JP2008088140A - Method for synthesizing chemical industry feedstock and fuel composition - Google Patents

Method for synthesizing chemical industry feedstock and fuel composition Download PDF

Info

Publication number
JP2008088140A
JP2008088140A JP2006274004A JP2006274004A JP2008088140A JP 2008088140 A JP2008088140 A JP 2008088140A JP 2006274004 A JP2006274004 A JP 2006274004A JP 2006274004 A JP2006274004 A JP 2006274004A JP 2008088140 A JP2008088140 A JP 2008088140A
Authority
JP
Japan
Prior art keywords
ethanol
calcium
compound
catalyst
clay mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274004A
Other languages
Japanese (ja)
Inventor
Shuji Sakuma
周治 佐久間
Noriyuki Tsuchida
敬之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sangi Co Ltd
Original Assignee
Sangi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sangi Co Ltd filed Critical Sangi Co Ltd
Priority to JP2006274004A priority Critical patent/JP2008088140A/en
Publication of JP2008088140A publication Critical patent/JP2008088140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide easily available compounds each as a catalyst with no need of any complicated preparation as the catalyst, in order to retrieve in a simple process a chemical industry feedstock such as butanol or butadiene, or a fuel composition, with ethanol as a raw material. <P>SOLUTION: At least one compound selected from the group consisting of a kaolin-group clay mineral, a pyrophyllite-group clay mineral, a smectite-group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate and magnesium phosphate is used as catalyst(s). Further, when n-butanol is to be synthesized, a titanium oxide can also be used as a catalyst, and when a fuel composition is to be synthesized, titanium oxide, magnesium oxide, calcium hydroxide or sepiolite can also be used as a catalyst, and in addition, a mixture of a calcium compound and a phosphoric acid compound can also be used as a catalyst. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粘土鉱物、その他の化合物を触媒として使用し、エタノールから化学工業原料、燃料組成物として有用な有機化合物またはそれらの混合物を合成する方法に関するものである。   The present invention relates to a method for synthesizing a chemical industrial raw material, an organic compound useful as a fuel composition, or a mixture thereof from ethanol using a clay mineral or other compound as a catalyst.

アルコールから、各種の化合物を触媒として、ブタノールや、ブタジエン等の化学工業原料や、ガソリン等の燃料を合成する実験が行なわれている。   Experiments have been conducted to synthesize chemical industrial raw materials such as butanol and butadiene, and fuels such as gasoline, using various compounds as catalysts from alcohol.

エタノールからブタノールを合成する方法として、アルカリ土類金属の酸化物を触媒として用いる方法(非特許文献1)、アルカリ金属で置換されたゼオライトを用いる方法(非特許文献2)、金属酸化物の混合物を用いる方法(非特許文献3)などが、また、エタノールからブタジエンを製造する方法として、金属酸化物あるいはその混合物を用いる方法(非特許文献4、5及び6)、多孔性針状の粘土類である山皮触媒を用いる方法(特許文献1及び2)等があるが、触媒調製が難しい、反応温度が高いなどの理由で工業的に適さない。   As a method for synthesizing butanol from ethanol, a method using an oxide of an alkaline earth metal as a catalyst (Non-Patent Document 1), a method using a zeolite substituted with an alkali metal (Non-Patent Document 2), a mixture of metal oxides As a method for producing butadiene from ethanol (non-patent documents 4, 5 and 6), porous acicular clays, and the like. However, it is industrially unsuitable for reasons such as difficulty in catalyst preparation and high reaction temperature.

また、リン酸カルシウム触媒を用いてブタノール、ブタジエンや、燃料組成物を合成する方法(特許文献3)が既に開示されているが、ブタノール、ブタジエンや、燃料組成物の収率を上げる為には、リン酸カルシウム触媒のリンとカルシウムのモル比の細かい調節が必要であり、触媒の調製が難しいという問題点があった。   In addition, a method for synthesizing butanol, butadiene and a fuel composition using a calcium phosphate catalyst has already been disclosed (Patent Document 3). To increase the yield of butanol, butadiene and a fuel composition, calcium phosphate is used. There is a problem that it is difficult to prepare the catalyst because fine adjustment of the molar ratio of phosphorus and calcium in the catalyst is necessary.

“Dimerisation of ethanol to butanol over solid-base catalysts” A.S. Ndou, N. plint, N. J. Coville, Applied catalysis A: General, 251, p. 337-345 (2003)“Dimerisation of ethanol to butanol over solid-base catalysts” A.S. Ndou, N. plint, N. J. Coville, Applied catalysis A: General, 251, p. 337-345 (2003) “Bimolecular Condensation of Ethanol to 1-Butanol Catalyzed by Alkali Cation Zeolites” C. Yang, Z. Meng, J. of Catalysis, 142, p. 37-44 (1993)“Bimolecular Condensation of Ethanol to 1-Butanol Catalyzed by Alkali Cation Zeolites” C. Yang, Z. Meng, J. of Catalysis, 142, p. 37-44 (1993) “Kinetics of a Complex Reaction System-Preparation of n-Butanol from Ethanol in One Step, V. NAGARAJAN, Indian Journal of TechnologyVol. 9, October 1971, pp. 380-386“Kinetics of a Complex Reaction System-Preparation of n-Butanol from Ethanol in One Step, V. NAGARAJAN, Indian Journal of Technology Vol. 9, October 1971, pp. 380-386 “BUTADIENE FROM ETHYL ALCOHOL” B. B. CORSON, H. E. JONES, C. E. WELLING, J. A. HINCLEY, AND E. E. STAHLY, INDUSTRIAL AND ENGINEERING CHEMISTRY, Vol. 42. No.2“BUTADIENE FROM ETHYL ALCOHOL” B. B. CORSON, H. E. JONES, C. E. WELLING, J. A. HINCLEY, AND E. STAHLY, INDUSTRIAL AND ENGINEERING CHEMISTRY, Vol. 42. No.2 ONE−STEP CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE IN THE FIXED BED. I. SINGLE-OXIDE CATALYSIS, S. K. BHATTACHARYYA and N. D. GANGULY, J. appl. Chem., 12, March, 1962)ONE-STEP CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE IN THE FIXED BED. I. SINGLE-OXIDE CATALYSIS, S. K. BHATTACHARYYA and N. D. GANGULY, J. appl. Chem., 12, March, 1962) ONE-STEP CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE IN THE FIXED BED. II. BINARY- AND TERNARY-OXIDE CATALYSIS, S. K. BHATTACHARYYA and N. D. GANGULY, J. appl. Chem., 12, March, 1962)ONE-STEP CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE IN THE FIXED BED. II. BINARY- AND TERNARY-OXIDE CATALYSIS, S. K. BHATTACHARYYA and N. D. GANGULY, J. appl. Chem., 12, March, 1962) 特開昭57−102822号公報JP-A-57-102822 特開昭58−59928号公報JP 58-59928 A 国際公開WO99/38822号公報International Publication No. WO99 / 38822

本発明は、エタノールを原料として、ブタノール、ブタジエン等の化学工業原料や燃料組成物を、簡単なプロセスで採取する為に、簡単に入手でき、触媒として難しい調製のいらない化合物を触媒として提供することを課題としている。   The present invention provides, as a catalyst, a compound that can be easily obtained in order to collect chemical industrial raw materials and fuel compositions such as butanol and butadiene, etc., using ethanol as a raw material, by a simple process, and does not require difficult preparation as a catalyst. Is an issue.

本発明のプロセスの出発原料であるエタノールは、現在サトウキビやビートなどから得られる糖を、発酵法により変換して合成される。近年、農林廃棄物であるバイオマスからエタノールを合成する技術も確立され、エタノールの生産量が飛躍的に増大することが期待できる。また、エタノールの製造コストが原油に匹敵あるいはそれ以下となっているので、エタノールを原料として、化学工業原料や、燃料組成物等を合成することは、今後の重要な課題である。   Ethanol, which is a starting material for the process of the present invention, is synthesized by converting sugars currently obtained from sugarcane, beet, etc. by fermentation. In recent years, technology for synthesizing ethanol from biomass, which is agricultural and forestry waste, has been established, and it can be expected that the production amount of ethanol will increase dramatically. Moreover, since the production cost of ethanol is comparable to or less than that of crude oil, synthesis of chemical industrial raw materials, fuel compositions, etc. using ethanol as a raw material is an important issue in the future.

本発明のプロセスは、原料として植物由来のエタノールを用いることができ、反応は常圧で容易に進行するので、二酸化炭素を排出し地球温暖化を促進する化石・鉱物資源を原料とする既存の合成法に比べて、地球環境にとって重要な合成方法である。   The process of the present invention can use plant-derived ethanol as a raw material, and the reaction proceeds easily at normal pressure. Therefore, existing fossil / mineral resources that emit carbon dioxide and promote global warming are used as raw materials. Compared to the synthesis method, it is an important synthesis method for the global environment.

本発明者らは、各種化合物を用いて、エタノールから化学工業原料や燃料組成物を合成する為に、鋭意研究を重ねた結果、これまで知られている触媒以外の、試薬などとして簡単に入手可能な化合物を触媒として使用することにより、エタノールから化学工業原料や燃料組成物として有用な有機化合物又はそれらの混合物を合成できることを見出した。   As a result of intensive research to synthesize chemical industrial raw materials and fuel compositions from ethanol using various compounds, the present inventors can easily obtain them as reagents other than the known catalysts. It has been found that by using a possible compound as a catalyst, an organic compound useful as a chemical industrial raw material or a fuel composition or a mixture thereof can be synthesized from ethanol.

すなわち本発明は、
(1)エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム及びリン酸マグネシウムからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールから有機化合物の1種又は2種以上の混合物を合成する方法、
(2)有機化合物が1,3−ブタジエンである前記(1)に記載の方法、
(3)エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールから有機化合物の1種又は2種以上の混合物を合成する方法、
(4)有機化合物が1,3−ブタジエンである前記(3)に記載の方法、
(5)エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム、リン酸マグネシウム及び酸化チタンからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールからn−ブタノールを合成する方法、
(6)エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールからn−ブタノールを合成する方法、
(7)エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム、リン酸マグネシウム、酸化チタン、酸化マグネシウム、水酸化カルシウム及びセピオライトからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールから燃料組成物を合成する方法、
(8)エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールから燃料組成物を合成する方法、
(9)カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム及びリン酸マグネシウムからなる群より選ばれた少なくとも1つの化合物を含有するエタノール変換触媒、及び
(10)カルシウム化合物とリン酸化合物の混合物を含有するエタノール変換触媒、に関する。
That is, the present invention
(1) Ethanol, kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate And a method of synthesizing one or a mixture of two or more organic compounds from ethanol, characterized by contacting with at least one compound selected from the group consisting of magnesium phosphate,
(2) The method according to (1), wherein the organic compound is 1,3-butadiene,
(3) A method of synthesizing one or a mixture of two or more organic compounds from ethanol, wherein ethanol is brought into contact with a mixture of a calcium compound and a phosphate compound,
(4) The method according to (3) above, wherein the organic compound is 1,3-butadiene,
(5) Ethanol, kaolin clay mineral, pyrophyllite clay mineral, smectite clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate A method for synthesizing n-butanol from ethanol, which comprises contacting with at least one compound selected from the group consisting of magnesium phosphate and titanium oxide,
(6) A method of synthesizing n-butanol from ethanol, which comprises contacting ethanol with a mixture of a calcium compound and a phosphate compound,
(7) Ethanol, kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate A method of synthesizing a fuel composition from ethanol, characterized by contacting with at least one compound selected from the group consisting of magnesium phosphate, titanium oxide, magnesium oxide, calcium hydroxide and sepiolite,
(8) A method for synthesizing a fuel composition from ethanol, comprising contacting ethanol with a mixture of a calcium compound and a phosphate compound;
(9) Kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate and phosphoric acid The present invention relates to an ethanol conversion catalyst containing at least one compound selected from the group consisting of magnesium, and (10) an ethanol conversion catalyst containing a mixture of a calcium compound and a phosphate compound.

本発明の触媒は、安価で簡単に入手でき、反応および再生処理に対して安定であり、反応温度と接触時間を選択することにより、効率よくエタノールからn−ブタノール、1,3−ブタジエンなどの化学工業原料やこれらの混合物である燃料組成物を得ることができる。   The catalyst of the present invention is inexpensive and easily available, is stable to the reaction and regeneration treatment, and efficiently selects ethanol, n-butanol, 1,3-butadiene, etc. by selecting the reaction temperature and contact time. A fuel composition which is a chemical industrial raw material or a mixture thereof can be obtained.

(エタノール変換触媒)
本発明のエタノール変換触媒として用いる化合物は、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム、リン酸マグネシウム、酸化チタン、水酸化カルシウム及びセピオライトからなる群より選ばれた少なくとも1つの化合物である。また、特に、混合物として用いる場合には、上記カルシウム化合物とリン酸化合物に限ることなく、広くカルシウム化合物とリン酸化合物の混合物が使用可能である。
(Ethanol conversion catalyst)
The compound used as the ethanol conversion catalyst of the present invention is kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, phosphoric acid It is at least one compound selected from the group consisting of lithium, aluminum phosphate, magnesium phosphate, titanium oxide, calcium hydroxide, and sepiolite. In particular, when used as a mixture, a mixture of a calcium compound and a phosphoric acid compound can be widely used without being limited to the calcium compound and the phosphoric acid compound.

カオリン族粘土鉱物は、四面体の層と八面体の層が1:1の基本構造を有している粘土鉱物であり、リザーダイト[Mg3Si2O5(OH)4]、バーチェリン[(Fe2+,Fe3+,Mg)2-3(Si,Al)2O5(OH)4]、アメサイト[Mg2Al(Si,Al)O5(OH)4]、クロンステダイト[Fe2+Fe3+(SiFe3+)O5(OH)4]、ネポーアイト[Ni3Si2O5(OH)4]、ケリアイト[(Mn2+,Mg,Al)3(Si,Al)2O5(OH)4]、フレイポナイト[(Zn,Al)3(Si,Al)2O5(OH)4]、ブリンドリアイト[(Ni,Mg,Fe2+)3(Si,Al)O5(OH)4]、カオリナイト[Al2Si2O5(OH)4]、ディカイト[Al2Si2O5(OH)4]、ナクライト[Al2Si2O5(OH)4]、ハロイサイト[Al2Si2O5(OH)4]、オーディナイト[(Fe3+,Mg,Al,Fe2+)2-3>(Si,Al)2O5(OH)4]などが包含される。 Kaolin group clay minerals are clay minerals with a basic structure of 1: 1 of tetrahedral and octahedral layers, and Lizardite [Mg 3 Si 2 O 5 (OH) 4 ], Bercherin [( Fe 2+ , Fe 3+ , Mg) 2-3 (Si, Al) 2 O 5 (OH) 4 ], amethyite [Mg 2 Al (Si, Al) O 5 (OH) 4 ], cronstudite [Fe 2+ Fe 3+ (SiFe 3+ ) O 5 (OH) 4 ], nepoite [Ni 3 Si 2 O 5 (OH) 4 ], keriaite [(Mn 2+ , Mg, Al) 3 (Si, Al) 2 O 5 (OH) 4], Fureiponaito [(Zn, Al) 3 ( Si, Al) 2 O 5 (OH) 4], Bryn Doria Ito [(Ni, Mg, Fe 2+ ) 3 (Si, Al) O 5 (OH) 4 ], kaolinite [Al 2 Si 2 O 5 (OH) 4 ], dickite [Al 2 Si 2 O 5 (OH) 4 ], nacrite [Al 2 Si 2 O 5 (OH) 4 ], Includes halloysite [Al 2 Si 2 O 5 (OH) 4 ], audinite [(Fe 3+ , Mg, Al, Fe 2+ ) 2-3> (Si, Al) 2 O 5 (OH) 4 ] Is done.

パイロフィライト族粘土鉱物は、四面体の層と八面体の層が2:1の基本構造を有している粘土鉱物であり、タルク[Mg3Si4O10(OH)2]、ウィレムサイト[(Ni,Mg)3Si4O10(OH)2],ケロライト[Mg3Si4O10(OH)2]、ピメライト[Ni3Si4O10(OH)2]、パイロフィライト[Al2Si4O10(OH)2]、フェリパイロフィライト[Fe3+Si4O10(OH)2]などが包含される。 Pyrophyllite group clay minerals are clay minerals with a basic structure of 2: 1 tetrahedral and octahedral layers. Talc [Mg 3 Si 4 O 10 (OH) 2 ], Willemsite [(Ni, Mg) 3 Si 4 O 10 (OH) 2 ], Kerolite [Mg 3 Si 4 O 10 (OH) 2 ], Pimelite [Ni 3 Si 4 O 10 (OH) 2 ], Pyrophyllite [Al 2 Si 4 O 10 (OH) 2 ], ferripyrophyllite [Fe 3+ Si 4 O 10 (OH) 2 ] and the like are included.

スメクタイト族粘土鉱物は、四面体の層と八面体の層が2:1の基本構造を有している粘土鉱物であり、サポナイト[(Ca/2,Na)0.3(Mg,Fe2+)3(Si,Al)4O10(OH)2・4H2O]、ヘクトライト[Na0.3(Mg,Li)3Si4O10(F,OH)2・4H2O]、ソーコナイト[Na0.3Zn3(Si,Al)4O10(OH)2・4H2O]、スチーブンサイト[(Ca/2)0.3Mg3Si4O10(OH)2・4H2O]、スインホルダイト[(Ca/2,Na)0.3(Li,Mg)2(Si,Al)4O10(OH,F)2・2H2O]、モンモリロナイト[(Ca/2,Na)0.3(Al,Mg)2(Si)4O10(OH)2・nH2O]、バイデライト[(Ca/2,Na)0.3Al2(Si,Al)4O10(OH)2・nH2O]、ノントロナイト[Na0.3Fe3+(Si,Al)4O10(OH)2・nH2O]、ボルコンスコアイト[Ca0.3(Cr3+,Mg,Fe3+)3(Si,Al)4O10(OH)2・nH2O]などが包含される。 Smectite group clay minerals are clay minerals in which the tetrahedral layer and the octahedral layer have a basic structure of 2: 1. Saponite [(Ca / 2, Na) 0.3 (Mg, Fe 2+ ) 3 (Si, Al) 4 O 10 (OH) 2 · 4H 2 O], Hectorite [Na 0.3 (Mg, Li) 3 Si 4 O 10 (F, OH) 2 · 4H 2 O], Sauconite [Na 0.3 Zn 3 (Si, Al) 4 O 10 (OH) 2・ 4H 2 O], Steven Sight [(Ca / 2) 0.3 Mg 3 Si 4 O 10 (OH) 2・ 4H 2 O], Swine Holderite [(Ca / 2, Na) 0.3 (Li, Mg) 2 (Si, Al) 4 O 10 (OH, F) 2・ 2H 2 O], Montmorillonite [(Ca / 2, Na) 0.3 (Al, Mg) 2 (Si ) 4 O 10 (OH) 2 · nH 2 O], beiderite [(Ca / 2, Na) 0.3 Al 2 (Si, Al) 4 O 10 (OH) 2 · nH 2 O], nontronite [Na 0.3 Fe 3+ (Si, Al) 4 O 10 (OH) 2・ nH 2 O], vorcon score [Ca 0.3 (Cr 3+ , Mg, Fe 3+ ) 3 (Si, Al) 4 O 10 (OH) 2 · nH 2 O] and the like are included.

ハイドロタルサイトは、Mg6Al2(OH)16CO3・4H2Oの組成を有する粘土鉱物であり、セピオライトは、Si12Mg8O30(OH)4(H2O)4・8H2Oの組成を有する粘土鉱物である。
キチンは、N−アセチル−β−D−グルコサミンが1,4結合したムコ多糖類であり、分子量は特に制限はないが、通常、10万〜100万程度である。
上記化合物は、それぞれ単独でも、2種以上を併用することもできる。
Hydrotalcite is a clay mineral having a composition of Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O, and sepiolite is Si 12 Mg 8 O 30 (OH) 4 (H 2 O) 4 · 8H 2. It is a clay mineral having a composition of O.
Chitin is a mucopolysaccharide having 1,4-linked N-acetyl-β-D-glucosamine, and the molecular weight is not particularly limited, but is usually about 100,000 to 1,000,000.
The above compounds can be used alone or in combination of two or more.

また、カルシウム化合物とリン酸化合物の混合物の場合は、通常、Ca/Pのモル比を0.05〜20に調整して用いる。この場合、カルシウム化合物及びリン酸化合物の種類は特に制限はないが、カルシウム化合物としては酸化カルシウム又はケイ酸カルシウムが好ましく、リン酸化合物としてはリン酸アルミニウム、リン酸マグネシウム又はリン酸リチウムが好ましい。
合成されるものが、n−ブタノールの場合は、上記化合物以外に、酸化チタンも触媒として使用することができる。又、合成されるものが、有機化合物の混合物である燃料組成物である場合には、上記化合物以外に、酸化チタン又は酸化マグネシウムも触媒として使用することができる。
In the case of a mixture of a calcium compound and a phosphoric acid compound, the Ca / P molar ratio is usually adjusted to 0.05 to 20. In this case, the types of the calcium compound and the phosphate compound are not particularly limited, but the calcium compound is preferably calcium oxide or calcium silicate, and the phosphate compound is preferably aluminum phosphate, magnesium phosphate or lithium phosphate.
In the case where n-butanol is synthesized, titanium oxide can also be used as a catalyst in addition to the above compounds. Moreover, when what is synthesize | combined is a fuel composition which is a mixture of an organic compound, in addition to the said compound, a titanium oxide or magnesium oxide can also be used as a catalyst.

本発明において、触媒として使用する化合物の性状は、特に限定されるものではなく、試薬の粉末をそのまま使用してもよいし、また必要に応じて顆粒、球体、ペレット、ハニカムなど任意の形に成形後、乾燥、焼成して用いることもできる。焼成は100℃〜800℃、好ましくは300℃〜700℃で行う。カルシウム化合物とリン酸化合物の混合物の場合は、200℃以上で焼成することが好ましい。   In the present invention, the properties of the compound used as the catalyst are not particularly limited, and the reagent powder may be used as it is, and if necessary, in any shape such as granules, spheres, pellets, and honeycombs. After molding, it can be dried and fired. Firing is performed at 100 ° C to 800 ° C, preferably 300 ° C to 700 ° C. In the case of a mixture of a calcium compound and a phosphoric acid compound, baking at 200 ° C. or higher is preferable.

(製造される有機化合物又はそれらの混合物)
本発明のエタノール変換触媒を用いて合成される「有機化合物」とは、エタノールから合成される有機化合物なら何でも包含されるが、例えば、パラフィン類、オレフィン類、ジエン類、トリエン類、アルコール類、エーテル類、ケトン類、アルデヒド類,エステル類などの有機化合物がある。具体的には、メタン,エタン,エチレン,アセトアルデヒド,プロピレン,アセトン,ブテン、1,3−ブタジエン、1−ブタノール、3−ブテン−1−オール、t−クロチルアルコール、c−クロチルアルコール、ジエチルエーテル、ブチルアルデヒド、2−ブタノン、t−クロトンアルデヒド、c−クロトンアルデヒド、2−ペンタノール、2−ペンタノン、ブチルエチルエーテル、ヘキサノール、ヘキサナール,2−エチルヘキサノール、オクタノール,オクタナールなどがある。これらはそれぞれ工業用原料として使用することができ、またこれらの2種以上の混合物は燃料組成物として使用することができる。燃料組成物として使用する場合には、原料であるエタノールも含まれてよい。
本発明において、エタノールを原料としてこれら化学工業原料や燃料組成物に有用な有機化合物及びそれらの2種以上の混合物を合成する際、求めるそれらの選択率を高めるためには、使用する触媒の粒度、表面積や、反応条件(接触時間、反応温度、圧力など)を適宜選択して実施される。
(Organic compounds produced or mixtures thereof)
The “organic compound” synthesized using the ethanol conversion catalyst of the present invention includes any organic compound synthesized from ethanol. For example, paraffins, olefins, dienes, trienes, alcohols, There are organic compounds such as ethers, ketones, aldehydes, and esters. Specifically, methane, ethane, ethylene, acetaldehyde, propylene, acetone, butene, 1,3-butadiene, 1-butanol, 3-buten-1-ol, t-crotyl alcohol, c-crotyl alcohol, diethyl Examples include ether, butyraldehyde, 2-butanone, t-crotonaldehyde, c-crotonaldehyde, 2-pentanol, 2-pentanone, butyl ethyl ether, hexanol, hexanal, 2-ethylhexanol, octanol, and octanal. Each of these can be used as an industrial raw material, and a mixture of two or more of these can be used as a fuel composition. When used as a fuel composition, ethanol as a raw material may also be included.
In the present invention, when synthesizing organic compounds useful for these chemical industrial raw materials and fuel compositions and a mixture of two or more thereof using ethanol as a raw material, the particle size of the catalyst to be used is increased in order to increase their selectivity. The surface area and the reaction conditions (contact time, reaction temperature, pressure, etc.) are selected as appropriate.

(合成方法)
エタノールを触媒に接触させ、有機化合物又はそれらの混合物を製造するのに適した反応温度は、通常100℃〜700℃の範囲で選択することができる。好ましくは250℃〜600℃が望ましい。カルシウム化合物とリン酸化合物との混合物を触媒として用いる場合は、通常、100℃〜400℃である。
反応塔での反応形式としては、バッチ方式、連続方式、固定床、移動床、流動床またはスラリー床の何れの方法によっても良く、常圧,加圧下または減圧下のいずれでも行うことができる。
(Synthesis method)
The reaction temperature suitable for bringing ethanol into contact with the catalyst to produce an organic compound or a mixture thereof can usually be selected in the range of 100 ° C to 700 ° C. Preferably 250 to 600 degreeC is desirable. When using the mixture of a calcium compound and a phosphoric acid compound as a catalyst, it is 100 to 400 degreeC normally.
The reaction mode in the reaction tower may be any of a batch system, a continuous system, a fixed bed, a moving bed, a fluidized bed, or a slurry bed, and can be carried out at normal pressure, under pressure or under reduced pressure.

エタノールと触媒との接触時間は、通常、工業的な経済性を考えて、連続方式により、0.1秒以上、10秒以下が好ましいが、0.1秒以下あるいはバッチ方式などで反応温度を調整することにより10秒以上でも経済的な製造は可能である。
有機化合物又はそれらの混合物の収率は、エタノールと触媒との接触温度が高い場合は、接触時間が短くても良いが、エタノールと触媒との接触温度が低くなるに従い、接触時間が長く必要となる。しかし、接触温度が低いほど製造措置の負担は軽くなる。
The contact time between ethanol and the catalyst is usually 0.1 seconds or more and 10 seconds or less by a continuous method in consideration of industrial economy, but the reaction temperature is 0.1 seconds or less or a batch method or the like. By adjusting, economical production is possible even for 10 seconds or more.
The yield of the organic compound or a mixture thereof may be short when the contact temperature between ethanol and the catalyst is high. However, as the contact temperature between ethanol and the catalyst decreases, the contact time needs to be longer. Become. However, the lower the contact temperature, the lighter the burden of manufacturing measures.

エタノールは、液相で行うこともできるが、気相で直接、または窒素或いはヘリウムのような不活性なキャリアガスの存在下で触媒と接触させることにより、効率よく反応させることができる。このとき触媒活性の維持のために、キャリアガス中に水素や炭化水素などの反応性ガスを同伴させても良い。   Although ethanol can be carried out in the liquid phase, it can be reacted efficiently by contacting with the catalyst directly in the gas phase or in the presence of an inert carrier gas such as nitrogen or helium. At this time, in order to maintain the catalytic activity, a reactive gas such as hydrogen or hydrocarbon may be entrained in the carrier gas.

エタノールから有機化合物又はそれらの混合物を合成する場合、長時間の使用で触媒表面に炭素を析出し、エタノール転化率の低下、および反応の異質化を招く場合がある。その場合、定期的に触媒を酸素雰囲気下で加熱する再生処理を行う。これにより触媒の活性を回復できる。従って、触媒に炭素析出の多い反応条件の場合、触媒再生処理装置を組み込んだ上記記載の方式によるプラントが有効である。
このようにして得られた有機化合物やそれらの混合物は、従来用いられている分離、精製法、例えば、精溜、ミクロ孔膜分離、抽出、吸着法などを用いて分離、精製することができる。
In the case of synthesizing an organic compound or a mixture thereof from ethanol, carbon may be deposited on the catalyst surface over a long period of use, resulting in a decrease in ethanol conversion rate and a heterogeneous reaction. In that case, a regeneration treatment is periodically performed in which the catalyst is heated in an oxygen atmosphere. Thereby, the activity of the catalyst can be recovered. Therefore, in the case of reaction conditions with a large amount of carbon deposition on the catalyst, a plant according to the above-described method incorporating a catalyst regeneration treatment apparatus is effective.
The organic compounds and mixtures thereof thus obtained can be separated and purified using conventionally used separation and purification methods such as rectification, microporous membrane separation, extraction and adsorption methods. .

以下、本発明の実施例について説明するが、本発明の範囲はこれらに限定されることはない。
実施例A (単独触媒)
(触媒)
フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、水酸化カルシウム、リン酸リチウム、リン酸マグネシウム、ハイドロタルサイト、ケイ酸カルシウム、カオリナイト、タルク及び酸化マグネシウムは和光純薬工業(株)の試薬を、セピオライトは水沢化学工業(株)のエードプラスを、キチンはフナコシ(株)のキチンEX KH000003を、リン酸アルミニウムは関東化学(株)の試薬を、そして酸化チタンは石原産業(株)のST−01を使用した。
Examples of the present invention will be described below, but the scope of the present invention is not limited thereto.
Example A (single catalyst)
(catalyst)
Calcium fluoride, calcium sulfate, magnesium hydroxide, calcium hydroxide, lithium phosphate, magnesium phosphate, hydrotalcite, calcium silicate, kaolinite, talc and magnesium oxide are reagents from Wako Pure Chemical Industries, Ltd. Sepiolite is Aid Plus from Mizusawa Chemical Co., Ltd., Chitin is Chitin EX KH000003 from Funakoshi Co., Ltd., Aluminum phosphate is a reagent from Kanto Chemical Co., and Titanium oxide is ST- from Ishihara Sangyo Co., Ltd. 01 was used.

(触媒特性の評価)
反応装置は固定床ガス流通式触媒反応装置(株式会社大倉理研製)を用いた。設定した接触時間に応じて各種触媒を反応管に充填し、前処理として、キャリアガス(1%Ar/Heベース;流量112ml/min)雰囲気下で500℃、30分間加熱脱水処理を行った。前処理終了後、エタノール濃度16vol%となるようにエタノール流量およびキャリアガス流量を調整し,常圧にて反応させた。
反応温度は100〜700℃まで、50℃毎にサンプリングを行ない、接触時間は0.1〜10秒の範囲で行った。接触時間0.1秒の場合は0.2cc、接触時間2秒の場合は4cc、接触時間10秒の場合は9ccの触媒を反応管に充填した。
反応ガス成分の同定にはガスクロマトグラフ質量分析計(GC−MS)を用い、エタノールの転化率及び合成ガスの選択率測定にはガスクロマトグラフ(GC)(検出器:FID)を用い、各成分のピーク面積値から各成分量を定量した。
(Evaluation of catalyst characteristics)
As the reaction apparatus, a fixed bed gas flow type catalytic reaction apparatus (manufactured by Okura Riken Co., Ltd.) was used. Various catalysts were filled in the reaction tube according to the set contact time, and as a pretreatment, a heat dehydration treatment was performed at 500 ° C. for 30 minutes in a carrier gas (1% Ar / He base; flow rate 112 ml / min) atmosphere. After completion of the pretreatment, the ethanol flow rate and carrier gas flow rate were adjusted so that the ethanol concentration was 16 vol%, and the reaction was carried out at normal pressure.
The reaction temperature was 100 to 700 ° C., sampling was performed every 50 ° C., and the contact time was 0.1 to 10 seconds. When the contact time was 0.1 second, 0.2 cc, 4 cc when the contact time was 2 seconds, and 9 cc when the contact time was 10 seconds, were charged into the reaction tube.
A gas chromatograph mass spectrometer (GC-MS) is used for identification of reaction gas components, and a gas chromatograph (GC) (detector: FID) is used for measuring the ethanol conversion and synthesis gas selectivity. The amount of each component was quantified from the peak area value.

(n−ブタノール)
各種触媒の各反応温度におけるブタノール収率を表1に示す。
(N-butanol)
Table 1 shows the butanol yield of each catalyst at each reaction temperature.

Figure 2008088140
Figure 2008088140

表1は、各種触媒の、反応温度150℃〜700℃におけるn−ブタノールの収率を示したものである。試験例1〜3の接触時間は約10秒、試験例4〜5の接触時間は約0.1秒、試験例6と比較例1の接触時間は約2秒であった。
各触媒のn−ブタノールの収率は、反応温度350〜500℃で最大値となった。
また試験例6の水酸化マグネシウムを触媒とした場合のブタノール収率は、既に開示されている酸化マグネシウムを触媒とした場合に比べて低い反応温度で、高いブタノール収率という工業的に有利な値であった。
Table 1 shows the yield of n-butanol of various catalysts at a reaction temperature of 150 ° C to 700 ° C. The contact time of Test Examples 1 to 3 was about 10 seconds, the contact time of Test Examples 4 to 5 was about 0.1 second, and the contact time of Test Example 6 and Comparative Example 1 was about 2 seconds.
The yield of n-butanol of each catalyst reached its maximum at a reaction temperature of 350 to 500 ° C.
Further, the butanol yield in the case of using magnesium hydroxide as a catalyst in Test Example 6 is an industrially advantageous value of a high butanol yield at a lower reaction temperature than in the case of using magnesium oxide as a catalyst that has already been disclosed. Met.

(1,3−ブタジエン)
各種触媒の各反応温度におけるブタジエン収率を表2に示す。
(1,3-butadiene)
Table 2 shows the butadiene yield of each catalyst at each reaction temperature.

Figure 2008088140
Figure 2008088140

表2は、各種触媒の、反応温度150℃〜700℃における1,3−ブタジエンの収率を示したもので、接触時間は約2秒の結果である。
各触媒の1,3−ブタジエンの収率は、反応温度450〜550℃で最大値となった。
また試験例10の水酸化マグネシウムを触媒とした場合の1,3−ブタジエンの収率は、既に開示されている酸化マグネシウムを触媒とした場合に比べて低い反応温度で、高いブタジエン収率という工業的に有利な値であった。
Table 2 shows the yield of 1,3-butadiene at a reaction temperature of 150 ° C. to 700 ° C. for various catalysts. The contact time is about 2 seconds.
The yield of 1,3-butadiene for each catalyst reached its maximum at a reaction temperature of 450 to 550 ° C.
In addition, the yield of 1,3-butadiene when using magnesium hydroxide as a catalyst in Test Example 10 is lower than that when magnesium oxide is used as a catalyst, and the butadiene yield is high. It was an advantageous value.

(燃料組成物)
各種触媒の、各反応温度における燃料組成物(C4+以上)の収率を表3、表4に示す。
(Fuel composition)
Tables 3 and 4 show the yields of the fuel composition (C4 + or higher) at various reaction temperatures for various catalysts.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

表3、表4は、各種触媒の、反応温度150℃〜700℃における燃料組成物の収率を示したもので、接触時間は約2秒の結果である。
各触媒の燃料組成物の収率は、反応温度250〜600℃で最大値となった。
Tables 3 and 4 show the yields of the fuel compositions of various catalysts at reaction temperatures of 150 ° C. to 700 ° C., and the contact time is a result of about 2 seconds.
The yield of the fuel composition of each catalyst reached its maximum value at a reaction temperature of 250 to 600 ° C.

(C2+以上の有機化合物)
各種触媒の、各反応温度におけるC2+以上の有機化合物(エタノールを除く)の収率を表5に示す。
(C2 + organic compounds)
Table 5 shows the yield of C2 + or higher organic compounds (excluding ethanol) at various reaction temperatures for various catalysts.

Figure 2008088140
Figure 2008088140

表5は、各種触媒の、反応温度100℃〜700℃におけるC2+以上の有機化合物(エタノールを除く)の収率を示したもので、接触時間は約2秒の結果である。
各触媒のC2+以上の有機化合物(エタノールを除く)の収率は、反応温度500℃以上で特に高い収率を示した。
Table 5 shows the yield of C2 + or higher organic compounds (excluding ethanol) at various reaction temperatures of 100 ° C. to 700 ° C., and the contact time is about 2 seconds.
The yield of C2 + or higher organic compounds (excluding ethanol) of each catalyst was particularly high at a reaction temperature of 500 ° C. or higher.

実施例B(カルシウム化合物とリン酸化合物の混合触媒)
エタノール変換触媒としてカルシウム化合物とリン酸化合物の混合物を使用し、実施例Aに準じて接触時間は約2秒でエタノールの変換反応を行った。表中の数値は、%を示す。
Example B (mixed catalyst of calcium compound and phosphate compound)
A mixture of a calcium compound and a phosphoric acid compound was used as an ethanol conversion catalyst, and an ethanol conversion reaction was carried out according to Example A with a contact time of about 2 seconds. The numerical values in the table indicate%.

実施例B−1(Ca/P比が1.64の場合)
(n−ブタノール)
カルシウム化合物とリン酸化合物を、Ca/P比が1.64になるように混合した触媒の各反応温度におけるブタノール収率を表6〜表10に示す。試験例28〜30の混合触媒については、カルシウム化合物とリン酸化合物を混合した後、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。
Example B-1 (when the Ca / P ratio is 1.64)
(N-butanol)
Tables 6 to 10 show butanol yields at various reaction temperatures of catalysts prepared by mixing a calcium compound and a phosphoric acid compound so that the Ca / P ratio is 1.64. About the mixed catalyst of Test Examples 28-30, after mixing a calcium compound and a phosphoric acid compound, what was baked at 600 degreeC for 2 hours was used. A calcium compound and a phosphoric acid compound used for comparison were similarly fired.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

(1,3−ブタジエン)
カルシウム化合物とリン酸化合物を、Ca/P比が1.64になるように混合した触媒の各反応温度におけるブタジエン収率を表11〜表15に示す。試験例34、35の混合触媒については、カルシウム化合物とリン酸化合物を混合した後、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。
(1,3-butadiene)
Tables 11 to 15 show butadiene yields at various reaction temperatures of catalysts in which a calcium compound and a phosphoric acid compound are mixed so that the Ca / P ratio is 1.64. About the mixed catalyst of Test Examples 34 and 35, after mixing a calcium compound and a phosphoric acid compound, what was baked at 600 degreeC for 2 hours was used. A calcium compound and a phosphoric acid compound used for comparison were similarly fired.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140


Figure 2008088140
Figure 2008088140

(燃料組成物)
カルシウム化合物とリン酸化合物を、Ca/P比が1.64になるように混合した触媒の各反応温度における燃料組成物の収率(C4+以上)を表16、17に示す。これら試験に使用した混合触媒については、カルシウム化合物とリン酸化合物を混合した後、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。
(Fuel composition)
Tables 16 and 17 show the yield (C4 + or higher) of the fuel composition at each reaction temperature of the catalyst in which the calcium compound and the phosphoric acid compound were mixed so that the Ca / P ratio was 1.64. About the mixed catalyst used for these tests, after mixing a calcium compound and a phosphoric acid compound, what was baked at 600 degreeC for 2 hours was used. A calcium compound and a phosphoric acid compound used for comparison were similarly fired.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

実施例B−2 (Ca/P比を変動させた場合)
(n−ブタノール)
カルシウム化合物とリン酸化合物を、Ca/P比が0.2〜10の間で調整した各種混合触媒の各反応温度におけるブタノール収率を表18〜表20に示す。試験例39、40の混合触媒については、カルシウム化合物とリン酸化合物を混合した後、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。試験例38、反応温度450℃のブタノール収率を図5に示した。
Example B-2 (when Ca / P ratio is varied)
(N-butanol)
Tables 18 to 20 show butanol yields at various reaction temperatures of various mixed catalysts prepared by adjusting the calcium compound and the phosphate compound at a Ca / P ratio of 0.2 to 10. About the mixed catalyst of Test Examples 39 and 40, after mixing a calcium compound and a phosphoric acid compound, what was baked at 600 degreeC for 2 hours was used. A calcium compound and a phosphoric acid compound used for comparison were similarly fired. The butanol yield at Test Example 38 at a reaction temperature of 450 ° C. is shown in FIG.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

(1,3−ブタジエン)
カルシウム化合物とリン酸化合物を、Ca/P比が0.2〜10の間で調整した各種混合触媒の各反応温度におけるブタジエン収率を表21〜表23に示す。試験例43の混合触媒については、カルシウム化合物とリン酸化合物を混合した後、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。試験例42のCaSiO3、AlPO4混合触媒については、触媒を混合しただけのものと、600℃で2時間焼成したものについて試験を行ったが、どちらも同等の結果であった。比較として使用したカルシウム化合物とリン酸化合物も同等の結果であった。試験例42、反応温度550℃のブタジエン収率を図6に示した。
(1,3-butadiene)
Tables 21 to 23 show the butadiene yields at various reaction temperatures of various mixed catalysts prepared by adjusting the calcium compound and the phosphoric acid compound at a Ca / P ratio of 0.2 to 10. About the mixed catalyst of Test Example 43, a calcium compound and a phosphoric acid compound were mixed and then calcined at 600 ° C. for 2 hours. A calcium compound and a phosphoric acid compound used for comparison were similarly fired. For the CaSiO 3 and AlPO 4 mixed catalyst of Test Example 42, the test was performed on the catalyst mixed only and the catalyst calcined at 600 ° C. for 2 hours, and both obtained the same results. The calcium compound and the phosphoric acid compound used as comparisons had similar results. The butadiene yield at Test Example 42 and reaction temperature of 550 ° C. is shown in FIG.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

(燃料組成物)
カルシウム化合物とリン酸化合物を、Ca/P比が0.2〜10の間で調整した各種混合触媒の各反応温度における燃料組成物の収率(C4+以上)を表24、25に示す。試験例45の混合触媒については、カルシウム化合物とリン酸化合物を混合した後で、600℃で2時間焼成したものを用いた。比較として使用したカルシウム化合物とリン酸化合物についても同様に焼成したものを用いた。試験例44の混合触媒については、カルシウム化合物とリン酸化合物を混合しただけのものと、混合した後で600℃で2時間焼成したものについて試験を行ったが、どちらも同等の結果であった。比較として使用したカルシウム化合物とリン酸化合物も同等の結果であった。試験例45、反応温度550℃の燃料組成物の収率を図7に示した。
(Fuel composition)
Tables 24 and 25 show the yield (C4 + or higher) of the fuel composition at each reaction temperature of various mixed catalysts prepared by adjusting the calcium compound and the phosphoric acid compound at a Ca / P ratio of 0.2 to 10. As for the mixed catalyst of Test Example 45, a calcium compound and a phosphoric acid compound were mixed and then calcined at 600 ° C. for 2 hours. A calcium compound and a phosphoric acid compound used for comparison were similarly fired. Regarding the mixed catalyst of Test Example 44, tests were performed on a mixture of calcium compound and phosphoric acid compound, and a mixture of the mixture and calcined at 600 ° C. for 2 hours. . The calcium compound and the phosphoric acid compound used as comparisons had similar results. The yield of the fuel composition with Test Example 45 and reaction temperature of 550 ° C. is shown in FIG.

Figure 2008088140
Figure 2008088140

Figure 2008088140
Figure 2008088140

図1は、表1記載の触媒の中から、フッ化カルシウム、ハイドロタルサイト、水酸化マグネシウムと、比較として行なった酸化マグネシウムを触媒として用いた場合の、反応温度とn−ブタノールの収率を示すグラフである。FIG. 1 shows the reaction temperature and the yield of n-butanol in the case of using calcium fluoride, hydrotalcite, magnesium hydroxide, and magnesium oxide as a comparison among the catalysts listed in Table 1. It is a graph to show. 図2は、表2記載の触媒の中からフッ化アパタイト、ハイドロタルサイト、水酸化マグネシウムと、比較として行なった酸化マグネシウムを触媒として用いた場合の、反応温度と1,3−ブタジエンの収率を示すグラフである。FIG. 2 shows the reaction temperature and the yield of 1,3-butadiene when fluorinated apatite, hydrotalcite, magnesium hydroxide, and magnesium oxide as a comparison are used as catalysts among the catalysts listed in Table 2. It is a graph which shows. 図3は、表3記載の触媒の中からケイ酸カルシウム、フッ化アパタイト、水酸化マグネシウム、酸化チタンを触媒として用いた場合の、反応温度と燃料組成物の収率を示すグラフである。FIG. 3 is a graph showing the reaction temperature and the yield of the fuel composition when calcium silicate, fluorinated apatite, magnesium hydroxide, or titanium oxide is used as a catalyst among the catalysts listed in Table 3. 図4は、表5記載のリン酸アルミニウム、タルクを触媒として用いた場合の、反応温度とC2+以上の有機化合物(エタノールを除く)の収率を示すグラフである。FIG. 4 is a graph showing the reaction temperature and the yield of C2 + or higher organic compounds (excluding ethanol) when aluminum phosphate and talc listed in Table 5 are used as catalysts. 図5は、試験例39において、反応温度が450℃におけるブタノールの収率を示すグラフである。FIG. 5 is a graph showing the butanol yield at a reaction temperature of 450 ° C. in Test Example 39. 図6は、試験例42において、反応温度が550℃におけるブタジエンの収率を示すグラフである。FIG. 6 is a graph showing the yield of butadiene at a reaction temperature of 550 ° C. in Test Example 42. 図7は、試験例45において、反応温度が550℃における燃料組成物の収率を示すグラフである。FIG. 7 is a graph showing the yield of the fuel composition when the reaction temperature is 550 ° C. in Test Example 45.

Claims (10)

エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム及びリン酸マグネシウムからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールから有機化合物の1種又は2種以上の混合物を合成する方法。 Ethanol, kaolin clay mineral, pyrophyllite clay mineral, smectite clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate and phosphoric acid A method of synthesizing one or a mixture of two or more organic compounds from ethanol, wherein the method comprises contacting at least one compound selected from the group consisting of magnesium. 有機化合物が1,3−ブタジエンである請求項1に記載の方法。 The method according to claim 1, wherein the organic compound is 1,3-butadiene. エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールから有機化合物の1種又は2種以上の混合物を合成する方法。 A method of synthesizing one or a mixture of two or more organic compounds from ethanol, wherein ethanol is brought into contact with a mixture of a calcium compound and a phosphate compound. 有機化合物が1,3−ブタジエンである請求項3に記載の方法。 The method according to claim 3, wherein the organic compound is 1,3-butadiene. エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム、リン酸マグネシウム及び酸化チタンからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールからn−ブタノールを合成する方法。 Ethanol, kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate, phosphoric acid A method for synthesizing n-butanol from ethanol, which comprises contacting with at least one compound selected from the group consisting of magnesium and titanium oxide. エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールからn−ブタノールを合成する方法。 A method for synthesizing n-butanol from ethanol, which comprises contacting ethanol with a mixture of a calcium compound and a phosphate compound. エタノールを、カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム、リン酸マグネシウム、酸化チタン、酸化マグネシウム、水酸化カルシウム及びセピオライトからなる群より選ばれた少なくとも1つの化合物に接触させることを特徴とする、エタノールから燃料組成物を合成する方法。 Ethanol, kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate, phosphoric acid A method for synthesizing a fuel composition from ethanol, comprising contacting with at least one compound selected from the group consisting of magnesium, titanium oxide, magnesium oxide, calcium hydroxide, and sepiolite. エタノールを、カルシウム化合物とリン酸化合物の混合物と接触させることを特徴とする、エタノールから燃料組成物を合成する方法。 A method for synthesizing a fuel composition from ethanol, comprising contacting ethanol with a mixture of a calcium compound and a phosphate compound. カオリン族粘土鉱物、パイロフィライト族粘土鉱物、スメクタイト族粘土鉱物、ハイドロタルサイト、珪酸カルシウム、フッ化カルシウム、硫酸カルシウム、水酸化マグネシウム、キチン、リン酸リチウム、リン酸アルミニウム及びリン酸マグネシウムからなる群より選ばれた少なくとも1つの化合物を含有するエタノール変換触媒。 Kaolin group clay mineral, pyrophyllite group clay mineral, smectite group clay mineral, hydrotalcite, calcium silicate, calcium fluoride, calcium sulfate, magnesium hydroxide, chitin, lithium phosphate, aluminum phosphate and magnesium phosphate An ethanol conversion catalyst containing at least one compound selected from the group. カルシウム化合物とリン酸化合物の混合物を含有するエタノール変換触媒。 An ethanol conversion catalyst containing a mixture of a calcium compound and a phosphate compound.
JP2006274004A 2006-10-05 2006-10-05 Method for synthesizing chemical industry feedstock and fuel composition Pending JP2008088140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274004A JP2008088140A (en) 2006-10-05 2006-10-05 Method for synthesizing chemical industry feedstock and fuel composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274004A JP2008088140A (en) 2006-10-05 2006-10-05 Method for synthesizing chemical industry feedstock and fuel composition

Publications (1)

Publication Number Publication Date
JP2008088140A true JP2008088140A (en) 2008-04-17

Family

ID=39372652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274004A Pending JP2008088140A (en) 2006-10-05 2006-10-05 Method for synthesizing chemical industry feedstock and fuel composition

Country Status (1)

Country Link
JP (1) JP2008088140A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034719A1 (en) * 2007-09-13 2009-03-19 Sangi Co., Ltd. Process for production of composition by using alcohol as starting material
JP2010529992A (en) * 2007-06-15 2010-09-02 ユーオーピー エルエルシー Production of chemicals from pyrolysis oil
JP2010535703A (en) * 2007-03-08 2010-11-25 ヴァイレント エナジー システムズ インク. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons.
JP2012512916A (en) * 2008-09-05 2012-06-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Liquid fuel composition based on catalytic catalytic deoxygenated and condensed oxygenated hydrocarbons
WO2012102290A1 (en) * 2011-01-26 2012-08-02 住友ゴム工業株式会社 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
JP2012153655A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire and pneumatic tire
JPWO2011052178A1 (en) * 2009-10-29 2013-03-14 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JP2013540690A (en) * 2010-09-15 2013-11-07 株式会社サンギ Method for producing alcohol by gelbe reaction
JP2013241549A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013241521A (en) * 2012-05-21 2013-12-05 Bridgestone Corp Isoprene-butadiene copolymer, method of manufacturing isoprene-butadiene copolymer, rubber composition, and tire
JP2013241550A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013241520A (en) * 2012-05-21 2013-12-05 Bridgestone Corp Isoprene-butadiene copolymer, method of manufacturing isoprene-butadiene copolymer, rubber composition, and tire
JP2013249378A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Butadiene polymer, method for producing butadiene polymer, rubber composition and tire
JP2013249379A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Method for producing conjugated diene-based polymer
JP2015034151A (en) * 2013-08-09 2015-02-19 株式会社ダイセル BUTADIENE SYNTHESIS METHOD FROM ETHANOL BY METAL-ADDED SiO2-MgO CATALYST PREPARED BY HYDROTHERMAL SYNTHESIS METHOD
JP2015520131A (en) * 2012-04-20 2015-07-16 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Method for preparing para-xylene from biomass
JP2017509483A (en) * 2014-12-05 2017-04-06 エルジー・ケム・リミテッド Composite oxide catalyst for butadiene production and method for producing the same
CN115739065A (en) * 2021-09-06 2023-03-07 中国石油化工股份有限公司 Novel hydrocarbon steam conversion catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122318A (en) * 1980-03-04 1981-09-25 Teikoku Kako Kk Preparation of ethylene
JPS57102822A (en) * 1980-12-16 1982-06-26 Takeda Chem Ind Ltd Preparation of butadiene
JPH01223195A (en) * 1988-03-03 1989-09-06 Idemitsu Kosan Co Ltd Production of hydrocarbon oil
WO1999038822A1 (en) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122318A (en) * 1980-03-04 1981-09-25 Teikoku Kako Kk Preparation of ethylene
JPS57102822A (en) * 1980-12-16 1982-06-26 Takeda Chem Ind Ltd Preparation of butadiene
JPH01223195A (en) * 1988-03-03 1989-09-06 Idemitsu Kosan Co Ltd Production of hydrocarbon oil
WO1999038822A1 (en) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535703A (en) * 2007-03-08 2010-11-25 ヴァイレント エナジー システムズ インク. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons.
JP2010529992A (en) * 2007-06-15 2010-09-02 ユーオーピー エルエルシー Production of chemicals from pyrolysis oil
US8187347B2 (en) 2007-09-13 2012-05-29 Kabushiki Kaisha Sangi Method for producing composition using alcohol as starting material
WO2009034719A1 (en) * 2007-09-13 2009-03-19 Sangi Co., Ltd. Process for production of composition by using alcohol as starting material
JP2012512916A (en) * 2008-09-05 2012-06-07 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Liquid fuel composition based on catalytic catalytic deoxygenated and condensed oxygenated hydrocarbons
JP2014159597A (en) * 2008-09-05 2014-09-04 Shell Internatl Res Maatschappij Bv Catalyst contact deoxidation and liquid fuel composition mainly containing condensed oxygenated carbohydrate
JP5799324B2 (en) * 2009-10-29 2015-10-21 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
JPWO2011052178A1 (en) * 2009-10-29 2013-03-14 株式会社サンギ Method for synthesizing unsaturated carboxylic acid and / or derivative thereof
JP2013540690A (en) * 2010-09-15 2013-11-07 株式会社サンギ Method for producing alcohol by gelbe reaction
US9056811B2 (en) 2010-09-15 2015-06-16 Kabushiki Kaisha Sangi Method for producing alcohol by guerbet reaction
CN102918009A (en) * 2011-01-26 2013-02-06 住友橡胶工业株式会社 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
US9663445B2 (en) 2011-01-26 2017-05-30 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2012153655A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire and pneumatic tire
US9115047B2 (en) 2011-01-26 2015-08-25 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
WO2012102290A1 (en) * 2011-01-26 2012-08-02 住友ゴム工業株式会社 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JPWO2013125389A1 (en) * 2012-02-20 2015-07-30 株式会社ダイセル Method for producing 1,3-butadiene
JP2015520131A (en) * 2012-04-20 2015-07-16 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Method for preparing para-xylene from biomass
JP2013241520A (en) * 2012-05-21 2013-12-05 Bridgestone Corp Isoprene-butadiene copolymer, method of manufacturing isoprene-butadiene copolymer, rubber composition, and tire
JP2013241521A (en) * 2012-05-21 2013-12-05 Bridgestone Corp Isoprene-butadiene copolymer, method of manufacturing isoprene-butadiene copolymer, rubber composition, and tire
JP2013241550A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013241549A (en) * 2012-05-22 2013-12-05 Bridgestone Corp Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
JP2013249379A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Method for producing conjugated diene-based polymer
JP2013249378A (en) * 2012-05-31 2013-12-12 Bridgestone Corp Butadiene polymer, method for producing butadiene polymer, rubber composition and tire
JP2015034151A (en) * 2013-08-09 2015-02-19 株式会社ダイセル BUTADIENE SYNTHESIS METHOD FROM ETHANOL BY METAL-ADDED SiO2-MgO CATALYST PREPARED BY HYDROTHERMAL SYNTHESIS METHOD
JP2017509483A (en) * 2014-12-05 2017-04-06 エルジー・ケム・リミテッド Composite oxide catalyst for butadiene production and method for producing the same
US9884315B2 (en) 2014-12-05 2018-02-06 Lg Chem, Ltd. Composite oxide catalyst for preparing butadiene and method of preparing the same
CN115739065A (en) * 2021-09-06 2023-03-07 中国石油化工股份有限公司 Novel hydrocarbon steam conversion catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008088140A (en) Method for synthesizing chemical industry feedstock and fuel composition
Ogo et al. Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts
JP5382902B2 (en) Chemical industry raw material and fuel composition synthesis method
JP5833569B2 (en) Method for producing catalyst containing phosphorus-modified zeolite for use in alcohol dehydration reaction
JP4903582B2 (en) Synthesis method of polymer alcohol
JP6804300B2 (en) Method for producing alkenol and its use for the production of 1,3-butadiene
TWI402242B (en) Process and catalyst for cracking of ethers and alcohols
JP6789229B2 (en) Dehydration method of oxygen-containing compounds
US8603201B2 (en) Method of synthesizing chemical industry raw materials and fuel compositions
RU2562459C2 (en) Method of producing light olefins from synthesis gas
AU2183999A (en) Process for the synthesis of chemical industrial feedstock and high-octane fuel, and high-octane fuel composition
JP2013522270A (en) Simultaneous dehydration and skeletal isomerization of isobutanol over acid catalyst
CN107108397B (en) Process for producing diolefins
CN1708573A (en) Process for preparing olefin by catalytic cracking of hydrocarbon
US20210104442A1 (en) Stable mixed oxide catalysts for direct conversion of ethanol to isobutene and process for making
CN102372291A (en) Preparation method of SAPO-18 / SAPO-34 intergrowth molecular sieve
EA007767B1 (en) Production of olefins
KR20100075923A (en) Catalyst for producing light olefins and process for producing light olefins
CN103813855B (en) Catalytic dehydration of alcohols and ethers over a ternary mixed oxide
JP2016094402A (en) Method for producing conjugated diene compound and dehydration catalyst for allyl type unsaturated alcohol
KR101536566B1 (en) Process For Preparing 1-Butanol Containing Higher Alcohols From Ethanol And Catalyst Therefor
Kant Mixed metal oxide catalysts supported on H-Beta for hydrogenolysis of glycerol into 1, 3-propanediol
JP2023554549A (en) Bio LPG production method
JP2014040415A (en) Method for synthesizing chemical industry raw material and fuel composition
JP2018095604A (en) Method for producing conjugated diene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120705