JP2012153655A - Synthesis system, rubber chemical for tire and pneumatic tire - Google Patents

Synthesis system, rubber chemical for tire and pneumatic tire Download PDF

Info

Publication number
JP2012153655A
JP2012153655A JP2011014495A JP2011014495A JP2012153655A JP 2012153655 A JP2012153655 A JP 2012153655A JP 2011014495 A JP2011014495 A JP 2011014495A JP 2011014495 A JP2011014495 A JP 2011014495A JP 2012153655 A JP2012153655 A JP 2012153655A
Authority
JP
Japan
Prior art keywords
phenol
raw material
synthesis system
aniline
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011014495A
Other languages
Japanese (ja)
Other versions
JP5552068B2 (en
Inventor
Takayuki Hattori
高幸 服部
Toshiaki Matsuo
俊朗 松尾
Keitaro Fujikura
慶太郎 藤倉
Takao Wada
孝雄 和田
Yuka YOKOYAMA
結香 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011014495A priority Critical patent/JP5552068B2/en
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to CN201410742596.2A priority patent/CN104498550A/en
Priority to PCT/JP2012/051503 priority patent/WO2012102290A1/en
Priority to US13/637,336 priority patent/US9115047B2/en
Priority to CN201280001255.9A priority patent/CN102918009B/en
Priority to BR112012030796A priority patent/BR112012030796A2/en
Priority to EP12739791.7A priority patent/EP2543654B1/en
Publication of JP2012153655A publication Critical patent/JP2012153655A/en
Application granted granted Critical
Publication of JP5552068B2 publication Critical patent/JP5552068B2/en
Priority to US14/801,001 priority patent/US9663445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Tires In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a synthesis system whereby aniline can be efficiently synthesized using a biomass raw material, a rubber chemical for a tire synthesized using the aniline obtained by the synthesis system as a raw material, and a pneumatic tire using the rubber chemical for a tire.SOLUTION: In the synthesis system, the aniline is synthesized via phenol using the biomass material as a raw material.

Description

本発明は、アニリンを効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、及び該タイヤ用ゴム薬品を用いた空気入りタイヤに関する。 The present invention relates to a synthesis system capable of efficiently synthesizing aniline, a tire rubber chemical synthesized from aniline obtained from the synthesis system, and a pneumatic tire using the tire rubber chemical.

老化防止剤、チアゾール系加硫促進剤、スルフェンアミド系加硫促進剤などのゴム薬品の原料であるアニリンは、通常、石油を原料として合成されている。しかし、石油や天然ガスなどの化石燃料は枯渇しつつあり、将来の価格高騰が予想されることから、化石燃料からバイオマス資源への代替により、化石燃料の使用量を削減することが求められている。 Aniline, which is a raw material for rubber chemicals such as anti-aging agents, thiazole vulcanization accelerators, and sulfenamide vulcanization accelerators, is usually synthesized from petroleum. However, since fossil fuels such as oil and natural gas are depleting and future price increases are expected, it is necessary to reduce the use of fossil fuels by replacing fossil fuels with biomass resources. Yes.

天然資源の利用という観点から、天然油脂を加水分解した飽和又は不飽和脂肪酸を還元アミノ化して合成された天然由来の長鎖アミンを原料として、加硫促進剤を合成する方法が知られている。しかし、製造過程でメルカプトベンゾチアゾール類やジベンゾチアゾリルジスルフィドが使用される方法で、これらの物質が天然資源から生産されているという記載はない。 From the viewpoint of utilization of natural resources, a method of synthesizing a vulcanization accelerator using a natural long chain amine synthesized by reductive amination of a saturated or unsaturated fatty acid obtained by hydrolyzing natural fats and oils as a raw material is known. . However, there is no description that these substances are produced from natural resources by a method using mercaptobenzothiazoles or dibenzothiazolyl disulfide in the production process.

バイオマス資源を原料とした合成例としては、バイオガスに含まれるメタンなどの低級炭化水素を原料とし、ベンゼンなどの芳香族化合物を合成する方法が知られているが、原料が気体であり、ハンドリングし難いという点で改善の余地がある。また、他の例として、バイオメタノールを原料とする方法も知られているが、原料の毒性が高いという点で改善の余地がある。更に、これらの方法に共通して、十分な収率を確保することが困難であるという点でも改善の余地がある。 As a synthesis example using biomass resources as a raw material, a method of synthesizing an aromatic compound such as benzene using a lower hydrocarbon such as methane contained in biogas as a raw material is known. There is room for improvement in that it is difficult to do. As another example, a method using biomethanol as a raw material is also known, but there is room for improvement in that the raw material is highly toxic. Further, in common with these methods, there is room for improvement in that it is difficult to ensure a sufficient yield.

特許文献1及び2には、グルコースを原料とし、微生物によってアニリンを合成する方法が開示されている。しかし、様々な菌種の利用、生産効率の改良のためにその他の手法も求められている。 Patent Documents 1 and 2 disclose a method of synthesizing aniline by microorganisms using glucose as a raw material. However, other methods are also required for use of various bacterial species and improvement of production efficiency.

特開2010−17176号公報JP 2010-17176 A 特開2008−274225号公報JP 2008-274225 A

本発明は、前記課題を解決し、バイオマス原料を用いてアニリンを効率良く合成できる合成システム、該合成システムから得られたアニリンを原料として合成されたタイヤ用ゴム薬品、及び該タイヤ用ゴム薬品を用いた空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems, and provides a synthesis system capable of efficiently synthesizing aniline using a biomass raw material, a tire rubber chemical synthesized from aniline obtained from the synthesis system, and the tire rubber chemical. An object is to provide a used pneumatic tire.

本発明は、バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システムに関する。
上記バイオマス材料は、糖類又はバイオエタノールであることが好ましい。
The present invention relates to a synthesis system that synthesizes aniline via phenol using a biomass material as a raw material.
The biomass material is preferably a saccharide or bioethanol.

上記バイオマス材料を原料として、微生物によりフェノールを生産し、該フェノールをアニリンに変換する合成システムであることが好ましい。また、上記バイオマス材料を原料として、微生物の液体培養によりフェノールを生産し、該フェノールをアニリンに変換する合成システムことが好ましい。ここで、上記フェノールを産生する微生物は、有機溶媒耐性を有する微生物であることが好ましい。 It is preferable to use a synthetic system in which phenol is produced from microorganisms using the biomass material as a raw material and the phenol is converted into aniline. Moreover, it is preferable to use a biomass system as a raw material to produce phenol by liquid culture of microorganisms and convert the phenol into aniline. Here, the microorganism that produces phenol is preferably a microorganism having resistance to organic solvents.

バイオエタノールを原料として、固体酸触媒によりフェノールを合成する合成システムであることが好ましい。ここで、上記固体酸触媒は、ゼオライトであることが好ましい。また、上記固体酸触媒は、MFI型ゼオライトであることが好ましい。
更に、上記固体酸触媒は、銅、チタン、プラチナ、ルテニウムの単体又はこれらの化合物を担持したMFI型ゼオライトであることが好ましい。
A synthesis system that synthesizes phenol with a solid acid catalyst using bioethanol as a raw material is preferable. Here, the solid acid catalyst is preferably zeolite. The solid acid catalyst is preferably MFI-type zeolite.
Further, the solid acid catalyst is preferably MFI-type zeolite supporting copper, titanium, platinum, ruthenium alone or a compound thereof.

本発明は、上記合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品に関する。ここで、上記タイヤ用ゴム薬品は、更にバイオマス原料から得られたアセトンを用いて合成されたものが好ましい。 The present invention relates to rubber chemicals for tires synthesized using aniline obtained by the above synthesis system as a raw material. Here, the rubber chemicals for tires are preferably synthesized using acetone obtained from a biomass raw material.

上記バイオマス原料から得られたアセトンは、糖類を原料とした微生物によるアセトン・ブタノール発酵により得られたものが好ましい。ここで、上記微生物は、クロストリジウム属であることが好ましい。また、上記微生物は、クロストリジウム属の遺伝子が導入された微生物であることが好ましい。 The acetone obtained from the biomass raw material is preferably obtained by acetone / butanol fermentation by a microorganism using saccharides as a raw material. Here, the microorganism is preferably a genus Clostridium. Further, the microorganism is preferably a microorganism into which a gene belonging to the genus Clostridium is introduced.

上記導入された遺伝子は、アセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ又はチオラーゼをコードする遺伝子であることが好ましい。 The introduced gene is preferably a gene encoding acetoacetate decarboxylase (EC 4.1.1.4), coenzyme A transferase or thiolase.

上記バイオマス原料から得られたアセトンは、木酢液より分離して得られたものであることが好ましい。また、上記バイオマス原料から得られたアセトンがバイオエタノールより誘導されたものであることが好ましい。
本発明はまた、上記タイヤ用ゴム薬品を用いた空気入りタイヤに関する。
Acetone obtained from the biomass raw material is preferably obtained by separation from a wood vinegar solution. Moreover, it is preferable that the acetone obtained from the said biomass raw material is what was induced | guided | derived from bioethanol.
The present invention also relates to a pneumatic tire using the tire rubber chemical.

本発明は、上記合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品に関する。
本発明はまた、上記タイヤ用ゴム薬品を用いた空気入りタイヤに関する。
The present invention relates to rubber chemicals for tires synthesized using aniline obtained by the above synthesis system as a raw material.
The present invention also relates to a pneumatic tire using the tire rubber chemical.

本発明によれば、バイオマス材料を原料とし、フェノールを経由してアニリンを合成する合成システムであるので、化石燃料を用いることなく、省資源かつ効率的にアニリンを合成できる。従って、上記合成システムで合成されたアニリンを用いることで、タイヤ用ゴム薬品及び空気入りタイヤの製造時における化石燃料の使用量を削減できる。 According to the present invention, since it is a synthesis system that synthesizes aniline using a biomass material as a raw material via phenol, aniline can be synthesized efficiently and resource-saving without using fossil fuel. Therefore, by using aniline synthesized by the above synthesis system, the amount of fossil fuel used in the production of tire rubber chemicals and pneumatic tires can be reduced.

本発明は、バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システム(合成方法)である。 The present invention is a synthesis system (synthesis method) for synthesizing aniline via phenol using a biomass material as a raw material.

まず、微生物を使用してバイオマス資源からフェノールを生合成する工程について説明する。 First, the process of biosynthesizing phenol from biomass resources using microorganisms will be described.

本発明で使用できる微生物は、バイオマス資源を資化してフェノールを生合成できるものであれば特に限定されない。 The microorganisms that can be used in the present invention are not particularly limited as long as they can assimilate biomass resources and biosynthesize phenol.

例えば、チロシンからフェノールを生成する反応を触媒する酵素であるチロシンフェノールリアーゼ(EC 4.1.99.2)をコードする遺伝子(tpl遺伝子)(例えば、GenBank accession no.D13714に収載されているtpl遺伝子)を、チロシンを生合成可能な微生物に導入して得られる微生物により、バイオマス資源を資化してフェノールを生合成できる。 For example, a gene (tpl gene) encoding tyrosine phenol lyase (EC 4.11.99.2), which is an enzyme that catalyzes a reaction for producing phenol from tyrosine (for example, tpl listed in GenBank accession no. D13714). Biomass can be biosynthesized by utilizing biomass resources by a microorganism obtained by introducing a gene) into a microorganism capable of biosynthesis of tyrosine.

なお、チロシンフェノールリアーゼは、ピリドキサール5’−リン酸依存性の酵素であり、チロシンから、フェノール、ピルビン酸、アンモニアを生成する反応を触媒する。チロシンフェノールリアーゼは、別名、β−チロシナーゼ、L−チロシンフェノールリアーゼともいう。 Tyrosine phenol lyase is a pyridoxal 5'-phosphate-dependent enzyme and catalyzes a reaction that generates phenol, pyruvic acid, and ammonia from tyrosine. Tyrosine phenol lyase is also known as β-tyrosinase or L-tyrosine phenol lyase.

tpl遺伝子が導入される微生物としては、チロシンを生合成可能な微生物であれば特に限定されない。地球上に存在するほとんど全ての微生物は、チロシンを生合成することができるため、任意の微生物を使用することができるが、例えば、エシェリヒア(Escherichia)属、セラチア(Serratia)属、バチルス(Bachillus)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ミクロバクテリウム属(Microbacterium)、シュードモナス(Pseudomonas)属、アグロバクテリウム(Agrobacterium)属、アリシクロバチルス属(Alicyclobacillus)、アナベナ(Anabena)属、アナシスティス(Anacystis)属、アスロバクター(Arthrobacter)属、アゾトバクター(Azotobacter)属、クロマチウム(Chromatium)属、エルビニア(Erwinia)属、メチロバクテリウム(Methylobacterium)属、フォルミディウム(Phormidium)属、ロドバクター(Rhodobacter)属、ロドシュードモナス(Rhodopseudomonas)属、ロドスピリウム(Rhodospirillum)属、セネデスムス(Scenedesmus)属、ストレプトマイセス(Streptomyces)属、シネコッカス(Synechoccus)属、ザイモモナス(Zymomonas)属等に属する微生物等を使用できる。なかでも、シュードモナス(Pseudomonas)属に属する微生物が好ましい。 The microorganism into which the tpl gene is introduced is not particularly limited as long as it is a microorganism capable of biosynthesis of tyrosine. Since almost all microorganisms existing on the earth can biosynthesize tyrosine, any microorganism can be used. For example, the genus Escherichia, the genus Serratia, the Bacillus Genus, Brevibacterium, Corynebacterium, Microbacterium, Pseudomonas, Agrobacterium, Alicyclobacilli The genus of Anabena, the genus Anacystis, the genus Arthrobacter, Zotobacter genus, Chromatium genus, Erwinia genus, Methylobacterium genus, Formidium genus, Rhodobacter genus Rhodocter genus, Rhodobacter genus Microorganisms belonging to the genus Rhodospirillum, the genus Scenedesmus, the genus Streptomyces, the genus Synecoccus, the genus Zymomonas, and the like can be used. Of these, microorganisms belonging to the genus Pseudomonas are preferable.

また、通常の微生物は、生成物であるフェノールが高濃度になると死滅するおそれがある。そのため、tpl遺伝子が導入される微生物としては、フェノールにより死滅しにくい有機溶媒耐性(特に、芳香族化合物に対する耐性)を有する微生物が好ましい。有機溶媒耐性を有する微生物としては、例えば、Pseudomonas putida S12が挙げられる。Pseudomonas putida S12は、芳香族化合物に対する耐性に優れているため、tpl遺伝子が導入される微生物として好適に使用できる。 In addition, normal microorganisms may be killed when the concentration of the product phenol becomes high. Therefore, the microorganism into which the tpl gene is introduced is preferably a microorganism having resistance to organic solvents that is difficult to be killed by phenol (particularly, resistance to aromatic compounds). Examples of the microorganism having organic solvent resistance include Pseudomonas putida S12. Since Pseudomonas putida S12 is excellent in resistance to aromatic compounds, it can be suitably used as a microorganism into which the tpl gene is introduced.

上記微生物へのtpl遺伝子の導入方法としては、特に限定されず、一般的に用いられているものを、通常知られた条件で使用すればよく、例えば、カルシウムイオンを用いる方法[Proc.Natl.Acad.Sci.,USA,69,2110(1972)]、プロトプラスト法(特開昭63−248394号公報)、エレクトロポレーション法[Nucleic Acids Res.,16,6127(1988)]、ヒートショック法、パーティクルガン法(「生物化学実験法41植物細胞工学入門」1998年9月1日、学会出版センター、第255頁〜326頁)などがあるが、これらに限定されない。 The method for introducing the tpl gene into the microorganism is not particularly limited, and a commonly used one may be used under generally known conditions. For example, a method using calcium ions [Proc. Natl. Acad. Sci. , USA, 69, 2110 (1972)], protoplast method (Japanese Patent Laid-Open No. 63-248394), electroporation method [Nucleic Acids Res. 16, 6127 (1988)], heat shock method, particle gun method ("Biochemical Experimental Method 41 Introduction to Plant Cell Engineering", September 1, 1998, Academic Publishing Center, pages 255-326). However, it is not limited to these.

tpl遺伝子が導入された微生物を培養するための培地は、炭素源としてバイオマス資源を使用する点以外は、培養する微生物が増殖し得るものであれば特に制限はなく、窒素源、無機イオン、更に必要に応じて有機栄養源を含む通常の培地でよい。 The medium for culturing the microorganism into which the tpl gene has been introduced is not particularly limited as long as the microorganism to be cultured can grow, except that a biomass resource is used as a carbon source, a nitrogen source, inorganic ions, A normal medium containing an organic nutrient source may be used as necessary.

バイオマス資源としては、糖を含有するものであれば、特に限定されず、例えば、米、麦、蜂蜜、果実、トウモロコシ、サトウキビ、バガス、ケナフ、マメ科植物、藁、麦わら、籾殻、間伐材、廃木材、古紙、廃パルプ、有機系都市ごみ等が挙げられる。また、グルコース、スクロース、トリハロース、フルクトース、ラクトース、ガラクトース、キシロース、マンニトール、ソルビトール、キシリトール、エリスリトール、マルトース、アミロース、セルロース、キチン、キトサン等の糖類も挙げられる。なかでも、糖類が好ましい。 The biomass resource is not particularly limited as long as it contains sugar, for example, rice, wheat, honey, fruit, corn, sugarcane, bagasse, kenaf, legumes, straw, straw, rice husk, thinned wood, Examples include waste wood, waste paper, waste pulp, and organic municipal waste. Moreover, saccharides, such as glucose, sucrose, trihalose, fructose, lactose, galactose, xylose, mannitol, sorbitol, xylitol, erythritol, maltose, amylose, cellulose, chitin, chitosan, etc. are also mentioned. Of these, saccharides are preferred.

本発明では、上記バイオマス資源を炭素源として直接使用してもよいが、上記糖類以外のバイオマス資源やセルロース、キチン、キトサン等の多糖類を使用する場合には、微生物によっては、直接資化できない、又は資化する能力が低い等の理由から、糖類以外のバイオマス資源や多糖類は、低分子化してから用いることが好ましい。低分子化する方法は、特に限定されず、公知の方法(例えば、蒸煮、加水分解、酵素分解等)により行うことができる。糖類以外のバイオマス資源や多糖類を低分子化することにより、単糖等を得ることができる。 In the present invention, the biomass resource may be used directly as a carbon source. However, when biomass resources other than the saccharides or polysaccharides such as cellulose, chitin, chitosan are used, some microorganisms cannot directly assimilate. For reasons such as low ability to assimilate or the like, it is preferable to use biomass resources and polysaccharides other than sugars after lowering the molecular weight. The method for reducing the molecular weight is not particularly limited, and can be performed by a known method (for example, steaming, hydrolysis, enzymatic decomposition, etc.). Monosaccharides and the like can be obtained by reducing the molecular weight of biomass resources and polysaccharides other than saccharides.

上記バイオマス資源のなかでも、フェノールを効率的に生成できるという理由から、グルコースが特に好ましい。グルコースは、グルコース(単糖)として天然に存在するものを使用してもよいし、上記方法等によりバイオマス資源を低分子化することにより得られるグルコースを使用してもよい。 Among the biomass resources, glucose is particularly preferable because phenol can be efficiently generated. As the glucose, naturally occurring glucose (monosaccharide) may be used, or glucose obtained by reducing the molecular weight of biomass resources by the above method or the like may be used.

窒素源としては、硫酸アンモニウム、塩化アンモニウムなどの無機塩のアンモニウム塩、フマル酸アンモニウム、クエン酸アンモニウムなどの有機酸のアンモニウム塩、硝酸ナトリウム、硝酸カリウムなどの硝酸塩、ペプトン、酵母エキス、肉エキス、コーンスティープリカー、大豆加水分解物などの有機窒素化合物、アンモニアガス、アンモニア水等あるいはこれらの混合物を使用することができる。 Nitrogen sources include ammonium salts of inorganic salts such as ammonium sulfate and ammonium chloride, ammonium salts of organic acids such as ammonium fumarate and ammonium citrate, nitrates such as sodium nitrate and potassium nitrate, peptone, yeast extract, meat extract, corn steep Organic nitrogen compounds such as liquor and soybean hydrolysate, ammonia gas, aqueous ammonia, or a mixture thereof can be used.

他に無機塩類、微量金属塩、ビタミン類、ホルモン等、通常の培地に用いられる栄養源を適宜混合して用いることができる。 In addition, nutrient sources used in normal media such as inorganic salts, trace metal salts, vitamins, hormones, and the like can be used by appropriately mixing them.

培養条件にも格別の制限はなく、例えば、好気的条件下にてpH5〜8、温度20〜60℃(好ましくは20〜35℃)の範囲でpHおよび温度を適当に制限しつつ12〜480時間程度培養を行えばよい。また、培養方法は、固体培養、液体培養いずれの方法でもかまわないが、効率の点から液体培養がより好ましい。液体培養の方法は、回分培養、半回分培養、連続培養のいずれでもよい。 There are no particular restrictions on the culture conditions. For example, while pH and temperature are appropriately limited within the range of pH 5 to 8 and temperature 20 to 60 ° C. (preferably 20 to 35 ° C.) under aerobic conditions, Culture may be performed for about 480 hours. The culture method may be either solid culture or liquid culture, but liquid culture is more preferable from the viewpoint of efficiency. The liquid culture method may be any of batch culture, semi-batch culture, and continuous culture.

上記微生物を培養することにより、バイオマス資源を資化してフェノールを生合成できる。フェノールの回収は、培養液より抽出しても良いし、微生物中に蓄積されたものを抽出しても良い。 By culturing the microorganism, biomass resources can be assimilated to biosynthesize phenol. Phenol can be recovered from the culture solution or extracted from the microorganisms.

培養液に蓄積したフェノールは、例えば、有機溶媒により抽出すればよい。使用できる有機溶媒としては、特に限定されず、ジエチルエーテル、オクタノール、ノナノール、ドデカノール、ベンゼン、トルエン、キシレン、酢酸エチル等が挙げられる。更に、有機溶媒により抽出したフェノールをクロマトグラフィー等の公知の精製操作により精製してもよい。 The phenol accumulated in the culture solution may be extracted with an organic solvent, for example. The organic solvent that can be used is not particularly limited, and examples thereof include diethyl ether, octanol, nonanol, dodecanol, benzene, toluene, xylene, and ethyl acetate. Furthermore, phenol extracted with an organic solvent may be purified by a known purification operation such as chromatography.

また、微生物中に蓄積されたフェノールは、微生物を超音波により粉砕後、上記有機溶媒にて抽出することにより得られる。
更には培養液のみ若しくは培養液と微生物双方より水分を除去した後にエタノールなどの有機溶媒により抽出した後、精製してフェノールを回収しても良い。
Further, the phenol accumulated in the microorganism can be obtained by pulverizing the microorganism with ultrasonic waves and then extracting with the organic solvent.
Furthermore, after removing water from the culture solution alone or from both the culture solution and the microorganism, extraction with an organic solvent such as ethanol may be followed by purification to recover phenol.

また、バイオマス資源からのフェノール合成の他の方法として、バイオエタノールを固体酸触媒によりフェノールに変換してもよい。固体酸としては、ゼオライト触媒、アルミナ触媒等が挙げられるが、これに限定されるものではなく、また複数の触媒を同時あるいは段階的に併用してもかまわない。 As another method for synthesizing phenol from biomass resources, bioethanol may be converted to phenol using a solid acid catalyst. Examples of the solid acid include a zeolite catalyst and an alumina catalyst, but are not limited thereto, and a plurality of catalysts may be used simultaneously or stepwise.

また、上記固体酸触媒は、イオン交換されていてもよいし、さらにアルカリ金属、アルカリ土類金属、鉄、アルミニウム、ガリウム、亜鉛、ガドリウム、プラチナ、バナジウム、パラジウム、ニオブ、モリブデン、イットリウム、レニウム、ネオジウム、タングステン、ランタン、銅、チタン、ルテニウム等の金属及びそれらの化合物、またはリン化合物、ホウ素化合物などを担持させたものでもよい。 The solid acid catalyst may be ion-exchanged, and further, alkali metal, alkaline earth metal, iron, aluminum, gallium, zinc, gadolinium, platinum, vanadium, palladium, niobium, molybdenum, yttrium, rhenium, Metals such as neodymium, tungsten, lanthanum, copper, titanium, ruthenium, and their compounds, or phosphorus compounds, boron compounds and the like may be supported.

上記固体酸触媒は、特にゼオライト類が好ましく、その具体例としてはA型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、MFI型ゼオライト、MWW型ゼオライト、β型ゼオライト、モルデナイト、フェリエライト、エリオナイトなどが挙げられる。上記ゼオライトの中でも特にMFI型が好ましく、ZSM−5型が特に好ましい。ZSM−5触媒はプロトン型とガドリウム、レニウム等の希土類担持のものを併用することが特に好ましい。 The solid acid catalyst is preferably a zeolite, and specific examples thereof include A type zeolite, L type zeolite, X type zeolite, Y type zeolite, MFI type zeolite, MWW type zeolite, β type zeolite, mordenite, ferrierite, Examples include erionite. Among the above zeolites, the MFI type is particularly preferable, and the ZSM-5 type is particularly preferable. It is particularly preferable that the ZSM-5 catalyst be used in combination with a proton type and a catalyst that supports a rare earth such as gadolinium or rhenium.

次に、上記で生合成されたフェノールからアニリンを合成する方法としては、各種触媒を用いてフェノールとアンモニアガスもしくは低分子量アミン化合物を反応させてアニリンを調製する方法が挙げられる。触媒としては、ゼオライト触媒、ニオブ触媒、チタニア−ジルコニア複合酸化物触媒、アルミナ触媒、メタロシリケート触媒等の固体触媒、種々の無機酸、有機酸等が挙げられるが、これらに限定されるものではなく、また複数の触媒を同時又は段階的に併用してもよい。 Next, as a method for synthesizing aniline from the biosynthesized phenol, there can be mentioned a method for preparing aniline by reacting phenol and ammonia gas or a low molecular weight amine compound using various catalysts. Examples of the catalyst include zeolite catalysts, niobium catalysts, titania-zirconia composite oxide catalysts, solid catalysts such as alumina catalysts, metallosilicate catalysts, various inorganic acids, organic acids, etc., but are not limited thereto. In addition, a plurality of catalysts may be used simultaneously or stepwise.

また、上記固体触媒は、イオン交換されていてもよいし、さらにアルカリ金属、アルカリ土類金属、鉄、銅、アルミニウム、ガリウム、亜鉛、ガドリウム、プラチナ、バナジウム、パラジウム、チタン、ニオブ、モリブデン、イットリウム、レニウム、ネオジウム、タングステン、ランタン等の金属及びそれらの化合物、またはリン化合物、ホウ素化合物などを担持させてもよい。 The solid catalyst may be ion-exchanged, and further, alkali metal, alkaline earth metal, iron, copper, aluminum, gallium, zinc, gadolinium, platinum, vanadium, palladium, titanium, niobium, molybdenum, yttrium Further, metals such as rhenium, neodymium, tungsten and lanthanum and their compounds, or phosphorus compounds and boron compounds may be supported.

上記固体触媒は、特にゼオライト類が好ましく、その具体例としてはA型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、MFI型ゼオライト、MWW型ゼオライト、β型ゼオライト、モルデナイト、フェリエライト、エリオナイトなどが挙げられる。 The solid catalyst is particularly preferably a zeolite, and specific examples thereof include A-type zeolite, L-type zeolite, X-type zeolite, Y-type zeolite, MFI-type zeolite, MWW-type zeolite, β-type zeolite, mordenite, ferrierite, erio. Night etc. are mentioned.

上記ゼオライトとしては、MWW型のMCM−22型及びMFI型が好ましく、これらは他の触媒を担持させてもよい。MFI型ゼオライトとは、MFI(Mobilfive)構造を有しており、ZSM−5、ZSM−8、ゼータ1、ゼータ3、Nu−4、Nu−5、TZ−1、TPZ−1、TS−1等のMFI構造を有するものが挙げられ、なかでも、選択性の高さ、反応効率の点からZSM−5型が特に好ましい。 As the zeolite, MWW type MCM-22 type and MFI type are preferable, and these may carry other catalysts. MFI-type zeolite has an MFI (Mobile) structure, and is ZSM-5, ZSM-8, Zeta 1, Zeta 3, Nu-4, Nu-5, TZ-1, TPZ-1, TS-1. ZSM-5 type is particularly preferred from the viewpoint of high selectivity and reaction efficiency.

ゼオライトのイオン交換可能なカチオンサイトに占有されているカチオンは特に限定されず、水素イオン(プロトン);リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオンなどのアルカリ土類金属イオン;鉄イオン、銀イオンなどの遷移金属イオン;1〜4級アンモニウムイオンなどが挙げられる。なかでも、表面活性を高くして反応効率を上げることが出来るという点から、水素イオン(プロトン)が好ましい。該カチオンは、1種でもよいし、2種以上でもよい。 The cation occupied by the ion-exchangeable cation site of the zeolite is not particularly limited, and hydrogen ion (proton); alkali metal ion such as lithium ion, sodium ion, potassium ion; magnesium ion, calcium ion, strontium ion, barium Examples include alkaline earth metal ions such as ions; transition metal ions such as iron ions and silver ions; and quaternary ammonium ions. Of these, hydrogen ions (protons) are preferred because they can increase the surface activity and increase the reaction efficiency. 1 type may be sufficient as this cation, and 2 or more types may be sufficient as it.

ゼオライトの結晶構造中のSiOとAlとのモル比(SiO/Al)は、反応装置、原料に含まれる不純物によっても異なるが、好ましくは 5〜2000、より好ましくは5〜60である。上記範囲内であれば、生成したフェノールの更なるアルキル化等の副反応を最小限にとどめることが可能である。同様の理由から、ゼオライトの結晶の大きさは、(0.001〜50)μm×(0.01〜100)μmが好ましい。また、ゼオライトの粒子の大きさは、0.1〜50μmが好ましく、1〜20μmがより好ましい。更に、ゼオライトの窒素吸着比表面積は、10〜1000m/gが好ましく、100〜500m/gがより好ましい。 The molar ratio of SiO 2 to Al 2 O 3 in the crystal structure of zeolite (SiO 2 / Al 2 O 3 ) varies depending on the reaction apparatus and impurities contained in the raw material, but is preferably 5 to 2000, more preferably 5-60. Within the above range, side reactions such as further alkylation of the produced phenol can be minimized. For the same reason, the size of zeolite crystals is preferably (0.001-50) μm × (0.01-100) μm. The size of the zeolite particles is preferably 0.1 to 50 μm, and more preferably 1 to 20 μm. Further, the nitrogen adsorption specific surface area of the zeolite is preferably 10~1000m 2 / g, 100~500m 2 / g is more preferable.

上記触媒とフェノール及びアンモニアの反応は気相または液相で行える。反応器として固定床反応器、流動床反応器、移動床反応器を使用できる。反応温度は約200〜600℃(好ましくは300〜500℃、更に好ましくは350℃〜450℃)、反応圧力は常圧、加圧のいずれでもよい(好ましくは約5〜50気圧)。更にフェノールに対するアンモニアモル比は約1〜50(好ましくは5〜30)である。なお、反応時に必要に応じて、窒素、アルゴン、スチーム等の不活性ガスで希釈してもよい。 The reaction of the catalyst with phenol and ammonia can be performed in a gas phase or a liquid phase. As the reactor, a fixed bed reactor, a fluidized bed reactor, or a moving bed reactor can be used. The reaction temperature is about 200 to 600 ° C. (preferably 300 to 500 ° C., more preferably 350 ° C. to 450 ° C.), and the reaction pressure may be normal pressure or increased pressure (preferably about 5 to 50 atm). Further, the molar ratio of ammonia to phenol is about 1 to 50 (preferably 5 to 30). In addition, you may dilute with inert gas, such as nitrogen, argon, and steam, as needed at the time of reaction.

上記で調製されたアニリンを用いて、タイヤ工業などに使用されている老化防止剤、加硫促進剤などを石油資源を使用することなく製造できる。 Using the aniline prepared as described above, it is possible to produce an anti-aging agent, a vulcanization accelerator and the like used in the tire industry and the like without using petroleum resources.

老化防止剤としては、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミンなどのp−フェニレンジアミン系老化防止剤、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物などのキノリン系老化防止剤などが挙げられる。 Anti-aging agents include p-phenylenediamine-based anti-aging agents such as N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydro Examples include quinoline anti-aging agents such as quinoline polymer.

たとえば、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミンは、アニリンを原料として、後述の合成方法で製造できる。ここで、中間体のアミンに加えるメチルイソブチルケトンは、次の方法で合成出来る。すなわち、後述の方法により得られたアセトン2分子のアルドール縮合により合成できるジアセトンアルコールが、容易に脱水されてメシチルオキシドに変わり、このメシチルオキシドをパラジウム触媒等で水素添加することでメチルイソブチルケトンとなる。この方法により、石油資源によらずに老化防止剤を製造できる。 For example, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine can be produced by an after-mentioned synthesis method using aniline as a raw material. Here, methyl isobutyl ketone to be added to the intermediate amine can be synthesized by the following method. That is, diacetone alcohol, which can be synthesized by aldol condensation of two molecules of acetone obtained by the method described later, is easily dehydrated and converted into mesityl oxide. Become a ketone. By this method, an anti-aging agent can be produced regardless of petroleum resources.

また、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物は、アニリンを原料として、酸性触媒存在下140℃でアセトンを随時供給し続けることで合成できる。なお、アセトンは、以下の方法で製造可能であるため、石油資源によらずに該重合物を製造できる。 Further, the 2,2,4-trimethyl-1,2-dihydroquinoline polymer can be synthesized by continuously supplying acetone at 140 ° C. at any time in the presence of an acidic catalyst using aniline as a raw material. In addition, since acetone can be manufactured with the following method, this polymer can be manufactured irrespective of petroleum resources.

アセトンは、例えば、バイオマスを原料として微生物によりアセトン・ブタノール発酵を行うと、ブタノール、アセトン等の混合溶媒が得られるので、これを蒸留することで合成できる。上記バイオマス原料としては、セルロース、農作物及びその廃棄物、糖類等が用いられるが、糖類が特に好ましい。アセトン・ブタノール発酵を行う微生物は特に限定されないが、野生型、変異体、または組換え体である、エシュリヒア(Escherichia)、ジモモナス(Zymomonas)、カンジダ(Candida)、サッカロミセス(Saccharomyces)、ピキア(Pichia)、ストレプトマイセス(Streptomyces)、バチルス(Bacillus)、ラクトバチルス(Lactobacillus)、コリネ(Coryne)およびクロストリジウム(Clostridium)からなる群より選択される属が好ましい。なかでも、クロストリジウム属がより好ましく、Clostridium acetobutylicum、Clostridium beijerinckii、Clostridium saccharobutylicum、およびClostridium saccharoperbutylacetonicumが特に好ましい。
また上記クロストリジウム属のアセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ、チオラーゼをコードする遺伝子を組み込んだ微生物であっても構わない。
Acetone, for example, can be synthesized by distilling a mixed solvent of butanol, acetone, etc., when a biomass is used as a raw material to conduct acetone / butanol fermentation with microorganisms. As the biomass material, cellulose, crops and wastes thereof, saccharides and the like are used, and saccharides are particularly preferable. Microorganisms that perform acetone-butanol fermentation are not particularly limited, but are wild-type, mutant, or recombinant, such as Escherichia, Zymomonas, Candida, Saccharomyces, and Pichia. Preferred is a genus selected from the group consisting of Streptomyces, Bacillus, Lactobacillus, Coryne and Clostridium. Among them, the genus Clostridium is more preferable, and Clostridium acetobutylicum, Clostridium beijerinckii, Clostridium saccharobutyricum, and Clostridium saccharoperbutylicum are particularly preferable.
Further, it may be a microorganism incorporating a gene encoding the clostridium acetoacetate decarboxylase (EC 4.1.1.4), coenzyme A transferase, or thiolase.

また、木材を乾留して得られる木酢液をさらに分留、または液体クロマトグラフィー等での分取などによりアセトンを取得することもできる。
また、バイオエタノールをZr−Fe触媒の存在下で400℃以上に加熱することで合成できる。また、糖質原料由来のバイオエタノールを脱水反応させてエチレンを合成する工程、石油化学で汎用されている手法でエチレンからプロピレンを合成する工程、水和反応によりプロピレンからイソプロパノールを調製し、更に脱水素反応させる工程を経てアセトンを合成できる。
また、木質原料中のセルロースを熱分解して得られた酢酸を水酸化カルシウムで中和して酢酸カルシウムを得、次いで熱分解することでアセトンを合成できる。バイオエタノールの合成における発酵過程でエタノールが酸化されることで酢酸が生成するので、その酢酸を利用し、上記と同様のプロセスを経ることでも合成できる。更に、糖質原料由来のバイオエタノールを、ZnO/CaO触媒などで転換反応を進行させることでアセトンを合成できる。
Acetone can also be obtained by further fractionating a wood vinegar solution obtained by dry distillation of wood or by fractionation with liquid chromatography or the like.
Moreover, it can synthesize | combine by heating bioethanol to 400 degreeC or more in presence of Zr-Fe catalyst. In addition, a process of synthesizing ethylene by dehydrating bioethanol derived from saccharide raw materials, a process of synthesizing propylene from ethylene by a method widely used in petrochemistry, and preparing isopropanol from propylene by a hydration reaction, followed by dehydration Acetone can be synthesized through an elementary reaction step.
Acetone can be synthesized by neutralizing acetic acid obtained by pyrolyzing cellulose in the woody material with calcium hydroxide to obtain calcium acetate, followed by thermal decomposition. Acetic acid is produced by the oxidation of ethanol during the fermentation process in the synthesis of bioethanol. Therefore, it can be synthesized by using the acetic acid and passing through the same process as described above. Furthermore, acetone can be synthesized by advancing the conversion reaction of bioethanol derived from a saccharide raw material with a ZnO / CaO catalyst or the like.

加硫促進剤としては、2−メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドなどのチアゾール系加硫促進剤、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド、N−tert−ブチル−2−ベンゾチアジルスルフェンアミドなどのスルフェンアミド系加硫促進剤などが挙げられる。 Examples of the vulcanization accelerator include thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide, N, N-dicyclohexyl-2-benzothiazyl. Examples thereof include sulfenamide vulcanization accelerators such as sulfenamide and N-tert-butyl-2-benzothiazylsulfenamide.

2−メルカプトベンゾチアゾールは、アニリンを原料として、下記合成方法により製造できる。ここで、二硫化炭素は、たとえば、からし菜に約0.4%含まれるからし油に硫化水素を反応させることで分離生成させることができる。この方法によれば、石油資源によらずに加硫促進剤を製造できる。また、そのようにして製造された2−メルカプトベンゾチアゾールを酸化することにより、ジベンゾチアジルジスルフィドを合成できる。 2-mercaptobenzothiazole can be produced by the following synthesis method using aniline as a raw material. Here, for example, carbon disulfide can be separated and produced by reacting mustard oil with hydrogen sulfide contained in about 0.4% of mustard vegetable. According to this method, a vulcanization accelerator can be produced regardless of petroleum resources. Also, dibenzothiazyl disulfide can be synthesized by oxidizing the 2-mercaptobenzothiazole thus produced.

Figure 2012153655
Figure 2012153655

Figure 2012153655
Figure 2012153655

以上で得られた老化防止剤、加硫促進剤は、通常のゴム製品の材料として使用でき、特にタイヤ用ゴム組成物(トレッド、サイドウォールなど)のゴム薬品として有用である。 The antioxidants and vulcanization accelerators obtained above can be used as materials for ordinary rubber products, and are particularly useful as rubber chemicals for tire rubber compositions (treads, sidewalls, etc.).

上記ゴム組成物には、上記成分以外に、ゴム成分、カーボンブラック、シリカ、クレー、水酸化アルミニウム、炭酸カルシウムなどの無機充填剤、シランカップリング剤、プロセスオイル、軟化剤、加硫剤、加硫促進助剤など、通常のゴム工業で使用される配合剤が適宜配合される。また、通常の石油等化石資源由来の老化防止剤、加硫促進剤を一部含んでいても構わない。 In addition to the above components, the rubber composition includes an inorganic filler such as a rubber component, carbon black, silica, clay, aluminum hydroxide, and calcium carbonate, a silane coupling agent, a process oil, a softening agent, a vulcanizing agent, and a vulcanizing agent. A compounding agent used in a normal rubber industry, such as a sulfur accelerator, is appropriately blended. Moreover, you may contain a part of anti-aging agent and vulcanization accelerator derived from normal fossil resources such as petroleum.

上記ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。 As a method for producing the rubber composition, known methods can be used. For example, the above components are kneaded using a rubber kneader such as an open roll, a Banbury mixer, a closed kneader, and then vulcanized. It can be manufactured by a method or the like.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各成分を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することで未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing each component as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

(バイオマス原料からのフェノールの合成1(微生物利用))
(形質転換体の調製)
Pantoea agglomerans AJ2985のゲノムDNAを鋳型DNAとし、プライマーとして、5’−GCGGTACCATGAACTATCCTGCCGAGCC−3’(forward)、5’−GCGGCCGCTTAAATAAAGTCAAAACGCGC−3’(reverse)を用いてPCR法によりtpl遺伝子の増幅を行った。なお、プライマーは、GenBank accession no.D13714に収載されているtpl遺伝子の配列に基づいて、制限酵素KpnI、NotIに対応する配列GGTACC、CGGCCGを含むように設計した。なお、公知の方法により、増幅したtpl遺伝子の配列に問題がないことを確認した。
(Synthesis of phenol from biomass raw materials 1 (use of microorganisms))
(Preparation of transformant)
Pantoea agglomerans AJ2985 genomic DNA was used as a template DNA, and 5′-GCGGTACCATGAACTATCCTGCCGAGCCC-3 ′ (forward), 5′-GCGGCCGCTTTAATAAAAGTCAAAAGCGCGC-3 ′ (reverse) was used by PCR amplification using the gene of PCR method p. In addition, a primer is GenBank accession no. Based on the sequence of the tpl gene listed in D13714, it was designed to include sequences GGTACC and CGGCCG corresponding to the restriction enzymes KpnI and NotI. It was confirmed that there was no problem in the sequence of the amplified tpl gene by a known method.

次に、サリチル酸誘導NagR/pNagAaプロモーターを含み、アンピシリン耐性、ゲンタマイシン耐性のプラスミドpTn−1に、制限酵素KpnI、NotIを使用して、増幅したtpl遺伝子を組み込み、pNW1を得た。 Next, the amplified tpl gene was incorporated into the ampicillin-resistant and gentamicin-resistant plasmid pTn-1 containing the salicylic acid-inducible NagR / pNagAa promoter using restriction enzymes KpnI and NotI to obtain pNW1.

次に、得られたpNW1を公知の方法により有機溶媒耐性菌であるPseudomonas putida S12(ATCC700801)に組み込み、形質転換体を得た。 Next, the obtained pNW1 was incorporated into Pseudomonas putida S12 (ATCC7000080), which is an organic solvent-resistant bacterium, by a known method to obtain a transformant.

(半回分培養)
次に、得られた形質転換体を以下の条件で培養し、グルコースから、フェノールを生合成した。培養は、内容積が2.5LのBioFIo IIc fermentor(New Brunswick Scientific社製)を使用して行った。培養中は、酸素を300ml/minの速度で培養器のヘッドスペースに供給し、培養器の底部において撹拌翼を回転させることにより、供給した酸素を培地中に混合した。培養中は、4M KOHを使用してpHを7.0に保った。さらに、撹拌翼の回転速度を調整して溶存酸素圧を約20%飽和に保った。培養開始時の培養液量は、1.5Lとした。定期的に、600nmでの吸光度(OD600)を測定し、OD600に変化が見られなくなってから、フィード液を供給した。フィード液の供給速度は、cell dry weight(CDW)が3g/L未満の場合、4ml/h、CDWが3〜4.5g/Lの場合、9ml/h、CDWが4.5g/Lを超える場合、20ml/hとした。なお、培養は、30℃で行った。
また、培養開始時の培地組成、フィード液組成は、以下の通りである。
(Semi-batch culture)
Next, the obtained transformant was cultured under the following conditions, and phenol was biosynthesized from glucose. Culturing was performed using BioFIo IIc fermentor (manufactured by New Brunswick Scientific) having an internal volume of 2.5 L. During the culture, oxygen was supplied to the head space of the incubator at a rate of 300 ml / min, and the supplied oxygen was mixed into the medium by rotating a stirring blade at the bottom of the incubator. During the culture, the pH was kept at 7.0 using 4M KOH. Furthermore, the dissolved oxygen pressure was kept at about 20% saturation by adjusting the rotation speed of the stirring blade. The amount of the culture solution at the start of the culture was 1.5 L. Periodically, the absorbance at 600 nm (OD 600 ) was measured, and after no change was observed in OD 600 , the feed solution was supplied. The feed rate of the feed liquid is 4 ml / h when the cell dry weight (CDW) is less than 3 g / L, 9 ml / h when the CDW is 3 to 4.5 g / L, and the CDW exceeds 4.5 g / L. In this case, it was 20 ml / h. The culture was performed at 30 ° C.
The medium composition and the feed liquid composition at the start of the culture are as follows.

<培養開始時の培地組成(下記量は、1Lあたりの量を示す)>
30mmol KHPO、20.5mmol NaHPO、25mmol D−グルコース、15mmol NHCl、1.4mmol NaSO、1.5mmol MgCl、0.5g yeast extract、10ml trace solution 1、10mg ゲンタマイシン、0.1mmol サリチル酸
<Medium composition at the start of culture (the following amounts indicate the amount per liter)>
30 mmol K 2 HPO 4 , 20.5 mmol NaH 2 PO 4 , 25 mmol D-glucose, 15 mmol NH 4 Cl, 1.4 mmol Na 2 SO 4 , 1.5 mmol MgCl 2 , 0.5 g yeast extract 10 ml trace solution 1, 10 mg Gentamicin, 0.1 mmol salicylic acid

<フィード液組成(下記量は、1Lあたりの量を示す)>
750mmol D−グルコース、225mmol NHCl、21mmol NaSO、7.4mmol MgCl、13mmol CaCl、0.5g yeast extract、100ml trace solution 2、10mg ゲンタマイシン、1mmol サリチル酸
<Feed liquid composition (the following amount indicates the amount per 1 L)>
750 mmol D-glucose, 225 mmol NH 4 Cl, 21 mmol Na 2 SO 4 , 7.4 mmol MgCl 2 , 13 mmol CaCl 2 , 0.5 g yeast extract, 100 ml trace solution 2 , 10 mg gentamicin, 1 mmol salicylic acid

<Trace solution 1の組成(下記量は、1Lあたりの量を示す)>
4g EDTA、0.2g ZnSO・7HO、0.1g CaCl・2HO、1.5g FeSO・7HO、0.02g NaMoO・2HO、0.2g CuSO・5HO、0.04g CoCl・6HO、0.1g MnCl・4H
<Composition of Trace solution 1 (the following amount indicates the amount per 1 L)>
4 g EDTA, 0.2 g ZnSO 4 .7H 2 O, 0.1 g CaCl 2 .2H 2 O, 1.5 g FeSO 4 .7H 2 O, 0.02 g Na 2 MoO 4 .2H 2 O, 0.2 g CuSO 4・ 5H 2 O, 0.04 g CoCl 2 .6H 2 O, 0.1 g MnCl 2 .4H 2 O

<Trace solution 2の組成(下記量は、1Lあたりの量を示す)>
4g EDTA、0.2g ZnSO・7HO、0.1g CaCl・2HO、6.5g FeSO・7HO、0.02g NaMoO・2HO、0.2g CuSO・5HO、0.04g CoCl・6HO、0.1g MnCl・4HO、0.024g HBO、0.02g NiCl・6H
<Composition of Trace solution 2 (the following amount indicates the amount per 1 L)>
4 g EDTA, 0.2 g ZnSO 4 .7H 2 O, 0.1 g CaCl 2 .2H 2 O, 6.5 g FeSO 4 .7H 2 O, 0.02 g Na 2 MoO 4 .2H 2 O, 0.2 g CuSO 4 5H 2 O, 0.04 g CoCl 2 .6H 2 O, 0.1 g MnCl 2 .4H 2 O, 0.024 g H 3 BO 3 , 0.02 g NiCl · 6H 2 O

25時間培養を行った後、培養液にジエチルエーテルを加え、2回抽出を行った。租抽出物をエバポレーターにより濃縮し、シリカゲル60を充填したフラッシュクロマトグラフィーにより精製を行い、フェノールを得た。フェノールの同定は、NMRおよびIRによって行った。 After culturing for 25 hours, diethyl ether was added to the culture solution and extracted twice. The extract was concentrated by an evaporator and purified by flash chromatography packed with silica gel 60 to obtain phenol. Phenol was identified by NMR and IR.

(バイオマス原料からのフェノールの合成2−1(触媒の利用))
出発物質としては酢酸銅、およびNH−ZSM−5(東ソー製:820NHA SiO/Al=23(モル比)、窒素吸着比表面積:350m/g、結晶の大きさ:0.03μm×0.1μm、粒子の大きさ:5μm)を用いてCu担持ZSM−5触媒を調整した。酢酸銅水溶液にアンモニア水を加えることによってpH=11に調整し、水溶液中の銅イオンを銅アンミン錯体[Cu(NH2+とした。この水溶液にNH−ZSM−5を加え、60℃に加熱しながら24時間撹拌を行い、銅イオンによるイオン交換を行った。その後、濾過、洗浄を行い100℃において24時間乾燥させた。乾燥した試料を1L/min.の空気流通下において500℃で1時間焼成して触媒を得た。調製した触媒のCu担持量はイオン交換に用いる溶液の濃度を変化させることによってコントロールした。原子吸光分析による定量の結果、調製した触媒のCu担持量はCu/Al=0.13〜1.67(Cu:0.54〜6.83wt%)であった。
内径32mmの石英管を2本連結し、それぞれ中央部の石英ウール上に、ゼオライト触媒H−ZSM−5(東ソー製:820HOA(820NHA SiO/Al=23を焼成処理したもの))、及び、上記の方法で合成したCu/ZSM−5を10.0gずつパッキングし、Cuを担持しない触媒カラム側より窒素ガスを供給した。窒素ガスの供給速度はLHSV換算で1/hrとした。石英管を電気炉に設置し、所定温度まで昇温した後、蒸留精製したバイオエタノール(日伯エタノール製)を所定量供給した。その時の反応条件は、反応温度450℃、反応圧力は常圧、バイオエタノールの供給速度はLHSV換算で1/hr、バイオエタノールと窒素とのモル比(石油由来エタノール/窒素)は50/50とした。
バイオエタノールの連続供給により生成した反応混合物を蒸留後、高速液体クロマトグラフィーにて分離することにより、純粋なフェノールを5g得た。
(Synthesis of phenol from biomass raw materials 2-1 (utilization of catalyst))
As starting materials, copper acetate, and NH 4 —ZSM-5 (manufactured by Tosoh: 820 NHA SiO 2 / Al 2 O 3 = 23 (molar ratio), nitrogen adsorption specific surface area: 350 m 2 / g, crystal size: 0. Cu-supported ZSM-5 catalyst was prepared using 03 μm × 0.1 μm, particle size: 5 μm). The pH was adjusted to 11 by adding aqueous ammonia to the copper acetate aqueous solution, and the copper ion in the aqueous solution was changed to a copper ammine complex [Cu (NH 3 ) 4 ] 2+ . NH 4 —ZSM-5 was added to this aqueous solution, and the mixture was stirred for 24 hours while heating to 60 ° C., and ion exchange with copper ions was performed. Then, it filtered and wash | cleaned and dried at 100 degreeC for 24 hours. The dried sample was 1 L / min. The catalyst was obtained by calcining at 500 ° C. for 1 hour under the air flow. The amount of Cu supported on the prepared catalyst was controlled by changing the concentration of the solution used for ion exchange. As a result of quantitative determination by atomic absorption analysis, the amount of Cu supported by the prepared catalyst was Cu / Al = 0.13 to 1.67 (Cu: 0.54 to 6.83 wt%).
Two quartz tubes with an inner diameter of 32 mm are connected, and zeolite catalyst H-ZSM-5 (manufactured by Tosoh: 820HOA (820NHA SiO 2 / Al 2 O 3 = 23 is fired) is formed on quartz wool at the center. Then, 10.0 g of Cu / ZSM-5 synthesized by the above method was packed, and nitrogen gas was supplied from the side of the catalyst column not supporting Cu. The supply rate of nitrogen gas was 1 / hr in terms of LHSV. The quartz tube was installed in an electric furnace, heated to a predetermined temperature, and then a predetermined amount of distilled and purified bioethanol (manufactured by Nikkaku Ethanol) was supplied. The reaction conditions at that time were a reaction temperature of 450 ° C., a reaction pressure of normal pressure, a bioethanol feed rate of 1 / hr in terms of LHSV, and a molar ratio of bioethanol to nitrogen (petroleum-derived ethanol / nitrogen) of 50/50. did.
The reaction mixture produced by the continuous supply of bioethanol was distilled and then separated by high performance liquid chromatography to obtain 5 g of pure phenol.

(バイオマス原料からのフェノールの合成2−2)
上記Cu/ZSM−5のかわりに、メチルトリオキソレニウムをCVD法により担持させたRe/ZSM−5を用いたほかは2−1と同様にして、フェノールを20g得た。
(Synthesis of phenol from biomass raw materials 2-2)
20 g of phenol was obtained in the same manner as in 2-1, except that Re / ZSM-5 in which methyltrioxorhenium was supported by the CVD method was used instead of Cu / ZSM-5.

(バイオマス原料からのフェノールの合成2−3)
塩化メチレン40mlにチタニルビスアセチルアセトナート[TiO(acac)]0.1642g(627μモル)を溶解させ、H−ZSM−5(東ソー製:840HOA(840NHA SiO/Al=40(モル比)、窒素吸着比表面積:330m/g、結晶の大きさ:2μm×4μm、粒子の大きさ:10μm)を焼成処理したもの))0.950gを添加し、40℃で加熱撹拌しながら塩化メチレンを除去した。充分に乾燥させた後、空気流通下、マッフル炉で150℃で2時間、次いで600℃で4時間焼成し、1.00gの触媒〔TiOx/H−ZSM−5〕を調製した。調製した触媒中のチタン担持量は酸化チタン(TiO)換算で5.0質量%であった。
上記の方法で得られたTiOx/H−ZSM−5をCu/ZSM−5のかわりに用い、窒素の代わりに水素/酸素(1/20圧力比)に変更したほかは、合成例2−1と同様にして、8gのフェノールを得た。
(Synthesis of phenol from biomass raw materials 2-3)
0.1642 g (627 μmol) of titanyl bisacetylacetonate [TiO (acac) 2 ] was dissolved in 40 ml of methylene chloride, and H-ZSM-5 (manufactured by Tosoh: 840HOA (840NHA SiO 2 / Al 2 O 3 = 40 (mol) Ratio), nitrogen adsorption specific surface area: 330 m 2 / g, crystal size: 2 μm × 4 μm, particle size: 10 μm))) 0.950 g was added and heated and stirred at 40 ° C. Methylene chloride was removed. After sufficiently drying, it was calcined in a muffle furnace at 150 ° C. for 2 hours and then at 600 ° C. for 4 hours under air flow to prepare 1.00 g of a catalyst [TiOx / H-ZSM-5]. The amount of titanium supported in the prepared catalyst was 5.0% by mass in terms of titanium oxide (TiO 2 ).
Synthesis Example 2-1 except that TiOx / H-ZSM-5 obtained by the above method was used instead of Cu / ZSM-5 and changed to hydrogen / oxygen (1/20 pressure ratio) instead of nitrogen. In the same manner, 8 g of phenol was obtained.

(フェノールからのアニリンの製造例1)
ゼオライトβ(PQ社製CP811BL−25:シリカ/アルミナ比=12.5(モル比)、窒素吸着比表面積:750m/g)を触媒として用い、先ずゼオライトβを反応管に0.65g充填した。窒素とアンモニアガスを体積比50:16.6の割合で流通し、電気炉にて加熱し、所定温度まで昇温し、次にフェノールをポンプで所定量供給した。その時の反応条件は、反応温度450℃、反応圧力は常圧、フェノールの供給速度はLHSV換算で1.29/hr、アンモニアのフェノールに対する供給モル比9とした。反応開始して4時間後に定常状態に達した。その後、反応管出口に気液分離器を置き、反応液を捕集した。生成物の分析を行ったところ、アニリンが収率21.2%で得られた。なお、分析はガスクロマトグラフィーで行った(カラム:FFAPおよびCP−WAX)。また、収率は以下の式により算出した。
収率(%)=(単位時間に生成したアニリンのモル数)/(単位時間に供給したフェノールのモル数)×100
(Example 1 of production of aniline from phenol)
Zeolite β (CPQ11BL-25 manufactured by PQ: silica / alumina ratio = 12.5 (molar ratio), nitrogen adsorption specific surface area: 750 m 2 / g) was used as a catalyst, and 0.65 g of zeolite β was first charged in a reaction tube. . Nitrogen and ammonia gas were circulated in a volume ratio of 50: 16.6, heated in an electric furnace, heated to a predetermined temperature, and then a predetermined amount of phenol was supplied by a pump. The reaction conditions at that time were a reaction temperature of 450 ° C., a reaction pressure of atmospheric pressure, a phenol supply rate of 1.29 / hr in terms of LHSV, and a molar ratio of ammonia to phenol of 9. A steady state was reached 4 hours after the start of the reaction. Thereafter, a gas-liquid separator was placed at the outlet of the reaction tube to collect the reaction solution. Analysis of the product gave aniline in 21.2% yield. The analysis was performed by gas chromatography (column: FFAP and CP-WAX). The yield was calculated by the following formula.
Yield (%) = (moles of aniline produced per unit time) / (moles of phenol fed per unit time) × 100

(フェノールからのアニリンの製造例2)
製造例1の触媒をH−ZSM−5(東ソー製:820HOA(820NHA SiO/Al=23(モル比)、窒素吸着比表面積:350m/g、結晶の大きさ:0.03μm×0.1μm、粒子の大きさ:5μm)を焼成処理したもの)に、反応温度を500℃に、圧力を537KPaに、反応時間を8時間に変更した以外は製造例1と同様にして反応を行い、アニリンを収率84.3%で得た。
(Example 2 of production of aniline from phenol)
H-ZSM-5 (manufactured by Tosoh: 820HOA (820NHA SiO 2 / Al 2 O 3 = 23 (molar ratio)), nitrogen adsorption specific surface area: 350 m 2 / g, crystal size: 0.03 μm × 0.1 μm, particle size: 5 μm), and the reaction temperature was changed to 500 ° C., the pressure was changed to 537 KPa, and the reaction time was changed to 8 hours. To obtain aniline in a yield of 84.3%.

(フェノールからのアニリンの製造例3)
製造例2のアンモニアをモノメチルアミンに、圧力を2859KPaに変更した以外は製造例1と同様にして反応を行い、アニリンを15.2%の収率で得た。
(Example 3 of production of aniline from phenol)
The reaction was conducted in the same manner as in Production Example 1 except that the ammonia in Production Example 2 was changed to monomethylamine and the pressure was changed to 2859 KPa, and aniline was obtained in a yield of 15.2%.

(フェノールからのアニリンの製造例4)
バイヤライト(LaRoche Chemical社製 VersalB)とシュードベーマライト(LaRoche Chemical社製 Versal900)を質量比4:1で混合したものを0.4M硝酸水溶液に混合した後、マッフル炉内にて500℃8時間熱処理してアルミナ触媒を得た。このアルミナ触媒を用い、反応温度365℃、圧力1.7MPaにした他は製造例1と同様に反応を行って、アニリンを46.3%の収率で得た。
(Example 4 of production of aniline from phenol)
A mixture of bayerite (LaRoche Chemical Versal B) and pseudoboemarite (LaRoche Chemical Versal 900) in a mass ratio of 4: 1 was mixed in a 0.4 M nitric acid aqueous solution, and then heated at 500 ° C. in a muffle furnace. An alumina catalyst was obtained by heat treatment for a period of time. Using this alumina catalyst, the reaction was carried out in the same manner as in Production Example 1 except that the reaction temperature was 365 ° C. and the pressure was 1.7 MPa, and aniline was obtained in a yield of 46.3%.

(アセトンの石油資源外調達方法1−1)
300mlの発酵槽(DASGIP)にSoni et al (Soni et al, 1987, Appl. Microbiol. Biotechnol. 27:1−5)に記載の250mlの合成培地を満たし、窒素で30分スパージした。そこにClostridium acetobutylicum(ATCC824)を嫌気性条件下で、接種した。培養温度は35℃に一定維持し、pHはNHOH溶液を用い、常に5.5に調節した。発酵期間中、嫌気性条件を維持し、振盪速度は300rpmで維持した。5日間培養後、培養液を蒸留し、従来より周知となっているイオン交換樹脂法により分離して、アセトンを得た。
(Method for procurement of acetone outside petroleum resources 1-1)
A 300 ml fermentor (DASGIP) was filled with 250 ml of the synthetic medium described in Soni et al (Soni et al, 1987, Appl. Microbiol. Biotechnol. 27: 1-5) and sparged with nitrogen for 30 minutes. Clostridium acetobutyricum (ATCC824) was inoculated there under anaerobic conditions. The culture temperature was kept constant at 35 ° C., and the pH was always adjusted to 5.5 using NH 4 OH solution. Anaerobic conditions were maintained during the fermentation period and the shaking speed was maintained at 300 rpm. After culturing for 5 days, the culture broth was distilled and separated by an ion exchange resin method which has been conventionally known to obtain acetone.

(アセトンの石油資源外調達方法1−2)
上記調達方法1−1のClostridium acetobutylicumを菌株IFP903(ATCC39057)に変更した以外は同様にして培養、分離し、アセトンを得た。
(Method of procurement of acetone outside petroleum resources 1-2)
Acetone was obtained by culturing and separating in the same manner except that the Clostridium acetobutylicum of the procurement method 1-1 was changed to the strain IFP903 (ATCC39057).

(アセトンの石油資源外調達方法2)
冷却管付き煙誘導管を備えたオートクレーブに木材チップを入れ、400℃に加熱し、発生した木酢液を集めた。得られた木酢液より沈殿したタール分を除去し、ジエチルエーテルにより抽出した。抽出分を炭酸水素ナトリウム溶液にて洗浄した後、分留を繰り返してアセトン得た。
(Method 2 for procurement of acetone outside petroleum resources)
Wood chips were placed in an autoclave equipped with a smoke induction tube with a cooling tube, heated to 400 ° C., and the generated wood vinegar was collected. The precipitated tar was removed from the obtained wood vinegar and extracted with diethyl ether. The extract was washed with a sodium hydrogen carbonate solution, and then fractional distillation was repeated to obtain acetone.

(アニリンからの老化防止剤の製造例1(表1の老化防止剤TMDQ−1の合成方法))
アセトン導入装置、蒸留装置、温度計、および攪拌機を備えたフラスコに、前記の(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)で得られたアニリン190g(2.0モル)と、酸性触媒として塩酸(0.20モル)を加え、140℃まで加熱した。その後140℃に保温しながら、6時間にわたり前記(アセトンの石油資源外調達方法1−1)で得られたアセトン580g(10モル)を反応系に連続的に供給した。留出する未反応のアセトンやアニリンは、随時反応系に戻した。2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物180.7g(収率約30%)を得た。重合度は2〜4であった。なお、未反応のアニリン、および2,2,4−トリメチル−1,2−ジヒドロキノリンのモノマーは、減圧蒸留により回収した。140℃で未反応のアニリンが留出し、その後190℃まで昇温することにより、モノマーが留出した。モノマーの収量は19.1gであり、収率は6.9%であった。
尚、本方法によると、バイオマス原料からバイオ合成でフェノールを合成すること、及び、それによって得られたフェノールから触媒を用いて非常に高効率でアニリンを合成することにより、トータルのエネルギー消費やCO排出量を抑制したまま効率的にアニリンを合成出来、更に、アセトンもバイオ合成で合成したものを用いることで、非常に効率的に、かつ環境に優しい状況で、老化防止剤を合成することが出来た。
(Production Example 1 of Anti-aging Agent from Aniline (Synthesis Method of Anti-aging Agent TMDQ-1 in Table 1))
In a flask equipped with an acetone introduction device, a distillation device, a thermometer, and a stirrer, aniline obtained in the above (Synthesis of phenol from biomass raw material 1 (use of microorganisms)) and (Production example 2 of aniline from phenol) 190 g (2.0 mol) and hydrochloric acid (0.20 mol) as an acidic catalyst were added and heated to 140 ° C. Thereafter, 580 g (10 mol) of acetone obtained in the above (Method for Procuring Acetone outside of Petroleum Resources 1-1) for 6 hours was continuously supplied to the reaction system while keeping the temperature at 140 ° C. Unreacted acetone and aniline distilled off were returned to the reaction system as needed. As a result, 180.7 g (yield: about 30%) of a polymer of 2,2,4-trimethyl-1,2-dihydroquinoline was obtained. The degree of polymerization was 2-4. Unreacted aniline and 2,2,4-trimethyl-1,2-dihydroquinoline monomer were recovered by distillation under reduced pressure. Unreacted aniline distilled at 140 ° C., and then the temperature was raised to 190 ° C. to distill the monomer. The yield of monomer was 19.1 g, and the yield was 6.9%.
According to the present method, synthesis of phenol from a biomass raw material by biosynthesis, and synthesis of aniline from a phenol obtained thereby using a catalyst with very high efficiency, total energy consumption and CO 2. Synthesize anti-aging agents in a very efficient and environmentally friendly manner by using aniline synthesized with biosynthesis, which can efficiently synthesize aniline while suppressing emissions. Was made.

(アニリンからの老化防止剤の製造例1(表1の老化防止剤6PPD−1の合成方法))
前記(アセトンの石油資源外調達方法1−1)により合成したアセトン2分子をアルドール縮合により反応させて、ジアセトンアルコールを合成し更に、かかるジアセトンアルコールが容易に脱水されてメシチルオキシドに変わった。このメシチルオキシドをパラジウム触媒で水素添加することでメチルイソブチルケトンを合成した。
また、上記と同様にして、(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)でアニリンを得た。
得られたアニリンと、そのアニリンを公知の方法で酸化することにより得られたニトロベンゼンと、上記メチルイソブチルケトンとから、以下の方法にて老防6PPDを合成した。
25%水酸化テトラメチルアンモニウム水溶液(TMAOH)187gを、温度55℃、圧力75mbarで蒸留濃縮して、35%溶液を得た。上記バイオマス由来アニリン269mlを添加後、アニリン/水共沸混合物を、水:塩基のモル比が、約4:1になるまで、温度75℃、圧力75mbarで溜去し、次いで、上記ニトロベンゼン60gを加え、混合液を、さらに4時間撹拌した。この間、水/アニリン共沸混合物の蒸留を継続した。Pt/C触媒(5%Pt)2.2gと水120mlを、この粗混合液に添加した。次に、温度80℃において、水素を用いて圧力を最大15barまで上昇させ、そして反応混合液を、水素のさらなる吸収が認められなくなるまで撹拌した。トルエン100mlを添加し、触媒を濾別し、有機相と水相を分液ロートにて分離した。次に、有機相を、分留によって精製することにより、4−アミノジフェニルアミンを91%の収率で得た。
攪拌式オートクレーブに、4−アミノジフェニルアミン129.3g、上記により合成されたメチルイソブチルケトン120.2g、白金触媒(エヌ・イーケムキャット製、5%Ptカーボンサルファイド粉末含水品;水分55.26質量%)0.77g、および活性炭(二村化学工業(株)製、太閤活性炭S)0.65gを入れ、水素雰囲気下とした後、約1時間かけて内温を室温から150℃まで上昇させた。次いで、水素を30kgf/cm(2.94MPa)に加圧し、消費された水素を補給しながら、同温度、同圧力を保持して反応を行った。
水素加圧開始から2時間後に、オートクレーブから水素を抜いて常圧に戻すと共に、反応液を室温まで冷却した。反応液を濾過して触媒と活性炭を濾別し、反応生成物を高速液体クロマトグラフィーにて分取することにより、4−(1,3−ジメチルブチルアミノ)ジフェニルアミン(老化防止剤6PPD−1)を99.4%の収率で得た。
(Production Example 1 of Anti-aging Agent from Aniline (Synthesis Method of Anti-aging Agent 6PPD-1 in Table 1))
Two acetone molecules synthesized by the above-mentioned (Method for Procuring Acetone from Oil Resources 1-1) are reacted by aldol condensation to synthesize diacetone alcohol, which is then easily dehydrated and converted to mesityl oxide. It was. Methyl isobutyl ketone was synthesized by hydrogenating this mesityl oxide with a palladium catalyst.
In the same manner as described above, aniline was obtained by (Synthesis of phenol from biomass raw material 1 (use of microorganisms)) and (Production Example 2 of aniline from phenol).
Antioxidant 6PPD was synthesized from the obtained aniline, nitrobenzene obtained by oxidizing the aniline by a known method, and the above methyl isobutyl ketone by the following method.
187 g of 25% tetramethylammonium hydroxide aqueous solution (TMAOH) was distilled and concentrated at a temperature of 55 ° C. and a pressure of 75 mbar to obtain a 35% solution. After addition of 269 ml of the biomass-derived aniline, the aniline / water azeotrope is distilled off at a temperature of 75 ° C. and a pressure of 75 mbar until the water: base molar ratio is about 4: 1. In addition, the mixture was stirred for an additional 4 hours. During this time, distillation of the water / aniline azeotrope continued. 2.2 g of Pt / C catalyst (5% Pt) and 120 ml of water were added to this crude mixture. The pressure was then raised to a maximum of 15 bar with hydrogen at a temperature of 80 ° C. and the reaction mixture was stirred until no further absorption of hydrogen was observed. 100 ml of toluene was added, the catalyst was filtered off, and the organic phase and the aqueous phase were separated in a separatory funnel. The organic phase was then purified by fractional distillation to give 4-aminodiphenylamine in 91% yield.
In a stirring autoclave, 129.3 g of 4-aminodiphenylamine, 120.2 g of methyl isobutyl ketone synthesized as described above, platinum catalyst (manufactured by NE Chemcat, water-containing product of 5% Pt carbon sulfide powder; moisture 55.26% by mass) 0.77 g and activated carbon (Nimura Kagaku Kogyo Co., Ltd., Dazai activated carbon S) 0.65 g were put in a hydrogen atmosphere, and then the internal temperature was raised from room temperature to 150 ° C. over about 1 hour. Next, hydrogen was pressurized to 30 kgf / cm 2 (2.94 MPa), and the reaction was carried out while maintaining the same temperature and pressure while supplying the consumed hydrogen.
Two hours after the start of hydrogen pressurization, hydrogen was removed from the autoclave to return to normal pressure, and the reaction solution was cooled to room temperature. 4- (1,3-dimethylbutylamino) diphenylamine (anti-aging agent 6PPD-1) is obtained by filtering the reaction solution to separate the catalyst and activated carbon and separating the reaction product by high performance liquid chromatography. Was obtained in 99.4% yield.

(二硫化炭素の石油資源外調達方法)
二硫化炭素は、からし菜に約0.4%含まれるからし油に硫化水素を反応させること、または木炭と硫黄を900℃で加熱することによって得た。
(Carbon disulfide procurement method outside petroleum resources)
Carbon disulfide was obtained by reacting mustard oil contained in about 0.4% of mustard vegetables with hydrogen sulfide or heating charcoal and sulfur at 900 ° C.

(アニリンからの加硫促進剤MBTの製造例(表1の加硫促進剤MBT−1の合成方法))
300ml加圧反応器内に、前記の(バイオマス原料からのフェノールの合成1(微生物利用))及び(フェノールからのアニリンの製造例2)により得られたアニリン93g(1.0モル)、前記(二硫化炭素の石油資源外調達方法)により得られた二硫化炭素80g(1.1モル)、および硫黄16g(1.0モル)を投入し、250℃、10MPaの条件で2時間反応させた後、180℃まで冷却し、2−メルカプトベンゾチアゾール粗生成物を調製した。収量は130g(収率87%)であった。更に、得られた2−メルカプトベンゾチアゾールの粗生成物(純度:79%)をイソプロパノール中に沸騰温度において不活性気体としての窒素下で溶解させた。次に混合物を室温で放置して冷却した。沈澱した生成物を濾別し、イソプロパノールで洗浄し、そして乾燥した。薄黄色の生成物(高純度2−メルカプトベンゾチアゾール:融点180.1〜181.1℃、純度98.1%)が得られた。
(Example of production of vulcanization accelerator MBT from aniline (synthesis method of vulcanization accelerator MBT-1 in Table 1))
In a 300 ml pressurized reactor, 93 g (1.0 mol) of aniline obtained by the above (Synthesis of phenol from biomass raw material 1 (utilization of microorganism)) and (Production Example 2 of aniline from phenol), ( 80 g (1.1 mol) of carbon disulfide obtained by carbon disulfide external procurement method) and 16 g (1.0 mol) of sulfur were added and reacted at 250 ° C. and 10 MPa for 2 hours. Then, it cooled to 180 degreeC and 2-mercaptobenzothiazole crude product was prepared. The yield was 130 g (yield 87%). Further, the obtained crude product of 2-mercaptobenzothiazole (purity: 79%) was dissolved in isopropanol at boiling temperature under nitrogen as an inert gas. The mixture was then allowed to cool at room temperature. The precipitated product was filtered off, washed with isopropanol and dried. A pale yellow product (high purity 2-mercaptobenzothiazole: melting point 180.1-181.1 ° C., purity 98.1%) was obtained.

(アニリンからの加硫促進剤CBSの製造例(表1の加硫促進剤CBS−1の合成方法))
前記で得られた2−メルカプトベンゾチアゾール粗生成物を水酸化ナトリウム水溶液に溶かし、メルカプトベンゾチアゾールのナトリウム塩の20%水溶液を作製した。この水溶液に等モル量のシクロヘキシルアミンを加え、更に40℃でメタノール100mLに混合した。これに次亜塩素酸ナトリウム13%溶液をメルカプトベンゾチアゾールのナトリウム塩に対して1.2倍モルとなる様に作用させて、1時間撹拌した。反応後、水分と有機溶媒を除去することで、N−シクロヘキシル−ベンゾチアゾリルスルフェンアミドの油状物を得た(収率93%)。
(Example of production of vulcanization accelerator CBS from aniline (method for synthesizing vulcanization accelerator CBS-1 in Table 1))
The 2-mercaptobenzothiazole crude product obtained above was dissolved in an aqueous sodium hydroxide solution to prepare a 20% aqueous solution of mercaptobenzothiazole sodium salt. An equimolar amount of cyclohexylamine was added to this aqueous solution and further mixed with 100 mL of methanol at 40 ° C. A 13% sodium hypochlorite solution was allowed to act on this so as to have a molar ratio of 1.2 times with respect to the sodium salt of mercaptobenzothiazole, followed by stirring for 1 hour. After the reaction, water and an organic solvent were removed to obtain an oily product of N-cyclohexyl-benzothiazolylsulfenamide (yield 93%).

(トレッド用ゴム組成物の作製)
バンバリーミキサーを用いて、表1の工程1に示す配合量の薬品を投入して、排出温度が約150℃となる様に5分間混練した。その後、工程1で得られた混練り物に、工程2に示す配合量の硫黄及び加硫促進剤を加え、バンバリーミキサーを用いて、排出温度が100℃となるように約3分間混練して、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッド形状に成形して、他のタイヤ部材とはりあわせ、170℃で20分間加硫することにより、試験用タイヤを作製した。
また、各未加硫ゴム組成物を170℃で20分間加硫することにより加硫ゴムシートを作製した。
(Preparation of rubber composition for tread)
Using a Banbury mixer, the compounding amount shown in Step 1 of Table 1 was added and kneaded for 5 minutes so that the discharge temperature was about 150 ° C. Thereafter, the kneaded product obtained in step 1 is added with sulfur and a vulcanization accelerator in the amounts shown in step 2, and is kneaded for about 3 minutes using a Banbury mixer so that the discharge temperature is 100 ° C. An unvulcanized rubber composition was obtained. The obtained unvulcanized rubber composition was molded into a tread shape, bonded to another tire member, and vulcanized at 170 ° C. for 20 minutes to prepare a test tire.
Each unvulcanized rubber composition was vulcanized at 170 ° C. for 20 minutes to prepare a vulcanized rubber sheet.

なお、上記で使用した各種薬品は、以下のとおりである。
SBR:ニポールNS116(日本ゼオン(株)製の溶液重合SBR、結合スチレン量21質量%、Tg=−25℃)
BR:宇部興産(株)のBR150B(シス1,4結合量=97質量%、ML1+4(100℃)=40)
NR:RSS#3
シリカ:Degussa社製のウルトラジルVN2(BET比表面積125m/g)
カーボンブラック:新日化カーボン(株)製のニテロン#55S(石炭系重質油を原料としたカーボンブラック、NSA=28×10/kg)
シランカップリング剤:Degussa社のSi69
ミネラルオイル:出光興産(株)製のPS−32
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤6PPD−1:上記方法で合成
老化防止剤6PPD−2:大内新興化学工業(株)製のノクラック6C
老化防止剤TMDQ−1:上記方法で合成
老化防止剤TMDQ−2:大内新興化学工業(株)製のノクラック224
ワックス:大内新興化学工業(株)製のサンノックワックス
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤CBS−1:上記方法で合成
加硫促進剤CBS−2:大内新興化学工業(株)製のノクセラーCZ
加硫促進剤MBT−1:上記方法で合成
加硫促進剤MBT−2:大内新興化学工業(株)製のノクセラーM
The various chemicals used above are as follows.
SBR: Nipol NS116 (manufactured by Nippon Zeon Co., Ltd., solution polymerization SBR, amount of bound styrene 21% by mass, Tg = −25 ° C.)
BR: BR150B of Ube Industries, Ltd. (cis 1,4 bond amount = 97 mass%, ML 1 + 4 (100 ° C.) = 40)
NR: RSS # 3
Silica: Ultrazil VN2 manufactured by Degussa (BET specific surface area 125 m 2 / g)
Carbon black: Niteron # 55S (carbon black made from coal-based heavy oil, N 2 SA = 28 × 10 3 m 2 / kg) manufactured by Nippon Kayaku Carbon Co., Ltd.
Silane coupling agent: Si69 from Degussa
Mineral oil: PS-32 made by Idemitsu Kosan Co., Ltd.
Stearic acid: Tungsten zinc oxide manufactured by NOF Corporation: Zinc oxide type 2 antioxidant 6PPD-1 manufactured by Mitsui Mining & Smelting Co., Ltd .: Synthetic antioxidant 6PPD-2: Ouchi Shinsei Chemical Industry ( Nocrack 6C
Anti-aging agent TMDQ-1: Synthetic anti-aging agent TMDQ-2 by the above method: NOCRACK 224 manufactured by Ouchi Shinsei Chemical Co., Ltd.
Wax: Sannoc Wax manufactured by Ouchi Shinsei Chemical Co., Ltd. Sulfur: Powder sulfur vulcanization accelerator CBS-1 manufactured by Tsurumi Chemical Co., Ltd. CBS-2: Synthetic vulcanization accelerator CBS-2: Eki Ouchi Noxeller CZ made by Chemical Industry Co., Ltd.
Vulcanization accelerator MBT-1: Synthetic vulcanization accelerator MBT-2: Noxeller M manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

得られた未加硫ゴム組成物、加硫ゴムシート、試験用タイヤを使用して、下記の評価を行った。それぞれの試験結果を表1に示す。
(加硫試験)
JSR製キュラストメータW型を用い、JIS規格の「振動式加硫試験機による加硫試験」の「ダイ加硫試験A法」に従い、上記未加硫ゴム組成物に破壊しない程度の低振幅(ここでは、1°)の正弦波振動を与え、試験片から上ダイスに伝わるトルクを未加硫から過加硫に至るまで測定し、170℃における未加硫ゴム組成物の加硫曲線を得た。
(1)トルク上昇値
最大トルク(MH)値から最低トルク(ML)値を引いたトルク上昇値を算出した。基準配合(比較例)のトルク上昇値を100として、各配合のトルク上昇値を指数表示した。指数は架橋効率の指標として用いられ、指数が大きいほど架橋効率が高く、良好といえる。
(2)加硫時間
最適加硫時間の指標となるtc(95)(95%トルク上昇点:t95)[分]を算出した。(1)と同じく、基準配合(比較例)のtcを100として、各配合のtcを指数表示した。指数が小さいほど、加硫速度が早いことを示す。
The following evaluation was performed using the obtained unvulcanized rubber composition, vulcanized rubber sheet, and test tire. Each test result is shown in Table 1.
(Vulcanization test)
Low amplitude that does not break into the above unvulcanized rubber composition in accordance with “Die vulcanization test A method” of JIS standard “Vulcanization test by vibratory vulcanization tester” using JSR curast meter W type (In this case, 1 °) Sinusoidal vibration was applied, the torque transmitted from the test piece to the upper die was measured from unvulcanized to overvulcanized, and the vulcanization curve of the unvulcanized rubber composition at 170 ° C. Obtained.
(1) Torque increase value A torque increase value obtained by subtracting the minimum torque (ML) value from the maximum torque (MH) value was calculated. The torque increase value of each formulation was indicated as an index with the torque increase value of the reference formulation (comparative example) being 100. The index is used as an index of crosslinking efficiency. The larger the index, the higher the crosslinking efficiency and the better.
(2) Vulcanization time tc (95) (95% torque increase point: t95) [min], which is an index of the optimum vulcanization time, was calculated. As in (1), tc of each formulation was displayed as an index with tc of the reference formulation (comparative example) being 100. The smaller the index, the faster the vulcanization rate.

(破壊エネルギー指数)
JIS K 6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に従って、各加硫ゴムシートの引張強度と破断伸びを測定した。更に、引張強度×破断伸び/2により破壊エネルギーを計算し、下記式にて、破壊エネルギー指数を計算した。破壊エネルギー指数が大きいほど、力学強度に優れることを示す。
(破壊エネルギー指数)=(各配合の破壊エネルギー)/(基準配合(比較例)の破壊エネルギー)×100
(Destruction energy index)
The tensile strength and elongation at break of each vulcanized rubber sheet were measured according to JIS K 6251 “Vulcanized Rubber and Thermoplastic Rubber—How to Obtain Tensile Properties”. Furthermore, the fracture energy was calculated by tensile strength × break elongation / 2, and the fracture energy index was calculated by the following formula. The larger the fracture energy index, the better the mechanical strength.
(Destruction energy index) = (Destruction energy of each formulation) / (Destruction energy of standard formulation (comparative example)) × 100

(耐摩耗性試験(摩耗試験))
製造した試験用タイヤを車に装着し、市街地を8000km走行後の溝深さの減少量を測定し、溝深さが1mm減少するときの走行距離を算出した。更に、基準比較例の耐摩耗性指数を100とし、下記計算式により、各配合の溝深さの減少量を指数表示した。なお、耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
(耐摩耗性指数)=(各配合で1mm溝深さが減るときの走行距離)/(基準配合(比較例)のタイヤの溝が1mm減るときの走行距離)×100
(Abrasion resistance test (wear test))
The manufactured test tire was mounted on a car, and the amount of decrease in the groove depth after traveling 8000 km in an urban area was measured, and the travel distance when the groove depth decreased by 1 mm was calculated. Furthermore, the abrasion resistance index of the reference comparative example was set to 100, and the amount of decrease in the groove depth of each formulation was displayed as an index according to the following formula. In addition, it shows that it is excellent in abrasion resistance, so that an abrasion resistance index | exponent is large.
(Abrasion resistance index) = (travel distance when 1 mm groove depth is reduced in each formulation) / (travel distance when tire groove of reference composition (comparative example) is reduced by 1 mm) × 100

(転がり抵抗試験)
2mm×130mm×130mmの加硫ゴムシートを作製し、そこから測定用試験片を切り出し、粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度50℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各試験片のtanδを測定した。基準比較例の転がり抵抗指数を100として、下記計算式により、転がり抵抗特性をそれぞれ指数表示した。指数が小さいほど、転がり抵抗が低く、優れることを示す。
(転がり抵抗指数)=(各配合のtanδ/基準配合(比較例)のtanδ)×100
(Rolling resistance test)
A vulcanized rubber sheet of 2 mm × 130 mm × 130 mm was prepared, and a test piece for measurement was cut out from the vulcanized rubber sheet. Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), temperature 50 ° C., initial strain 10%, dynamic The tan δ of each test piece was measured under the conditions of a strain of 2% and a frequency of 10 Hz. The rolling resistance characteristic of the reference comparative example was set to 100, and the rolling resistance characteristics were each indicated by an index according to the following formula. The smaller the index, the lower the rolling resistance and the better.
(Rolling resistance index) = (tan δ of each formulation / tan δ of the reference formulation (comparative example)) × 100

(ウェットグリップ性能)
アンチロックブレーキシステム(ABS)評価試験により得られた制動性能をもとにして、グリップ性能を評価した。すなわち、1800cc級のABSが装備された乗用車に、前記試験用タイヤを装着して、アスファルト路面(ウェット路面状態、スキッドナンバー約50)を実車走行させ、時速100km/hの時点でブレーキをかけ、乗用車が停止するまでの減速度を算出した。ここで、減速度とは、乗用車が停止するまでの距離である。
そして、基準配合(比較例)のウェットグリップ性能指数を100とし、下記計算式により、各配合の減速度をウェットグリップ性能指数として示した。なお、ウェットグリップ性能指数が大きいほど制動性能が良好であり、ウェットグリップ性能に優れることを示す。
(ウェットグリップ性能指数)=(基準配合(比較例)の減速度)/(各配合の減速度)×100
(Wet grip performance)
The grip performance was evaluated based on the braking performance obtained by the anti-lock brake system (ABS) evaluation test. That is, the test tire is mounted on a passenger car equipped with 1800 cc class ABS, and the asphalt road surface (wet road surface state, skid number of about 50) is actually driven, and braking is applied at a speed of 100 km / h. The deceleration until the passenger car stopped was calculated. Here, the deceleration is a distance until the passenger car stops.
And the wet-grip performance index of a reference | standard mixing | blending (comparative example) was set to 100, and the deceleration of each mixing | blending was shown as a wet-grip performance index by the following formula. The larger the wet grip performance index, the better the braking performance and the better the wet grip performance.
(Wet grip performance index) = (Deceleration of reference blend (comparative example)) / (Deceleration of each blend) × 100

(ドライグリップ性能)
上記試験用タイヤを乗用車に装置してドライアスファルト路面のテストコースを走行し、ハンドル応答性、剛性感、グリップ等に関する特性をドライバーの官能評価により評価した。結果は、基準配合(比較例)を100とする指数で表示している。数値が大きい程良好であり、ドライグリップ性能、操縦安定性に優れていることを示す。
(Dry grip performance)
The above test tire was installed in a passenger car and traveled on a dry asphalt road test course, and characteristics relating to steering response, rigidity, grip and the like were evaluated by sensory evaluation of the driver. The results are displayed as an index with the reference blend (comparative example) as 100. The larger the value, the better, and the better the dry grip performance and steering stability.

Figure 2012153655
Figure 2012153655

実施例では、加硫特性、破壊エネルギー指数の各ゴム物性、耐摩耗性、転がり抵抗特性、ウエット・ドライのグリップ特性の各タイヤ特性とも、現在の化石資源から合成した加硫促進剤、老化防止剤を用いた比較例と同等であった。このことから、実用上全く問題なく、化石資源の枯渇に対応出来ることを示す。 In the examples, vulcanization characteristics, rubber properties such as fracture energy index, wear resistance, rolling resistance characteristics, and tire characteristics such as wet and dry grip characteristics, vulcanization accelerators synthesized from current fossil resources, anti-aging It was equivalent to the comparative example using the agent. This shows that it can cope with the depletion of fossil resources without any practical problems.

Claims (18)

バイオマス材料を原料として、フェノールを経由してアニリンを合成する合成システム。 A synthesis system that synthesizes aniline via phenol from biomass material. 前記バイオマス材料が糖類又はバイオエタノールである請求項1記載の合成システム。 The synthesis system according to claim 1, wherein the biomass material is sugar or bioethanol. バイオマス材料を原料として、微生物によりフェノールを生産し、該フェノールをアニリンに変換する請求項1又は2記載の合成システム。 The synthesis system according to claim 1 or 2, wherein the biomass material is used as a raw material, phenol is produced by microorganisms, and the phenol is converted into aniline. バイオマス材料を原料として、微生物の液体培養によりフェノールを生産し、該フェノールをアニリンに変換する請求項1又は2記載の合成システム。 The synthesis system according to claim 1 or 2, wherein the biomass material is used as a raw material, phenol is produced by liquid culture of microorganisms, and the phenol is converted into aniline. フェノールを産生する微生物が有機溶媒耐性を有する微生物である請求項3又は4記載の合成システム。 The synthesis system according to claim 3 or 4, wherein the microorganism producing phenol is a microorganism having resistance to organic solvents. バイオエタノールを原料として、固体酸触媒によりフェノールを合成する請求項2記載の合成システム。 The synthesis system of Claim 2 which synthesize | combines a phenol by a solid acid catalyst from bioethanol as a raw material. 固体酸触媒がゼオライトである請求項6記載の合成システム。 The synthesis system according to claim 6, wherein the solid acid catalyst is zeolite. 固体酸触媒がMFI型ゼオライトである請求項6記載の合成システム。 The synthesis system according to claim 6, wherein the solid acid catalyst is MFI type zeolite. 固体酸触媒が銅、チタン、プラチナ、ルテニウムの単体又はこれらの化合物を担持したMFI型ゼオライトである請求項8記載の合成システム。 9. The synthesis system according to claim 8, wherein the solid acid catalyst is a simple substance of copper, titanium, platinum, ruthenium or MFI type zeolite supporting these compounds. 請求項1〜9のいずれかに記載の合成システムで得られたアニリンを原料として合成されたタイヤ用ゴム薬品。 A rubber chemical for tires synthesized using aniline obtained by the synthesis system according to any one of claims 1 to 9 as a raw material. 更にバイオマス原料から得られたアセトンを用いて合成された請求項10記載のタイヤ用ゴム薬品。 Furthermore, the rubber chemicals for tires of Claim 10 synthesize | combined using the acetone obtained from the biomass raw material. バイオマス原料から得られたアセトンは、糖類を原料とした微生物によるアセトン・ブタノール発酵により得られたものである請求項11記載のタイヤ用ゴム薬品。 The rubber chemical for tire according to claim 11, wherein the acetone obtained from the biomass raw material is obtained by acetone / butanol fermentation by a microorganism using saccharides as a raw material. 微生物がクロストリジウム属である請求項12記載のタイヤ用ゴム薬品。 The rubber chemical for tire according to claim 12, wherein the microorganism belongs to the genus Clostridium. 微生物がクロストリジウム属の遺伝子が導入された微生物である請求項12記載のタイヤ用ゴム薬品。 The rubber chemical for tires according to claim 12, wherein the microorganism is a microorganism into which a gene of the genus Clostridium is introduced. 導入された遺伝子がアセトアセテートデカルボキシラーゼ(EC4.1.1.4)、コエンザイムAトランスフェラーゼ又はチオラーゼをコードする遺伝子である請求項14記載のタイヤ用ゴム薬品。 The tire rubber chemical according to claim 14, wherein the introduced gene is a gene encoding acetoacetate decarboxylase (EC 4.1.1.4), coenzyme A transferase or thiolase. バイオマス原料から得られたアセトンが木酢液より分離して得られたものである請求項11記載のタイヤ用ゴム薬品。 The rubber chemicals for tires according to claim 11, wherein acetone obtained from the biomass raw material is obtained by separating from acetone. バイオマス原料から得られたアセトンがバイオエタノールより誘導されたものである請求項11記載のタイヤ用ゴム薬品。 The rubber chemicals for tires according to claim 11, wherein acetone obtained from biomass raw material is derived from bioethanol. 請求項10〜17記載のタイヤ用ゴム薬品を用いた空気入りタイヤ。 A pneumatic tire using the rubber chemicals for tires according to claim 10.
JP2011014495A 2011-01-26 2011-01-26 Synthesis system, rubber chemicals for tires and pneumatic tires Active JP5552068B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011014495A JP5552068B2 (en) 2011-01-26 2011-01-26 Synthesis system, rubber chemicals for tires and pneumatic tires
PCT/JP2012/051503 WO2012102290A1 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
US13/637,336 US9115047B2 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
CN201280001255.9A CN102918009B (en) 2011-01-26 2012-01-25 Synthesis system, tyre rubber pharmaceutical chemicals, tire synthetic rubber and pneumatic tyre
CN201410742596.2A CN104498550A (en) 2011-01-26 2012-01-25 Synthesis System, Rubber Chemical Substance For Tires, Synthetic Rubber For Tires, And Pneumatic Tire
BR112012030796A BR112012030796A2 (en) 2011-01-26 2012-01-25 synthesis system, chemical rubber for tires, synthetic rubber for tires, and pneumatic
EP12739791.7A EP2543654B1 (en) 2011-01-26 2012-01-25 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
US14/801,001 US9663445B2 (en) 2011-01-26 2015-07-16 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014495A JP5552068B2 (en) 2011-01-26 2011-01-26 Synthesis system, rubber chemicals for tires and pneumatic tires

Publications (2)

Publication Number Publication Date
JP2012153655A true JP2012153655A (en) 2012-08-16
JP5552068B2 JP5552068B2 (en) 2014-07-16

Family

ID=46835792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014495A Active JP5552068B2 (en) 2011-01-26 2011-01-26 Synthesis system, rubber chemicals for tires and pneumatic tires

Country Status (1)

Country Link
JP (1) JP5552068B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
JP2014181163A (en) * 2013-03-21 2014-09-29 Tokyo Electric Power Co Inc:The Carbon dioxide reduction system
WO2014208757A1 (en) * 2013-06-27 2014-12-31 株式会社ブリヂストン Antioxidant, rubber composition, and tire
US9115047B2 (en) 2011-01-26 2015-08-25 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2017206655A (en) * 2016-05-20 2017-11-24 株式会社神鋼環境ソリューション Method for producing lignophenol and apparatus for producing lignophenol

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene
JP2006089552A (en) * 2004-09-22 2006-04-06 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2008088140A (en) * 2006-10-05 2008-04-17 Sangi Co Ltd Method for synthesizing chemical industry feedstock and fuel composition
JP2008274225A (en) * 2007-03-30 2008-11-13 Sumitomo Rubber Ind Ltd Process for producing antiaging agent, vulcanization accelerator or modified natural rubber, using microorganism
JP2010017176A (en) * 2008-06-10 2010-01-28 Sumitomo Rubber Ind Ltd Method for producing antiaging agent, vulcanization accelerator or modified natural rubber by using microorganism or plant
JP2010535826A (en) * 2007-08-13 2010-11-25 サウディ ベーシック インダストリーズ コーポレイション Process for converting aliphatic fuel promoters to aromatic compounds
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859928A (en) * 1981-10-02 1983-04-09 Takeda Chem Ind Ltd Preparation of butadiene
JP2006089552A (en) * 2004-09-22 2006-04-06 Sumitomo Rubber Ind Ltd Tire rubber composition and pneumatic tire
JP2008088140A (en) * 2006-10-05 2008-04-17 Sangi Co Ltd Method for synthesizing chemical industry feedstock and fuel composition
JP2008274225A (en) * 2007-03-30 2008-11-13 Sumitomo Rubber Ind Ltd Process for producing antiaging agent, vulcanization accelerator or modified natural rubber, using microorganism
JP2010535826A (en) * 2007-08-13 2010-11-25 サウディ ベーシック インダストリーズ コーポレイション Process for converting aliphatic fuel promoters to aromatic compounds
JP2010017176A (en) * 2008-06-10 2010-01-28 Sumitomo Rubber Ind Ltd Method for producing antiaging agent, vulcanization accelerator or modified natural rubber by using microorganism or plant
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153654A (en) * 2011-01-26 2012-08-16 Sumitomo Rubber Ind Ltd Synthesis system, rubber chemical for tire, synthetic rubber for tire and pneumatic tire
US9115047B2 (en) 2011-01-26 2015-08-25 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
US9663445B2 (en) 2011-01-26 2017-05-30 Sumitomo Rubber Industries, Ltd. Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2014181163A (en) * 2013-03-21 2014-09-29 Tokyo Electric Power Co Inc:The Carbon dioxide reduction system
WO2014208757A1 (en) * 2013-06-27 2014-12-31 株式会社ブリヂストン Antioxidant, rubber composition, and tire
JP2017206655A (en) * 2016-05-20 2017-11-24 株式会社神鋼環境ソリューション Method for producing lignophenol and apparatus for producing lignophenol

Also Published As

Publication number Publication date
JP5552068B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2012102290A1 (en) Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP5552067B2 (en) Synthetic system, rubber chemicals for tire, synthetic rubber for tire and pneumatic tire
JP5536840B2 (en) Rubber composition for tire, tire member, and pneumatic tire
EP1892300B1 (en) Method for producing 1,3-propanediol using crude glycerol, a by-product from biodiesel production
JP5552068B2 (en) Synthesis system, rubber chemicals for tires and pneumatic tires
JP5638041B2 (en) Rubber composition for tire, tire member, and pneumatic tire
CN106795533B (en) Method for preparing organism-based homoserine lactone hydrochloride and organism-based organic acid from O-acylhomoserine produced by microorganism
Ochoa-Gómez et al. Production of sorbitol from biomass
JP6332925B2 (en) Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car
JP2014148683A (en) Rubber composition for tire, tire member and pneumatic tire
JP5866413B2 (en) Rubber composition for tire, tire member, and pneumatic tire
CN111621034B (en) Biomass modification method
JP6317498B2 (en) Rubber composition for tread for studless tire and studless tire
JP6317497B2 (en) Tread rubber composition and pneumatic tire
JP6385031B2 (en) Rubber composition for tread for studless tire and studless tire
JP2022179158A (en) Rubber composition for passenger car tire and passenger car tire
JP2022179157A (en) Cap tread and passenger car tire
JP2014105323A (en) Rubber composition for sidewall, and pneumatic tire

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R150 Certificate of patent or registration of utility model

Ref document number: 5552068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250