JP6084093B2 - Rotating tool buried position detection method and friction stir welding method - Google Patents

Rotating tool buried position detection method and friction stir welding method Download PDF

Info

Publication number
JP6084093B2
JP6084093B2 JP2013072323A JP2013072323A JP6084093B2 JP 6084093 B2 JP6084093 B2 JP 6084093B2 JP 2013072323 A JP2013072323 A JP 2013072323A JP 2013072323 A JP2013072323 A JP 2013072323A JP 6084093 B2 JP6084093 B2 JP 6084093B2
Authority
JP
Japan
Prior art keywords
joined
rotary tool
ferrite
tool
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013072323A
Other languages
Japanese (ja)
Other versions
JP2014195815A (en
Inventor
直樹 河田
直樹 河田
藍 増田
藍 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Transport Engineering Co
Original Assignee
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Transport Engineering Co filed Critical Japan Transport Engineering Co
Priority to JP2013072323A priority Critical patent/JP6084093B2/en
Publication of JP2014195815A publication Critical patent/JP2014195815A/en
Application granted granted Critical
Publication of JP6084093B2 publication Critical patent/JP6084093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、回転ツール埋没位置検出方法及び摩擦攪拌接合方法に関する。   The present invention relates to a rotary tool buried position detection method and a friction stir welding method.

被接合材同士の当接部分に回転ツールを押し込んで回転させることによって当接部分に接合部を形成する摩擦攪拌接合が知られている。摩擦攪拌接合では、回転ツールを高速で回転させて被接合材の当接部分に押し込むため、接合中に回転ツールの一部(例えばプローブ)が破損し、被接合材に埋まってしまうことがある。回転ツールの破損が生じると、その後の接合が完了したとしても破損部分の埋没位置で接合不良が生じるおそれがある。このような問題に対し、従来では目視や超音波・X線を用いた検査によって回転ツールの破損部分の埋没位置の検出が行われていた(例えば特許文献1を参照)。   Friction stir welding is known in which a rotating tool is pushed into a contact portion between members to be joined and rotated to form a joint portion at the contact portion. In friction stir welding, since the rotary tool is rotated at a high speed and pushed into the contact portion of the material to be joined, a part of the rotary tool (for example, a probe) may be damaged during the joining and buried in the material to be joined. . If the rotary tool is damaged, even if the subsequent joining is completed, there is a possibility that a joining failure may occur at the buried position of the damaged part. Conventionally, for such a problem, the buried position of the damaged portion of the rotary tool has been detected by visual inspection or inspection using ultrasonic waves and X-rays (see, for example, Patent Document 1).

特開2003−98161号公報JP 2003-98161 A

しかしながら、目視による検出では、被接合材を反転させて裏面の状態を観察する必要があるため被接合材が大きい場合には検出が困難となる。また、超音波・X線による検出では、特殊な測定環境や測定スキルが要求されるため容易に検出できないという問題がある。   However, in visual detection, since it is necessary to invert the material to be bonded and observe the state of the back surface, detection becomes difficult when the material to be bonded is large. In addition, detection by ultrasonic waves / X-rays has a problem that it cannot be easily detected because a special measurement environment and measurement skills are required.

本発明は、上記課題を解決するためになされたものであり、回転ツールの破損部分の埋没位置を簡便かつ精度よく検出できる回転ツール埋没位置検出方法及び摩擦攪拌接合方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a rotary tool buried position detection method and a friction stir welding method that can easily and accurately detect the buried position of a damaged portion of the rotary tool. To do.

本発明に係る回転ツール埋没位置検出方法は、被接合材同士の当接部分に押し込んだ回転ツールを回転させることによって当接部分に沿って接合部を形成する摩擦攪拌接合に用いる回転ツール埋没位置検出方法であって、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用い、接合部に沿ってフェライト量を測定する測定センサを走査する測定ステップと、測定ステップにおいて測定されたフェライト量に基づいて接合部における回転ツールの破損部分の埋没位置を検出する検出ステップと、を備えることを特徴とする。   The rotary tool burying position detection method according to the present invention is a rotary tool burying position used for friction stir welding in which a joint is formed along a contact part by rotating a rotary tool pushed into the contact part of the materials to be joined. A detection method, wherein a material having different ferrite contents is used for a material to be joined and a rotary tool, and a measurement step of scanning a measurement sensor for measuring the amount of ferrite along the joint, and a ferrite measured in the measurement step And a detection step of detecting a buried position of a damaged portion of the rotary tool in the joint based on the amount.

この回転ツール埋没位置検出方法では、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用いている。このため、接合部に沿ってフェライト量を測定すると、回転ツールに破損が生じている場合には回転ツールの破損部分の埋没位置でフェライト量が変化し、当該位置を回転ツールの破損部分の埋没位置として検出できる。この回転ツール埋没位置検出方法では、被接合材が大きい場合の被接合材の反転が不要であり、測定環境や測定スキルに依存しないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   In this rotary tool burying position detection method, materials having different ferrite contents are used for the material to be joined and the rotary tool. For this reason, when the amount of ferrite is measured along the joint, if the rotating tool is damaged, the amount of ferrite changes at the position where the damaged part of the rotating tool is buried, and that position is buried in the damaged part of the rotating tool. It can be detected as a position. This rotating tool burying position detection method does not require reversal of the material to be bonded when the material to be bonded is large, and does not depend on the measurement environment or measurement skill. can do.

また、被接合材と回転ツールとに、回転ツールのフェライト含有量が被接合材のフェライト含有量より多くなるような材料を用い、検出ステップにおいて、フェライト量が閾値より大きくなる位置を回転ツールの埋没位置として検出することが好ましい。回転ツールのフェライト含有量が被接合材のフェライト含有量より多いことに基づいて閾値を設定し、接合部におけるフェライト量が閾値より大きい位置を回転ツールの破損部分の埋没位置とすることで、より精度よく回転ツールの破損部分の埋没位置を検出することができる。   In addition, a material in which the ferrite content of the rotating tool is larger than the ferrite content of the material to be joined is used for the material to be joined and the rotating tool, and the position where the ferrite amount is larger than the threshold value is set in the detecting step in the detection step. It is preferable to detect as the buried position. By setting the threshold based on the ferrite content of the rotating tool being greater than the ferrite content of the material to be joined, and setting the position where the ferrite content at the joint is greater than the threshold as the buried position of the damaged portion of the rotating tool, The buried position of the damaged portion of the rotary tool can be detected with high accuracy.

また、被接合材と回転ツールとに、被接合材のフェライト含有量が回転ツールのフェライト含有量より多くなるような材料を用い、検出ステップにおいて、フェライト量が閾値より小さくなる位置を回転ツールの埋没位置として検出することが好ましい。被接合材のフェライト含有量が回転ツールのフェライト含有量より多いことに基づいて閾値を設定し、接合部におけるフェライト量が閾値より小さい位置を回転ツールの破損部分の埋没位置とすることで、より精度よく回転ツールの破損部分の埋没位置を検出することができる。   In addition, a material that has a ferrite content of the material to be joined that is larger than the ferrite content of the rotary tool is used for the material to be joined and the rotary tool. It is preferable to detect as the buried position. By setting the threshold based on the ferrite content of the material to be joined being larger than the ferrite content of the rotary tool, and setting the position where the ferrite content in the joint is smaller than the threshold as the buried position of the damaged part of the rotary tool, The buried position of the damaged portion of the rotary tool can be detected with high accuracy.

また、測定ステップと、検出ステップとを、被接合材同士の接合完了後に実施することが好ましい。この場合でも、被接合材の反転や特殊な測定環境・測定スキルを必要としないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   Moreover, it is preferable to implement a measurement step and a detection step after completion | finish of joining of to-be-joined materials. Even in this case, since the inversion of the material to be joined and the special measurement environment / measurement skill are not required, the buried position of the damaged portion of the rotary tool can be detected easily and accurately.

また、測定ステップと、検出ステップとを、被接合材同士の接合中に実施することが好ましい。この場合、接合中にリアルタイムで回転ツールの破損部分が埋没していることを検出できる。   Moreover, it is preferable to implement a measurement step and a detection step during joining of to-be-joined materials. In this case, it is possible to detect that the damaged portion of the rotary tool is buried in real time during joining.

また、本発明に係る摩擦攪拌接合方法は、被接合材同士の当接部分に押し込んだ回転ツールを回転させることによって当接部分に沿って接合部を形成する接合ステップを備える摩擦攪拌接合方法であって、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用い、接合ステップは、接合部に沿ってフェライト量を測定する測定センサを走査する測定ステップと、測定ステップにおいて測定されたフェライト量に基づいて接合部における回転ツールの埋没位置を検出する検出ステップと、を備えることを特徴とする。   Further, the friction stir welding method according to the present invention is a friction stir welding method including a joining step of forming a joint portion along the abutting portion by rotating a rotating tool pushed into the abutting portion of the materials to be joined. Further, materials having different ferrite contents are used for the material to be joined and the rotary tool, and the joining step is measured in a measuring step of scanning a measuring sensor for measuring the amount of ferrite along the joint, and the measuring step. And a detection step of detecting a buried position of the rotary tool in the joint based on the amount of ferrite.

この摩擦攪拌接合方法では、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用いている。このため、接合部に沿ってフェライト量を測定すると、回転ツールに破損が生じている場合には回転ツールの破損部分の埋没位置でフェライト量が変化し、当該位置を回転ツールの破損部分の埋没位置として検出できる。この摩擦攪拌接合方法では、被接合材が大きい場合の被接合材の反転が不要であり、測定環境や測定スキルに依存しないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   In this friction stir welding method, materials having different ferrite contents are used for the material to be joined and the rotary tool. For this reason, when the amount of ferrite is measured along the joint, if the rotating tool is damaged, the amount of ferrite changes at the position where the damaged part of the rotating tool is buried, and that position is buried in the damaged part of the rotating tool. It can be detected as a position. This friction stir welding method does not require reversal of the material to be joined when the material to be joined is large, and does not depend on the measurement environment or measurement skill, so it can easily and accurately detect the buried position of the damaged part of the rotating tool. Can do.

また、被接合材と回転ツールとに、回転ツールのフェライト含有量が被接合材のフェライト含有量より多くなるような材料を用い、検出ステップにおいて、フェライト量が閾値より大きくなる位置を回転ツールの埋没位置として検出することが好ましい。回転ツールのフェライト含有量が被接合材のフェライト含有量より多いことに基づいて閾値を設定し、接合部におけるフェライト量が閾値より大きい位置を回転ツールの破損部分の埋没位置とすることで、より精度よく回転ツールの破損部分の埋没位置を検出することができる。   In addition, a material in which the ferrite content of the rotating tool is larger than the ferrite content of the material to be joined is used for the material to be joined and the rotating tool, and the position where the ferrite amount is larger than the threshold value is set in the detecting step in the detection step. It is preferable to detect as the buried position. By setting the threshold based on the ferrite content of the rotating tool being greater than the ferrite content of the material to be joined, and setting the position where the ferrite content at the joint is greater than the threshold as the buried position of the damaged portion of the rotating tool, The buried position of the damaged portion of the rotary tool can be detected with high accuracy.

また、被接合材と回転ツールとに、被接合材のフェライト含有量が回転ツールのフェライト含有量より多くなるような材料を用い、検出ステップにおいて、フェライト量が閾値より小さくなる位置を回転ツールの埋没位置として検出することが好ましい。被接合材のフェライト含有量が回転ツールのフェライト含有量より多いことに基づいて閾値を設定し、接合部におけるフェライト量が閾値より小さい位置を回転ツールの破損部分の埋没位置とすることで、より精度よく回転ツールの破損部分の埋没位置を検出することができる。   In addition, a material that has a ferrite content of the material to be joined that is larger than the ferrite content of the rotary tool is used for the material to be joined and the rotary tool. It is preferable to detect as the buried position. By setting the threshold based on the ferrite content of the material to be joined being larger than the ferrite content of the rotary tool, and setting the position where the ferrite content in the joint is smaller than the threshold as the buried position of the damaged part of the rotary tool, The buried position of the damaged portion of the rotary tool can be detected with high accuracy.

また、測定ステップと、検出ステップとを、被接合材同士の接合完了後に実施することが好ましい。この場合でも、被接合材の反転や特殊な測定環境・測定スキルを必要としないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   Moreover, it is preferable to implement a measurement step and a detection step after completion | finish of joining of to-be-joined materials. Even in this case, since the inversion of the material to be joined and the special measurement environment / measurement skill are not required, the buried position of the damaged portion of the rotary tool can be detected easily and accurately.

また、測定ステップと、検出ステップとを、被接合材同士の接合中に実施することが好ましい。この場合、接合中にリアルタイムで回転ツールが埋没していることを検出できる。   Moreover, it is preferable to implement a measurement step and a detection step during joining of to-be-joined materials. In this case, it is possible to detect that the rotary tool is buried in real time during joining.

また、接合ステップは、検出ステップにおいて回転ツールの埋没位置が検出されたときに、当該埋没位置に穴を形成して埋没している回転ツールを除去し、穴を溶加材で充填して再接合する再接合ステップをさらに備えることが好ましい。再接合ステップを備えることにより、接合不良の少ない接合体を得ることができる。   Further, in the joining step, when the buried position of the rotating tool is detected in the detecting step, a hole is formed at the buried position to remove the buried rotating tool, and the hole is filled with a filler material and re-applied. It is preferable to further comprise a rejoining step of joining. By providing the re-joining step, a joined body with few joint failures can be obtained.

本発明によれば、回転ツールの破損部分の埋没位置を簡便かつ精度よく検出できる。   According to the present invention, the buried position of the damaged portion of the rotary tool can be detected easily and accurately.

本発明に係る摩擦攪拌接合方法を示す斜視図であり、(a)及び(b)は接合ステップ、(c)は測定ステップを示す斜視図である。It is a perspective view which shows the friction stir welding method which concerns on this invention, (a) And (b) is a joining step, (c) is a perspective view which shows a measurement step. (a)は図1(c)の測定ステップの断面図であり、(b)は測定ステップに後続する検出ステップで得られるフェライト量の測定例を示す模式図である。(A) is sectional drawing of the measurement step of FIG.1 (c), (b) is a schematic diagram which shows the example of a measurement of the ferrite content obtained by the detection step which follows a measurement step. 図2に後続する再接合ステップを示す断面図である。FIG. 3 is a cross-sectional view showing a rejoining step subsequent to FIG. 2. 変形例の検出ステップで得られるフェライト量の測定例を示す模式図である。It is a schematic diagram which shows the example of a measurement of the ferrite content obtained at the detection step of a modification. 変形例の測定ステップを示す断面図である。It is sectional drawing which shows the measurement step of a modification.

以下、図面を参照しながら、本発明に係る回転ツール埋没位置検出方法及び摩擦攪拌接合方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a rotary tool buried position detection method and a friction stir welding method according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る摩擦攪拌接合方法を示す斜視図である。この摩擦攪拌接合方法は、被接合材同士の当接部分に押し込んだ回転ツールを回転させることによって当接部分に沿って接合部を形成する接合ステップを備える。接合ステップにおいては、接合中に回転ツールの一部(例えばプローブ)が破損し、被接合材に埋まってしまうことがある。回転ツールの破損が生じると、その後の接合が完了したとしても破損部分の埋没位置で接合不良が生じるおそれがある。そこで、本実施形態の接合ステップは、回転ツールの破損部分の埋没位置を検出するために、測定ステップと、検出ステップとを備える。   FIG. 1 is a perspective view showing a friction stir welding method according to the present invention. This friction stir welding method includes a joining step of forming a joined portion along the abutting portion by rotating a rotating tool pushed into the abutting portion of the materials to be joined. In the joining step, a part of the rotating tool (for example, a probe) may be damaged during the joining and buried in the material to be joined. If the rotary tool is damaged, even if the subsequent joining is completed, there is a possibility that a joining failure may occur at the buried position of the damaged part. Therefore, the joining step of the present embodiment includes a measurement step and a detection step in order to detect the buried position of the damaged portion of the rotary tool.

接合ステップでは、まず、図1(a)に示すように、定盤1上に被接合材2aと被接合材2bとを端面同士を当接させて配置する。定盤1は、例えばオーステナイトステンレス鋼で構成されている。被接合材2a,2bは、例えば鉄道車両等の車体を構成する外板であり、例えばアルミニウム合金、マグネシウム合金等の非鉄系材料から構成されている。   In the joining step, first, as shown in FIG. 1A, the material to be joined 2a and the material to be joined 2b are arranged on the surface plate 1 with their end surfaces in contact with each other. The surface plate 1 is made of, for example, austenitic stainless steel. The joined materials 2a and 2b are outer plates constituting a vehicle body such as a railway vehicle, for example, and are made of a non-ferrous material such as an aluminum alloy or a magnesium alloy.

次に、図1(b)に示すように、回転ツール3のプローブ3aを被接合材2a,2bの当接部分Lに押し込んで所定の回転数で回転させることによって、当接部分Lに沿って接合部Wを形成する。回転ツール3は、被接合材2a,2bに用いられている材料(本実施形態では非鉄材料)とはフェライト含有量の異なる材料、例えば工具鋼、高速度鋼等の鉄系材料から構成されている。   Next, as shown in FIG. 1 (b), the probe 3a of the rotary tool 3 is pushed into the contact portion L of the materials to be joined 2a and 2b and rotated at a predetermined number of rotations. To form the joint W. The rotary tool 3 is composed of a material having a ferrite content different from that of the material used for the materials to be joined 2a and 2b (non-ferrous material in the present embodiment), for example, iron-based materials such as tool steel and high-speed steel. Yes.

なお、本明細書における「フェライト(含有)量」とは、フェライト含有量測定手段により測定されるフェライト含有量校正用試験片を基準としたFe(フェライト)%を意味する。これによって測定される被接合材2a,2bのフェライト含有量は、例えば限りなく0Fe%に近いことが好ましく、回転ツール3のフェライト含有量は例えば80Fe%であることが好ましく、定盤1のフェライト含有量は例えば1Fe%未満であることが好ましい。また、フェライト含有量校正用試験片には、例えば0.4Fe%、2.5Fe%、10.5Fe%、14.5Fe%、30Fe%、63Fe%及び80Fe%の試験片を用いる。   In the present specification, the “ferrite (content) amount” means Fe (ferrite)% based on a ferrite content calibration test piece measured by a ferrite content measuring means. The ferrite content of the materials to be joined 2a and 2b measured thereby is preferably as close as possible to 0 Fe%, for example, and the ferrite content of the rotary tool 3 is preferably 80 Fe%, for example. For example, the content is preferably less than 1 Fe%. For the ferrite content calibration test piece, for example, 0.4Fe%, 2.5Fe%, 10.5Fe%, 14.5Fe%, 30Fe%, 63Fe%, and 80Fe% test pieces are used.

被接合材2a,2b同士の接合が完了した後、図1(c)に示すように、フェライト量を測定する測定センサ4を接合部Wに沿って走査する(測定ステップ)。測定センサ4としては、例えばフェライト含有量測定器(株式会社フィッシャー・インストルメンツ製「FERITSCOPE FMP30」(商品名))を用いる。測定センサ4は、測定したフェライト量に応じた信号を判断部5へ出力する。   After the joining of the materials to be joined 2a and 2b is completed, as shown in FIG. 1C, the measurement sensor 4 for measuring the ferrite content is scanned along the joint W (measuring step). As the measurement sensor 4, for example, a ferrite content measuring device (“FERITSCOPE FMP30” (trade name) manufactured by Fischer Instruments Co., Ltd.) is used. The measurement sensor 4 outputs a signal corresponding to the measured ferrite amount to the determination unit 5.

図2(a)は、図1(c)の測定ステップの断面図であり、回転ツール3のプローブ3aが破損して被接合材2a,2bに埋没している例を示している。この場合、測定センサ4は、図2(b)に示すような接合部Wにおけるフェライト量を測定し、測定したフェライト量に応じた信号を判断部5へ出力する。   FIG. 2A is a cross-sectional view of the measurement step of FIG. 1C, and shows an example in which the probe 3a of the rotary tool 3 is broken and buried in the materials to be joined 2a and 2b. In this case, the measurement sensor 4 measures the ferrite amount at the joint W as shown in FIG. 2B and outputs a signal corresponding to the measured ferrite amount to the determination unit 5.

判断部5は、図2(b)に示すような信号を測定センサ4から受け取ると、それに基づいて破損したプローブ3aの埋没位置を検出する(検出ステップ)。具体的には、プローブ3aのフェライト含有量が被接合材2a,2bのフェライト含有量より多いため、図2(b)に示すように、破損したプローブ3aが埋没している位置でフェライト量が極大となる。判断部5は、この極大値が閾値よりも大きい場合に、極大値をとる位置を破損したプローブ3aの埋没位置として検出する。閾値は、例えば回転ツール3のプローブ部に相当する量の工具鋼塊のフェライト含有量とする。なお、破損したプローブ3aが埋没していない位置においても定盤1が微量のフェライトを含む場合には、一定のフェライト量が測定される。   When the determination unit 5 receives a signal as shown in FIG. 2B from the measurement sensor 4, the determination unit 5 detects the buried position of the damaged probe 3a based on the signal (detection step). Specifically, since the ferrite content of the probe 3a is larger than the ferrite content of the materials to be joined 2a and 2b, the ferrite content is at the position where the damaged probe 3a is buried as shown in FIG. It becomes maximum. When this maximum value is larger than the threshold value, the determination unit 5 detects the position where the maximum value is taken as the buried position of the damaged probe 3a. The threshold value is, for example, the ferrite content of the tool steel ingot corresponding to the probe portion of the rotary tool 3. Even when the damaged probe 3a is not buried, if the surface plate 1 contains a small amount of ferrite, a certain amount of ferrite is measured.

破損したプローブ3aの埋没位置が検出された場合には、検出ステップに後続して再接合ステップが行われる。再接合ステップでは、まず、図3(a)に示すように、被接合材2a,2bの接合部Wにおける破損したプローブ3aの埋没位置に回転ツール3の破損部分3aを除去できる程度の大きさの穴21を形成する。続いて、図3(b)に示すように、穴21を溶加材で充填して被接合材2a,2b同士の再接合を行う。溶加材としては、例えば被接合材2a,2bと同じ材料を用いる。   When the buried position of the damaged probe 3a is detected, a rejoining step is performed following the detection step. In the rejoining step, first, as shown in FIG. 3A, the broken portion 3a of the rotary tool 3 can be removed at the buried position of the broken probe 3a in the joined portion W of the materials to be joined 2a and 2b. Hole 21 is formed. Subsequently, as shown in FIG. 3B, the holes 21 are filled with a filler material, and the joined materials 2a and 2b are rejoined. As the filler material, for example, the same material as the materials to be joined 2a and 2b is used.

以上のように、この摩擦攪拌接合方法では、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用いている。このため、接合部に沿ってフェライト量を測定すると、回転ツールに破損が生じている場合には回転ツールの破損部分の埋没位置でフェライト量が変化し、当該位置を回転ツールの破損部分の埋没位置として検出できる。この摩擦攪拌接合方法では、被接合材が大きい場合の被接合材の反転が不要であり、測定環境や測定スキルに依存しないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。また、この摩擦攪拌接合方法では、回転ツールの破損部分の埋没位置を検出した場合に被接合材同士を再接合するため、接合不良の少ない接合体を得ることができる。   As described above, in this friction stir welding method, materials having different ferrite contents are used for the material to be joined and the rotary tool. For this reason, when the amount of ferrite is measured along the joint, if the rotating tool is damaged, the amount of ferrite changes at the position where the damaged part of the rotating tool is buried, and that position is buried in the damaged part of the rotating tool. It can be detected as a position. This friction stir welding method does not require reversal of the material to be joined when the material to be joined is large, and does not depend on the measurement environment or measurement skill, so it can easily and accurately detect the buried position of the damaged part of the rotating tool. Can do. Moreover, in this friction stir welding method, since the to-be-joined materials are rejoined when the burying position of the damaged portion of the rotary tool is detected, a joined body with few joining failures can be obtained.

本発明は、上記実施形態に限られるものではない。例えば上記実施形態では、被接合材2a,2bに非鉄系材料を用い、回転ツール3に鉄系材料を用いたが、変形例として、被接合材2a,2bに工具鋼、高速度鋼等の鉄系材料を用い、回転ツール3にセラミック、超硬(タングステンカーバイドコバルト)、PCBN等の非鉄系材料を用いてもよい。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, non-ferrous materials are used for the materials to be joined 2a and 2b, and iron-based materials are used for the rotary tool 3. However, as a modification, tool steel, high-speed steel or the like is used for the materials to be joined 2a and 2b. An iron-based material may be used, and the rotary tool 3 may be a non-ferrous material such as ceramic, carbide (tungsten carbide cobalt), or PCBN.

この変形例の場合、回転ツール3が破損して、例えば破損したプローブ3aが被接合材2a,2bに埋没していると、図4に示すような接合部Wにおけるフェライト量が測定される。図4においては、被接合材2a,2bのフェライト含有量がプローブ3aのフェライト含有量より多いため、破損したプローブ3aが埋没している位置でフェライト量は極小となる。判断部5は、この極小値が閾値よりも小さい場合に、極小値をとる位置を破損したプローブ3aの埋没位置として検出する。   In the case of this modification, when the rotary tool 3 is broken and, for example, the broken probe 3a is buried in the materials to be joined 2a and 2b, the amount of ferrite in the joint W as shown in FIG. 4 is measured. In FIG. 4, since the ferrite content of the materials to be joined 2a and 2b is larger than the ferrite content of the probe 3a, the ferrite content is minimized at the position where the damaged probe 3a is buried. When the minimum value is smaller than the threshold value, the determination unit 5 detects the position where the minimum value is taken as the buried position of the damaged probe 3a.

この変形例の場合でも上記実施形態と同様に、被接合材と回転ツールとに互いにフェライト含有量の異なる材料を用いている。このため、接合部に沿ってフェライト量を測定すると回転ツールに破損が生じている場合には回転ツールの破損部分の埋没位置でフェライト量が変化し、当該位置を回転ツールの破損部分の埋没位置として検出できる。この変形例の場合でも、被接合材が大きい場合の被接合材の反転が不要であり、測定環境や測定スキルに依存しないため、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   Even in this modified example, materials having different ferrite contents are used for the material to be joined and the rotary tool, as in the above embodiment. For this reason, when the amount of ferrite is measured along the joint, if the rotating tool is damaged, the amount of ferrite changes at the position where the damaged portion of the rotating tool is buried, and this position is replaced by the position where the damaged portion of the rotating tool is buried. Can be detected as Even in this modification, it is not necessary to invert the material to be bonded when the material to be bonded is large, and it does not depend on the measurement environment or measurement skill, so it is easy and accurate to detect the buried position of the damaged part of the rotating tool. Can do.

また、上記実施形態では、接合完了後に測定ステップと検出ステップとを行ったが、別の変形例として、接合中に測定ステップと検出ステップとを行ってもよい。図5は、この変形例の測定ステップを示す断面図である。同図に示すように、回転ツール3のプローブ3aを被接合材2a,2bの当接部分Lに押し込んで回転させることによって、当接部分Lに沿って接合部Wを形成すると同時に、測定センサ4を回転ツール3に追随させて接合部Wにおけるフェライト量の測定を行い、回転ツール3が破損した場合にその破損部分の埋没位置を検出する。   Moreover, in the said embodiment, although the measurement step and the detection step were performed after completion | finish of joining, you may perform a measurement step and a detection step during joining as another modification. FIG. 5 is a cross-sectional view showing the measurement steps of this modification. As shown in the figure, the probe 3a of the rotary tool 3 is pushed into the contact portion L of the materials to be joined 2a and 2b and rotated to form the joint portion W along the contact portion L, and at the same time, the measurement sensor. 4 is followed by the rotary tool 3 to measure the amount of ferrite in the joint W, and when the rotary tool 3 is damaged, the buried position of the damaged portion is detected.

回転ツール3の破損部分の埋没位置が検出された場合は、検出ステップに後続して再接合ステップを行う。具体的には、まず、埋没位置検出後ただちに接合を中断し、回転ツール3を新しい回転ツールと交換する。次に、回転ツール3の破損部分の埋没位置に穴21を形成することよって回転ツール3の破損部分を除去する。続いて、穴21に溶加材を充填した後に、新しい回転ツール3を用いた摩擦攪拌接合によって被接合材2a,2b同士を再接合する。   When the buried position of the damaged portion of the rotary tool 3 is detected, a re-joining step is performed following the detection step. Specifically, the joining is interrupted immediately after detecting the buried position, and the rotary tool 3 is replaced with a new rotary tool. Next, the damaged portion of the rotating tool 3 is removed by forming a hole 21 at the buried position of the damaged portion of the rotating tool 3. Subsequently, after filling the hole 21 with the filler material, the materials to be joined 2 a and 2 b are re-joined by friction stir welding using the new rotary tool 3.

この変形例の場合、接合中にリアルタイムで回転ツールの破損部分の埋没位置を検出することができ、また、埋没位置が検出された場合にすぐに再接合を行うことができるため、効率よく接合不良の少ない接合体が得られる。   In the case of this modification, the buried position of the damaged part of the rotary tool can be detected in real time during joining, and re-joining can be performed immediately when the buried position is detected. A joined body with few defects is obtained.

また、上記実施形態では、被接合材2a,2bの端面同士を当接させて接合(突合せ接合)したが、被接合材2a,2bの端部付近同士を重ね合わせて当接させた状態で接合(重ね合わせ接合)してもよい。この場合でも上記実施形態と同様に、簡便かつ精度よく回転ツールの破損部分の埋没位置を検出することができる。   Moreover, in the said embodiment, although the end surfaces of the to-be-joined materials 2a and 2b were contact | abutted and joined (butt joining), the edge part vicinity of to-be-joined materials 2a and 2b was piled up and contacted. Bonding (overlap bonding) may be used. Even in this case, the embedded position of the damaged portion of the rotary tool can be detected easily and accurately as in the above embodiment.

1…定盤、2a,2b…被接合材、3…回転ツール、3a…プローブ、4…測定センサ、5…判断部、21…穴、L…当接部分、W…接合部。   DESCRIPTION OF SYMBOLS 1 ... Surface plate, 2a, 2b ... Joined material, 3 ... Rotary tool, 3a ... Probe, 4 ... Measurement sensor, 5 ... Judgment part, 21 ... Hole, L ... Contact part, W ... Joining part.

Claims (11)

被接合材同士の当接部分に押し込んだ回転ツールを回転させることによって前記当接部分に沿って接合部を形成する摩擦攪拌接合に用いる回転ツール埋没位置検出方法であって、
前記被接合材と前記回転ツールとに互いにフェライト含有量の異なる材料を用い、
前記接合部に沿ってフェライト量を測定する測定センサを走査する測定ステップと、
前記測定ステップにおいて測定されたフェライト量に基づいて前記接合部における前記回転ツールの破損部分の埋没位置を検出する検出ステップと、を備えることを特徴とする回転ツール埋没位置検出方法。
A rotational tool buried position detection method used for friction stir welding that forms a joint along the abutting portion by rotating a rotating tool pushed into the abutting portion of the materials to be joined,
Using materials with different ferrite contents for the material to be joined and the rotary tool,
A measurement step of scanning a measurement sensor that measures the amount of ferrite along the joint; and
And a detection step of detecting an embedded position of a damaged portion of the rotating tool in the joint based on the ferrite amount measured in the measuring step.
前記被接合材と前記回転ツールとに、前記回転ツールのフェライト含有量が前記被接合材のフェライト含有量より多くなるような材料を用い、
前記検出ステップにおいて、フェライト量が閾値より大きくなる位置を回転ツールの破損部分の埋没位置として検出することを特徴とする請求項1に記載の回転ツール埋没位置検出方法。
Using a material such that the ferrite content of the rotary tool is greater than the ferrite content of the material to be joined, to the material to be joined and the rotary tool,
2. The rotary tool buried position detection method according to claim 1, wherein in the detection step, a position where the ferrite amount is larger than a threshold value is detected as a buried position of a damaged portion of the rotary tool.
前記被接合材と前記回転ツールとに、前記被接合材のフェライト含有量が前記回転ツールのフェライト含有量より多くなるような材料を用い、
前記検出ステップにおいて、フェライト量が閾値より小さくなる位置を回転ツールの破損部分の埋没位置として検出することを特徴とする請求項1に記載の回転ツール埋没位置検出方法。
For the material to be joined and the rotary tool, a material in which the ferrite content of the material to be joined is larger than the ferrite content of the rotary tool,
2. The rotary tool buried position detection method according to claim 1, wherein, in the detection step, a position where the ferrite amount is smaller than a threshold value is detected as a buried position of a damaged portion of the rotary tool.
前記測定ステップと、前記検出ステップとを、前記被接合材同士の接合完了後に実施することを特徴とする請求項1〜3のいずれか一項に記載の回転ツール埋没位置検出方法。   The rotary tool buried position detection method according to any one of claims 1 to 3, wherein the measurement step and the detection step are performed after the joining of the materials to be joined is completed. 前記測定ステップと、前記検出ステップとを、前記被接合材同士の接合中に実施することを特徴とする請求項1〜3のいずれか一項に記載の回転ツール埋没位置検出方法。   The rotary tool embedded position detection method according to any one of claims 1 to 3, wherein the measurement step and the detection step are performed during joining of the materials to be joined. 被接合材同士の当接部分に押し込んだ回転ツールを回転させることによって前記当接部分に沿って接合部を形成する接合ステップを備える摩擦攪拌接合方法であって、
前記被接合材と前記回転ツールとに互いにフェライト含有量の異なる材料を用い、
前記接合ステップは、
前記接合部に沿ってフェライト量を測定する測定センサを走査する測定ステップと、
前記測定ステップにおいて測定されたフェライト量に基づいて前記接合部における前記回転ツールの破損部分の埋没位置を検出する検出ステップと、を備えることを特徴とする摩擦攪拌接合方法。
A friction stir welding method comprising a joining step of forming a joined portion along the abutting portion by rotating a rotating tool pushed into the abutting portions of the materials to be joined,
Using materials with different ferrite contents for the material to be joined and the rotary tool,
The joining step includes
A measurement step of scanning a measurement sensor that measures the amount of ferrite along the joint; and
A friction stir welding method, comprising: detecting a buried position of a damaged portion of the rotary tool in the joint based on the ferrite amount measured in the measurement step.
前記被接合材と前記回転ツールとに、前記回転ツールのフェライト含有量が前記被接合材のフェライト含有量より多くなるような材料を用い、
前記検出ステップにおいて、フェライト量が閾値より大きくなる位置を回転ツールの破損部分の埋没位置として検出することを特徴とする請求項6に記載の摩擦攪拌接合方法。
Using a material such that the ferrite content of the rotary tool is greater than the ferrite content of the material to be joined, to the material to be joined and the rotary tool,
The friction stir welding method according to claim 6, wherein in the detection step, a position where the ferrite amount is larger than a threshold value is detected as a buried position of a damaged portion of the rotary tool.
前記被接合材と前記回転ツールとに、前記被接合材のフェライト含有量が前記回転ツールのフェライト含有量より多くなるような材料を用い、
前記検出ステップにおいて、フェライト量が閾値より小さくなる位置を回転ツールの破損部分の埋没位置として検出することを特徴とする請求項6に記載の摩擦攪拌接合方法。
For the material to be joined and the rotary tool, a material in which the ferrite content of the material to be joined is larger than the ferrite content of the rotary tool,
The friction stir welding method according to claim 6, wherein, in the detection step, a position where the ferrite amount is smaller than a threshold value is detected as a buried position of a damaged portion of the rotary tool.
前記測定ステップと、前記検出ステップとを、前記被接合材同士の接合完了後に実施することを特徴とする請求項6〜8のいずれか一項に記載の摩擦攪拌接合方法。   The friction stir welding method according to any one of claims 6 to 8, wherein the measuring step and the detecting step are performed after the joining of the materials to be joined is completed. 前記測定ステップと、前記検出ステップとを、前記被接合材同士の接合中に実施することを特徴とする請求項6〜8のいずれか一項に記載の摩擦攪拌接合方法。   The friction stir welding method according to any one of claims 6 to 8, wherein the measuring step and the detecting step are performed during joining of the materials to be joined. 前記接合ステップは、
前記検出ステップにおいて前記回転ツールの埋没位置が検出されたときに、当該埋没位置に穴を形成して埋没している回転ツールを除去し、前記穴を溶加材で充填して再接合する再接合ステップをさらに備えることを特徴とする、請求項6〜10のいずれか一項に記載の摩擦攪拌接合方法。
The joining step includes
When the burying position of the rotating tool is detected in the detection step, a hole is formed at the burying position to remove the rotating tool that is buried, and the hole is filled with a filler material and rejoined. The friction stir welding method according to any one of claims 6 to 10, further comprising a joining step.
JP2013072323A 2013-03-29 2013-03-29 Rotating tool buried position detection method and friction stir welding method Expired - Fee Related JP6084093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072323A JP6084093B2 (en) 2013-03-29 2013-03-29 Rotating tool buried position detection method and friction stir welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072323A JP6084093B2 (en) 2013-03-29 2013-03-29 Rotating tool buried position detection method and friction stir welding method

Publications (2)

Publication Number Publication Date
JP2014195815A JP2014195815A (en) 2014-10-16
JP6084093B2 true JP6084093B2 (en) 2017-02-22

Family

ID=52357057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072323A Expired - Fee Related JP6084093B2 (en) 2013-03-29 2013-03-29 Rotating tool buried position detection method and friction stir welding method

Country Status (1)

Country Link
JP (1) JP6084093B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753641B2 (en) * 2001-09-25 2006-03-08 株式会社日立製作所 Nondestructive inspection method
JP5080927B2 (en) * 2007-09-28 2012-11-21 株式会社総合車両製作所 Friction stir welding system and friction stir welding method
JP2010188367A (en) * 2009-02-17 2010-09-02 Honda Motor Co Ltd Method of inserting tool for friction stir welding

Also Published As

Publication number Publication date
JP2014195815A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5028494B2 (en) Automatic testing method for material joints
US8146431B2 (en) Method and system for non-destructively testing a metallic workpiece
JP5441121B2 (en) Automatic nondestructive inspection method and apparatus for tubular axles with varying inner and outer diameter shapes
CA2978468C (en) Method for inspecting a weld seam with ultrasonic phased array
CN102721742A (en) Ultrasonic flaw detection method of weld joint at U-shaped angle of rib of steel bridge plate unit
US10307859B2 (en) Joint part determination method and joint material manufacturing method
ES2523306T3 (en) Procedure and manual non-destructive control device for tubular wheel axles with variable internal and external radius profiles
JP2018124154A (en) C-scope imaging system of eddy current flaw detection result for fatigue crack of steel bridge welded edge
JP6084093B2 (en) Rotating tool buried position detection method and friction stir welding method
US10705054B2 (en) Method for ultrasonically inspecting an aluminothermically welded rail joint
CN104122323A (en) Non-magnetization pipeline-interior detection method
KR100967084B1 (en) Crack Monitoring System, Crack Monitoring Method and Computer Readable Medium on which Crack Monitoring Program is Recorded
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
CN206876643U (en) A kind of constant ultrasonic detecting probe of pressure
JP2017116285A (en) Laser ultrasonic inspection method, joining method, laser ultrasonic inspection device, and joining device
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
KR101104889B1 (en) Calibration block for ultrasonic testing with tapered and curved surface
JP6489798B2 (en) Defect evaluation method and defect evaluation apparatus
JP2008164397A (en) Flaw detection method and flaw detector used therein
KR20190123893A (en) Residual Stress Measurement Apparatus for Tubular Type Electric Power Transmission Tower
CN103134853A (en) Nondestructive detection method for crankshaft
JP2016031310A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5641242B2 (en) Friction stir welded joint diameter measuring method and apparatus, and friction stir weld quality inspection method and apparatus
Shin et al. Nondestructive testing of fusion joints of polyethylene piping by real time ultrasonic imaging
JP2017087217A (en) Welding method and welding part inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6084093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees