JP6075257B2 - Inspection method and inspection apparatus for silicon carbide semiconductor device - Google Patents

Inspection method and inspection apparatus for silicon carbide semiconductor device Download PDF

Info

Publication number
JP6075257B2
JP6075257B2 JP2013197696A JP2013197696A JP6075257B2 JP 6075257 B2 JP6075257 B2 JP 6075257B2 JP 2013197696 A JP2013197696 A JP 2013197696A JP 2013197696 A JP2013197696 A JP 2013197696A JP 6075257 B2 JP6075257 B2 JP 6075257B2
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor device
body diode
mosfet
pulse current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013197696A
Other languages
Japanese (ja)
Other versions
JP2015065250A (en
Inventor
逸人 仲野
逸人 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013197696A priority Critical patent/JP6075257B2/en
Publication of JP2015065250A publication Critical patent/JP2015065250A/en
Application granted granted Critical
Publication of JP6075257B2 publication Critical patent/JP6075257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、炭化珪素半導体装置の検査方法及び検査装置に関する。   The present invention relates to an inspection method and an inspection apparatus for a silicon carbide semiconductor device.

炭化珪素(シリコンカーバイド;SiC)半導体装置は、従来のシリコン半導体装置に比べて高耐性、低損失であり、また、高周波、高温での動作が可能であるため、次世代の半導体装置として期待されている。   A silicon carbide (SiC) semiconductor device is expected to be a next-generation semiconductor device because it has higher durability and lower loss than conventional silicon semiconductor devices and can operate at high frequencies and high temperatures. ing.

しかしながら、炭化珪素半導体装置が作成される炭化珪素基板は、初期的に結晶欠陥を持つことが知られている。この結晶欠陥は、炭化珪素半導体装置におけるpn接合のダイオードに順方向に電流を流すことにより、電子正孔対のエネルギーを吸収し、その結果、積層欠陥として成長する場合がある。この積層欠陥は半導体装置の特性の劣化を招く。例えば炭化珪素半導体装置がMOSFET(Metal Oxide Semiconductor FieldEffect Transistor)である場合に、ボディダイオードに順方向の電流が流れることにより発生した積層欠陥は、順方向オン抵抗を増大させる。   However, it is known that a silicon carbide substrate on which a silicon carbide semiconductor device is produced has crystal defects initially. This crystal defect absorbs the energy of the electron-hole pair by passing a current in the forward direction through a pn junction diode in the silicon carbide semiconductor device, and as a result, may grow as a stacking fault. This stacking fault causes deterioration of the characteristics of the semiconductor device. For example, when the silicon carbide semiconductor device is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), a stacking fault caused by a forward current flowing through the body diode increases the forward on-resistance.

したがって、炭化珪素半導体装置を検査し、検査結果によって不良の半導体装置を、製品の出荷前にあらかじめ選別することができれば、炭化珪素半導体装置の製品の信頼性を高められる。   Therefore, if the silicon carbide semiconductor device can be inspected and defective semiconductor devices can be selected in advance before the shipment of the product, the reliability of the silicon carbide semiconductor device product can be improved.

炭化珪素半導体装置の検査方法及び検査装置に関して、炭化珪素半導体ウェハに、当該炭化珪素半導体のバンドギャップよりも大きなエネルギーを有するレーザ光を照射し、これにより半導体ウェハの基底面転位を積層欠陥に拡大し、このレーザ光の照射によって当該半導体ウェハから放射された光の特定波長の強度を、予め測定しておいた基底面転位のない半導体ウェハから放射させた特定波長の強度と比較して、積層欠陥の有無を判定する検出方法がある(特許文献1)。   Regarding a silicon carbide semiconductor device inspection method and inspection device, a silicon carbide semiconductor wafer is irradiated with laser light having energy larger than the band gap of the silicon carbide semiconductor, thereby expanding the basal plane dislocation of the semiconductor wafer to stacking faults. Then, the intensity of the specific wavelength of the light emitted from the semiconductor wafer by irradiation with the laser light is compared with the intensity of the specific wavelength emitted from the semiconductor wafer having no basal plane dislocation measured in advance. There is a detection method for determining the presence or absence of defects (Patent Document 1).

特開2009−88547号公報JP 2009-88547 A

しかしながら、特許文献1に記載の検出方法は、電極等の半導体装置として必要な構造を作成する前の半導体ウェハに発生している積層欠陥を検出する方法である。そのため、電極等の半導体装置として必要な構造を作成する過程で発生した積層欠陥を検出することができない。また、基底面転位を積層欠陥に拡大させるためのレーザ光の照射が、積層欠陥がない半導体ウェハに作成された半導体装置の特性に、どのような影響を及ぼすのか明らかでない。   However, the detection method described in Patent Document 1 is a method for detecting a stacking fault occurring in a semiconductor wafer before a structure necessary for a semiconductor device such as an electrode is created. Therefore, it is impossible to detect stacking faults that have occurred in the process of creating a structure necessary for a semiconductor device such as an electrode. In addition, it is not clear how the irradiation of the laser beam for expanding the basal plane dislocations to the stacking fault affects the characteristics of the semiconductor device formed on the semiconductor wafer having no stacking fault.

本発明は、電極等の半導体装置として必要な構造を作成する前の半導体ウェハの積層欠陥の検出のみならず、電極等の、半導体装置として必要な構造を作成した後の積層欠陥をも検出することができる、炭化珪素半導体装置の検査方法及び検査装置を提供することを目的とする。   The present invention detects not only detection of stacking faults in a semiconductor wafer before creating a structure necessary for a semiconductor device such as an electrode, but also stacking faults after creating a structure necessary for a semiconductor device such as an electrode. An object of the present invention is to provide an inspection method and an inspection apparatus for a silicon carbide semiconductor device.

本発明の炭化珪素半導体装置の検査方法は、炭化珪素よりなる半導体基板に作成され、ボディダイオードを有するMOSFETの当該ボディダイオードにパルス電流を流し、前記パルス電流を流す前後における当該ボディダイオードのオン抵抗を求め、前記オン抵抗の前記パルス電流を流す前後における変化に基いて前記MOSFETの不良を判定することを特徴とする。   A method for inspecting a silicon carbide semiconductor device of the present invention is produced on a semiconductor substrate made of silicon carbide. A pulse current is applied to the body diode of a MOSFET having a body diode, and the on-resistance of the body diode before and after the pulse current is applied. And determining whether or not the MOSFET is defective based on a change in the on-resistance before and after the pulse current is applied.

本発明の別の態様である炭化珪素半導体装置の検査装置は、炭化珪素よりなる半導体基板に作成されたボディダイオードを有するMOSFETの当該ボディダイオード部分にパルス電流を流す通電部と、前記パルス電流を流す前後における当該ボディダイオードのオン抵抗を求める測定部と、前記オン抵抗の前記パルス電流を流す前後における変化に基いて前記MOSFETの不良を判定する判定部と、を備えることを特徴とする。   An inspection apparatus for a silicon carbide semiconductor device, which is another aspect of the present invention, includes an energization unit for supplying a pulse current to a body diode portion of a MOSFET having a body diode formed on a semiconductor substrate made of silicon carbide, and the pulse current. And a measurement unit that obtains the on-resistance of the body diode before and after the flow, and a determination unit that determines a failure of the MOSFET based on a change in the on-resistance before and after the pulse current is passed.

本発明の炭化珪素半導体装置の検査方法によれば、炭化珪素よりなる半導体基板に作成され、ダイオードを有する半導体装置の当該ダイオードにパルス電流を流し、このパルス電流を流す前後における当該ダイオードのオン抵抗を求め、このオン抵抗の変化に基いて半導体装置の不良を判定することから、半導体基板に作成された半導体装置を、半導体基板と共に検査することができる。よって半導体装置の製品の出荷前に不良な製品を選別することが可能ととなり、ひいては信頼性の高い半導体装置を提供することが可能になる。   According to the inspection method for a silicon carbide semiconductor device of the present invention, a pulse current is applied to the diode of the semiconductor device having a diode that is formed on a semiconductor substrate made of silicon carbide, and the on-resistance of the diode before and after the pulse current is applied. Therefore, it is possible to inspect the semiconductor device formed on the semiconductor substrate together with the semiconductor substrate. Therefore, it becomes possible to select defective products before shipment of the semiconductor device products, and thus it is possible to provide a highly reliable semiconductor device.

n型のMOSFETの一例の模式的な断面図である。It is typical sectional drawing of an example of n-type MOSFET. n型のMOSFETの記号を示す図である。It is a figure which shows the symbol of n-type MOSFET. 本実施形態の半導体装置の検査方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the test | inspection method of the semiconductor device of this embodiment. 本実施形態の半導体装置の検査装置の説明図である。It is explanatory drawing of the inspection apparatus of the semiconductor device of this embodiment. MOSFETのオン抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of on-resistance of MOSFET.

以下、本発明の炭化珪素半導体装置の検査方法及び検査装置の実施形態について、図面を参照しつつ具体的に説明する。   Hereinafter, embodiments of an inspection method and an inspection apparatus for a silicon carbide semiconductor device of the present invention will be specifically described with reference to the drawings.

発明者は、炭化珪素半導体装置が作成された半導体基板の積層欠陥を検出する方法について研究を重ねた結果、半導体装置に含まれるダイオードにパルス電流を流すことにより、短時間で積層欠陥を意図的に成長させることができ、これにより成長した積層欠陥の有無を、当該ダイオードのオン抵抗の増大に基いて検出することができることを見出し、本発明に至った。   As a result of repeated research on a method for detecting a stacking fault in a semiconductor substrate on which a silicon carbide semiconductor device is formed, the inventors have intentionally made a stacking fault in a short time by passing a pulse current through a diode included in the semiconductor device. The present inventors have found that the presence or absence of a grown stacking fault can be detected based on an increase in on-resistance of the diode, and the present invention has been achieved.

本発明の検査方法は、半導体装置に含まれるダイオードにパルス電流を流すことにより、半導体装置及び半導体基板を加速劣化させて積層欠陥を成長させ、よって将来的に積層欠陥が発生する可能性のある半導体装置の製品を、出荷前にスクリーニングできるようにする。   According to the inspection method of the present invention, by supplying a pulse current to a diode included in a semiconductor device, the semiconductor device and the semiconductor substrate are accelerated and deteriorated to grow a stacking fault, and thus a stacking fault may occur in the future. Semiconductor device products can be screened before shipment.

本発明に従って検査を行う炭化珪素半導体基板に形成された半導体装置は、一例としてMOSFETを挙げることができる。n型のMOSFETの一例の模式的な断面図を図1に示し、その記号を図2に示す。図示したMOSFET1は、ドレイン電極11とソース電極12とゲート電極13とを備えている。図1に示す断面図においては、炭化珪素半導体基板及びその上にエピタキシャル成長させてなるn型半導体層14上に、イオン注入によってp型半導体層15及びn型半導体層16が選択的に形成されている。また、チャンネルを形成するように絶縁層17が形成され、更に保護絶縁層18が形成されている。   An example of the semiconductor device formed on the silicon carbide semiconductor substrate to be inspected according to the present invention is a MOSFET. A schematic cross-sectional view of an example of an n-type MOSFET is shown in FIG. 1, and its symbol is shown in FIG. The illustrated MOSFET 1 includes a drain electrode 11, a source electrode 12, and a gate electrode 13. In the cross-sectional view shown in FIG. 1, a p-type semiconductor layer 15 and an n-type semiconductor layer 16 are selectively formed by ion implantation on a silicon carbide semiconductor substrate and an n-type semiconductor layer 14 epitaxially grown thereon. Yes. In addition, an insulating layer 17 is formed so as to form a channel, and a protective insulating layer 18 is further formed.

図1に示した縦型のMOSFET1には、また、ソース電極12とドレイン電極11との間でn型半導体層14とp型半導体層15とが接続されていることにより、ボディダイオード19(寄生ダイオード)が形成されている。本実施形態の半導体装置の検査方法は、このボディダイオード19にパルス電流を流して、積層欠陥を意図的に成長させる。   In the vertical MOSFET 1 shown in FIG. 1, an n-type semiconductor layer 14 and a p-type semiconductor layer 15 are connected between the source electrode 12 and the drain electrode 11, whereby a body diode 19 (parasitic Diode). In the method for inspecting a semiconductor device of this embodiment, a stack current is intentionally grown by applying a pulse current to the body diode 19.

本実施形態の半導体装置の検査方法の手順を図3にフローチャートで示す。本実施形態の検査方法では、図4に示す検査装置20を用いる。検査装置20は、MOSFET1の、ドレイン電極11と、ソース電極12と、ゲート電極13とのそれぞれに電気的に接続され、ボディダイオード19にパルス電流を流すことが可能な構成を有するものであり、ボディダイオード19にパルス電流を流す通電部21と、パルス電流を流す前後におけるボディダイオード19のオン抵抗を求める測定部22と、ボディダイオード19のオン抵抗の、パルス電流を流す前後における変化に基いてMOSFET1の不良を判定する判定部23とを備えている。判定部23は、記憶部231と演算部232を備えている。   FIG. 3 is a flowchart showing the procedure of the semiconductor device inspection method of this embodiment. In the inspection method of the present embodiment, an inspection apparatus 20 shown in FIG. 4 is used. The inspection device 20 is electrically connected to each of the drain electrode 11, the source electrode 12, and the gate electrode 13 of the MOSFET 1 and has a configuration that allows a pulse current to flow through the body diode 19. Based on the energization unit 21 for supplying a pulse current to the body diode 19, the measurement unit 22 for obtaining the on-resistance of the body diode 19 before and after the pulse current is applied, and the change in the on-resistance of the body diode 19 before and after the pulse current is applied. And a determination unit 23 for determining a failure of the MOSFET 1. The determination unit 23 includes a storage unit 231 and a calculation unit 232.

図3に示す手順において、まず、検査装置20の通電部21により、ボディダイオード19に順方向に電流を流して測定部22で順方向のオン抵抗を測定する(ステップS1)。測定値は初期オン抵抗値として判定部23の記憶部231に記憶させる。初期オン抵抗値は、ボディダイオード19に電流を流した時の初期電圧の値として記憶部231に記憶してもよい。   In the procedure shown in FIG. 3, first, a current is supplied to the body diode 19 in the forward direction by the energization unit 21 of the inspection device 20, and the on-resistance in the forward direction is measured by the measurement unit 22 (step S <b> 1). The measured value is stored in the storage unit 231 of the determination unit 23 as an initial on-resistance value. The initial on-resistance value may be stored in the storage unit 231 as an initial voltage value when a current is passed through the body diode 19.

次に、検査装置20の通電部21によりMOSFET1のゲート13に負バイアスを加えながら、ボディダイオード19に、パルス電流を順方向に流す(ステップS2)。パルス電流を流すことにより、積層欠陥を可能な限り短い時間で巨大に成長させることができる。   Next, a pulse current is passed through the body diode 19 in the forward direction while applying a negative bias to the gate 13 of the MOSFET 1 by the energization unit 21 of the inspection device 20 (step S2). By supplying a pulse current, stacking faults can be grown enormously in as short a time as possible.

発明者の研究によれば、MOSFET1のボディダイオード19にパルス電流を流して、半導体基板炭化珪素半導体基板及びこの基板上に作成された半導体層14、15、16に積層欠陥を成長させるための要因としては、(1)電子正孔対生成量、(2)ボディダイオード19に通電時の温度、(3)ゲート電極13に加えられる負バイアス電圧、を挙げることができる。そして、ボディダイオード19にパルス電流を流すと、直流を流す場合に比べてボディダイオード19に通電時の温度を低く抑えることができる。これが炭化珪素半導体基板及びこの基板上に作成された半導体層14、15、16に短時間で積層欠陥を成長させるのに有効に寄与する。   According to the inventor's research, a factor for causing a stacking fault to grow in the semiconductor substrate silicon carbide semiconductor substrate and the semiconductor layers 14, 15, 16 formed on the substrate by applying a pulse current to the body diode 19 of the MOSFET 1. (1) Electron hole pair generation amount, (2) Temperature when the body diode 19 is energized, and (3) Negative bias voltage applied to the gate electrode 13. When a pulse current is passed through the body diode 19, the temperature during energization of the body diode 19 can be kept lower than when a direct current is passed. This effectively contributes to growing stacking faults in a short time on the silicon carbide semiconductor substrate and the semiconductor layers 14, 15, and 16 formed on the substrate.

したがって、本実施形態の検査方法は、ボディダイオード19に流す電流をパルス電流にする。これに対し、パルス電流の代わりに、通常の直流をボディダイオード19に通電した場合には、炭化珪素半導体基板及びこの基板上に作成された半導体層14、15、16の温度が高くなり、その結果、積層欠陥が成長しにくい。この理由は、通電時の基板の温度が高くなると、少数キャリアトラップにより電子正孔対エネルギーが下がり、積層欠陥が縮小するためと考えられる。   Therefore, in the inspection method of the present embodiment, the current flowing through the body diode 19 is changed to a pulse current. On the other hand, when a normal direct current is applied to the body diode 19 instead of the pulse current, the temperature of the silicon carbide semiconductor substrate and the semiconductor layers 14, 15, and 16 formed on the substrate is increased. As a result, stacking faults are difficult to grow. The reason for this is considered to be that when the temperature of the substrate during energization increases, the electron-hole pair energy decreases due to minority carrier traps, and stacking faults decrease.

パルス電流の通電時のパルス周波数、デューティ比は特に限定されず、炭化珪素半導体基板を高温にさせない範囲で適宜選択することができる。   The pulse frequency and duty ratio when the pulse current is applied are not particularly limited, and can be appropriately selected within a range in which the silicon carbide semiconductor substrate is not heated to a high temperature.

基板温度は、102℃未満であることが望ましい。基板温度が102℃以上であると、少数キャリアトラップにより電子正孔対エネルギー、積層欠陥の成長が抑制される。   The substrate temperature is desirably less than 102 ° C. When the substrate temperature is 102 ° C. or higher, the minority carrier trap suppresses electron-hole pair energy and growth of stacking faults.

上述した炭化珪素半導体装置に積層欠陥を成長させるための要因のうち、電子正孔対の生成量は、ボディダイオード19に流す電流と正の相関があるので、積層欠陥を成長させるためには、ボディダイオード19に、できるだけ大きな電流を流すようにする。
そのために、MOSFET1のゲート13に加えられる負バイアスは、半導体装置であるMOSFET1が保証する最大の負電圧とすることが好ましい。
Of the factors for growing stacking faults in the silicon carbide semiconductor device described above, the amount of electron-hole pairs generated has a positive correlation with the current passed through the body diode 19, so that stacking faults can be grown. A current as large as possible is passed through the body diode 19.
Therefore, the negative bias applied to the gate 13 of the MOSFET 1 is preferably the maximum negative voltage guaranteed by the MOSFET 1 that is a semiconductor device.

本実施形態の検査方法は、一個のMOSFET1当たり10分程度の時間で積層欠陥を発生させることができる。この時間は、特許文献1において従来技術として記載された通電時間4時間30分と比べて極めて短時間に積層欠陥を成長させることができることを意味している。   The inspection method of the present embodiment can generate stacking faults in a time of about 10 minutes per MOSFET 1. This time means that stacking faults can be grown in a very short time compared to the energization time of 4 hours 30 minutes described in Patent Document 1 as the prior art.

ボディダイオード19にパルス電流を通電させることによって成長した積層欠陥は、ボディダイオード19の順方向オン抵抗を増大させる。そこで、パルス電流を通電して所定時間を経過後におけるボディダイオード19の順方向のオン抵抗を検査装置の測定部22で測定し、最終オン抵抗値として演算部23の記憶部231に記憶させる(ステップS3)。最終オン抵抗値は、ボディダイオード19に電流を流した時の最終電圧の値として記憶してもよい。   A stacking fault grown by passing a pulse current through the body diode 19 increases the forward on-resistance of the body diode 19. Therefore, the forward on-resistance of the body diode 19 after the lapse of a predetermined time after passing the pulse current is measured by the measuring unit 22 of the inspection apparatus, and is stored in the storage unit 231 of the computing unit 23 as the final on-resistance value ( Step S3). The final on-resistance value may be stored as the value of the final voltage when a current is passed through the body diode 19.

パルス電流の通電させる前後でボディダイオード19の順方向オン抵抗の変化を検査装置20の演算部232で求め(ステップS4)、このオン抵抗変化に基いてMOSFET1が不良か否かを演算部232で判定する(ステップS5)。ボディダイオード19の順方向オン抵抗の変化に基く判定は、例えば、初期オン抵抗値に対する最終オン抵抗値の増加割合を求め、この増加割合が所定基準を超えるときにMOSFET1が不良であると判定する。   A change in the forward on-resistance of the body diode 19 before and after applying the pulse current is obtained by the calculation unit 232 of the inspection device 20 (step S4), and the calculation unit 232 determines whether or not the MOSFET 1 is defective based on this change in on-resistance. Determine (step S5). The determination based on the change in the forward on-resistance of the body diode 19 is obtained, for example, by determining the increasing rate of the final on-resistance value with respect to the initial on-resistance value, and determining that the MOSFET 1 is defective when this increasing rate exceeds a predetermined reference. .

本発明の検査方法に用いられる検査装置20は、本発明の検査方法を実施可能な専用の検査装置に限られない。MOSFET1の種々の電気的特性を調べるために用いられている測定装置に、本発明の検査方法を実施可能な機能が含まれているものであってもよい。   The inspection apparatus 20 used in the inspection method of the present invention is not limited to a dedicated inspection apparatus that can perform the inspection method of the present invention. The measuring device used for examining various electrical characteristics of the MOSFET 1 may include a function capable of performing the inspection method of the present invention.

本発明の検査方法を用いて検査をするMOSFET1の形態は、炭化珪素半導体ウェハに複数個が形成されているものであることが、一枚の半導体ウェハに形成された複数の半導体装置を順次に検査することができることから好ましい。もっとも、炭化珪素半導体ウェハをダイシングして得られた個々の半導体チップに対して本発明の検査方法を用いて検査してもよい。本発明の検査方法により不良と判定されたMOSFET1は、その後に選別される。   The MOSFET 1 to be inspected by using the inspection method of the present invention is that a plurality of MOSFETs are formed on a silicon carbide semiconductor wafer, and a plurality of semiconductor devices formed on one semiconductor wafer are sequentially formed. It is preferable because it can be inspected. However, individual semiconductor chips obtained by dicing a silicon carbide semiconductor wafer may be inspected using the inspection method of the present invention. MOSFETs 1 determined to be defective by the inspection method of the present invention are then selected.

本実施形態の検査方法は、半導体装置としての半導体基板上に作成されたMOSFET1のボディダイオード19にパルス電流を流すことにより積層欠陥を成長させることから、電極等の、半導体装置として必要な構造を作成する前の半導体ウェハの積層欠陥の検出することができるばかりでなく、電極等の、半導体装置として必要な構造を作成した後の積層欠陥をも検出することができる。   The inspection method of this embodiment grows stacking faults by passing a pulse current through the body diode 19 of the MOSFET 1 formed on the semiconductor substrate as a semiconductor device. In addition to detecting a stacking fault in a semiconductor wafer before being formed, it is also possible to detect a stacking fault after forming a structure necessary for a semiconductor device such as an electrode.

試料として、複数の炭化珪素MOSFETを用意し、個々のボディダイオードに種々のパルス電流を流した試験を行った。また比較のために、いくつかの試料では、パルス電流の代わりに直流を流した。ゲート電圧Vgは−5Vとし、試験時のジャンクション温度Tjと、試験前後でのオン抵抗増大率(((最終電圧−初期電圧)/最終電圧)×100)を調べた結果を表1に示す。   A plurality of silicon carbide MOSFETs were prepared as samples, and tests were conducted in which various pulse currents were passed through individual body diodes. For comparison, in some samples, a direct current was applied instead of the pulse current. Table 1 shows the results of examining the junction temperature Tj during the test and the on-resistance increase rate before and after the test (((final voltage−initial voltage) / final voltage) × 100) with the gate voltage Vg set to −5V.

Figure 0006075257
Figure 0006075257

表1から、ボディダイオードに直流を流した場合には、30分の通電でもオン抵抗増大率が数パーセントであったのに対して、ボディダイオードにパルス電流を流した場合には、通電時の温度を低く制御することができ、よって短い時間で大きなオン抵抗増大率が得られた。   From Table 1, when direct current is passed through the body diode, the on-resistance increase rate was several percent even when energized for 30 minutes, whereas when pulse current was passed through the body diode, The temperature could be controlled low, and thus a large on-resistance increase rate was obtained in a short time.

図5に、ボディダイオードに通電させ、そのときのオン抵抗増大率が111%〜664%であった各試料について、オン抵抗の温度依存性を調べた試験の結果をグラフで示す。オン抵抗増大率が111%と低い試料は、オン抵抗は温度と正の相関がある温度特性を示したのに対して、オン抵抗増大率が170%以上の試料は、負の相関がある温度特性を示した。この試験結果は、温度が上がることにより、積層欠陥が縮小していることが原因である。理論的には、高温時の少数キャリアトラップにより積層欠陥が縮小していると考えられる。この試験結果から、炭化珪素半導体装置が作成された半導体基板は、温度が高いほど積層欠陥は成長しにくいということができ、したがって、本発明の検査方法において、ボディダイオードに電流を流すときに、温度が高いほど積層欠陥の成長率が低下するということができ、逆にいえば、温度が低いほど積層欠陥を成長させるとこができるということができる。   FIG. 5 is a graph showing the results of a test in which the temperature dependence of the on-resistance was examined for each sample in which the body diode was energized and the on-resistance increase rate at that time was 111% to 664%. A sample with a low on-resistance increase rate of 111% showed a temperature characteristic in which the on-resistance increased positively with temperature, whereas a sample with an on-resistance increase rate of 170% or higher had a negative correlation with temperature. The characteristics are shown. This test result is due to the fact that stacking faults are reduced as the temperature rises. Theoretically, it is considered that stacking faults are reduced by minority carrier traps at high temperatures. From this test result, it can be said that the semiconductor substrate on which the silicon carbide semiconductor device is manufactured has a tendency that stacking faults are less likely to grow as the temperature is higher. Therefore, in the inspection method of the present invention, when a current is passed through the body diode, It can be said that the higher the temperature, the lower the growth rate of stacking faults. Conversely, it can be said that the stacking faults can be grown at lower temperatures.

次に、参考試験として炭化珪素MOSFETのゲート電圧を種々に変えて、ボディダイオードに直流を順方向に流したときのオン抵抗増大率を調べた。その結果を表2に示す。   Next, as a reference test, the gate voltage of the silicon carbide MOSFET was changed variously, and the on-resistance increase rate when direct current was passed through the body diode in the forward direction was examined. The results are shown in Table 2.

Figure 0006075257
Figure 0006075257

タイプAの半導体装置に関して、順方向電流If=16A、ゲート電圧Vg=−5Vの条件では、1069時間までオン抵抗の増大が発生していないが、同じ種類のMOSFETについてゲート電圧をVg=−10Vとした以外は同じ条件では、157時間の通電でオン抵抗増大が5個の試料中の4個で発生した。タイプBの半導体装置に関して、順方向電流If=8A、ゲート電圧Vg=−10Vの条件では、894時間までオン抵抗の増大が5個の試料中の4個で発生していないが、同じ種類のMOSFETについてゲート電圧をVg=−20Vとした以外は同じ条件では、一つの試料では334時間の通電でオン抵抗増大が発生し、一つの試料では163時間の通電でオン抵抗増大が発生した。
これは、ゲート負バイアスを大きくしたことで、ボディダイオードに流れる電流の割合が増し、劣化が生じやすくなったことが理由である。この試験結果から、本発明の検査方法において、ボディダイオードに電流を流すときに、ゲート負バイアスが高いほど積層欠陥を成長させることができる。
With respect to the semiconductor device of type A, on the condition of forward current If = 16A and gate voltage Vg = −5V, the on-resistance does not increase until 1069 hours, but the gate voltage is set to Vg = −10V for the same type of MOSFET. Except for the above, under the same conditions, an increase in on-resistance occurred in 4 out of 5 samples after energization for 157 hours. Regarding the type B semiconductor device, under the conditions of forward current If = 8A and gate voltage Vg = −10V, the increase in on-resistance did not occur in 4 out of 5 samples until 894 hours. Under the same conditions except that the gate voltage of the MOSFET was set to Vg = −20 V, in one sample, an increase in on-resistance was generated by energization for 334 hours, and in one sample, an increase in on-resistance was generated by energization for 163 hours.
This is because the ratio of the current flowing through the body diode is increased and the deterioration is easily caused by increasing the gate negative bias. From this test result, in the inspection method of the present invention, when a current is passed through the body diode, the stacking fault can grow as the gate negative bias increases.

以上、本発明の半導体装置の検査方法及び検査装置を、図面及び実施形態について説明したが、本発明の半導体装置の検査方法及び検査装置は、実施形態及び図面の記載に限定されるものではなく、本発明の趣旨を逸脱しない範囲で幾多の変形が可能である。   The semiconductor device inspection method and inspection apparatus of the present invention have been described above with reference to the drawings and embodiments. However, the semiconductor device inspection method and inspection apparatus of the present invention are not limited to the description of the embodiments and drawings. Many modifications are possible without departing from the spirit of the present invention.

1 MOSFET
11 ドレイン電極
12 ソース電極
13 ゲート電極
14 n型半導体層
15 p型半導体層
16 n型半導体層16
17 絶縁層
18 保護絶縁層
19 ボディダイオード
20 検査装置
21 通電部
22 測定部
23 判定部

1 MOSFET
11 drain electrode 12 source electrode 13 gate electrode 14 n-type semiconductor layer 15 p-type semiconductor layer 16 n-type semiconductor layer 16
DESCRIPTION OF SYMBOLS 17 Insulating layer 18 Protective insulating layer 19 Body diode 20 Inspection apparatus 21 Current supply part 22 Measuring part 23 Judgment part

Claims (6)

炭化珪素よりなる半導体基板に作成され、ボディダイオードを有するMOSFETの当該ボディダイオードにパルス電流を流し、
前記パルス電流を流す前後における当該ボディダイオードのオン抵抗を求め、
前記オン抵抗の前記パルス電流を流す前後における変化に基いて前記MOSFETの不良を判定することを特徴とする炭化珪素半導体装置の検査方法。
Created on a semiconductor substrate made of silicon carbide, passing a pulse current to the MOSFET of the body diode having a body diode,
Obtain the on-resistance of the body diode before and after flowing the pulse current,
An inspection method for a silicon carbide semiconductor device, comprising: determining a failure of the MOSFET based on a change in the on-resistance before and after the pulse current is applied.
前記オン抵抗の増加が所定の基準を超える場合に、前記MOSFETを不良と判定する請求項1記載の炭化珪素半導体装置の検査方法。 The method for inspecting a silicon carbide semiconductor device according to claim 1, wherein the MOSFET is determined to be defective when the increase in the on-resistance exceeds a predetermined reference. 前記パルス電流を流すときの前記ボディダイオードのジャンクション温度を102℃未満とする請求項記載の炭化珪素半導体装置の検査方法。 The inspection method of a silicon carbide semiconductor device according to claim 1, in which the body diode of less than the junction temperature of the 102 ° C. when flowing the pulse current. 前記パルス電流を流すときの前記MOSFETの負バイアスのゲート電圧を、該MOSFETが保証する範囲で絶対値で最大とする請求項1〜3のいずれか一項に記載の炭化珪素半導体装置の検査方法。 The inspection method for a silicon carbide semiconductor device according to any one of claims 1 to 3 , wherein a gate voltage of the negative bias of the MOSFET when the pulse current flows is maximized in an absolute value within a range guaranteed by the MOSFET. . 前記半導体基板が炭化珪素半導体ウェハである請求項1記載の炭化珪素半導体装置の検査方法。   The method for inspecting a silicon carbide semiconductor device according to claim 1, wherein the semiconductor substrate is a silicon carbide semiconductor wafer. 炭化珪素よりなる半導体基板に作成されたボディダイオードを有するMOSFETの当該ボディダイオード部分にパルス電流を流す通電部と、
前記パルス電流を流す前後における当該ボディダイオードのオン抵抗を求める測定部と、
前記オン抵抗の前記パルス電流を流す前後における変化に基いて前記MOSFETの不良を判定する判定部と、
を備えることを特徴とする炭化珪素半導体装置の検査装置。
A current-carrying portion for passing a pulse current to the body diode portion of the MOSFET having a body diode formed on a semiconductor substrate made of silicon carbide;
A measurement unit for obtaining an on-resistance of the body diode before and after the pulse current is passed;
A determination unit for determining a failure of the MOSFET based on a change in the on-resistance before and after flowing the pulse current;
An inspection apparatus for a silicon carbide semiconductor device, comprising:
JP2013197696A 2013-09-25 2013-09-25 Inspection method and inspection apparatus for silicon carbide semiconductor device Active JP6075257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197696A JP6075257B2 (en) 2013-09-25 2013-09-25 Inspection method and inspection apparatus for silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197696A JP6075257B2 (en) 2013-09-25 2013-09-25 Inspection method and inspection apparatus for silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2015065250A JP2015065250A (en) 2015-04-09
JP6075257B2 true JP6075257B2 (en) 2017-02-08

Family

ID=52832906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197696A Active JP6075257B2 (en) 2013-09-25 2013-09-25 Inspection method and inspection apparatus for silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP6075257B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120879A (en) * 2015-06-04 2018-08-02 三菱電機株式会社 Semiconductor device and method for manufacturing the same
JP7013683B2 (en) * 2017-06-08 2022-02-01 富士電機株式会社 Method for selecting silicon carbide semiconductor devices
JP7013684B2 (en) * 2017-06-08 2022-02-01 富士電機株式会社 Method for selecting silicon carbide semiconductor devices
JP7052295B2 (en) * 2017-11-01 2022-04-12 株式会社デンソー Manufacturing method of silicon carbide semiconductor device
JP7192338B2 (en) * 2018-09-14 2022-12-20 富士電機株式会社 Method for sorting silicon carbide semiconductor device
JP7293749B2 (en) * 2019-03-14 2023-06-20 富士電機株式会社 Method for sorting silicon carbide semiconductor device
JP7192683B2 (en) * 2019-07-04 2022-12-20 富士電機株式会社 Method for sorting silicon carbide semiconductor device
JP2022105804A (en) 2021-01-05 2022-07-15 富士電機株式会社 Method of inspecting silicon carbide semiconductor device
JP7355082B2 (en) 2021-09-01 2023-10-03 富士電機株式会社 Test method and manufacturing method
CN117250467B (en) * 2023-11-16 2024-04-26 深圳市深鸿盛电子有限公司 Silicon carbide diode fault diagnosis method and related device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455772A (en) * 1990-06-25 1992-02-24 Matsushita Electron Corp Testing method for semiconductor device
US5381103A (en) * 1992-10-13 1995-01-10 Cree Research, Inc. System and method for accelerated degradation testing of semiconductor devices

Also Published As

Publication number Publication date
JP2015065250A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6075257B2 (en) Inspection method and inspection apparatus for silicon carbide semiconductor device
US10796906B2 (en) Silicon carbide semiconductor substrate, method of manufacturing silicon carbide semiconductor substrate, semiconductor device, and method of manufacturing semiconductor device
JP5980024B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6104363B2 (en) Method for manufacturing silicon carbide semiconductor device and conduction inspection device
KR101766562B1 (en) Method for manufacturing silicon carbide semiconductor device
US11936421B2 (en) Control and prognosis of power electronic devices using light
US11249027B2 (en) SiC substrate evaluation method and method for manufacturing SiC epitaxtal wafer
US20160306005A1 (en) Semiconductor device testing apparatus, semiconductor device testing method, and semiconductor device manufacturing method
JP2012199299A (en) Lifetime value measuring method and wafer selection method using the same
De Santi et al. Demonstration of avalanche capability in polarization-doped vertical GaN pn diodes: Study of walkout due to residual carbon concentration
JP2020004856A (en) Method for manufacturing semiconductor device
US10872827B2 (en) Manufacturing method and evaluation method for SiC device
JP6061017B1 (en) Method for evaluating contamination of semiconductor epitaxial wafer and method for evaluating contamination of epitaxial growth apparatus using the same
JP2014183136A (en) Silicon carbide chip, silicon carbide wafer, test method for silicon carbide chip, and test method for silicon carbide wafer
Visalli et al. Investigation of light-induced deep-level defect activation at the AlN/Si interface
JP2019186460A (en) Silicon carbide semiconductor device and manufacturing method of the same
JP6883745B2 (en) Semiconductor devices and their manufacturing methods
JP2019125637A (en) Test condition determination apparatus and test condition determination method
JP2022122039A (en) Silicon carbide semiconductor device and method for inspecting silicon carbide semiconductor device
JP7438162B2 (en) Inspection method for silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2018101650A (en) Method for inspecting semiconductor device, and semiconductor base body
Lachichi et al. Bipolar Degradation monitoring of 4H-SiC MOSFET Power Devices by Electroluminescence Measurements
Chen et al. Low-frequency noise analysis of electrostatic discharge tolerance of InGaN light-emitting diodes
JP2022105804A (en) Method of inspecting silicon carbide semiconductor device
Koktavy et al. Narrow-band noise as a tool for diagnostics of solar cells pn junctions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250