JP5783952B2 - Olefin production method and olefin production catalyst - Google Patents

Olefin production method and olefin production catalyst Download PDF

Info

Publication number
JP5783952B2
JP5783952B2 JP2012115088A JP2012115088A JP5783952B2 JP 5783952 B2 JP5783952 B2 JP 5783952B2 JP 2012115088 A JP2012115088 A JP 2012115088A JP 2012115088 A JP2012115088 A JP 2012115088A JP 5783952 B2 JP5783952 B2 JP 5783952B2
Authority
JP
Japan
Prior art keywords
catalyst
olefin
alcohol
producing
olefin production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115088A
Other languages
Japanese (ja)
Other versions
JP2013006831A (en
Inventor
正和 岩本
正和 岩本
翔太 水野
翔太 水野
洋 大橋
洋 大橋
卓宏 柿沼
卓宏 柿沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Idemitsu Kosan Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Tokyo Institute of Technology NUC filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012115088A priority Critical patent/JP5783952B2/en
Publication of JP2013006831A publication Critical patent/JP2013006831A/en
Application granted granted Critical
Publication of JP5783952B2 publication Critical patent/JP5783952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アルコールを原料として、そのアルコールの炭素原子数より1以上多いオレフィンを製造するオレフィンの製造方法、及びオレフィン製造用触媒に関する。   The present invention relates to an olefin production method and an olefin production catalyst for producing an olefin having 1 or more carbon atoms from the alcohol as a raw material.

様々な化学製品の原料となるオレフィンの現在の主要な製造方法は、石油留分の熱分解法である。しかし、近年の石油資源の枯渇問題の観点から、石油資源に依存しないようなオレフィン製造用原料の多様化が求められている。また、地球温暖化防止の観点から、CO2排出量の少ないオレフィンの製造方法が求められている。 The current main method for producing olefins as raw materials for various chemical products is the pyrolysis of petroleum fractions. However, from the viewpoint of the recent depletion of petroleum resources, diversification of raw materials for olefin production that does not depend on petroleum resources is required. In addition, from the viewpoint of preventing global warming, there is a demand for a method for producing olefins with low CO 2 emissions.

これまでに、天然ガス、石炭(石炭ガス化ガス)等から合成されるアルコールやDME(ジメチルエーテル)を原料とするオレフィン製造方法が開発され、多くの文献で報告されている。一方で、石油や石炭、天然ガス等の化石燃料を使わないオレフィン製造方法も検討されている。例えば、バイオエタノールをはじめとするバイオマス原料、すなわち、カーボンニュートラルなアルコールを原料とした方法も検討されている。   So far, an olefin production method using alcohol synthesized from natural gas, coal (coal gasification gas) or the like or DME (dimethyl ether) as a raw material has been developed and reported in many literatures. On the other hand, olefin production methods that do not use fossil fuels such as oil, coal, and natural gas are also being studied. For example, methods using biomass raw materials such as bioethanol, that is, carbon neutral alcohol as a raw material have been studied.

アルコールやDMEからのオレフィン製造には、MTO(Methanol to Olefin)反応に代表される酸触媒を用いた反応系が利用される。この場合、酸触媒としてはゼオライトが一般的に使用されている。酸触媒の利点は高活性な点であるが、目的とするオレフィン以外に多くの副生成物が生成し、目的物の収率や選択率が低くなることや、触媒表面上で炭素析出が生じることにより触媒劣化が生じる点に問題がある。特に、ゼオライト触媒に関しては、脱アルミニウムによる触媒劣化も大きな問題である。   For the production of olefins from alcohol or DME, a reaction system using an acid catalyst represented by MTO (Methanol to Olefin) reaction is used. In this case, zeolite is generally used as the acid catalyst. The advantage of the acid catalyst is its high activity, but many by-products are generated in addition to the target olefin, resulting in a decrease in yield and selectivity of the target product, and carbon deposition on the catalyst surface. Therefore, there is a problem in that catalyst deterioration occurs. In particular, for zeolite catalysts, catalyst degradation due to dealumination is also a major problem.

このような問題を解決するため、ゼオライト触媒の細孔径の最適化や、添加物による酸強度の調整等の改良が試みられているが(例えば特許文献1及び2)、ゼオライトを触媒に利用する以上は、根本的な解決策には至っていない。   In order to solve such problems, attempts have been made to optimize the pore diameter of the zeolite catalyst and to adjust the acid strength with an additive (for example, Patent Documents 1 and 2), but zeolite is used as the catalyst. The above has not yet led to a fundamental solution.

また、エタノールからのオレフィン製造方法として、バイオエタノールを利用した方法が提案されている(例えば特許文献3及び4)。しかし、エタノールからのオレフィン製造においても、酸触媒、特にゼオライトが主に用いられている。従って、酸触媒に特有の問題解決方法は示されていない。
さらに、酸触媒でエタノールからそのエタノールより炭素数の多いオレフィンを製造しようとすると、エタノールの脱水反応が併発し、エチレンが多量に生成する。そのため、より有用な化学製品原料としての、プロピレンやブテン等の選択率が低いという問題点がある。
Moreover, as an olefin production method from ethanol, a method using bioethanol has been proposed (for example, Patent Documents 3 and 4). However, in the production of olefins from ethanol, acid catalysts, particularly zeolites, are mainly used. Therefore, no problem solving method peculiar to the acid catalyst is shown.
Furthermore, when an acid catalyst is used to produce an olefin having more carbon atoms than ethanol from ethanol, a dehydration reaction of ethanol occurs simultaneously and a large amount of ethylene is generated. Therefore, there exists a problem that the selectivity of propylene, butene, etc. as a more useful chemical product raw material is low.

ゼオライトを利用しない触媒系に、金属を担持したメゾ多孔体触媒がある(例えば特許文献5)。この金属担持メゾ多孔体触媒は、酸触媒の問題点を改善できると期待されたが、エタノールからプロピレンやブテンを得ようとすると、副生成物のエチレン生成量が多く、目的物の収率を高くすることができない。   As a catalyst system that does not use zeolite, there is a mesoporous catalyst carrying a metal (for example, Patent Document 5). This metal-supported mesoporous catalyst was expected to improve the problems of acid catalysts. However, when propylene and butene were obtained from ethanol, the amount of by-produced ethylene was large, and the yield of the target product was reduced. Can't be high.

特開平01−50827号公報Japanese Patent Laid-Open No. 01-50827 特表2005−520763号公報Japanese translation of PCT publication No. 2005-520863 特開2007−290991号公報JP 2007-290991 A 特開2007−291076号公報JP 2007-291076 A WO2007/083684 A1号公報WO2007 / 083684 A1

本発明者らはこれまでに、アルコールから、そのアルコールより炭素数の多いオレフィンを生成する触媒として酸化インジウムが有効であることを見出した。しかし、当該酸化インジウム触媒においては、触媒活性・触媒寿命の観点で未だ改善の余地があった。   The inventors of the present invention have found that indium oxide is effective as a catalyst for producing an olefin having a larger number of carbons than alcohol from alcohol. However, the indium oxide catalyst still has room for improvement in terms of catalyst activity and catalyst life.

以上から、アルコールを原料として、そのアルコールよりも炭素原子数が1以上多いオレフィンを高い収率で効率よく製造できるオレフィンの製造方法、及びオレフィン製造用触媒を提供することを目的とする。   Accordingly, an object of the present invention is to provide an olefin production method and an olefin production catalyst capable of efficiently producing an olefin having one or more carbon atoms higher than the alcohol from alcohol as a raw material.

上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明に想到し当該課題を解決できることを見出した。すなわち、本発明は下記の通りである。   As a result of intensive studies to solve the above problems, the present inventors have arrived at the following present invention and found that the problems can be solved. That is, the present invention is as follows.

[1] 酸化インジウムを含む酸化インジウム含有触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法であって、前記アルコールを反応させる反応系に水及び/又は水素を共存させるオレフィンの製造方法。
[2] 前記アルコールと、前記触媒とを、ゲージ圧100kPaG以上で接触させる上記[1]に記載のオレフィンの製造方法。
[3] 前記アルコールがバイオエタノールである[1]又は[2]に記載のオレフィンの製造方法。
[4]前記オレフィンがプロピレンである[1]〜[3]のいずれかに記載のオレフィンの製造方法。
[1] An olefin production method for producing an olefin having 1 or more carbon atoms from an alcohol in the presence of an indium oxide-containing catalyst containing indium oxide, wherein the reaction system for reacting the alcohol is water And / or a method for producing an olefin in the presence of hydrogen.
[2] The method for producing an olefin according to [1], wherein the alcohol and the catalyst are contacted at a gauge pressure of 100 kPaG or more.
[3] The method for producing an olefin according to [1] or [2], wherein the alcohol is bioethanol.
[4] The method for producing an olefin according to any one of [1] to [3], wherein the olefin is propylene.

[5] アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、酸化インジウムと周期表における3〜6族及び9〜11族から選ばれる少なくとも1種の添加元素とを含み、かつインジウム元素のモル量が前記添加元素のモル量よりも大きいオレフィン製造用触媒。
[6] 前記添加元素が、スカンジウム、ジルコニウム、バナジウム、モリブデン、コバルト、ニッケル、及び銅から選ばれる少なくとも1種である[5]に記載のオレフィン製造用触媒。
[7] 前記アルコールがバイオエタノールである[5]又は[6]に記載のオレフィン製造用触媒。
[8] 前記オレフィンがプロピレンである[5]〜[7]のいずれかに記載のオレフィン製造用触媒。
[5] An olefin production catalyst for producing an olefin having 1 or more carbon atoms than the alcohol from an alcohol, at least selected from indium oxide and groups 3 to 6 and groups 9 to 11 in the periodic table A catalyst for olefin production, comprising one additive element and having a molar amount of indium element larger than a molar amount of the additive element.
[6] The catalyst for olefin production according to [5], wherein the additive element is at least one selected from scandium, zirconium, vanadium, molybdenum, cobalt, nickel, and copper.
[7] The catalyst for olefin production according to [5] or [6], wherein the alcohol is bioethanol.
[8] The catalyst for olefin production according to any one of [5] to [7], wherein the olefin is propylene.

[9] アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、酸化インジウムが酸性質を有する担体上に担持されてなるオレフィン製造用触媒。
[10] さらに、周期表における3〜6族及び9〜11族から選ばれる少なくとも1種の添加元素を含む[9]に記載のオレフィン製造用触媒。
[11] 前記添加元素が、スカンジウム、ジルコニウム、バナジウム、モリブデン、コバルト、ニッケル、及び銅から選ばれる少なくとも1種である[10]に記載のオレフィン製造用触媒。
[12] 前記酸性質を有する担体がゼオライトである[9]〜[11]のいずれかに記載のオレフィン製造用触媒。
[13] 前記アルコールがバイオエタノールである[9]〜[12]のいずれかに記載のオレフィン製造用触媒。
[14] 前記オレフィンがプロピレンである[9]〜[13]のいずれかに記載のオレフィン製造用触媒。
[9] An olefin production catalyst for producing an olefin having 1 or more carbon atoms from the alcohol, wherein the indium oxide is supported on a carrier having an acid property.
[10] The olefin production catalyst according to [9], further including at least one additive element selected from Groups 3 to 6 and Groups 9 to 11 in the periodic table.
[11] The olefin production catalyst according to [10], wherein the additive element is at least one selected from scandium, zirconium, vanadium, molybdenum, cobalt, nickel, and copper.
[12] The olefin production catalyst according to any one of [9] to [11], wherein the carrier having an acid property is zeolite.
[13] The catalyst for olefin production according to any one of [9] to [12], wherein the alcohol is bioethanol.
[14] The olefin production catalyst according to any one of [9] to [13], wherein the olefin is propylene.

[15] 上記[5]〜[14]のいずれかに記載のオレフィン製造用触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法。
[16] 前記アルコールを反応させる反応系に水及び/又は水素を共存させる[15]に記載のオレフィンの製造方法。
[17] 前記アルコールがバイオエタノールである[15]又は[16]に記載のオレフィンの製造方法。
[18] 前記オレフィンがプロピレンである[15]〜[17]のいずれかに記載のオレフィンの製造方法。
[15] An olefin production method for producing an olefin having 1 or more carbon atoms from the alcohol in the presence of the olefin production catalyst according to any one of [5] to [14].
[16] The method for producing an olefin according to [15], wherein water and / or hydrogen is allowed to coexist in a reaction system in which the alcohol is reacted.
[17] The method for producing an olefin according to [15] or [16], wherein the alcohol is bioethanol.
[18] The method for producing an olefin according to any one of [15] to [17], wherein the olefin is propylene.

本発明によれば、アルコールを原料として、該アルコールよりも炭素原子数が1以上多いオレフィンを高い収率で効率よく製造できるオレフィンの製造方法、及びオレフィン製造用触媒を提供することができる。
また、有用な化学品を効率よく製造することが可能となり、貴重な石油資源の消費抑制や化石燃料を起源とする二酸化炭素の排出量の抑制を図ることができる。特に、バイオアルコールを原料に用いることによる、LCA(Life Cycle Assessment)の観点から原料のカーボンニュートラル化にも寄与することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the olefin which can manufacture efficiently the olefin whose carbon atom number is 1 or more than this alcohol with a high yield from alcohol as a raw material, and the catalyst for olefin manufacture can be provided.
In addition, it becomes possible to efficiently produce useful chemicals, and it is possible to suppress the consumption of valuable petroleum resources and the emission of carbon dioxide originating from fossil fuels. In particular, the use of bioalcohol as a raw material can contribute to the carbon neutralization of the raw material from the viewpoint of LCA (Life Cycle Assessment).

[オレフィンの製造方法]
本発明のオレフィンの製造方法は、酸化インジウムを含む酸化インジウム含有触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法であって、アルコールを反応させる反応系に水及び/又は水素を共存させるものである。
反応系に水や水素を共存させることで炭素析出に起因する触媒劣化を抑制できるため、高い収率で、原料アルコールよりも炭素原子数が1以上多いオレフィンを効率よく製造することができる。
[Olefin production method]
The olefin production method of the present invention is an olefin production method for producing an olefin having 1 or more carbon atoms from the alcohol in the presence of an indium oxide-containing catalyst containing indium oxide, wherein the alcohol is reacted. Water and / or hydrogen are allowed to coexist in the reaction system.
By allowing water and hydrogen to coexist in the reaction system, catalyst deterioration due to carbon deposition can be suppressed, so that an olefin having one or more carbon atoms more than the raw material alcohol can be efficiently produced with a high yield.

上記反応は、固定床、移動床、流動床等どのような形式でも実施できるが、粉末状もしくは成型した触媒を充填した管状反応器に、アルコールと水及び/又は水素とを供給する固定床型反応で実施することが好ましい。
当該反応における空間速度は、300〜6500h-1とすることが好ましく、300〜4000h-1とすることがより好ましい。
反応温度は250〜600℃であることが好ましく、300〜550℃であることがより好ましく、350〜550℃であることがさらに好ましい。
反応圧力は、減圧、常圧(0kPaG)、加圧のいずれでも実施できるが、通常は、常圧〜やや加圧の雰囲気で実施される。原料アルコールよりも炭素原子数が1以上多いオレフィンをより長時間生成できる点を考慮すると、100kPaG以上とすることが好ましく、100〜400kPaGとすることがより好ましい。
また、本反応は、窒素、炭化水素ガス等の共存下でも実施することができる。
The above reaction can be carried out in any form such as a fixed bed, moving bed, fluidized bed, etc., but a fixed bed type that supplies alcohol and water and / or hydrogen to a tubular reactor filled with a powdered or molded catalyst. It is preferable to carry out the reaction.
The space velocity in the reaction is preferably set to 300~6500H -1, and more preferably a 300~4000h -1.
The reaction temperature is preferably 250 to 600 ° C, more preferably 300 to 550 ° C, and further preferably 350 to 550 ° C.
The reaction pressure can be any of reduced pressure, normal pressure (0 kPaG), and increased pressure, but is usually performed in an atmosphere of normal pressure to slightly increased pressure. Considering that an olefin having 1 or more carbon atoms than the raw material alcohol can be produced for a longer time, it is preferably 100 kPaG or more, and more preferably 100 to 400 kPaG.
This reaction can also be carried out in the presence of nitrogen, hydrocarbon gas, or the like.

水の添加量は、供給するガス中で1〜70容量%であることが好ましく、5〜50容量%であることがより好ましい。水素の添加量は、供給するガス中で1〜70容量%であることが好ましく、5〜50容量%であることがより好ましい。   The amount of water added is preferably 1 to 70% by volume in the supplied gas, and more preferably 5 to 50% by volume. The amount of hydrogen added is preferably 1 to 70% by volume in the supplied gas, and more preferably 5 to 50% by volume.

インジウム含有触媒としては、インジウム酸化物及びインジウムを含む複合酸化物のいずれかからなる触媒を用いることが好ましい。インジウム含有触媒の好適な一例として、酸化インジウム(In23)が挙げられる。酸化インジウムの種類としては、立方晶又はアモルファス等を例示することができる。インジウム含有触媒におけるインジウムの含有量(酸化物換算)は、1〜100質量%であることが好ましく、20〜100質量%であることがより好ましい。1〜100質量%であることで触媒活性やプロピレンの選択性を高い状態とすることができる。 As the indium-containing catalyst, a catalyst made of either indium oxide or a composite oxide containing indium is preferably used. A suitable example of the indium-containing catalyst is indium oxide (In 2 O 3 ). Examples of the type of indium oxide include cubic or amorphous. The indium content (as oxide) in the indium-containing catalyst is preferably 1 to 100% by mass, and more preferably 20 to 100% by mass. The catalyst activity and propylene selectivity can be made high by being 1 to 100% by mass.

インジウム含有触媒は、金属成分を含む塩(硝酸塩、硫酸塩、塩化物など)を空気中でそのまま焼成する方法や、該金属成分を含む水溶液に、アンモニア水等の塩基を滴下して沈殿を形成させ、濾過後焼成する方法により得ることができる。   An indium-containing catalyst is a method in which a salt containing a metal component (nitrate, sulfate, chloride, etc.) is baked as it is in air, or a base such as ammonia water is dropped into an aqueous solution containing the metal component to form a precipitate. And can be obtained by a method of firing after filtration.

本発明において、原料であるアルコールは生物資源由来のエタノール(例えば、バイオエタノール)であることが好ましい。また、製造されるオレフィンはプロピレンであることが好ましい。さらに、インジウム含有触媒としては、後述する本発明のオレフィン製造用触媒を適用することもできる。   In the present invention, the alcohol as a raw material is preferably bioresource-derived ethanol (for example, bioethanol). The olefin produced is preferably propylene. Furthermore, as the indium-containing catalyst, the catalyst for olefin production of the present invention described later can also be applied.

[オレフィン製造用触媒]
(第1のオレフィン製造用触媒)
本発明の第1のオレフィン製造用触媒は、アルコールから、そのアルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、酸化インジウムと周期表における3〜6族及び9〜11族から選ばれる添加元素とを含み、かつインジウム元素のモル量が添加元素のモル量よりも大きい触媒である。当該触媒は酸化インジウムを主成分とし、添加元素を含有する触媒である。
本発明のように、酸化インジウムを主成分とすることでアルコールから、そのアルコールよりも炭素原子数が1以上多いオレフィンを効率よく製造することが可能となり、添加元素との複合効果によって、1以上大きいオレフィンを高収率で製造することができ、また触媒劣化の抑制も可能となる。
[Catalyst for olefin production]
(First catalyst for olefin production)
The first olefin production catalyst of the present invention is an olefin production catalyst for producing an olefin having 1 or more carbon atoms from the alcohol, the indium oxide and the groups 3 to 6 in the periodic table. And an additive element selected from Group 9 to 11, and the molar amount of the indium element is larger than the molar amount of the additive element. The catalyst is a catalyst containing indium oxide as a main component and containing an additive element.
As in the present invention, by using indium oxide as a main component, it becomes possible to efficiently produce an olefin having 1 or more carbon atoms than the alcohol from the alcohol. Large olefins can be produced in high yield, and catalyst deterioration can be suppressed.

添加元素のモル量は、インジウム元素のモル量に対して、0.1〜50モル%であることが好ましく、1〜30モル%であることがより好ましく、5〜20モル%であることがさらに好ましい。0.1〜50モル%であることで炭素数が1以上多いオレフィンの高収率化と触媒劣化の抑制とを両立させることができる。   The molar amount of the additive element is preferably 0.1 to 50 mol%, more preferably 1 to 30 mol%, and more preferably 5 to 20 mol% with respect to the molar amount of indium element. Further preferred. By being 0.1-50 mol%, it is possible to achieve both high yield of olefins having one or more carbon atoms and suppression of catalyst deterioration.

添加元素は、スカンジウム、ジルコニウム、バナジウム、モリブデン、コバルト、ニッケル、及び銅から選ばれる少なくとも1種であることが好ましい。   The additive element is preferably at least one selected from scandium, zirconium, vanadium, molybdenum, cobalt, nickel, and copper.

本発明の第1のオレフィン製造用触媒を作製するには、まず、インジウムを含む塩(硝酸塩、硫酸塩、塩化物等)を空気中でそのまま焼成する方法や、該金属成分を含む水溶液に、アンモニア水等の塩基を滴下して沈殿を形成させ、濾過後焼成する方法により酸化インジウムを作製する。その後、添加元素を含む前駆体を含浸法やイオン交換法等で担持させて適宜熱処理を施して作製する。
また、別の方法としては、インジウムを含む塩と同時に添加元素の塩(硝酸塩、硫酸塩、塩化物等)を一緒に混合して焼成する方法や、当該添加成分とインジウム成分を含む水溶液に、アンモニア水等の塩基を滴下して同時に沈殿を形成させ、濾過後焼成する方法等もある。
In order to produce the first olefin production catalyst of the present invention, first, a method of calcining a salt containing indium (nitrate, sulfate, chloride, etc.) as it is in air, or an aqueous solution containing the metal component, A base such as aqueous ammonia is added dropwise to form a precipitate, and indium oxide is produced by a method of firing after filtration. Thereafter, a precursor containing an additive element is supported by an impregnation method, an ion exchange method, or the like, and is appropriately heat-treated.
Further, as another method, a method of mixing and baking an additive element salt (nitrate, sulfate, chloride, etc.) together with a salt containing indium, or an aqueous solution containing the additive component and the indium component, There is also a method in which a base such as aqueous ammonia is added dropwise to form a precipitate at the same time, followed by firing after filtration.

(第2のオレフィン製造用触媒)
本発明の第2のオレフィン製造用触媒は、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、酸化インジウムが酸性質を有する担体上に担持されてなる。
(Second catalyst for olefin production)
The second olefin production catalyst of the present invention is an olefin production catalyst for producing an olefin having one or more carbon atoms from the alcohol, wherein the indium oxide has an acid property. It is carried.

「酸性質を有する担体」とは、酸触媒反応に対して活性を示す物質である。ここで,酸触媒反応として,不飽和炭化水素の二重結合異性化反応やアルコールの脱水反応等を挙げることができる。このような性質を有する担体として、シリカ・アルミナ、ゼオライト、シリカ・ジルコニア、シリカ・チタニア、チタニア・ジルコニア、リン酸ジルコニウム、これらの2種以上の混合物等が挙げられる。これらの中でも、ゼオライトであることがより好ましい。ゼオライトは多孔質であり、反応に有効な酸点を豊富に有するため担体としては好適である。   The “support having an acid property” is a substance exhibiting activity against an acid-catalyzed reaction. Here, examples of the acid-catalyzed reaction include an unsaturated hydrocarbon double bond isomerization reaction and an alcohol dehydration reaction. Examples of the carrier having such properties include silica / alumina, zeolite, silica / zirconia, silica / titania, titania / zirconia, zirconium phosphate, and a mixture of two or more thereof. Among these, zeolite is more preferable. Zeolite is porous and suitable as a carrier because it has abundant acid sites effective for the reaction.

上記担体に担持する方法としては含浸法、イオン交換法、物理混合法等が挙げられる。酸化インジウムの担持量は1質量%以上とすることが好ましく、2質量%以上とすることがより好ましい。1質量%以上とすることで、触媒活性や、プロピレン選択率を良好なものとすることができる。また、酸化インジウムの担持量は80質量%以下であることが好ましく、60質量%以下であることがより好ましい。   Examples of the method for supporting the carrier include an impregnation method, an ion exchange method, and a physical mixing method. The supported amount of indium oxide is preferably 1% by mass or more, and more preferably 2% by mass or more. By setting the content to 1% by mass or more, catalyst activity and propylene selectivity can be improved. Further, the supported amount of indium oxide is preferably 80% by mass or less, and more preferably 60% by mass or less.

本発明の第2のオレフィン製造用触媒においても、周期表における3〜6族及び9〜11族から選ばれる少なくとも1種の添加元素を含むことが好ましい。この場合の添加元素の詳細としては、第1のオレフィン製造用触媒の添加元素と同様である。   The second olefin production catalyst of the present invention also preferably contains at least one additional element selected from Groups 3-6 and 9-11 in the periodic table. The details of the additive element in this case are the same as those of the first olefin production catalyst.

本発明の第1及び第2のオレフィン製造用触媒による接触反応の原料であるアルコールとしては、生物資源由来のエタノール(例えばバイオエタノール)であることが好ましい。また、製造されるオレフィンとしては、プロピレンであることが好ましい。   The alcohol that is a raw material for the catalytic reaction using the first and second olefin production catalysts of the present invention is preferably bioresource-derived ethanol (for example, bioethanol). The olefin produced is preferably propylene.

以上のような本発明の第1又は第2のオレフィン製造用触媒の存在下で、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを高収率で効率よく製造することができる。アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを得るための反応条件は、既述の本発明のオレフィンの製造方法で説明した条件を適宜採用することができる。   In the presence of the first or second olefin production catalyst of the present invention as described above, an olefin having 1 or more carbon atoms than the alcohol can be efficiently produced from the alcohol in a high yield. As the reaction conditions for obtaining an olefin having 1 or more carbon atoms from the alcohol, the conditions described in the above-described method for producing an olefin of the present invention can be appropriately employed.

[参考例1]
(触媒Aの調製)
市販の酸化インジウム試薬(関東化学製)を700℃、5時間焼成し、0.3〜0.6mmに整粒して酸化インジウム触媒(触媒A)を調製した。
[Reference Example 1]
(Preparation of catalyst A)
A commercially available indium oxide reagent (manufactured by Kanto Chemical) was calcined at 700 ° C. for 5 hours and sized to 0.3 to 0.6 mm to prepare an indium oxide catalyst (catalyst A).

(触媒評価)
触媒の評価は、通常の常圧式流通反応装置を用いて行った。触媒Aを2g石英製反応管に充填し、エタノール濃度が30vol%であるエタノール/窒素混合ガスを13ml/minの速度で反応管へ供給し、反応温度を550℃にて反応を行った。生成物の分析は、オンラインガスクロマトグラフィーにて分析を行った。反応開始1時間後と3時間後の分析結果を表1に示す。
(Catalyst evaluation)
The catalyst was evaluated using a normal atmospheric pressure flow reactor. The catalyst A was filled in a 2 g quartz reaction tube, an ethanol / nitrogen mixed gas having an ethanol concentration of 30 vol% was supplied to the reaction tube at a rate of 13 ml / min, and the reaction was carried out at a reaction temperature of 550 ° C. The product was analyzed by online gas chromatography. Table 1 shows the analysis results 1 hour and 3 hours after the start of the reaction.

[実施例1]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例1中の触媒評価において、反応管への供給ガスをエタノール濃度が30vol%、水濃度が8vol%であるエタノール/水/窒素混合ガスを13ml/minとしたこと以外は同様とした。反応開始1時間後と3時間後の分析結果を表1に示す。
なお、表1中の「活性維持率」は、(3時間後のプロピレン収率+ブテン収率)/(1時間後のプロピレン収率+ブテン収率)の式から求めたもので、値が高いほど触媒劣化が抑えられていることを示す。
[Example 1]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions are the same as in the catalyst evaluation in Reference Example 1, except that the gas supplied to the reaction tube is ethanol / water / nitrogen mixed gas having an ethanol concentration of 30 vol% and a water concentration of 8 vol%, and 13 ml / min. It was. Table 1 shows the analysis results 1 hour and 3 hours after the start of the reaction.
The “activity maintenance ratio” in Table 1 was obtained from the formula of (propylene yield after 3 hours + butene yield) / (propylene yield after 1 hour + butene yield). A higher value indicates that catalyst deterioration is suppressed.

[実施例2]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例1中の触媒評価において、反応管への供給ガスをエタノール濃度が30vol%、水素濃度が31vol%であるエタノール/水素/窒素混合ガスを13ml/minとしたこと以外は同様とした。反応開始1時間後と3時間後の分析結果を表1に示す。
[Example 2]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions are the same except that, in the catalyst evaluation in Reference Example 1, the supply gas to the reaction tube is ethanol / hydrogen / nitrogen mixed gas having an ethanol concentration of 30 vol% and a hydrogen concentration of 31 vol%, and 13 ml / min. It was. Table 1 shows the analysis results 1 hour and 3 hours after the start of the reaction.

[実施例3]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例1中の触媒評価において、反応管への供給ガスをエタノール濃度が30vol%、水濃度が8vol%、水素濃度が31vol%であるエタノール/水/水素/窒素混合ガスを13ml/minとしたこと以外は同様とした。反応開始1時間後と3時間後の分析結果を表1に示す。
[Example 3]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions were as follows: in the catalyst evaluation in Reference Example 1, the supply gas to the reaction tube was 13 ml of ethanol / water / hydrogen / nitrogen mixed gas having an ethanol concentration of 30 vol%, a water concentration of 8 vol%, and a hydrogen concentration of 31 vol%. It was the same except that it was set to / min. Table 1 shows the analysis results 1 hour and 3 hours after the start of the reaction.

Figure 0005783952
Figure 0005783952

表1に示すように、実施例1から3において、参考例1と比較して、原料アルコールの炭素数よりも炭素数が増加したオレフィン(本実施例の場合、プロピレン・ブテン)の収率が著しく向上しており、さらにこれらのオレフィン収率の低下も改善されている。酸化インジウム触媒の低いオレフィン収率と活性劣化を劇的に改善することできた。   As shown in Table 1, in Examples 1 to 3, compared with Reference Example 1, the yield of olefins (propylene / butene in this example) having an increased number of carbons than that of the raw material alcohol was increased. There is a marked improvement, and further, the reduction in olefin yield is improved. The low olefin yield and activity degradation of indium oxide catalyst could be improved dramatically.

[参考例2]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例1中の触媒評価において、反応温度を500℃としたこと以外は同様とした。反応開始1時間後の分析結果を表2に示す。
[Reference Example 2]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions were the same except that the reaction temperature was 500 ° C. in the catalyst evaluation in Reference Example 1. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例4]
(触媒Bの調製)
触媒Aに対して、酢酸スカンジウム(添川理化学製)の水溶液を含浸し、その後800℃、5時間焼成することによりスカンジウムを担持させた酸化インジウム触媒(触媒B)を調製した。このとき、スカンジウムの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 4]
(Preparation of catalyst B)
The catalyst A was impregnated with an aqueous solution of scandium acetate (manufactured by Soekawa Rikagaku), and then calcined at 800 ° C. for 5 hours to prepare an indium oxide catalyst (catalyst B) supporting scandium. At this time, the amount of the impregnating solution was adjusted so that the amount of scandium was 10 mol% with respect to indium.

(触媒評価)
触媒Bの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
Evaluation of catalyst B was carried out in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例5]
(触媒Cの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりに硝酸ジルコニル二水和物(和光純薬工業製−和光一級)を用いた以外は実施例4と同様な操作を行い、ジルコニウムを担持させた酸化インジウム触媒(触媒C)を調製した。このとき、ジルコニウムの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 5]
(Preparation of catalyst C)
In the catalyst preparation of Example 4, the same operation as in Example 4 was carried out except that zirconyl nitrate dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.—Wako Grade 1) was used instead of scandium acetate, and zirconium was supported. An indium catalyst (Catalyst C) was prepared. At this time, the amount of the impregnation liquid was adjusted so that the amount of zirconium was 10 mol% with respect to indium.

(触媒評価)
触媒Cの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
The evaluation of the catalyst C was performed in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例6]
(触媒Dの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりにバナジン(V)酸アンモニウム(和光純薬工業製−試薬特級)を用いた以外は実施例4と同様な操作を行い、バナジウムを担持させた酸化インジウム触媒(触媒D)を調製した。このとき、バナジウムの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 6]
(Preparation of catalyst D)
In the catalyst preparation of Example 4, the same operation as Example 4 was performed except that ammonium vanadate (V) (manufactured by Wako Pure Chemical Industries, Ltd.—special grade reagent) was used instead of scandium acetate, and oxidation with vanadium supported thereon was performed. An indium catalyst (Catalyst D) was prepared. At this time, the amount of the impregnating solution was adjusted so that the amount of vanadium was 10 mol% with respect to indium.

(触媒評価)
触媒Dの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
The evaluation of the catalyst D was performed in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例7]
(触媒Eの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりに七モリブデン酸六アンモニウム四水和物(和光純薬工業製−試薬特級)を用いた以外は実施例4と同様な操作を行い、モリブデンを担持させた酸化インジウム触媒(触媒E)を調製した。このとき、モリブデンの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 7]
(Preparation of catalyst E)
In preparing the catalyst of Example 4, the same operation as in Example 4 was carried out except that hexammonium heptamolybdate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.—special grade reagent) was used instead of scandium acetate, and molybdenum was supported. A prepared indium oxide catalyst (catalyst E) was prepared. At this time, the amount of impregnation liquid was adjusted so that the amount of molybdenum was 10 mol% with respect to indium.

(触媒評価)
触媒Eの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
Evaluation of catalyst E was carried out in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例8]
(触媒Fの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりに硝酸コバルト(II)六水和物(和光純薬工業製−和光特級)を用いた以外は実施例4と同様な操作を行い、コバルトを担持させた酸化インジウム触媒(触媒F)を調製した。このとき、コバルトの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 8]
(Preparation of catalyst F)
In the catalyst preparation of Example 4, the same operation as Example 4 was carried out except that cobalt nitrate (II) hexahydrate (Wako Pure Chemical Industries-Wako Special Grade) was used instead of scandium acetate to carry cobalt. A prepared indium oxide catalyst (catalyst F) was prepared. At this time, the amount of the impregnating liquid was adjusted so that the amount of cobalt was 10 mol% with respect to indium.

(触媒評価)
触媒Fの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
The evaluation of the catalyst F was performed in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例9]
(触媒Gの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりに硝酸ニッケル(II)六水和物(和光純薬工業製)を用いた以外は実施例4と同様な操作を行い、ニッケルを担持させた酸化インジウム触媒(触媒G)を調製した。このとき、ニッケルの量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 9]
(Preparation of catalyst G)
In the catalyst preparation of Example 4, the same operation as in Example 4 was carried out except that nickel nitrate (II) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of scandium acetate, and nickel was supported. An indium catalyst (Catalyst G) was prepared. At this time, the amount of the impregnation liquid was adjusted so that the amount of nickel was 10 mol% with respect to indium.

(触媒評価)
触媒Gの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
The evaluation of the catalyst G was performed in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

[実施例10]
(触媒Hの調製)
実施例4の触媒調製において、酢酸スカンジウムの替わりに硝酸銅(II)三水和物(和光純薬工業製−和光特級)を用いた以外は実施例4と同様な操作を行い、銅を担持させた酸化インジウム触媒(触媒H)を調製した。このとき、銅の量がインジウムに対して10モル%となるように含浸液の量を調整した。
[Example 10]
(Preparation of catalyst H)
In the catalyst preparation of Example 4, the same operation as in Example 4 was carried out except that copper nitrate (II) trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.—Wako Special Grade) was used instead of scandium acetate to carry copper. A prepared indium oxide catalyst (catalyst H) was prepared. At this time, the amount of the impregnating solution was adjusted so that the amount of copper was 10 mol% with respect to indium.

(触媒評価)
触媒Hの評価は、参考例2と同様にして行った。反応開始1時間後の分析結果を表2に示す。
(Catalyst evaluation)
The evaluation of the catalyst H was performed in the same manner as in Reference Example 2. Table 2 shows the analysis results 1 hour after the start of the reaction.

Figure 0005783952
Figure 0005783952

表2に示すように、実施例4〜10は、参考例2と比較して、原料アルコールの炭素数よりも炭素数が増加したオレフィン(本実施例の場合、プロピレン・ブテン)の収率が著しく改善されている。このように、酸化インジウム触媒の低いオレフィン収率をより向上させることができた。   As shown in Table 2, in Examples 4 to 10, the yield of the olefin (in this example, propylene / butene) having an increased number of carbons than that of the raw material alcohol was higher than that of Reference Example 2. Significant improvement. Thus, the low olefin yield of the indium oxide catalyst could be further improved.

[参考例3]
(触媒Iの調製)
市販のシリカ試薬(富士シリアル製キャリアクト)に、硝酸インジウム水溶液を含浸し、それを700℃、5時間焼成することにより酸化インジウムを担持したシリカ触媒(触媒I)を調製した。このとき、酸化インジウムの担持量が40wt%となるように含浸液の量を調整した。
[Reference Example 3]
(Preparation of catalyst I)
A silica catalyst (catalyst I) carrying indium oxide was prepared by impregnating a commercially available silica reagent (Fuji cereal carriert) with an indium nitrate aqueous solution and firing it at 700 ° C. for 5 hours. At this time, the amount of the impregnating solution was adjusted so that the amount of indium oxide supported was 40 wt%.

(触媒評価)
触媒の評価は、通常の常圧式流通反応装置を用いて行った。触媒Iを2g石英製反応管に充填し、エタノール濃度が30vol%であるエタノール/窒素混合ガスを13ml/minの速度で反応管へ供給し、反応温度を500℃にて反応を行った。生成物の分析は、オンラインガスクロマトグラフィーにて分析を行った。反応開始1時間後分析結果を表3に示す。
(Catalyst evaluation)
The catalyst was evaluated using a normal atmospheric pressure flow reactor. Catalyst I was charged in a 2 g quartz reaction tube, and an ethanol / nitrogen mixed gas having an ethanol concentration of 30 vol% was supplied to the reaction tube at a rate of 13 ml / min, and the reaction was carried out at a reaction temperature of 500 ° C. The product was analyzed by online gas chromatography. Table 3 shows the analysis results 1 hour after the start of the reaction.

[実施例11]
(触媒Jの調製)
参考例3において、シリカの代わりに市販のアルミナ試薬(日揮ユニバーサル製)を用いた以外は同様にして行い、酸化インジウムを担持したアルミナ触媒(触媒J)を調製した(整粒後の粒径:0.3〜0.6mm)。このとき、酸化インジウムの担持量が40wt%となるように含浸液の量を調整した。
[Example 11]
(Preparation of catalyst J)
In Reference Example 3, the same procedure was performed except that a commercially available alumina reagent (manufactured by JGC Universal) was used instead of silica to prepare an alumina catalyst (catalyst J) supporting indium oxide (particle size after sizing: 0.3-0.6 mm). At this time, the amount of the impregnating solution was adjusted so that the amount of indium oxide supported was 40 wt%.

(触媒評価)
触媒Jの評価は、参考例3と同様にして行った。反応開始1時間後の分析結果を表3に示す。
(Catalyst evaluation)
The evaluation of the catalyst J was performed in the same manner as in Reference Example 3. Table 3 shows the analysis results 1 hour after the start of the reaction.

[実施例12]
(触媒Kの調製)
参考例3において、シリカの代わりに市販のZSM−5ゼオライト(ゼオリスト製)を用いた以外は同様にして行い、酸化インジウムを担持したZSM−5触媒(触媒K)を調製した。このとき、酸化インジウムの担持量が20wt%となるように含浸液の量を調整した。
[Example 12]
(Preparation of catalyst K)
In Reference Example 3, a ZSM-5 catalyst (catalyst K) supporting indium oxide was prepared in the same manner except that a commercially available ZSM-5 zeolite (manufactured by Zeolisto) was used instead of silica. At this time, the amount of impregnation liquid was adjusted so that the amount of indium oxide supported was 20 wt%.

(触媒評価)
触媒Kの評価は、参考例3と同様にして行った。反応開始1時間後の分析結果を表3に示す。
(Catalyst evaluation)
The evaluation of the catalyst K was performed in the same manner as in Reference Example 3. Table 3 shows the analysis results 1 hour after the start of the reaction.

Figure 0005783952
Figure 0005783952

表3に示すように、酸性質を示す担体に担持した酸化インジウム触媒(実施例11、12)は、酸性質を示さない担体に担持した酸化インジウム触媒(参考例3)と比較して、原料アルコールの炭素数よりも炭素数が増加したオレフィン(本実施例の場合、プロピレン及びブテン)の収率が著しく改善されている。このように、酸化インジウム触媒の低いオレフィン収率をより向上させることができた。   As shown in Table 3, the indium oxide catalyst (Examples 11 and 12) supported on a carrier exhibiting acid properties is a raw material compared to the indium oxide catalyst (Reference Example 3) supported on a carrier not exhibiting acid properties. The yield of olefins (in the present example, propylene and butene) having an increased number of carbons than that of the alcohol is significantly improved. Thus, the low olefin yield of the indium oxide catalyst could be further improved.

[参考例4]
(触媒評価)
参考例1と同様に、触媒Aを用いた。触媒A2.5gを石英製反応管に充填し、エタノール濃度が33vol%であるエタノール/窒素混合ガスを13ml/minの速度で反応管へ供給し、反応温度を525℃、反応圧力を0kPaGにて反応を行った。生成物の分析は、オンラインガスクロマトグラフィーにて分析を行った。生成物の分析結果を表4に示す。
なお、表4中の「C36収率<Acetone収率となる時間」は触媒寿命の指標であり、値が高いほど触媒劣化が抑えられていることを示す。これは、本反応がエタノールからアセトンを経由してプロピレンが生成するためである。
[Reference Example 4]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. A quartz reaction tube was filled with 2.5 g of catalyst A, an ethanol / nitrogen mixed gas having an ethanol concentration of 33 vol% was supplied to the reaction tube at a rate of 13 ml / min, the reaction temperature was 525 ° C., and the reaction pressure was 0 kPaG. Reaction was performed. The product was analyzed by online gas chromatography. The analysis results of the product are shown in Table 4.
In Table 4, “C 3 H 6 yield <Acetone yield time” is an indicator of catalyst life, and higher values indicate that catalyst degradation is suppressed. This is because this reaction produces propylene from ethanol via acetone.

[参考例5]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例4中の触媒評価において反応圧力を100kPaGとしたこと以外は同様とした。生成物の分析結果を表4に示す。
[Reference Example 5]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions were the same except that the reaction pressure was 100 kPaG in the catalyst evaluation in Reference Example 4. The analysis results of the product are shown in Table 4.

[参考例6]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例4中の触媒評価において反応圧力を200kPaGとしたこと以外は同様とした。生成物の分析結果を表4に示す。
[Reference Example 6]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions were the same except that the reaction pressure was 200 kPaG in the catalyst evaluation in Reference Example 4. The analysis results of the product are shown in Table 4.

[参考例7]
(触媒評価)
参考例1と同様に、触媒Aを用いた。評価条件は、参考例4中の触媒評価において反応圧力を400kPaGとしたこと以外は同様とした。生成物の分析結果を表4に示す。
[Reference Example 7]
(Catalyst evaluation)
As in Reference Example 1, catalyst A was used. The evaluation conditions were the same except that the reaction pressure was set to 400 kPaG in the catalyst evaluation in Reference Example 4. The analysis results of the product are shown in Table 4.

Figure 0005783952
Figure 0005783952

表4に示すように、参考例5〜7は、参考例4と比較して原料アルコールの炭素数よりも炭素数が増加したオレフィン(本実施例の場合、プロピレン及びブテン)の収率を大きく変えずに、触媒劣化を抑制することができた。   As shown in Table 4, Reference Examples 5 to 7 increase the yield of olefins (in this example, propylene and butene) having an increased number of carbons compared to that of Reference Example 4 compared to the number of carbons in the raw alcohol. The catalyst degradation could be suppressed without changing.

Claims (18)

酸化インジウムを含む酸化インジウム含有触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法であって、
前記アルコールを反応させる反応系に水及び/又は水素を共存させるオレフィンの製造方法。
In the presence of an indium oxide-containing catalyst containing indium oxide, an olefin production method for producing an olefin having 1 or more carbon atoms than the alcohol from an alcohol,
A method for producing an olefin, wherein water and / or hydrogen coexist in a reaction system for reacting the alcohol.
前記アルコールと、前記触媒とを、ゲージ圧100kPaG以上で接触させる請求項1に記載のオレフィンの製造方法。   The method for producing an olefin according to claim 1, wherein the alcohol and the catalyst are contacted at a gauge pressure of 100 kPaG or more. 前記アルコールがバイオエタノールである請求項1又は2に記載のオレフィンの製造方法。   The method for producing an olefin according to claim 1 or 2, wherein the alcohol is bioethanol. 前記オレフィンがプロピレンである請求項1〜3のいずれか1項に記載のオレフィンの製造方法。   The method for producing an olefin according to any one of claims 1 to 3, wherein the olefin is propylene. アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、
酸化インジウムと周期表における3〜6族及び9〜11族から選ばれる少なくとも1種の添加元素とを含み、かつインジウム元素のモル量が前記添加元素のモル量よりも大きいオレフィン製造用触媒。
An olefin production catalyst for producing an olefin having 1 or more carbon atoms from the alcohol, the alcohol comprising:
A catalyst for olefin production, comprising indium oxide and at least one additive element selected from Groups 3-6 and 9-11 in the periodic table, wherein the molar amount of indium element is larger than the molar amount of the additional element.
前記添加元素が、スカンジウム、ジルコニウム、バナジウム、モリブデン、コバルト、ニッケル、及び銅から選ばれる少なくとも1種である請求項5に記載のオレフィン製造用触媒。   The catalyst for olefin production according to claim 5, wherein the additive element is at least one selected from scandium, zirconium, vanadium, molybdenum, cobalt, nickel, and copper. 前記アルコールがバイオエタノールである請求項5又は6に記載のオレフィン製造用触媒。   The olefin production catalyst according to claim 5 or 6, wherein the alcohol is bioethanol. 前記オレフィンがプロピレンである請求項5〜7のいずれか1項に記載のオレフィン製造用触媒。   The olefin production catalyst according to any one of claims 5 to 7, wherein the olefin is propylene. アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するためのオレフィン製造用触媒であって、
酸化インジウムが酸性質を有する担体上に担持されてなるオレフィン製造用触媒。
An olefin production catalyst for producing an olefin having 1 or more carbon atoms from the alcohol, the alcohol comprising:
A catalyst for olefin production, in which indium oxide is supported on a carrier having acid properties.
さらに、周期表における3〜6族及び9〜11族から選ばれる少なくとも1種の添加元素を含む請求項9に記載のオレフィン製造用触媒。   Furthermore, the catalyst for olefin production of Claim 9 containing the at least 1 sort (s) of additional element chosen from the 3-6 groups and 9-11 groups in a periodic table. 前記添加元素が、スカンジウム、ジルコニウム、バナジウム、モリブデン、コバルト、ニッケル、及び銅から選ばれる少なくとも1種である請求項10に記載のオレフィン製造用触媒。   The catalyst for olefin production according to claim 10, wherein the additive element is at least one selected from scandium, zirconium, vanadium, molybdenum, cobalt, nickel, and copper. 前記酸性質を有する担体がゼオライトである請求項9〜11のいずれか1項に記載のオレフィン製造用触媒。   The catalyst for olefin production according to any one of claims 9 to 11, wherein the carrier having an acid property is zeolite. 前記アルコールがバイオエタノールである請求項9〜12のいずれか1項に記載のオレフィン製造用触媒。   The catalyst for olefin production according to any one of claims 9 to 12, wherein the alcohol is bioethanol. 前記オレフィンがプロピレンである請求項9〜13のいずれか1項に記載のオレフィン製造用触媒。   The olefin production catalyst according to any one of claims 9 to 13, wherein the olefin is propylene. 請求項5〜14のいずれか1項に記載のオレフィン製造用触媒の存在下、アルコールから、該アルコールよりも炭素原子数が1以上多いオレフィンを製造するオレフィンの製造方法。   The manufacturing method of the olefin which manufactures the olefin whose carbon atom number is one or more more than this alcohol from alcohol in the presence of the catalyst for olefin manufacture of any one of Claims 5-14. 前記アルコールを反応させる反応系に水及び/又は水素を共存させる請求項15に記載のオレフィンの製造方法。   The method for producing olefin according to claim 15, wherein water and / or hydrogen coexists in a reaction system in which the alcohol is reacted. 前記アルコールがバイオエタノールである請求項15又は16に記載のオレフィンの製造方法。   The method for producing an olefin according to claim 15 or 16, wherein the alcohol is bioethanol. 前記オレフィンがプロピレンである請求項15〜17のいずれか1項に記載のオレフィンの製造方法。   The method for producing an olefin according to any one of claims 15 to 17, wherein the olefin is propylene.
JP2012115088A 2011-05-20 2012-05-18 Olefin production method and olefin production catalyst Active JP5783952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115088A JP5783952B2 (en) 2011-05-20 2012-05-18 Olefin production method and olefin production catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011114218 2011-05-20
JP2011114218 2011-05-20
JP2012115088A JP5783952B2 (en) 2011-05-20 2012-05-18 Olefin production method and olefin production catalyst

Publications (2)

Publication Number Publication Date
JP2013006831A JP2013006831A (en) 2013-01-10
JP5783952B2 true JP5783952B2 (en) 2015-09-24

Family

ID=47674500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115088A Active JP5783952B2 (en) 2011-05-20 2012-05-18 Olefin production method and olefin production catalyst

Country Status (1)

Country Link
JP (1) JP5783952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085780B2 (en) * 2013-05-31 2017-03-01 国立大学法人東京工業大学 Method for preparing catalyst for olefin production and method for producing olefin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003222228A1 (en) * 2002-03-15 2003-09-29 Exxonmobil Chemical Patents Inc. High silica chabazite, its synthesis and its use in the conversion of oxygenates to olefins
WO2012077723A1 (en) * 2010-12-08 2012-06-14 住友化学株式会社 Catalyst for producing an olefin from an alcohol, method for producing olefin, polyolefin, and olefin oxide

Also Published As

Publication number Publication date
JP2013006831A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP2021516146A (en) Method for producing lower olefin by direct conversion of catalyst and syngas
CN103521253B (en) The catalyst of one-step method from syngas producing light olefins and preparation method
CN102452878A (en) Method for preparing low-carbon olefin by synthetic gas one-step technology
JP5820818B2 (en) Olefin production catalyst and olefin production method
CA3079203A1 (en) Hybrid catalyst for selective and stable olefin production
WO2011074444A1 (en) Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
JP2015506824A (en) Catalyst for producing ethylene and propylene from methanol and / or dimethyl ether, its production method and use
CN104056652A (en) Core-shell ZSM-5 molecular sieve microsphere catalyst
CN104056653A (en) Catalyst for preparing propylene from methanol
CN105214697A (en) A kind of low paraffin dehydrogenation alkene catalyst and preparation method
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP5435275B2 (en) Process for producing hydrocarbons
JP5783952B2 (en) Olefin production method and olefin production catalyst
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
KR20180133696A (en) Catalyst having enhanced stability, conversion ratio and selectivity for manufacturing olefin, and A method thereof
CN105435801A (en) A supported iron catalyst, a preparing method thereof and applications of the catalyst
JP5448161B2 (en) Catalyst composition for the production of hydrocarbons
JP5674029B2 (en) Propylene and ethylene production method
JP5818133B2 (en) Olefin production catalyst and olefin production method
US10569259B2 (en) Catalyst for dehydration of glycerin, preparation method thereof, and production method of acrolein using the catalyst
JP4399790B2 (en) Propylene production method
CN104056655B (en) A kind of hud typed pellet catalyst
CN113993976A (en) Production of C using hybrid catalyst comprising high acidity microporous component2To C5Process for paraffinic hydrocarbons
JP2010018556A (en) Method for producing lower olefin from ethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150721

R150 Certificate of patent or registration of utility model

Ref document number: 5783952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533