法や、該金属成分を含む水溶液に、アンモニア水等の塩基を滴下して沈殿を形成させ、濾過後焼成する方法が挙げられているが、プロピレンの収率がさらに高く、寿命の長い触媒の調製方法が求められていた。
The present inventors have found that indium oxide is effective as a catalyst for producing an olefin having at least one carbon atom larger than the number of carbon atoms of the alcohol. However, the indium oxide catalyst still has room for improvement in terms of catalyst activity and catalyst life.
Patent Document 2 discloses an olefin production method for producing an olefin having 1 or more carbon atoms from an alcohol in the presence of an indium oxide-containing catalyst. As a catalyst preparation method in the literature, a salt containing a metal component (nitrate, sulfate, chloride, etc.) is baked as it is in air, or a base such as ammonia water is dropped into an aqueous solution containing the metal component. Although a method of forming a precipitate and baking after filtration is mentioned, a method for preparing a catalyst having a higher propylene yield and a longer life has been demanded.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、アルコールを原料としてそのアルコールよりも少なくとも一つ大きい炭素原子数のオレフィンを、高い収率で長時間安定して製造できる高性能・長寿命のオレフィン製造用触媒の調製方法及びオレフィン製造用触媒、並びにオレフィンの製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to stably produce an olefin having at least one carbon atom larger than the alcohol for a long time with a high yield using the alcohol as a raw material. An object of the present invention is to provide a method for preparing a catalyst for olefin production having high performance and long life, a catalyst for olefin production, and a method for producing olefin.

本発明者らは、上記課題を解決するために鋭意検討を行なった結果、インジウム塩を含む水溶液に、塩基水溶液および式(I)の第4級アンモニウム塩水溶液を添加することにより、原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィン、特に原料アルコールの炭素原子数よりも一つ大きい炭素原子数のオレフィンを高収率で生成することができる寿命の長い触媒が得られることを見出し、本発明を完成させるに至った。
すなわち本発明は、下記の通りのものである。
As a result of intensive studies to solve the above problems, the present inventors have added a base aqueous solution and a quaternary ammonium salt aqueous solution of the formula (I) to an aqueous solution containing an indium salt, whereby A long-life catalyst capable of producing an olefin having at least one carbon atom larger than the number of carbon atoms, particularly an olefin having one carbon atom larger than that of the raw alcohol, in a high yield is obtained. As a result, the present invention has been completed.
That is, the present invention is as follows.

[1]アルコールから、該アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造するための触媒の調製方法であって、インジウム塩を含む水溶液に、塩基水溶液および式(I)の第4級アンモニウム塩水溶液を添加することにより沈殿を形成し、その懸濁液を熟成して得られた沈殿を、濾過回収・洗浄・焼成する、オレフィン製造用触媒の調製方法。
(R1〜R4はアルキル基、X-は陰イオンを示す)
[2]式(I)のR1〜R4のそれぞれが、エチル基、プロピル基、ブチル基のいずれかであり、かつ式(I)のX-が、水酸化物イオン(OH-)、臭化物イオン(Br-)、塩化物イオン(Cl-)のいずれかである上記[1]に記載のオレフィン製造用触媒の調製方法。
[3]式(I)のR1〜R4が、すべてプロピル基である上記[1]又は[2]に記載のオレフィン製造用触媒の調製方法。
[4]pHが5〜10となるように塩基水溶液を添加し、次いでpHが9以上となるように式(I)の第4級アンモニウム塩水溶液を添加する上記[1]〜[3]のいずれかに記載のオレフィン製造用触媒の調製方法。
[5]前記アルコールがエタノールであり、前記オレフィンがプロピレンである、[1]〜[4]のいずれかに記載のオレフィン製造用触媒の調製方法。
[6]上記[1]〜[5]のいずれかに記載の調製方法より調製されたオレフィン製造用触媒。
[7]アルコールと上記[6]に記載のオレフィン製造用触媒を接触させて、前記アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造するオレフィンの製造方法。
[1] A method for preparing a catalyst for producing an olefin having at least one carbon atom greater than the number of carbon atoms of the alcohol from an alcohol, comprising an aqueous solution containing an indium salt, an aqueous base solution, and a compound of formula (I) A method for preparing a catalyst for olefin production, comprising forming a precipitate by adding an aqueous quaternary ammonium salt solution, and aging the suspension to collect, wash, and calcine the precipitate.
(R 1 to R 4 are alkyl groups, X represents an anion)
[2] Each of R 1 to R 4 in formula (I) is any of an ethyl group, a propyl group, and a butyl group, and X − in formula (I) is a hydroxide ion (OH ), The method for preparing a catalyst for olefin production according to the above [1], which is either bromide ion (Br ) or chloride ion (Cl ).
[3] The method for preparing a catalyst for olefin production according to the above [1] or [2], wherein R 1 to R 4 in the formula (I) are all propyl groups.
[4] An aqueous base solution is added so that the pH is 5 to 10, and then an aqueous quaternary ammonium salt of the formula (I) is added so that the pH is 9 or more. The preparation method of the catalyst for olefin manufacture in any one.
[5] The method for preparing a catalyst for olefin production according to any one of [1] to [4], wherein the alcohol is ethanol and the olefin is propylene.
[6] An olefin production catalyst prepared by the preparation method according to any one of [1] to [5].
[7] A method for producing an olefin, wherein an olefin having at least one carbon atom larger than the number of carbon atoms of the alcohol is produced by bringing the alcohol into contact with the olefin production catalyst according to [6].

本発明によれば、アルコールを原料としてそのアルコールよりも少なくとも一つ大きい炭素原子数のオレフィン、特に原料アルコールの炭素原子数よりも一つ大きい炭素原子数のオレフィンを、高い収率で長時間安定して製造できる長寿命のオレフィン製造用触媒の調製方法を提供することができる。
このようなオレフィン製造用触媒が生成するのは、第4級アンモニウム塩の添加によって、焼成後の酸化インジウムが金属インジウムに還元されにくい構造である水酸化インジウムの骨格が形成されているものと推察される。
According to the present invention, an olefin having at least one carbon atom larger than the alcohol, particularly an olefin having one carbon atom larger than the carbon number of the raw alcohol, is stable for a long time with a high yield. Thus, it is possible to provide a method for preparing a long-lived olefin production catalyst that can be produced in the same manner.
It is inferred that such an olefin production catalyst is formed by the addition of a quaternary ammonium salt that forms a skeleton of indium hydroxide having a structure in which the indium oxide after calcination is difficult to be reduced to metal indium. Is done.

本発明のオレフィン製造用触媒の調製方法について説明するが、本発明は以下の説明に限定されるものではない。なお、本明細書において、「〜」という表現により数値範囲を示す場合には、下限値及び上限値を含むものとする。   Although the preparation method of the catalyst for olefin production of this invention is demonstrated, this invention is not limited to the following description. In the present specification, when a numerical range is indicated by the expression “to”, it includes a lower limit value and an upper limit value.

〔1.オレフィン製造用触媒の調製方法〕
本発明のオレフィン製造用触媒の調製方法は、インジウム塩を含む水溶液に、塩基水溶液および式(I)の第4級アンモニウム塩水溶液を添加して、水酸化インジウムの沈殿を形成させる沈殿生成工程の後、その懸濁液を熟成する熟成工程を経て得られた沈殿を、濾過回収・洗浄・焼成することにより、アルコールを原料としてそのアルコールよりも少なくとも一つ大きい炭素原子数のオレフィン、特に原料アルコールの炭素原子数よりも一つ大きい炭素原子数のオレフィンを高い収率で長時間安定して製造できる高性能・長寿命の酸化インジウムからなるオレフィン製造用触媒を得るものである。
以下、本発明の触媒調製方法の詳細を説明する。
[1. Preparation method of catalyst for olefin production]
The method for preparing an olefin production catalyst of the present invention comprises a precipitation generating step of adding an aqueous base solution and an aqueous quaternary ammonium salt of formula (I) to an aqueous solution containing an indium salt to form a precipitate of indium hydroxide. Thereafter, the precipitate obtained through an aging step for aging the suspension is filtered, recovered, washed, and calcined, so that the olefin having at least one carbon atom larger than the alcohol, particularly the starting alcohol, is used as the starting material. Thus, an olefin production catalyst composed of high performance and long life indium oxide capable of stably producing an olefin having one carbon atom larger than the number of carbon atoms in a high yield for a long time is obtained.
Hereinafter, the details of the catalyst preparation method of the present invention will be described.

(沈殿生成工程)
インジウムの塩としては、硝酸インジウム、硫酸インジウム、塩化インジウム、酢酸インジウム等が挙げられる。なかでも、硝酸インジウムを用いることが好ましい。インジウム塩を含む水溶液中のインジウム濃度は、0.1mol/L以上であることが好ましい。
(Precipitation generation process)
Examples of the indium salt include indium nitrate, indium sulfate, indium chloride, and indium acetate. Of these, indium nitrate is preferably used. The indium concentration in the aqueous solution containing the indium salt is preferably 0.1 mol / L or more.

インジウムの塩を含む水溶液と混合される「第1の沈殿剤」は、塩基水溶液であり、塩基としては、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、尿素等が挙げられ、これらの水溶液として用いられる。なかでも、アンモニア水を用いることが好ましい。   The “first precipitant” mixed with an aqueous solution containing an indium salt is an aqueous base solution, and examples of the base include ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, urea, and the like. Used as an aqueous solution. Among these, it is preferable to use ammonia water.

インジウムの塩を含む水溶液と混合される「第2の沈殿剤」に含まれる特定の化合物は、式(I)の第4級アンモニウム塩であり、水溶液として用いられる。
式(I)のR1〜R4はアルキル基であり、アルキル基は、エチル基、プロピル基、ブチル基のいずれかであることが好ましく、R1〜R4の全てがプロピル基であることがより好ましい。
式(I)のX-は陰イオンであり、陰イオンとしては、水酸化物イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、硝酸イオン、亜硝酸イオン、炭酸水素イオン、アルミン酸イオンなどの無機陰イオン、ギ酸イオン、酢酸イオンなどの有機カルボン酸イオン、メタンスルホン酸イオン、トルエンスルホン酸イオンなどの有機スルホン酸イオン、フェノキシドイオンなどの有機陰イオン等が挙げられるが、水酸化物イオン、臭化物イオン、塩化物イオンが好ましく、さらに好ましくは水酸化物イオンである。
具体的には、式〈I)の第4級アンモニウム塩は、テトラエチルアンモニウムヒドロキシド(TEAOH)、テトラプロピルアンモニウムヒドロキシド(TPAOH)、テトラブチルアンモニウムヒドロキシド(TBAOH)が好ましく、TPAOHが特に好ましい。
A specific compound contained in the “second precipitant” mixed with an aqueous solution containing an indium salt is a quaternary ammonium salt of formula (I) and is used as an aqueous solution.
R 1 to R 4 in formula (I) are alkyl groups, and the alkyl group is preferably any of an ethyl group, a propyl group, and a butyl group, and all of R 1 to R 4 are propyl groups. Is more preferable.
X < - > in formula (I) is an anion, and examples of the anion include hydroxide ion, fluoride ion, chloride ion, bromide ion, iodide ion, nitrate ion, nitrite ion, hydrogen carbonate ion, and alumina. Inorganic anions such as acid ions, organic carboxylate ions such as formate ion and acetate ion, organic sulfonate ions such as methanesulfonate ion and toluenesulfonate ion, organic anions such as phenoxide ion, etc. Oxide ions, bromide ions, and chloride ions are preferable, and hydroxide ions are more preferable.
Specifically, the quaternary ammonium salt of the formula <I> is preferably tetraethylammonium hydroxide (TEAOH), tetrapropylammonium hydroxide (TPAOH), tetrabutylammonium hydroxide (TBAOH), and particularly preferably TPAOH.

第1の沈殿剤と第2の沈殿剤とは共存させて用いてもよいが、第1の沈殿剤を一定量加えてpHを調整した後に、第2の沈殿剤を加えることが好ましい。
その場合、第1の沈殿剤を投入した後の混合溶液のpHは5〜10とすることが好ましく、6〜9とすることがより好ましい。第2の沈殿剤を投入した後のpHは、9以上とすることが好ましく、さらに好ましいpHは11以上である。
The first precipitating agent and the second precipitating agent may be used together, but it is preferable to add the second precipitating agent after adjusting the pH by adding a certain amount of the first precipitating agent.
In that case, the pH of the mixed solution after adding the first precipitant is preferably 5 to 10, more preferably 6 to 9. The pH after adding the second precipitating agent is preferably 9 or more, and more preferably 11 or more.

なお、沈殿剤の投入に際しては撹拌を行うが、撹拌速度は、水溶液中の沈殿粒子が沈降・凝集・固化しない程度に、混合液を撹拌しておくことが好ましい。また、沈殿剤の投入速度は、インジウム塩や沈殿剤の濃度にもよるが、10mL/min以上であることが好ましい。   In addition, although stirring is performed when the precipitant is added, it is preferable to stir the mixed solution so that the precipitated particles in the aqueous solution do not settle, aggregate, and solidify. Further, the rate of addition of the precipitating agent is preferably 10 mL / min or more, although it depends on the concentration of the indium salt and the precipitating agent.

(熟成工程)
第1および第2の沈殿剤を投入して沈殿を形成させた後、沈殿を濾過回収する前に、混合溶液のまま熟成させることによって、目的とする高性能触媒が得られやすくなる。
ここで、「熟成」とは、混合溶液を所定温度で、所定時間、撹拌する操作を指す。好ましい熟成温度は10℃〜100℃、より好ましくは20℃〜80℃であり、好ましい熟成時間は1時間以上、より好ましくは10時間以上である。撹拌速度は、沈殿粒子が沈降・凝集・固化しない程度に、混合溶液を撹拌しておくことが好ましい。
(Aging process)
After the first and second precipitants are added to form a precipitate and then the precipitate is aged in the mixed solution before being collected by filtration, the intended high performance catalyst can be easily obtained.
Here, “aging” refers to an operation of stirring the mixed solution at a predetermined temperature for a predetermined time. A preferable aging temperature is 10 ° C. to 100 ° C., more preferably 20 ° C. to 80 ° C., and a preferable aging time is 1 hour or more, more preferably 10 hours or more. The stirring speed is preferably such that the mixed solution is stirred so that the precipitated particles do not settle, aggregate or solidify.

熟成工程を経て得られた沈殿を含む混合液を濾過して沈殿を回収し、これを洗浄した後、乾燥及び焼成することで、目的とする本発明のオレフィン製造用触媒を得ることができる。ここで、焼成温度は、500℃〜1000℃、好ましくは600℃〜800℃、さらに好ましくは650℃〜750℃である。
当該触媒は粉末状である場合は、適宜粉砕を行い所望の粒径範囲となるように整粒する。また、ペレット状である場合は、適宜粉砕を行い公知の手段により例えば円柱状に成形する。
The mixed solution containing the precipitate obtained through the aging step is filtered to collect the precipitate, which is washed, dried and calcined, whereby the target catalyst for olefin production of the present invention can be obtained. Here, a calcination temperature is 500 degreeC-1000 degreeC, Preferably it is 600 degreeC-800 degreeC, More preferably, it is 650 degreeC-750 degreeC.
When the catalyst is in a powder form, it is appropriately pulverized and sized so as to be in a desired particle size range. Moreover, when it is a pellet form, it grind | pulverizes suitably and shape | molds, for example in a column shape by a well-known means.

〔2.オレフィン製造用触媒〕
本発明のオレフィン製造用触媒は上述の本発明のオレフィン製造用触媒の調製方法により調製され、インジウム酸化物を含む。触媒の形態としては、インジウムの酸化物粉末やインジウムの酸化物からなるペレット等の形態が挙げられる。
[2. Olefin production catalyst)
The catalyst for olefin production of the present invention is prepared by the above-described method for preparing the catalyst for olefin production of the present invention, and contains indium oxide. Examples of the form of the catalyst include forms of indium oxide powder and pellets made of indium oxide.

ここで、インジウム酸化物の好適な一例としては、酸化インジウム(In23)が挙げられる。酸化インジウムの種類としては、立方晶又はアモルファス等を例示することができる。また、本発明の効果を阻害しない限り、種々の他の金属成分を含有させてもよい。 Here, as a preferable example of indium oxide include indium oxide (In 2 O 3). Examples of the type of indium oxide include cubic or amorphous. Moreover, as long as the effect of this invention is not inhibited, you may contain a various other metal component.

〔3.オレフィンの製造方法〕
本発明のオレフィン製造用触媒を用いたオレフィンの製造方法は、アルコールから、該アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを生成する生成工程を含み、該生成工程では、原料アルコールと、本発明のオレフィン製造用触媒とを、反応温度300℃〜700℃で接触させればよい。
[3. (Olefin production method)
The olefin production method using the olefin production catalyst of the present invention includes a production step of producing an olefin having at least one carbon atom larger than the number of carbon atoms of the alcohol from an alcohol, What is necessary is just to make alcohol and the catalyst for olefin manufacture of this invention contact by reaction temperature 300 to 700 degreeC.

本発明に係る触媒と反応させるアルコールとしては、特に限定されないが、炭素原子数2〜12の1級アルコールであることが好ましい。炭素原子数2〜12の1級アルコールとしては、エタノール、1−プロパノール、1−ブタノール、イソブタノール、1−ペンタノール、1−ヘキサノール、1−へプタノール、1−オクタノール、1−ノナノール、1−デカノール、1−ウンデカノール、1−ドデカノール等を例示することができる。
なかでも、アルコールとしては、炭素原子数2〜8の1級アルコールが好ましく、炭素原子数2〜4の1級アルコールがより好ましい。この範囲のアルコールであれば、生成物中の原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンの選択性を向上させることができる。
Although it does not specifically limit as alcohol made to react with the catalyst which concerns on this invention, It is preferable that it is a C2-C12 primary alcohol. Examples of the primary alcohol having 2 to 12 carbon atoms include ethanol, 1-propanol, 1-butanol, isobutanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1- Examples include decanol, 1-undecanol, 1-dodecanol and the like.
Among these, as the alcohol, a primary alcohol having 2 to 8 carbon atoms is preferable, and a primary alcohol having 2 to 4 carbon atoms is more preferable. If the alcohol is in this range, the selectivity of the olefin having at least one carbon atom larger than that of the raw material alcohol in the product can be improved.

さらに、本発明に使用するアルコールとしては、生物資源由来(バイオマス)のアルコール(バイオアルコール)を用いることがより好ましい。生物資源由来のアルコールを本発明のオレフィン製造用触媒と反応させることにより、化石燃料から得られたアルコールとは異なり、環境中の二酸化炭素を増加させることなく原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造することができる。   Furthermore, as the alcohol used in the present invention, it is more preferable to use a bioresource-derived (biomass) alcohol (bioalcohol). Unlike alcohol obtained from fossil fuel, by reacting biological resource-derived alcohol with the catalyst for olefin production of the present invention, at least one carbon atom number of raw material alcohol is increased without increasing carbon dioxide in the environment. Large olefins can be produced.

生成される原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンは、原料となるアルコールの炭素数がn(nは2以上)の場合には、2n−1、2n、3n−1等の炭素数のオレフィンである。具体的には、原料となるアルコールがエチルアルコールの場合には、エチレンの他に、プロピレン、1−ブテン、シス2−ブテン、トランス2−ブテン、イソブテン、ペンテン等、原料となるアルコールが1−プロパノールの場合には、プロピレンの他に、ペンテン類、へキセン類、オクテン類等が生成する。   The olefin having at least one carbon atom larger than the number of carbon atoms of the raw material alcohol to be produced is 2n-1, 2n, 3n- when the raw material alcohol has n carbon atoms (n is 2 or more). An olefin having 1 carbon number or the like. Specifically, when the alcohol as a raw material is ethyl alcohol, in addition to ethylene, the alcohol as the raw material such as propylene, 1-butene, cis 2-butene, trans 2-butene, isobutene, and pentene is 1- In the case of propanol, pentenes, hexenes, octenes and the like are produced in addition to propylene.

オレフィン生成工程における反応温度は、300℃〜700℃であることが好ましく、350℃〜600℃であることがより好ましい。この範囲の温度で反応させることにより、生成物中の原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンの選択性の低下を防ぐことができる。   The reaction temperature in the olefin production step is preferably 300 ° C to 700 ° C, and more preferably 350 ° C to 600 ° C. By carrying out the reaction at a temperature in this range, it is possible to prevent the selectivity of the olefin having at least one carbon atom larger than the carbon atom number of the raw material alcohol in the product from decreasing.

また、オレフィン生成工程において、原料アルコールと本発明のオレフィン製造用触媒との接触方法は、特に限定されないが、触媒を充填した容器内に、単に原料アルコールを導入するだけでもよい。反応器としては、固定床反応器、流動床反応器、回分式反応器、半回分式反応器等を例示することができるが、オレフィンの生産性の観点からは、固定床反応器又は流動床反応器が好ましく、固定床反応器がさらに好ましい。   In the olefin production step, the method for contacting the raw alcohol with the catalyst for olefin production of the present invention is not particularly limited, but the raw alcohol may be simply introduced into a container filled with the catalyst. Examples of the reactor include a fixed bed reactor, a fluidized bed reactor, a batch reactor, a semi-batch reactor and the like. From the viewpoint of olefin productivity, a fixed bed reactor or a fluidized bed reactor. A reactor is preferred, and a fixed bed reactor is more preferred.

原料となるアルコールの形状は特に限定されないが、オレフィンの生成効率を高め、かつ反応が容易である観点から、気体であることが好ましい。また、容器内で気体状のアルコールを触媒と接触させるとき、アルコールを他の成分と組み合わせて容器内に供給してもよい。他の成分としては、例えば、窒素ガス、水蒸気、水素、一酸化炭素、二酸化炭素、反応器出口から回収した生成物の全部又は一部、原料となるアルコール及び生成するオレフィンとの反応性が実質的に無い不活性キャリアガス等を例示することができる。触媒活性を安定させる観点から、他の成分の中では、水蒸気、水素、窒素を共存させることが好ましい。   Although the shape of the alcohol used as a raw material is not particularly limited, it is preferably a gas from the viewpoint of enhancing the production efficiency of olefin and facilitating the reaction. Moreover, when contacting gaseous alcohol with a catalyst in a container, you may supply alcohol in a container combining with another component. Other components include, for example, nitrogen gas, water vapor, hydrogen, carbon monoxide, carbon dioxide, all or part of the product recovered from the reactor outlet, the raw alcohol, and the reactivity with the generated olefin. An inert carrier gas or the like which is not necessary can be exemplified. From the viewpoint of stabilizing the catalyst activity, it is preferable that water vapor, hydrogen, and nitrogen coexist among the other components.

本発明のオレフィン製造用触媒の使用量は、特に限定されないが、アルコール1トン当たり、0.000002トン〜0.02トンであることが好ましい。また、アルコールの供給速度は、例えば、触媒1トン当たり、0.002トン/h〜200トン/hであればよく、0.02トン/h〜20トン/hであることがより好ましい。   Although the usage-amount of the catalyst for olefin production of this invention is not specifically limited, It is preferable that it is 0.000002 ton-0.02 ton per 1 ton of alcohol. Moreover, the supply speed | rate of alcohol should just be 0.002 ton / h-200 ton / h per ton of catalyst, for example, and it is more preferable that it is 0.02 ton / h-20 ton / h.

アルコールとオレフィン製造用触媒との接触時間は特に限定されず、例えば、0.001秒〜1時間であり、好ましくは0.1秒〜1分である。   The contact time between the alcohol and the catalyst for olefin production is not particularly limited, and is, for example, 0.001 second to 1 hour, preferably 0.1 second to 1 minute.

また、原料となるアルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンの選択収率は特に限定されないが、初期段階(反応経過時間:2時間程度)で、35%以上であることが好ましく、40%以上であることがより好ましく、45%以上であることがさらに好ましい。ここで、オレフィンの選択収率とは、(生成した、原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンの炭素モル数)/(反応に供したアルコールの炭素モル数)×100(%)である。   The selection yield of the olefin having at least one carbon atom larger than that of the alcohol as the raw material is not particularly limited, but it is 35% or more at the initial stage (reaction elapsed time: about 2 hours). Is preferable, 40% or more is more preferable, and 45% or more is more preferable. Here, the selective yield of olefin is (the number of carbon moles of the olefin having at least one carbon atom larger than the number of carbon atoms of the raw material alcohol) / (number of carbon moles of the alcohol subjected to the reaction) × 100 (%).

なお、本発明のオレフィンの製造方法としては、原料アルコールがエタノールであり、原料アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンがプロピレンであることが好ましい。   In addition, as a manufacturing method of the olefin of this invention, it is preferable that raw material alcohol is ethanol and an olefin of carbon number at least 1 larger than the carbon atom number of raw material alcohol is a propylene.

以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明するが、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。   Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Absent.

〔実施例1〕
インジウム源として硝酸インジウムn水和物(In(NO33・nH2O、関東化学社製、製品番号20298−08、純度99.9%以上)21.11gを、脱イオン水500.30gに混合してA液を調製した。
また、第1の沈殿剤として、アンモニア水(関東化学社製、特級28〜30%)9.15gを、脱イオン水233.70gに混合してB液を調製した。
そして、第2の沈殿剤として、テトラプロピルアンモニウムヒドロキシド(TPAOH)水溶液(東京化成工業社製、製品番号T0964、濃度10%)330.75gを用い、C液とした。
[Example 1]
21.11 g of indium nitrate n-hydrate (In (NO 3 ) 3 · nH 2 O, manufactured by Kanto Chemical Co., Ltd., product number 20298-08, purity 99.9% or more) as an indium source, 500.30 g of deionized water A liquid A was prepared by mixing.
Moreover, 9.15 g of ammonia water (manufactured by Kanto Chemical Co., Ltd., special grade 28-30%) as a first precipitant was mixed with 233.70 g of deionized water to prepare a liquid B.
Then, 330.75 g of tetrapropylammonium hydroxide (TPAOH) aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd., product number T0964, concentration 10%) was used as the second precipitating agent to prepare C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは11.99であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 11.99.

この懸濁液を室温(25℃)で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の比表面積は7.1m2/gであった。なお、比表面積は、市販の装置(日本ベル社製、BELSORPmax)を用い、窒素吸着法で測定した(窒素吸着法については、小野嘉夫、鈴木勲、「吸着の科学と応用」、講談社サイエンティフィック、60頁(2003)を参照)。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The specific surface area of this catalyst was 7.1 m 2 / g. The specific surface area was measured by a nitrogen adsorption method using a commercially available apparatus (BELSORPmax, manufactured by Nippon Bell Co., Ltd.) (for nitrogen adsorption method, Yoshio Ono, Isao Suzuki, “Science and Application of Adsorption”, Kodansha Scientific) Fick, page 60 (2003)).

〔実施例2〕
硝酸インジウムn水和物を21.63g、脱イオン水を501.41gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を9.16g、脱イオン水を231.03gとした以外は、実施例1と同様にしてB液を調製した。
そして、第2の沈殿剤として、テトラエチルアンモニウムヒドロキシド(TEAOH)水溶液(東京化成工業社製、製品番号T0096、濃度10%)238.15gを用い、C液とした。
[Example 2]
A solution A was prepared in the same manner as in Example 1 except that 21.63 g of indium nitrate n hydrate and 501.41 g of deionized water were used.
Further, a liquid B was prepared in the same manner as in Example 1 except that 9.16 g of ammonia water and 231.03 g of deionized water were used.
Then, 238.15 g of an aqueous tetraethylammonium hydroxide (TEAOH) solution (manufactured by Tokyo Chemical Industry Co., Ltd., product number T0096, concentration 10%) was used as the second precipitating agent, and the resulting liquid C was obtained.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは12.07であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 12.07.

この懸濁液を室温(25℃)で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は10.7m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 10.7 m 2 / g.

〔実施例3〕
硝酸インジウムn水和物を21.23g、脱イオン水を500.90gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を8.77g、脱イオン水を222.80gとした以外は、実施例1と同様にしてB液を調製した。
そして、第2の沈殿剤としてテトラブチルアンモニウムヒドロキシド(TBAOH)水溶液(東京化成工業社製、製品番号T0096、濃度10%)402.04gを用い、C液とした。
Example 3
A solution A was prepared in the same manner as in Example 1 except that 21.23 g of indium nitrate n hydrate and 500.90 g of deionized water were used.
A liquid B was prepared in the same manner as in Example 1 except that the ammonia water was 8.77 g and the deionized water was 222.80 g.
Then, 402.04 g of an aqueous solution of tetrabutylammonium hydroxide (TBAOH) (manufactured by Tokyo Chemical Industry Co., Ltd., product number T0096, concentration 10%) was used as the second precipitating agent to prepare C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは12.42であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after adding solution C was 12.42.

この懸濁液を室温(25℃)で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は12.8m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 12.8 m 2 / g.

〔実施例4〕
硝酸インジウムn水和物を21.37g、脱イオン水を499.61gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を8.89g、脱イオン水を222.39gとした以外は、実施例1と同様にしてB液を調製した。
そして、テトラプロピルアンモニウムヒドロキシド(TPAOH)水溶液306.1gを用い、C液とした。
Example 4
A solution A was prepared in the same manner as in Example 1 except that 21.37 g of indium nitrate n hydrate and 499.61 g of deionized water were used.
Further, a liquid B was prepared in the same manner as in Example 1 except that the ammonia water was 8.89 g and the deionized water was 222.39 g.
Then, 306.1 g of tetrapropylammonium hydroxide (TPAOH) aqueous solution was used to prepare a C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは11.26であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 11.26.

この懸濁液を50℃で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at 50 ° C. for 40 hours. After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た(触媒No.N700−50℃)。
この触媒の表面積は10.6m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and then calcined in air for 5 hours to obtain an indium oxide catalyst (Catalyst No. N700-50 ° C.).
The surface area of this catalyst was 10.6 m 2 / g.

〔実施例5〕
硝酸インジウムn水和物を21.67g、脱イオン水を500.54gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を8.98g、脱イオン水を311.34gとした以外は、実施例1と同様にしてB液を調製した。
そして、テトラプロピルアンモニウムヒドロキシド(TPAOH)水溶液317.8gを用い、C液とした。
Example 5
A solution A was prepared in the same manner as in Example 1 except that 21.67 g of indium nitrate n hydrate and 500.54 g of deionized water were used.
Further, a liquid B was prepared in the same manner as in Example 1 except that the ammonia water was 8.98 g and the deionized water was 311.34 g.
Then, 317.8 g of an aqueous tetrapropylammonium hydroxide (TPAOH) solution was used to prepare a C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは11.31であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 11.31.

この懸濁液を80℃で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返し洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at 80 ° C. for 40 hours. After aging, the resulting white precipitate was collected by filtration, and the operation of stirring in 500 ml of ion exchange water for 3 minutes and then filtering was repeated 3 times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は10.6m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 10.6 m 2 / g.

〔比較例1〕
硝酸インジウムn水和物を21.33g、脱イオン水を500.37gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を8.84g、脱イオン水を217.88gとした以外は、実施例1と同様にしてB液を調製した。
そして、第2の沈殿剤としてベンジルトリメチルアンモニウムヒドロキシド(BTMAOH)水溶液(東京化成工業製、製品番号B1070、濃度10%)261.65gを用い、C液とした。
[Comparative Example 1]
A solution A was prepared in the same manner as in Example 1 except that 21.33 g of indium nitrate n hydrate and 500.37 g of deionized water were used.
Further, a liquid B was prepared in the same manner as in Example 1 except that the ammonia water was 8.84 g and the deionized water was 217.88 g.
Then, 261.65 g of a benzyltrimethylammonium hydroxide (BTMAOH) aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd., product number B1070, concentration 10%) was used as the second precipitating agent to prepare C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは12.18であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 12.18.

この懸濁液を室温(25℃)で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返し洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. After aging, the resulting white precipitate was collected by filtration, and the operation of stirring in 500 ml of ion exchange water for 3 minutes and then filtering was repeated 3 times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は11.6m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 11.6 m 2 / g.

〔比較例2〕
硝酸インジウムn水和物を12.46g、脱イオン水を500.20gとした以外は、実施例1と同様にしてA液を調製した。
また、アンモニア水を9.20g、脱イオン水を230.10gとした以外は、実施例1と同様にしてB液を調製した。
そして、第2の沈殿剤としてエタノールアミン(EA)(東京化成工業社製、製品番号A0297、濃度99%以上)10.08gを用い、C液とした。
[Comparative Example 2]
A solution A was prepared in the same manner as in Example 1 except that 12.46 g of indium nitrate n hydrate and 500.20 g of deionized water were used.
Further, a liquid B was prepared in the same manner as in Example 1 except that the ammonia water was 9.20 g and the deionized water was 230.10 g.
Then, 10.08 g of ethanolamine (EA) (manufactured by Tokyo Chemical Industry Co., Ltd., product number A0297, concentration of 99% or more) was used as the second precipitating agent to prepare a C solution.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。滴下後の溶液のpHは7.3であった。引き続き、C液を5滴/秒の速度で添加した。C液添加後のpHは9.65であった。   While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. The pH of the solution after dropping was 7.3. Subsequently, solution C was added at a rate of 5 drops / second. The pH after addition of solution C was 9.65.

この懸濁液を室温(25℃)で40時間攪拌し熟成した。熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。   This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は17.3m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 17.3 m 2 / g.

〔比較例3〕
硝酸インジウムn水和物を21.16g、脱イオン水を500.39gとした以外は、実施例1と同様にしてA液を調製した。
また、沈殿剤として、アンモニア水(関東化学製特級28−30%)を23.21g、脱イオン水を311.15gに混合してB液を調製した。
[Comparative Example 3]
A solution A was prepared in the same manner as in Example 1 except that 21.16 g of indium nitrate n hydrate and 500.39 g of deionized water were used.
Further, as a precipitating agent, liquid B was prepared by mixing 23.21 g of ammonia water (special grade 28-30% manufactured by Kanto Chemical Co., Ltd.) and 311.15 g of deionized water.

室温(25℃)でA液を攪拌しながら、B液をビュレットで5滴/秒の速度で約20分かけて加えた。この懸濁液を室温(25℃)で40時間攪拌し熟成した。B液を入れた直後のpHは8.55であり、40時間熟成後の懸濁液の最終pHは8.45であった。
熟成後、得られた白色の沈殿物を濾過回収し、500mlのイオン交換水中で3分間攪拌後濾過する操作を3回繰り返して洗浄した。得られた固体を80℃で一晩乾燥させ未焼成の試料を得た。
While stirring the liquid A at room temperature (25 ° C.), the liquid B was added with a burette at a rate of 5 drops / second over about 20 minutes. This suspension was aged by stirring at room temperature (25 ° C.) for 40 hours. The pH immediately after the liquid B was added was 8.55, and the final pH of the suspension after aging for 40 hours was 8.45.
After aging, the resulting white precipitate was collected by filtration, washed with 500 ml of ion-exchanged water for 3 minutes and then filtered three times. The obtained solid was dried at 80 ° C. overnight to obtain an unfired sample.

この試料を磁性皿に薄く広げ、1℃/minで700℃まで昇温後、5時間空気中で焼成し、酸化インジウム触媒を得た。
この触媒の表面積は31.7m2/gであった。
This sample was spread thinly on a magnetic dish, heated to 700 ° C. at 1 ° C./min, and calcined in air for 5 hours to obtain an indium oxide catalyst.
The surface area of this catalyst was 31.7 m 2 / g.

〔エタノールの反応〕
実施例1〜3、比較例1および2で調製した触媒を用いて、エタノールの反応を行った。
石英製反応管に、それぞれの触媒(0.5g)を充填し、触媒充填部の温度を550℃に保持した。エタノールおよび希釈用の水蒸気(H2O)、水素(H2)および窒素(N2)を、それぞれの分圧が、0.3、0.08、0.3、0.32となるように混合し、全ガス流量を12.8ml/min(25℃、1気圧換算)として、反応管に供給した。
[Reaction of ethanol]
Using the catalysts prepared in Examples 1 to 3 and Comparative Examples 1 and 2, ethanol was reacted.
Each catalyst (0.5 g) was filled in a quartz reaction tube, and the temperature of the catalyst filling portion was maintained at 550 ° C. Ethanol and water vapor for dilution (H 2 O), hydrogen (H 2 ), and nitrogen (N 2 ) so that their partial pressures are 0.3, 0.08, 0.3, and 0.32, respectively. After mixing, the total gas flow rate was 12.8 ml / min (25 ° C., converted to 1 atm) and supplied to the reaction tube.

反応原料の供給を開始した後、所定時間ごとに、反応管出口のガスを、ガスクロマトグラフ装置で分析し、プロピレン収率を測定した。なお、プロピレン収率は、以下の式によって炭素収率に換算して算出した。   After starting the supply of the reaction raw materials, the gas at the outlet of the reaction tube was analyzed with a gas chromatograph device every predetermined time, and the propylene yield was measured. In addition, the propylene yield was calculated in terms of carbon yield by the following formula.

プロピレン収率(%)=[(生成ガス中のプロピレン量(モル/min)×3)
/(エタノール供給量(モル/min)×2)]×100
Propylene yield (%) = [(Amount of propylene in product gas (mol / min) × 3)
/ (Ethanol supply amount (mol / min) × 2)] × 100

表1に、それぞれの触媒を使用した場合の、プロピレン収率を示した。   Table 1 shows the propylene yield when each catalyst was used.

表1の結果に示すように、実施例1〜実施例5では、長時間、高いプロピレン収率が得られた。一方、比較例1〜比較例3のように、式〈I)の化合物を含む第2の沈殿剤を用いない方法で調製した触媒では、より長時間の反応でプロピレン収率は急激に低下した。   As shown in the results of Table 1, in Examples 1 to 5, a high propylene yield was obtained for a long time. On the other hand, as in Comparative Examples 1 to 3, in the catalyst prepared by a method that does not use the second precipitant containing the compound of formula <I), the propylene yield rapidly decreased after a longer reaction. .

Claims (6)

アルコールから、該アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造するための触媒の調製方法であって、
インジウム塩を含む水溶液に、塩基水溶液および式(I)の第4級アンモニウム塩水溶液を添加することにより沈殿を形成し、
その懸濁液を熟成して得られた沈殿を、濾過回収・洗浄・焼成する、
オレフィン製造用触媒の調製方法。

(R〜Rはアルキル基、Xは陰イオンを示す)
A process for preparing a catalyst for producing an olefin having at least one carbon atom greater than the number of carbon atoms of the alcohol from an alcohol, comprising:
A precipitate is formed by adding an aqueous base solution and an aqueous quaternary ammonium salt of formula (I) to an aqueous solution containing an indium salt;
The precipitate obtained by aging the suspension is filtered, washed, and calcined.
A method for preparing a catalyst for olefin production.

(R 1 to R 4 are alkyl groups, and X represents an anion)
式(I)のR〜Rのそれぞれが、エチル基、プロピル基、ブチル基のいずれかであり、かつ式(I)のXが、水酸化物イオン(OH)、臭化物イオン(Br)、塩化物イオン(Cl)のいずれかである請求項1に記載のオレフィン製造用触媒の調製方法。 Each of R 1 to R 4 in formula (I) is any one of an ethyl group, a propyl group, and a butyl group, and X − in formula (I) is a hydroxide ion (OH ), a bromide ion ( The method for preparing a catalyst for olefin production according to claim 1, which is any one of Br ) and chloride ions (Cl ). 式(I)のR〜Rが、すべてプロピル基である請求項1又は2に記載のオレフィン製造用触媒の調製方法。 The method for preparing a catalyst for olefin production according to claim 1 or 2, wherein R 1 to R 4 in formula (I) are all propyl groups. pHが5〜10となるように塩基水溶液を添加し、次いでpHが9以上となるように式(I)の第4級アンモニウム塩水溶液を添加する請求項1〜3のいずれかに記載のオレフィン製造用触媒の調製方法。   The olefin according to any one of claims 1 to 3, wherein an aqueous base solution is added so that the pH is 5 to 10, and then an aqueous quaternary ammonium salt of the formula (I) is added so that the pH is 9 or more. A method for preparing a catalyst for production. 前記アルコールがエタノールであり、前記オレフィンがプロピレンである、請求項1〜4のいずれかに記載のオレフィン製造用触媒の調製方法。   The method for preparing a catalyst for olefin production according to any one of claims 1 to 4, wherein the alcohol is ethanol and the olefin is propylene. アルコールと請求項1〜5のいずれかに記載の調製方法より調製されたオレフィン製造用触媒を接触させて、前記アルコールの炭素原子数よりも少なくとも一つ大きい炭素原子数のオレフィンを製造するオレフィンの製造方法。 An olefin for producing an olefin having at least one carbon atom greater than the number of carbon atoms of the alcohol by contacting the alcohol with the catalyst for olefin production prepared by the preparation method according to any one of claims 1 to 5 . Production method.
JP2013116304A 2013-05-31 2013-05-31 Method for preparing catalyst for olefin production and method for producing olefin Active JP6085780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116304A JP6085780B2 (en) 2013-05-31 2013-05-31 Method for preparing catalyst for olefin production and method for producing olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116304A JP6085780B2 (en) 2013-05-31 2013-05-31 Method for preparing catalyst for olefin production and method for producing olefin

Publications (2)

Publication Number Publication Date
JP2014233670A JP2014233670A (en) 2014-12-15
JP6085780B2 true JP6085780B2 (en) 2017-03-01

Family

ID=52136791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116304A Active JP6085780B2 (en) 2013-05-31 2013-05-31 Method for preparing catalyst for olefin production and method for producing olefin

Country Status (1)

Country Link
JP (1) JP6085780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350311B2 (en) * 2015-01-29 2018-07-04 住友金属鉱山株式会社 Method for producing indium oxide powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289335B2 (en) * 1991-08-30 2002-06-04 東ソー株式会社 Method for producing indium oxide powder and ITO sintered body
KR100474846B1 (en) * 2002-03-22 2005-03-09 삼성코닝 주식회사 Indium oxide powder, manufacturing method thereof, and manufacturing method of high density indium tin oxide target using the same
JP4984204B2 (en) * 2005-03-22 2012-07-25 Dowaエレクトロニクス株式会社 Indium oxide powder and method for producing the same
JP5618229B2 (en) * 2009-12-18 2014-11-05 国立大学法人東北大学 ITO powder, method for producing ITO particles, coating for transparent conductive material and transparent conductive film
JP5919198B2 (en) * 2010-12-08 2016-05-18 住友化学株式会社 Catalyst for producing olefin from alcohol, method for producing olefin, polyolefin and olefin oxide
JP5747326B2 (en) * 2011-05-13 2015-07-15 国立大学法人東京工業大学 Propylene production method
JP5783952B2 (en) * 2011-05-20 2015-09-24 国立大学法人東京工業大学 Olefin production method and olefin production catalyst

Also Published As

Publication number Publication date
JP2014233670A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
Ha et al. 3DOM-LaSrCoFeO 6− δ as a highly active catalyst for the thermal and photothermal reduction of CO 2 with H 2 O to CH 4
CN108262055B (en) Catalyst for preparing hydrocarbons by one-step hydrogenation of carbon dioxide and preparation method thereof
Zhang et al. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application
JP5820818B2 (en) Olefin production catalyst and olefin production method
CN108160104B (en) Catalyst for preparing aromatic hydrocarbon by one-step hydrogenation of carbon dioxide and preparation method and application thereof
US9764959B2 (en) Nanostructured metal oxide compositions for applied photocatalysis
JP5863964B2 (en) Methanol production catalyst, method for producing the same, and method for producing methanol
CN103818972B (en) A kind of cobaltosic oxide powder and preparation method thereof
Lei et al. Enhanced catalytic performance in the gas-phase epoxidation of propylene over Ti-modified MoO3–Bi2SiO5/SiO2 catalysts
JP6017386B2 (en) Synthesis of butadiene from ethanol using metal-added SiO2-MgO catalyst prepared by hydrothermal synthesis
CN106466611A (en) The ferrum-based catalyst of co-precipitation-fusion method preparation, its preparation method and application
US10086364B2 (en) Methods of catalytic hydrogenation for ethylene glycol formation
CN112654594A (en) Method for producing oxide using beta-manganese dioxide
CN105642300B (en) A kind of copper bismuth catalyst preparation method for synthesizing 1,4 butynediols
JP6085780B2 (en) Method for preparing catalyst for olefin production and method for producing olefin
CN111151275A (en) MoS2/Mo2C Complex, MoS2/Mo2C/CdS composite material and preparation method and application thereof
TW201615552A (en) Method for producing crystalline silicotitanate
JP5898558B2 (en) Method for producing olefin production catalyst, olefin production catalyst, and olefin production method
US9388091B2 (en) Catalyst for methanation of carbon dioxide, preparation method and usage thereof
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
CN112619662B (en) Catalyst for producing low-carbon olefin and preparation method and application thereof
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
TW201615551A (en) Method for producing crystalline silicotitanate
CN104071822A (en) Preparation method for lanthanum scandate powder
JP2012120978A (en) Catalyst and method for producing propylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6085780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250