JP6070139B2 - Voltage abnormality detector - Google Patents

Voltage abnormality detector Download PDF

Info

Publication number
JP6070139B2
JP6070139B2 JP2012269955A JP2012269955A JP6070139B2 JP 6070139 B2 JP6070139 B2 JP 6070139B2 JP 2012269955 A JP2012269955 A JP 2012269955A JP 2012269955 A JP2012269955 A JP 2012269955A JP 6070139 B2 JP6070139 B2 JP 6070139B2
Authority
JP
Japan
Prior art keywords
phase
voltage
pulse
abnormality
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269955A
Other languages
Japanese (ja)
Other versions
JP2014117089A (en
Inventor
敏明 鵜飼
敏明 鵜飼
伸治 横田
伸治 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2012269955A priority Critical patent/JP6070139B2/en
Priority to CN201310479766.8A priority patent/CN103869139B/en
Publication of JP2014117089A publication Critical patent/JP2014117089A/en
Application granted granted Critical
Publication of JP6070139B2 publication Critical patent/JP6070139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電圧異常検出装置に関する。   The present invention relates to a voltage abnormality detection device.

電力変換装置は一定周波数の交流電源から任意の周波数の交流出力を直流を介さずに直接生成し、交流電動機の制御を行う。入力電源電圧に異常が発生した場合、出力電圧波形に異常が発生し交流電動機の良好な運転が困難となる。三相交流電源の電源電圧の異常は、欠相状態、又は電源の相順が逆相となった状態等の様々な状態がある。欠相状態は三相のうちの一相だけの配線が断線した状態である。故に電力変換装置は電源電圧の異常を何らかの方法で検出し運転を停止する電源電圧異常検出回路が必要となる。   The power converter directly generates an AC output of an arbitrary frequency from an AC power source having a constant frequency without passing through a DC, and controls the AC motor. When an abnormality occurs in the input power supply voltage, an abnormality occurs in the output voltage waveform, which makes it difficult to operate the AC motor satisfactorily. Abnormalities in the power supply voltage of the three-phase AC power supply include various states such as an open phase state or a state where the phase sequence of the power source is reversed. The phase loss state is a state in which only one of the three phases is disconnected. Therefore, the power conversion device needs a power supply voltage abnormality detection circuit that detects a power supply voltage abnormality by some method and stops operation.

特許文献1が開示する電源電圧異常検出回路および方法は、欠相状態及び相順が逆相となった状態の何れの状態の電源電圧異常でも検出する。電源電圧異常検出回路は、電源電圧情報生成回路、異常検出用信号生成回路、判定回路を備える。電源電圧情報生成回路は、三相交流電源のRSTの各相の電圧値の大小関係に応じた情報を検出して電源電圧情報信号として出力する。異常検出用信号生成回路は三相交流電源が正常である場合のRSTの各相の電圧値の大小関係に基づく情報を予め保持し、この情報を異常検出用信号として出力する。判定回路は電源電圧情報信号と異常検出用信号を一定間隔で比較し、これらの信号が異なっている場合に電源電圧異常信号を出力する。   The power supply voltage abnormality detection circuit and method disclosed in Patent Document 1 detect a power supply voltage abnormality in any state of an open phase state and a phase sequence in reverse phase. The power supply voltage abnormality detection circuit includes a power supply voltage information generation circuit, an abnormality detection signal generation circuit, and a determination circuit. The power supply voltage information generation circuit detects information according to the magnitude relationship between the voltage values of each phase of the RST of the three-phase AC power supply and outputs it as a power supply voltage information signal. The abnormality detection signal generation circuit holds in advance information based on the magnitude relationship between the voltage values of each phase of the RST when the three-phase AC power supply is normal, and outputs this information as an abnormality detection signal. The determination circuit compares the power supply voltage information signal and the abnormality detection signal at regular intervals, and outputs a power supply voltage abnormality signal when these signals are different.

特開2001−258151号公報JP 2001-258151 A

特許文献1に記載の電源電圧異常検出回路および方法は、電源電圧情報信号と異常検出用信号を一定間隔でしか比較していない。故に電源電圧の異常を精度良く検出できなかった。さらに電源電圧情報信号と異常検出用信号は何れも電圧値の大小関係に応じた情報であって電圧値ではない。故に現状の電圧値を正確に把握できなかった。電源電圧異常検出回路の回路面積が大きいので扱い辛かった。   The power supply voltage abnormality detection circuit and method described in Patent Document 1 compare the power supply voltage information signal and the abnormality detection signal only at regular intervals. Therefore, the power supply voltage abnormality could not be detected accurately. Further, both the power supply voltage information signal and the abnormality detection signal are information according to the magnitude relationship of the voltage values, and are not voltage values. Therefore, the current voltage value could not be accurately grasped. Since the circuit area of the power supply voltage abnormality detection circuit is large, it was difficult to handle.

本発明の目的は、電源電圧の異常を精度良く検出できる電圧異常検出装置を提供することである。   An object of the present invention is to provide a voltage abnormality detection device that can accurately detect abnormality of a power supply voltage.

本発明の請求項1に係る電圧異常検出装置は、交流電圧の異常を検出する電圧異常検出装置であって、前記交流電圧を複数の相に分圧する分圧手段と、前記分圧手段が分圧した各相を夫々基準相としたときに、前記基準相とは異なる他の相のうち低い方の相である対象相との電位差が所定電圧以上になったときにパルスを出力するパルス出力手段と、前記パルス出力手段が出力した前記パルスの幅と周期を前記相毎に測定する測定手段と、前記測定手段が前記相毎に夫々測定した前記幅と周期と、メモリに予め記憶した基準情報とに基づき、前記交流電圧に異常が有るか否か判定する異常判定手段とを備えたことを特徴とする。電圧異常検出装置は、電源等が供給する交流電圧を複数の相に分圧し、各相に発生するパルスを夫々求め、そのパルスの幅と周期を基準情報と比較する。即ち三相交流電圧について相毎に異常を判断するのではなく、一相を基準とした場合の他の二相との電位差に基づいて出力するパルスで異常の有無を判断する。パルスは三相の全体の状態を反映したものである。故に電圧異常検出装置は交流電圧に異常が有るか否かを精度良く簡単に検出できる。   A voltage abnormality detection device according to claim 1 of the present invention is a voltage abnormality detection device that detects an abnormality of an AC voltage, and the voltage dividing means that divides the AC voltage into a plurality of phases, and the voltage dividing means divides the voltage. Pulse output that outputs a pulse when the potential difference from the target phase, which is the lower phase of the other phases different from the reference phase, becomes a predetermined voltage or more when each pressed phase is a reference phase Means, measuring means for measuring the width and period of the pulse output from the pulse output means for each phase, the width and period measured for each phase by the measuring means, and a reference stored in advance in a memory And an abnormality determining means for determining whether or not the AC voltage is abnormal based on the information. The voltage abnormality detection device divides an alternating voltage supplied by a power source or the like into a plurality of phases, obtains a pulse generated in each phase, and compares the pulse width and period with reference information. That is, instead of judging abnormality for each phase of the three-phase AC voltage, the presence / absence of abnormality is judged based on the pulse output based on the potential difference from the other two phases with reference to one phase. The pulse reflects the overall state of the three phases. Therefore, the voltage abnormality detection device can easily and accurately detect whether or not the AC voltage is abnormal.

請求項2に係る発明の電圧異常検出装置は、請求項1に記載の発明の構成に加え、前記測定手段が前記相毎に測定した前記幅と周期からデューティ比を算出する算出手段を備え、前記分圧手段は受光素子デバイスを備え、前記異常判定手段は、前記算出手段が前記相毎に算出した前記デューティ比と、前記基準情報とを夫々比較し、前記交流電圧に異常が有るか否か判定することを特徴とする。分圧手段は受光素子デバイスを備えるので絶縁可能である。故に他電圧の影響を受けることなくパルスだけで判断できる。電圧異常検出装置はデューティ比を算出して基準情報と比較することで、受光素子デバイスの個体差の影響を受けずに、交流電圧の異常の有無を判定できる。 In addition to the configuration of the invention of claim 1, a voltage abnormality detection device of an invention according to claim 2 includes a calculation unit that calculates a duty ratio from the width and period measured for each phase by the measurement unit, The voltage dividing means includes a light receiving element device, and the abnormality determining means compares the duty ratio calculated for each phase by the calculating means with the reference information, and determines whether or not the AC voltage is abnormal. It is characterized by determining. Since the voltage dividing means includes a light receiving element device, it can be insulated. Therefore, it can be judged only by the pulse without being influenced by other voltages. By detecting the duty ratio and comparing it with reference information , the voltage abnormality detection device can determine whether there is an abnormality in the AC voltage without being affected by individual differences in the light receiving element devices.

請求項3に係る発明の電圧異常検出装置は、請求項2に記載の発明の構成に加え、前記測定手段が測定した前記周期から前記パルスの周波数を特定する周波数特定手段を備え、前記基準情報は、前記周波数毎に前記基準情報を夫々有し、前記異常判定手段は、前記算出手段が算出した前記デューティ比と、前記周波数特定手段が特定した前記周波数に対応する前記基準情報とを夫々比較し、前記交流電圧に異常が有るか否か判定することを特徴とする。故に電圧異常検出装置は交流電圧の周波数に応じて交流電圧の異常の有無を精度良く検出できる。 According to a third aspect of the present invention, in addition to the configuration of the second aspect of the invention, the voltage abnormality detection device includes a frequency specifying unit that specifies the frequency of the pulse from the period measured by the measuring unit, and the reference information Has the reference information for each frequency, and the abnormality determination means compares the duty ratio calculated by the calculation means with the reference information corresponding to the frequency specified by the frequency specification means, respectively. And determining whether or not the AC voltage is abnormal. Therefore, the voltage abnormality detection device can accurately detect the presence or absence of abnormality in the AC voltage according to the frequency of the AC voltage.

請求項4に係る発明の電圧異常検出装置は、請求項1から3の何れかに記載の発明の構成に加え、前記測定手段は、前記各相に夫々発生する前記パルスが前記複数の相が順に並ぶ相順ではなく、同一の相が連続して並んだ場合、前記同一の相で連続して発生した前記パルスを無効化する無効化手段を備えたことを特徴とする。交流電圧が正常である場合、各相に夫々発生するパルスは相順となる。交流電圧が不安定で瞬間的に電圧が落ちたような場合、何れかの相のパルスは分断する。この場合、同一の相でパルスが連続する現象が生じる。該現象はノイズである。無効化手段はノイズを無効化する。故に電圧異常検出装置は交流電圧が一時的に不安定であっても交流電圧の異常の有無を精度良く検出できる。   In addition to the configuration of the invention according to any one of claims 1 to 3, the voltage abnormality detection device according to a fourth aspect of the invention is configured such that the pulse generated in each of the phases includes the plurality of phases. It is characterized by comprising invalidating means for invalidating the pulses continuously generated in the same phase when the same phase is continuously arranged instead of the phase sequence arranged in order. When the AC voltage is normal, the pulses generated in each phase are in phase order. When the AC voltage is unstable and the voltage drops instantaneously, the pulse of any phase is divided. In this case, a phenomenon occurs in which pulses continue in the same phase. The phenomenon is noise. The invalidating means invalidates the noise. Therefore, the voltage abnormality detection device can accurately detect whether there is an abnormality in the AC voltage even if the AC voltage is temporarily unstable.

請求項5に係る発明の電圧異常検出装置は、請求項1から4の何れかに記載の発明の構成に加え、前記交流電圧は三相交流電圧であって、前記分圧手段は、前記三相交流電圧をR相、S相、T相に夫々分圧することを特徴とする。故に電圧異常検出装置は三相交流電圧について請求項1から4の何れかに記載の効果を得ることができる。   In addition to the configuration of the invention according to any one of claims 1 to 4, the voltage abnormality detection device of the invention according to claim 5 is a three-phase AC voltage, and the voltage dividing means The phase AC voltage is divided into an R phase, an S phase, and a T phase, respectively. Therefore, the voltage abnormality detection device can obtain the effect according to any one of claims 1 to 4 for the three-phase AC voltage.

請求項6に係る発明の電圧異常検出装置は、請求項1から5の何れかに記載の発明の構成に加え、前記測定手段が測定した前記パルス幅に基づき、前記交流電圧の電圧値を算出する電圧値算出手段と、前記電圧値算出手段が算出した前記電圧値の情報と、前記異常判定手段の判定結果の情報との少なくとも何れかを表示部に表示する表示手段とを備えたことを特徴とする。電圧異常検出装置は電圧値と異常の有無について表示部に表示できる。故に使用者は現状の電圧値と電圧の異常の有無について容易に確認できる。 In addition to the configuration of the invention according to any one of claims 1 to 5, the voltage abnormality detection device according to the invention according to claim 6 is configured to calculate the voltage value of the AC voltage based on the width of the pulse measured by the measurement unit. Voltage value calculating means for calculating, and display means for displaying on the display section at least one of information on the voltage value calculated by the voltage value calculating means and information on the determination result of the abnormality determining means. It is characterized by. The voltage abnormality detection device can display the voltage value and the presence or absence of abnormality on the display unit. Therefore, the user can easily confirm the current voltage value and the presence or absence of voltage abnormality.

数値制御装置1と工作機械2の電気的構成を示すブロック図。1 is a block diagram showing an electrical configuration of a numerical control device 1 and a machine tool 2. FIG. 電圧異常検出回路15の回路図。The circuit diagram of the voltage abnormality detection circuit 15. FIG. RST相を各基準相とした時のパルス概念図と三相入力の電圧波形図。The pulse conceptual diagram when using RST phase as each reference phase, and the voltage waveform diagram of a three-phase input. 電圧解析処理の流れ図。The flowchart of a voltage analysis process. パルス周期とパルス幅の説明図。Explanatory drawing of a pulse period and a pulse width. 正常なパルスの概念図。Conceptual diagram of normal pulse. ノイズを途中で生じたパルスの概念図。The conceptual diagram of the pulse which produced the noise on the way. 50Hzにおける電圧値とパルス幅の関係について計算値と三相実測値を比較したグラフ。The graph which compared the calculated value and the three-phase measured value about the relationship between the voltage value in 50Hz, and a pulse width. 60Hzにおける電圧値とパルス幅の関係について計算値と三相実測値を比較したグラフ。The graph which compared the calculated value and the three-phase measured value about the relationship between the voltage value in 60Hz, and a pulse width. パルス幅と比率の関係をプロットしたグラフ(50Hz)。The graph (50 Hz) which plotted the relationship between a pulse width and a ratio. パルス幅と比率の関係をプロットしたグラフ(60Hz)。The graph (60 Hz) which plotted the relationship between a pulse width and a ratio. 計算パラメータテーブル91の概念図。The conceptual diagram of the calculation parameter table 91. FIG.

以下、本発明の一実施形態を図面を参照して説明する。図1に示す数値制御装置1は本発明の電圧異常検出装置の一例である。数値制御装置1は工作機械2を制御しテーブル(図示略)上面に保持したワークの切削加工を行う。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. A numerical control device 1 shown in FIG. 1 is an example of a voltage abnormality detection device of the present invention. The numerical control device 1 controls the machine tool 2 to cut a workpiece held on the upper surface of a table (not shown).

図1を参照し、工作機械2の構成を簡単に説明する。工作機械2の左右方向、前後方向、上下方向は、夫々X軸方向、Y軸方向、Z軸方向である。工作機械2は図示しない主軸機構、主軸移動機構、工具交換装置等を備える。主軸機構は主軸モータ32を備え、工具を装着した主軸を回転する。主軸移動機構は、Z軸モータ31、X軸モータ33、Y軸モータ34を備え、テーブル上面に支持したワークに対し相対的に主軸をXYZの各軸方向に夫々移動する。   The configuration of the machine tool 2 will be briefly described with reference to FIG. The left-right direction, the front-rear direction, and the vertical direction of the machine tool 2 are an X-axis direction, a Y-axis direction, and a Z-axis direction, respectively. The machine tool 2 includes a spindle mechanism, a spindle moving mechanism, a tool changer, and the like (not shown). The spindle mechanism includes a spindle motor 32 and rotates the spindle on which a tool is mounted. The main shaft moving mechanism includes a Z-axis motor 31, an X-axis motor 33, and a Y-axis motor 34, and moves the main shaft in each of the XYZ directions relative to the workpiece supported on the table upper surface.

工具交換装置はマガジンモータ35を備え、複数の工具を保持する工具マガジン(図示略)を駆動し、主軸に装着した工具を他の工具と交換する。工作機械2は操作パネル(図示略)を更に備える。操作パネルは入力装置17と表示装置18を備える。入力装置17は各種入力、設定等を行う為の機器である。表示装置18は各種表示画面、設定画面に加え、後述する電圧情報と異常情報等を表示する機器である。電圧情報は三相交流電源19が供給する現在の電圧値の情報である。異常情報は三相交流電源19が供給する電圧に異常が有ることを示す情報である。電圧異常は過電圧又は電圧低下の状態を含む。入力装置17と表示装置18は数値制御装置1の入出力部16に接続する。   The tool changer includes a magazine motor 35, drives a tool magazine (not shown) that holds a plurality of tools, and exchanges a tool mounted on the spindle with another tool. The machine tool 2 further includes an operation panel (not shown). The operation panel includes an input device 17 and a display device 18. The input device 17 is a device for performing various inputs and settings. The display device 18 is a device that displays voltage information, abnormality information, and the like, which will be described later, in addition to various display screens and setting screens. The voltage information is information on the current voltage value supplied by the three-phase AC power source 19. The abnormality information is information indicating that the voltage supplied from the three-phase AC power supply 19 is abnormal. Voltage anomalies include overvoltage or voltage drop conditions. The input device 17 and the display device 18 are connected to the input / output unit 16 of the numerical controller 1.

Z軸モータ31はエンコーダ41を備える。主軸モータ32はエンコーダ42を備える。X軸モータ33はエンコーダ43を備える。Y軸モータ34はエンコーダ44を備える。マガジンモータ35はエンコーダ45を備える。エンコーダ41〜45は数値制御装置1の駆動回路21〜25に各々接続する。   The Z-axis motor 31 includes an encoder 41. The spindle motor 32 includes an encoder 42. The X-axis motor 33 includes an encoder 43. The Y-axis motor 34 includes an encoder 44. The magazine motor 35 includes an encoder 45. The encoders 41 to 45 are connected to the drive circuits 21 to 25 of the numerical controller 1, respectively.

図1を参照し、数値制御装置1の電気的構成を説明する。数値制御装置1は、CPU11、ROM12、RAM13、不揮発性記憶装置14、電圧異常検出回路15、入出力部16、駆動回路21〜25等を備え、三相交流電源19を駆動源とする。CPU11は数値制御装置1を統括制御する。ROM12は各種プログラムを記憶する。RAM13は各種処理実行中の各種データを一時的に記憶する。不揮発性記憶装置14は作業者が入力装置17で入力して登録した複数のNCプログラム等を記憶する。NCプログラムは各種制御指令を含む複数のブロックで構成し、工作機械2の軸移動、工具交換等を含む各種動作をブロック単位で制御するものである。   The electrical configuration of the numerical control device 1 will be described with reference to FIG. The numerical control device 1 includes a CPU 11, a ROM 12, a RAM 13, a nonvolatile storage device 14, a voltage abnormality detection circuit 15, an input / output unit 16, drive circuits 21 to 25, and the like, and uses a three-phase AC power source 19 as a drive source. The CPU 11 performs overall control of the numerical control device 1. The ROM 12 stores various programs. The RAM 13 temporarily stores various data during execution of various processes. The non-volatile storage device 14 stores a plurality of NC programs and the like registered by the operator using the input device 17. The NC program is composed of a plurality of blocks including various control commands, and controls various operations including axis movement of the machine tool 2, tool change, and the like in units of blocks.

電圧異常検出回路15は三相交流電源19が供給する三相交流電圧の異常の有無を検出する。駆動回路21はZ軸モータ31とエンコーダ41に接続する。駆動回路22は主軸モータ32とエンコーダ42に接続する。駆動回路23はX軸モータ33とエンコーダ43に接続する。駆動回路24はY軸モータ34とエンコーダ44に接続する。駆動回路25はマガジンモータ35とエンコーダ45に接続する。駆動回路21〜25はCPU11から指令信号を受け、対応する各モータ31〜35に駆動電流を夫々出力する。駆動回路21〜25はエンコーダ41〜45からフィードバック信号を受け、位置と速度のフィードバック制御を行う。入出力部16は入力装置17と表示装置18に夫々接続する。   The voltage abnormality detection circuit 15 detects the presence or absence of abnormality in the three-phase AC voltage supplied from the three-phase AC power source 19. The drive circuit 21 is connected to the Z-axis motor 31 and the encoder 41. The drive circuit 22 is connected to the spindle motor 32 and the encoder 42. The drive circuit 23 is connected to the X-axis motor 33 and the encoder 43. The drive circuit 24 is connected to the Y-axis motor 34 and the encoder 44. The drive circuit 25 is connected to the magazine motor 35 and the encoder 45. The drive circuits 21 to 25 receive command signals from the CPU 11 and output drive currents to the corresponding motors 31 to 35, respectively. The drive circuits 21 to 25 receive feedback signals from the encoders 41 to 45 and perform feedback control of position and speed. The input / output unit 16 is connected to the input device 17 and the display device 18, respectively.

使用者は複数のNCプログラムの中から一のNCプログラムを入力装置17で選択可能である。CPU11は選択したNCプログラムを表示装置18に表示する。CPU11は表示装置18に表示したNCプログラムに基づき、工作機械2の動作を制御する。   The user can select one NC program from among a plurality of NC programs with the input device 17. The CPU 11 displays the selected NC program on the display device 18. The CPU 11 controls the operation of the machine tool 2 based on the NC program displayed on the display device 18.

図2を参照し、三相交流電源19を説明する。三相交流電源19は電流又は電圧の位相を互いにずらした三系統の単相交流を組み合わせた交流電源であり、例えば200Vの交流電圧を供給する。第一相はR相、第二相はS相、第三相はT相である。図2に示す三相交流電源19はΔ結線(デルタ結線)である。Δ結線は三相各相を相電圧が加わる向きに接続し閉回路とする結線である。三相交流電源19はΔ結線の他にY結線又はV結線でもよい。   The three-phase AC power source 19 will be described with reference to FIG. The three-phase AC power source 19 is an AC power source combining three systems of single-phase AC with the current or voltage phases shifted from each other, and supplies an AC voltage of 200 V, for example. The first phase is the R phase, the second phase is the S phase, and the third phase is the T phase. The three-phase AC power source 19 shown in FIG. 2 has a Δ connection (delta connection). The Δ connection is a connection in which the three phases are connected in the direction in which the phase voltage is applied to form a closed circuit. The three-phase AC power source 19 may be a Y connection or a V connection in addition to the Δ connection.

図2を参照し、電圧異常検出回路15の構成を説明する。電圧異常検出回路15は三相交流電源19が供給する交流電圧の異常を検出する。電圧異常検出回路15は、R相基準回路51、S相基準回路52、T相基準回路53、FPGA55を備える(以下総称する場合は基準回路51〜53と呼ぶ)。電圧異常検出回路15は簡単な構成であるので、従来に比べて回路面積を小さくできて扱いやすい。   The configuration of the voltage abnormality detection circuit 15 will be described with reference to FIG. The voltage abnormality detection circuit 15 detects an abnormality in the AC voltage supplied from the three-phase AC power source 19. The voltage abnormality detection circuit 15 includes an R-phase reference circuit 51, an S-phase reference circuit 52, a T-phase reference circuit 53, and an FPGA 55 (hereinafter collectively referred to as reference circuits 51 to 53). Since the voltage abnormality detection circuit 15 has a simple configuration, the circuit area can be reduced as compared with the conventional case and is easy to handle.

R相基準回路51は、三相交流電源19が出力する三相交流電圧を分圧し、R相を基準として、他のS相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。S相基準回路52は、三相交流電源19が出力する三相交流電圧を分圧し、S相を基準として、他のR相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。T相基準回路53は、三相交流電源19が出力する三相交流電圧を分圧し、T相を基準として、他のR相とS相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。FPGA55は後述する電圧解析処理(図4参照)を実行する。電圧解析処理は基準回路51〜53が出力したパルスを解析し電圧異常の有無と電圧値を解析する処理である。   The R-phase reference circuit 51 divides the three-phase AC voltage output from the three-phase AC power source 19, and the potential difference between the other S phase and the lower one of the T phases becomes a predetermined voltage or more with the R phase as a reference. Sometimes outputs a pulse. The S-phase reference circuit 52 divides the three-phase AC voltage output from the three-phase AC power source 19, and the potential difference between the other R phase and the lower one of the T phases becomes a predetermined voltage or more with the S phase as a reference. Sometimes outputs a pulse. The T-phase reference circuit 53 divides the three-phase AC voltage output from the three-phase AC power supply 19, and the potential difference between the other R phase and the lower one of the S phases becomes a predetermined voltage or more with the T phase as a reference. Sometimes outputs a pulse. The FPGA 55 executes a voltage analysis process (see FIG. 4) described later. The voltage analysis process is a process of analyzing the pulse output from the reference circuits 51 to 53 to analyze the presence / absence of a voltage abnormality and the voltage value.

図2を参照し、R相基準回路51の構成を説明する。R相基準回路51は、抵抗61,62、シャントレギュレータ63、フォトカプラ64等を備える。抵抗61,62は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。シャントレギュレータ63は、R相基準で他のS相とT相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ63がONすると、フォトカプラ64は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ63はR相基準で他のS相とT相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ63がOFFすると、フォトカプラ64は消灯する。   The configuration of the R-phase reference circuit 51 will be described with reference to FIG. The R-phase reference circuit 51 includes resistors 61 and 62, a shunt regulator 63, a photocoupler 64, and the like. The resistors 61 and 62 divide the three-phase AC voltage output from the three-phase AC power source 19 into an R phase, an S phase, and a T phase, respectively. The shunt regulator 63 is turned on when the potential difference between the other S phase and the lower one of the T phases on the R phase basis becomes a predetermined voltage or more. When the shunt regulator 63 is turned on, the photocoupler 64 lights up and outputs a pulse to the FPGA 55. The shunt regulator 63 is turned off when the potential difference between the other S phase and the lower T phase is less than a predetermined voltage on the R phase basis. When the shunt regulator 63 is turned off, the photocoupler 64 is turned off.

S相基準回路52は、抵抗71,72、シャントレギュレータ73、フォトカプラ74等を備える。抵抗71,72は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。シャントレギュレータ73は、S相基準で他のR相とT相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ73がONすると、フォトカプラ74は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ73は、S相基準で他のR相とT相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ73がOFFすると、フォトカプラ74は消灯する。   The S-phase reference circuit 52 includes resistors 71 and 72, a shunt regulator 73, a photocoupler 74, and the like. The resistors 71 and 72 divide the three-phase AC voltage output from the three-phase AC power source 19 into an R phase, an S phase, and a T phase, respectively. The shunt regulator 73 is turned on when the potential difference between the other R phase and the lower one of the T phases on the S phase basis becomes a predetermined voltage or more. When the shunt regulator 73 is turned on, the photocoupler 74 is lit and outputs a pulse to the FPGA 55. The shunt regulator 73 is turned off when the potential difference between the other R phase and the lower one of the T phases is less than a predetermined voltage based on the S phase. When the shunt regulator 73 is turned off, the photocoupler 74 is turned off.

T相基準回路53は、抵抗81,82、シャントレギュレータ83、フォトカプラ84等を備える。抵抗81,82は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。シャントレギュレータ83は、T相基準で他のR相とS相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ83がONすると、フォトカプラ84は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ83は、T相基準で他のR相とS相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ83がOFFすると、フォトカプラ84は消灯する。   The T-phase reference circuit 53 includes resistors 81 and 82, a shunt regulator 83, a photocoupler 84, and the like. The resistors 81 and 82 divide the three-phase AC voltage output from the three-phase AC power source 19 into an R phase, an S phase, and a T phase, respectively. The shunt regulator 83 is turned on when the potential difference between the other R phase and the lower one of the S phases is equal to or higher than a predetermined voltage on the T phase basis. When the shunt regulator 83 is turned on, the photocoupler 84 is turned on and a pulse is output to the FPGA 55. The shunt regulator 83 is turned off when the potential difference between the other R phase and the lower one of the S phases is less than a predetermined voltage on the T phase basis. When the shunt regulator 83 is turned off, the photocoupler 84 is turned off.

図2,図3を参照し、R相基準回路51の作用を説明する。図3の最下段の波形は、RSTの三相を入力した電圧曲線である。各電圧曲線は何れもsinカーブであって120度ずつ位相がずれている。図3の上側三つの波形は、上から順にR相基準、S相基準、T相基準とした場合の各パルス波形の概念図である。各概念図は説明が分かり易いように、電位差が所定電圧以上(例えば152.5V以上)のパルス波形を示す。電位差が所定電圧未満の場合、パルス電圧は零とする。   The operation of the R-phase reference circuit 51 will be described with reference to FIGS. The waveform at the bottom of FIG. 3 is a voltage curve in which three phases of RST are input. Each voltage curve is a sin curve, and the phase is shifted by 120 degrees. The upper three waveforms in FIG. 3 are conceptual diagrams of each pulse waveform when the R phase reference, the S phase reference, and the T phase reference are set in order from the top. Each conceptual diagram shows a pulse waveform having a potential difference of a predetermined voltage or more (for example, 152.5 V or more) for easy understanding. When the potential difference is less than a predetermined voltage, the pulse voltage is zero.

上述の通り、R相基準回路51は、R相基準で、他のS相とT相のうち低い方とR相との電位差が所定電圧以上になった時にパルスを出力する。例えば図3に示す二点鎖線で囲んだ枠内に着目して説明する。t1では、S相の方がT相よりも電圧が低く、R相とS相の電位差は同じである。S相の方がT相よりも電圧が低い場合、図2に示すように、R相基準回路51では点線の矢印Aの方向に電圧がかかる。t1を過ぎると、R相とS相との間に電位差が徐々に生じ、t2で所定電圧以上に達する。シャントレギュレータ63はONする。シャントレギュレータ63のK端子(カソード端子)とA端子(アノード端子)との間に電流が流れる。フォトカプラ64は点灯し、FPGA55にパルスを出力する。パルスはt2から上昇して一定値に達する。R相とS相の電位差は徐々に小さくなる。   As described above, the R-phase reference circuit 51 outputs a pulse when the potential difference between the lower of the other S-phase and T-phase and the R-phase is equal to or higher than a predetermined voltage on the R-phase basis. For example, the description will be made by paying attention to a frame surrounded by a two-dot chain line shown in FIG. At t1, the voltage of the S phase is lower than that of the T phase, and the potential difference between the R phase and the S phase is the same. When the voltage of the S phase is lower than that of the T phase, the voltage is applied in the direction of the dotted arrow A in the R phase reference circuit 51 as shown in FIG. After t1, a potential difference is gradually generated between the R phase and the S phase, and reaches a predetermined voltage or more at t2. The shunt regulator 63 is turned on. A current flows between the K terminal (cathode terminal) and the A terminal (anode terminal) of the shunt regulator 63. The photocoupler 64 is lit and outputs a pulse to the FPGA 55. The pulse rises from t2 and reaches a certain value. The potential difference between the R phase and the S phase gradually decreases.

t3でS相とT相は逆転する。パルスはt3で少し低下する。t3を過ぎると、T相の方がS相よりも電圧が低くなるので、図2に示すように、R相基準回路51では二点鎖線の矢印Bの方向に電圧がかかる。t3を過ぎると、R相とT相との間に所定電圧以上の電位差が生じるので、パルスは再上昇して一定値に達する。R相とT相の電位差は徐々に小さくなり、t4で所定電圧未満となる。シャントレギュレータ63はOFFする。フォトカプラ64は消灯する。パルスはt4で零となる。R相基準回路51が出力するパルスはt2〜t4までの波形を一定周期毎に繰り返す。   At t3, the S phase and the T phase are reversed. The pulse drops slightly at t3. After t3, the voltage in the T phase becomes lower than that in the S phase, so that the voltage is applied in the direction of the two-dot chain line arrow B in the R phase reference circuit 51 as shown in FIG. After t3, a potential difference of a predetermined voltage or more is generated between the R phase and the T phase, so that the pulse rises again and reaches a constant value. The potential difference between the R phase and the T phase gradually decreases and becomes less than a predetermined voltage at t4. The shunt regulator 63 is turned off. The photocoupler 64 is turned off. The pulse becomes zero at t4. The pulse output from the R-phase reference circuit 51 repeats the waveform from t2 to t4 at regular intervals.

S相基準回路52とT相基準回路53はR相基準回路51と同様に動作する。図3に示すように、S相とT相の各パルス波形は、R相のパルス波形に対して位相がずれている。R相のパルス、S相のパルス、T相のパルスは、RSTの相順でFPGA55に各々出力する。FPGA55は基準回路51〜53が出力した各パルスについて電圧解析処理を実行する。   The S phase reference circuit 52 and the T phase reference circuit 53 operate in the same manner as the R phase reference circuit 51. As shown in FIG. 3, the S-phase and T-phase pulse waveforms are out of phase with the R-phase pulse waveform. The R-phase pulse, S-phase pulse, and T-phase pulse are each output to the FPGA 55 in the RST phase order. The FPGA 55 executes voltage analysis processing for each pulse output from the reference circuits 51 to 53.

図4を参照し、電圧解析処理を説明する。電圧解析処理はFPGA55が実行する。先ず、FPGA55はRST相のパルス情報を受信する(S10)。パルス情報は、R相基準回路51、S相基準回路52、T相基準回路53が夫々出力するパルスの情報である。   The voltage analysis process will be described with reference to FIG. The voltage analysis process is executed by the FPGA 55. First, the FPGA 55 receives RST phase pulse information (S10). The pulse information is information on pulses output from the R-phase reference circuit 51, the S-phase reference circuit 52, and the T-phase reference circuit 53, respectively.

次に、FPGA55はパルス情報に基づきパルス幅とパルス周期を相毎に測定する(S11)。図5に示すように、パルスは一定周期毎に繰り返す。t7はパルスが基準電圧から立ち上がる時間である。基準電圧は例えば152.5Vの一定電圧である。t8はパルスが最高電圧に達した時間である。t9はパルスが最高電圧から下がり始める時間である。t10はパルスが基準電圧まで下がった時間である。t11は次のパルスが基準電圧から立ち上がる時間である。パルス幅はt7〜t10までの時間である。パルス周期はt7〜t11までの時間である。なおパルス幅はt8〜t9までの時間としてもよい。t7〜t11はパルスの安定した箇所である。故にFPGA55はパルス幅とパルス周期を正確に測定できる。   Next, the FPGA 55 measures the pulse width and the pulse period for each phase based on the pulse information (S11). As shown in FIG. 5, the pulse repeats at regular intervals. t7 is the time for the pulse to rise from the reference voltage. The reference voltage is a constant voltage of 152.5V, for example. t8 is the time when the pulse reaches the maximum voltage. t9 is the time when the pulse starts to drop from the maximum voltage. t10 is the time when the pulse drops to the reference voltage. t11 is the time when the next pulse rises from the reference voltage. The pulse width is the time from t7 to t10. The pulse period is the time from t7 to t11. The pulse width may be a time from t8 to t9. t7 to t11 are stable parts of the pulse. Therefore, the FPGA 55 can accurately measure the pulse width and the pulse period.

ところで、フォトカプラは一般的に発光素子と受光素子の二つの素子を備える。各素子の発光具合、受光感度等にはバラツキがある。発光具合と受光感度の関係はCTR(変換効率)といい、%で表記する。CTRはロットによってバラツキを生じ、経年変化によって低下する場合もある。CTRのバラツキは主にFALL時間に大きく影響を与える。そこで、FPGA55は各素子のバラツキを考慮し、パルスのRISE時間とFALL時間を用いてパルス幅を補正してもよい。RISE時間はt7〜t8までの時間である。FALL時間はt9〜t10までの時間である。FPGA55はRISE時間とFALL時間を計測し、各時間の半分の幅をt7〜t10までのパルス幅から夫々減算してもよい。パルス幅をt8〜t9までの時間とした場合、RISE時間とFALL時間の半分の幅をパルス幅に夫々加算すればよい。   Incidentally, a photocoupler generally includes two elements, a light emitting element and a light receiving element. There are variations in the light emitting condition, light receiving sensitivity, etc. of each element. The relationship between the light emission condition and the light receiving sensitivity is called CTR (conversion efficiency) and is expressed in%. CTR varies from lot to lot and may decrease with aging. CTR variation mainly affects the FALL time. Therefore, the FPGA 55 may correct the pulse width using the RISE time and FALL time of the pulse in consideration of the variation of each element. The RISE time is a time from t7 to t8. The FALL time is a time from t9 to t10. The FPGA 55 may measure the RISE time and the FALL time, and subtract half the width of each time from the pulse width from t7 to t10. When the pulse width is a time from t8 to t9, half the width of the RISE time and the FALL time may be added to the pulse width, respectively.

次に、FPGA55は周波数を算出する(S12)。FPGA55は相毎に測定したパルス周期に基づき、三相交流電源19の周波数が50Hzか60Hzかそれ以外か判定する。FPGA55は判定結果をメモリ(図示略)に記憶する。   Next, the FPGA 55 calculates a frequency (S12). The FPGA 55 determines whether the frequency of the three-phase AC power source 19 is 50 Hz, 60 Hz, or other based on the pulse period measured for each phase. The FPGA 55 stores the determination result in a memory (not shown).

次に、FPGA55はパルスチェック処理を実行する(S13)。パルスチェック処理は、R相基準回路51、S相基準回路52及びT相基準回路53が出力する各パルスの異常の有無を検出し、異常があるパルスを無効化する処理である。図6に示すパルスは正常時のパルスである。パルスの一周期はt15〜t16までの時間である。t15,t16はパルスを更新した時間である。RST相の各パルスが正常であれば、図3に示すように、RSTの相順で出現する。   Next, the FPGA 55 performs a pulse check process (S13). The pulse check process is a process of detecting the presence or absence of abnormality of each pulse output from the R-phase reference circuit 51, the S-phase reference circuit 52, and the T-phase reference circuit 53, and invalidating the pulse having the abnormality. The pulse shown in FIG. 6 is a normal pulse. One cycle of the pulse is a time from t15 to t16. t15 and t16 are times when the pulse is updated. If each pulse of the RST phase is normal, it appears in the phase order of the RST as shown in FIG.

図7に示すパルスは途中でノイズが発生している。正常であればパルスの一周期はt17〜t19までの時間である。例えば地域の電力事情等によって電圧が瞬間的に低下する場合がある。パルス出力中の瞬間的な電圧低下はノイズとなる。パルス出力中にノイズが発生した場合、パルスは分断して二山となる。故にパルスはt17,t18,t19で更新したことになる。パルス周期はt17〜t18まで周期とt18〜t19までの周期の二周期となる。R相のパルスで図7に示す異常を生じた場合、R相のパルスが同一相で連続して更新したことになる。FPGA55は「RRST」の順で各パルスを検出する。パルスが同一相で連続して更新した場合、そのパルスは異常である。FPGA55は連続したパルスを無効と判断する。故にFPGA55は正常なパルスのみを抽出して異常を判定できる。   In the pulse shown in FIG. 7, noise occurs in the middle. If normal, one cycle of the pulse is the time from t17 to t19. For example, the voltage may drop instantaneously depending on local power conditions. An instantaneous voltage drop during pulse output becomes noise. If noise is generated during pulse output, the pulse is divided into two peaks. Therefore, the pulse is updated at t17, t18, and t19. The pulse period has two periods, a period from t17 to t18 and a period from t18 to t19. When the abnormality shown in FIG. 7 occurs in the R-phase pulse, the R-phase pulse is continuously updated in the same phase. The FPGA 55 detects each pulse in the order of “RRST”. If the pulse is updated continuously in the same phase, the pulse is abnormal. The FPGA 55 determines that consecutive pulses are invalid. Therefore, the FPGA 55 can determine abnormality by extracting only normal pulses.

次に、FPGA55は相順チェック処理を実行する(S14)。相順チェック処理は、基準回路51〜53が出力した各パルスに基づき、交流電圧が相順であるか否かチェックする。交流電圧が相順でない状態は異常状態である。異常状態は例えば欠損状態又は逆相状態の場合である。欠損状態は三相のうち一相だけの配線が断線した状態である。逆相状態はRST相の相順が逆となった状態である。FPGA55は欠損状態又は逆相状態を検知した場合、異常情報としてメモリに記憶する。   Next, the FPGA 55 executes a phase order check process (S14). The phase sequence check process checks whether the AC voltage is in phase sequence based on each pulse output from the reference circuits 51 to 53. A state where the AC voltage is not in phase order is an abnormal state. The abnormal state is, for example, a missing state or a reverse phase state. The missing state is a state in which only one of the three phases is disconnected. The reverse phase state is a state in which the phase order of the RST phase is reversed. When the FPGA 55 detects a missing state or a reverse phase state, the FPGA 55 stores it in the memory as abnormality information.

次に、FPGA55は異常検知処理を実行する(S15)。異常検知処理は三相交流電源19の過電圧と電圧低下とを夫々検知する処理である。異常検知処理では、FPGA55はRSTの各相についてパルス幅とパルス周期のデューティ比を算出する。デューティ比はパルス周期に対するパルス幅の割合である。FPGA55は周波数(例えば50Hzと60Hz)毎に第一閾値と第二閾値とを予めメモリに記憶する。第一閾値は過電圧を判定する為の閾値である。第二閾値は電圧低下を判定する為の閾値である。第一閾値と第二閾値は実験結果の実測値から求めてもよい。例えば50Hzの周波数で、第一閾値は57.19%、第二閾値は46.62%と設定できる。FPGA55は、デューティ比が第一閾以上であれば過電圧と判定し、第二閾値以下であれば電圧低下と判断する。FPGA55は判定結果を異常情報としてメモリに記憶する。なお第二閾値よりも低い第三閾値を設定し停電を検知してもよい。第一閾値と第二閾値は本発明の基準情報に相当する。   Next, the FPGA 55 performs an abnormality detection process (S15). The abnormality detection process is a process for detecting an overvoltage and a voltage drop of the three-phase AC power supply 19 respectively. In the abnormality detection process, the FPGA 55 calculates the pulse width and the duty ratio of the pulse period for each phase of RST. The duty ratio is the ratio of the pulse width to the pulse period. The FPGA 55 stores a first threshold value and a second threshold value in advance in a memory for each frequency (for example, 50 Hz and 60 Hz). The first threshold is a threshold for determining an overvoltage. The second threshold is a threshold for determining a voltage drop. You may obtain | require a 1st threshold value and a 2nd threshold value from the measured value of an experimental result. For example, at a frequency of 50 Hz, the first threshold value can be set to 57.19% and the second threshold value can be set to 46.62%. The FPGA 55 determines an overvoltage if the duty ratio is equal to or greater than the first threshold, and determines a voltage drop if the duty ratio is equal to or less than the second threshold. The FPGA 55 stores the determination result in the memory as abnormality information. A power failure may be detected by setting a third threshold lower than the second threshold. The first threshold value and the second threshold value correspond to the reference information of the present invention.

なお詳述しないが、FPGA55はBITシフト除算と加算器を用いて、パルス周期からパルス幅の上限と下限の判定基準値を近似値で算出し、この近似値とパルス幅を比較する。例えば、50Hzでパルス周期が20msの場合、FPGA55の内部カウンタは1カウンタ=2us単位、BIT長は14bitであるから、カウンタ値は約10000となる。BITシフト除算は1回シフトする毎に2で除算する。故にFPGA55は13回BITシフトを行い、1,4,7,10,11,13回目のみを加算し、パルス周期から第一閾値である57.19%のパルス幅の上限値を算出する。FPGA55は上限値とパルス幅を比較し、上回っていた場合は過電圧と判定できる。   Although not described in detail, the FPGA 55 uses the BIT shift division and the adder to calculate the upper and lower determination reference values of the pulse width from the pulse period as approximate values, and compares this approximate value with the pulse width. For example, when the pulse period is 20 ms at 50 Hz, the internal counter of the FPGA 55 is 1 counter = 2 us unit and the BIT length is 14 bits, so the counter value is about 10,000. The BIT shift division is performed by 2 for every shift. Therefore, the FPGA 55 performs BIT shift 13 times, adds only the first, fourth, seventh, tenth, eleventh and thirteenth times, and calculates the upper limit value of the pulse width of 57.19% which is the first threshold value from the pulse period. The FPGA 55 compares the upper limit value with the pulse width, and if it exceeds the value, it can be determined as an overvoltage.

次に、FPGA55は電圧値算出処理を実行する(S16)。電圧値算出処理は、RSTの三相電圧値をパルス幅とパルス周期と周波数とを用いて算出する処理である。単相の電圧値を算出する一般的な演算式は以下の通りである。VINは入力電圧、Vは電圧検出閾値であってフォトカプラが導通する電圧である。fは周波数である。
IN=V/(cos(2π×f×(パルス幅/2))・・・(1)
Next, the FPGA 55 executes a voltage value calculation process (S16). The voltage value calculation process is a process for calculating the three-phase voltage value of the RST using the pulse width, the pulse period, and the frequency. A general arithmetic expression for calculating a single-phase voltage value is as follows. V IN is an input voltage, V E is a voltage detection threshold, and is a voltage at which the photocoupler becomes conductive. f is a frequency.
V IN = V E / (cos (2π × f × (pulse width / 2)) (1)

50Hzの周波数で(1)式を用いて算出した電圧値とパルス幅との関係を図8のグラフに示す。下の曲線P1は計算値、上の曲線P2は三相実測値である。計算値とは、(1)式を用いて算出したパルス幅である。三相実測値とは、FPGA55で計測した電圧値のパルス幅である。曲線P1は曲線P2の約0.6倍であることがわかる。故に50Hzの周波数で三相交流電源19の電圧値を算出する為に、単相を対象とした(1)式をそのまま使用することはできない。   The graph of FIG. 8 shows the relationship between the voltage value calculated using the equation (1) at a frequency of 50 Hz and the pulse width. The lower curve P1 is a calculated value, and the upper curve P2 is a three-phase measured value. The calculated value is a pulse width calculated using the equation (1). The three-phase measured value is a pulse width of a voltage value measured by the FPGA 55. It can be seen that the curve P1 is about 0.6 times the curve P2. Therefore, in order to calculate the voltage value of the three-phase AC power supply 19 at a frequency of 50 Hz, the equation (1) for a single phase cannot be used as it is.

60Hzの周波数で(1)式を用いて算出した電圧値とパルス幅との関係を図9のグラフに示す。下の曲線Q1は計算値、上の曲線Q2は三相実測値である。曲線Q1は曲線Q2の約0.6倍であることがわかる。故に60Hzの周波数で三相交流電源19の電圧値を算出する為に、単相を対象とした(1)式をそのまま使用することはできない。   The relationship between the voltage value calculated using the equation (1) at a frequency of 60 Hz and the pulse width is shown in the graph of FIG. The lower curve Q1 is a calculated value, and the upper curve Q2 is a three-phase measured value. It can be seen that the curve Q1 is about 0.6 times the curve Q2. Therefore, in order to calculate the voltage value of the three-phase AC power supply 19 at a frequency of 60 Hz, the equation (1) for a single phase cannot be used as it is.

上記検討より、測定したパルス幅から三相交流電源19の電圧値を算出する為に、(1)式を改良する。(1)式に入力するパルス幅を補正し、三相実測値を直接導けばよい。図10は、50Hzの周波数で、パルス幅毎に計算値と三相実測値の比率を算出してプロットしたものである。横軸はFPGA55が測定するパルス幅、縦軸は比率である。比率はFPGA55が測定するパルス幅を補正する補正値である。これらプロットデータの近似式は以下の通りである。
y=-0.0005510245x4+0.0203099438x3-0.2793184179x2+1.7165523815x-3.3316034929 ・・・(2)
From the above examination, the equation (1) is improved in order to calculate the voltage value of the three-phase AC power source 19 from the measured pulse width. The pulse width input to the equation (1) may be corrected to directly derive the three-phase measured value. FIG. 10 is a plot of the ratio between the calculated value and the three-phase measured value for each pulse width calculated at a frequency of 50 Hz. The horizontal axis represents the pulse width measured by the FPGA 55, and the vertical axis represents the ratio. The ratio is a correction value for correcting the pulse width measured by the FPGA 55. The approximate expression of these plot data is as follows.
y = -0.0005510245x 4 + 0.0203099438x 3 -0.2793184179x 2 + 1.7165523815x-3.3316034929 (2)

図11は、60Hzの周波数で、パルス幅毎に計算値と三相実測値の比率を算出してプロットしたものである。横軸はFPGA55が測定するパルス幅、縦軸は比率である。比率はFPGA55が測定するパルス幅を補正する補正値である。これらプロットデータの近似式は以下の通りである。
y=0.0137540330x4-0.4256553089x3+4.9038648653x2-24.8943800941x+47.6117061713 ・・・(3)
FIG. 11 is a plot of the ratio between the calculated value and the measured three-phase value for each pulse width at a frequency of 60 Hz. The horizontal axis represents the pulse width measured by the FPGA 55, and the vertical axis represents the ratio. The ratio is a correction value for correcting the pulse width measured by the FPGA 55. The approximate expression of these plot data is as follows.
y = 0.0137540330x 4 -0.4256553089x 3 + 4.9038648653x 2 -24.8943800941x + 47.6117061713 (3)

FPGA55が測定するパルス幅から三相交流電源19の電圧値を計算する計算式と計算パラメータは、以下の通りである。計算パラメータは周波数毎に設定する。
VIN=VE/(cos(π×F×ActPW×(ApP1×ActPW4+ApP2×ActPW3+ApP3×ActPW2+ApP4×ActPW+ ApP5)×10-3))/√2 ・・・(4)
・VE:電圧検出閾値(本実施形態では152.5V)
・ActPW:実測パルス幅(ms)
・F:周波数
・ApP1〜ApP5:(2)式と(3)式で求めた近似式パラメータ
Calculation formulas and calculation parameters for calculating the voltage value of the three-phase AC power supply 19 from the pulse width measured by the FPGA 55 are as follows. Calculation parameters are set for each frequency.
V IN = V E / (cos (π × F × ActPW × (ApP1 × ActPW 4 + ApP2 × ActPW 3 + ApP3 × ActPW 2 + ApP4 × ActPW + ApP5) × 10 −3 )) / √2 (4 )
V E : voltage detection threshold (152.5 V in this embodiment)
・ ActPW: Measured pulse width (ms)
・ F : Frequency ・ ApP1 to ApP5: Approximate equation parameters obtained from Equations (2) and (3)

FPGA55は図12に示す計算パラメータテーブル91をメモリに記憶する。計算パラメータテーブル91は上述の計算パラメータを夫々設定する。ApP1〜ApP5の近似式パラメータは上記の評価結果によって変更すればよい。故にFPGA55は、計算パラメータテーブル91のうち、測定したパルス周期から割り出した周波数の近似式パラメータを(4)式に当てはめ、実測パルス幅をActPWに代入することで、三相交流電源19の電圧値を算出できる。FPGA55は算出した電圧値を電圧情報としてメモリに記憶する。   The FPGA 55 stores a calculation parameter table 91 shown in FIG. 12 in a memory. The calculation parameter table 91 sets the above-described calculation parameters. The approximate expression parameters of ApP1 to ApP5 may be changed according to the above evaluation results. Therefore, the FPGA 55 applies the approximate equation parameter of the frequency calculated from the measured pulse period in the calculation parameter table 91 to the equation (4), and substitutes the measured pulse width into ActPW, so that the voltage value of the three-phase AC power source 19 is obtained. Can be calculated. The FPGA 55 stores the calculated voltage value in the memory as voltage information.

次に、FPGA55はメモリに記憶した異常情報と電圧情報をCPU11に出力する(S17)。CPU11は出力した異常情報と電圧情報をRAM13に記憶し且つ表示装置18に表示する。作業者は表示装置18に表示した異常情報と電圧情報を確認することで、三相交流電圧が正常か異常か認識できる。故に作業者は異常箇所の修理交換等の速やかな対応ができる。作業者は異常情報のみならず電圧情報を確認できるので、三相交流電圧が正常であることを常時確認できる。   Next, the FPGA 55 outputs the abnormality information and voltage information stored in the memory to the CPU 11 (S17). The CPU 11 stores the output abnormality information and voltage information in the RAM 13 and displays them on the display device 18. The operator can recognize whether the three-phase AC voltage is normal or abnormal by checking the abnormality information and voltage information displayed on the display device 18. Therefore, the operator can promptly respond such as repair and replacement of the abnormal part. Since the operator can check not only abnormality information but also voltage information, it can always check that the three-phase AC voltage is normal.

以上説明にて、基準回路51〜53が本発明の分圧手段とパルス出力手段に相当し、図4のS11の処理を実行するFPGA55が本発明の測定手段に相当し、S12の処理を実行するFPGA55が本発明の周波数特定手段に相当し、S13の処理を実行するFPGA55が本発明の無効化手段に相当し、S15の処理を実行するFPGA55が本発明の異常判定手段に相当する。表示装置18に電圧情報と異常情報を表示するCPU11が本発明の表示手段に相当する。   In the above description, the reference circuits 51 to 53 correspond to the voltage dividing means and the pulse output means of the present invention, and the FPGA 55 that executes the process of S11 in FIG. 4 corresponds to the measuring means of the present invention and executes the process of S12. The FPGA 55 that corresponds to the frequency specifying means of the present invention corresponds to the FPGA 55 that executes the process of S13 corresponds to the invalidation means of the present invention, and the FPGA 55 that executes the process of S15 corresponds to the abnormality determination means of the present invention. The CPU 11 that displays voltage information and abnormality information on the display device 18 corresponds to the display means of the present invention.

以上説明したように、本実施形態の数値制御装置1は電圧異常検出回路15を備える。電圧異常検出回路15は三相交流電源19の異常の有無を検出する。電圧異常検出回路15は、R相基準回路51、S相基準回路52、T相基準回路53、FPGA55を備える。R相基準回路51は、三相交流電源19が出力する三相交流電圧を分圧し、R相を基準として、他のS相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。S相基準回路52は、三相交流電源19が出力する三相交流電圧を分圧し、S相を基準として、他のR相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。T相基準回路53は、三相交流電源19が出力する三相交流電圧を分圧し、T相を基準として、他のR相とS相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。FPGA55は基準回路51〜53が出力したパルスを解析し電圧異常の有無と電圧値をリアルタイムで検知する。FPGA55は三相交流電圧について相毎に異常を判断するのではなく、一相を基準とした場合の他の二相との電位差に基づいて出力するパルスで異常の有無を判断する。故に数値制御装置1は三相交流電圧に異常が有るか否かを精度良く検出できる。   As described above, the numerical controller 1 according to this embodiment includes the voltage abnormality detection circuit 15. The voltage abnormality detection circuit 15 detects whether or not the three-phase AC power source 19 is abnormal. The voltage abnormality detection circuit 15 includes an R-phase reference circuit 51, an S-phase reference circuit 52, a T-phase reference circuit 53, and an FPGA 55. The R-phase reference circuit 51 divides the three-phase AC voltage output from the three-phase AC power source 19, and the potential difference between the other S phase and the lower one of the T phases becomes a predetermined voltage or more with the R phase as a reference. Sometimes outputs a pulse. The S-phase reference circuit 52 divides the three-phase AC voltage output from the three-phase AC power source 19, and the potential difference between the other R phase and the lower one of the T phases becomes a predetermined voltage or more with the S phase as a reference. Sometimes outputs a pulse. The T-phase reference circuit 53 divides the three-phase AC voltage output from the three-phase AC power supply 19, and the potential difference between the other R phase and the lower one of the S phases becomes a predetermined voltage or more with the T phase as a reference. Sometimes outputs a pulse. The FPGA 55 analyzes the pulses output from the reference circuits 51 to 53 and detects the presence / absence of voltage abnormality and the voltage value in real time. The FPGA 55 does not determine the abnormality for each phase of the three-phase AC voltage, but determines the presence or absence of an abnormality based on the pulse output based on the potential difference from the other two phases based on one phase. Therefore, the numerical controller 1 can accurately detect whether or not the three-phase AC voltage is abnormal.

本実施形態ではさらに、FPGA55は相毎に測定したパルス幅とパルス周期からデューティ比を算出する。FPGA55は算出したデューティ比と第一閾値と第二閾値と比較し、三相交流電源19の過電圧と電圧低下を夫々検知できる。デューティ比で比較するので、フォトカプラの個体差の影響を軽減できる。さらに各基準回路51〜53は受光素子デバイスであるフォトカプラを備えているので回路内を絶縁できる。故にFPGA55は他の電圧の影響を受けることなくパルス情報だけで電圧値を算出できる。   In the present embodiment, the FPGA 55 further calculates the duty ratio from the pulse width and pulse period measured for each phase. The FPGA 55 can detect the overvoltage and voltage drop of the three-phase AC power source 19 by comparing the calculated duty ratio with the first threshold value and the second threshold value. Since the comparison is based on the duty ratio, the influence of individual differences of the photocoupler can be reduced. Further, since each of the reference circuits 51 to 53 includes a photocoupler that is a light receiving element device, the circuit can be insulated. Therefore, the FPGA 55 can calculate the voltage value only from the pulse information without being affected by other voltages.

本実施形態ではさらに、FPGA55はパルス周期から周波数を特定する。FPGA55は特定した周波数に対応する閾値とデューティ比を比較する。故に数値制御装置1は交流電圧の周波数に応じて交流電圧の異常の有無を精度良く検出できる。   In the present embodiment, the FPGA 55 further specifies the frequency from the pulse period. The FPGA 55 compares the threshold value corresponding to the specified frequency with the duty ratio. Therefore, the numerical controller 1 can accurately detect the presence or absence of an abnormality in the AC voltage according to the frequency of the AC voltage.

本実施形態ではさらに、FPGA55は各相に夫々発生するパルスが同一の相で連続して並んだ場合、同一の相で連続して発生したパルスを無効化する。故に数値制御装置1は電圧の瞬間的な低下等に起因するノイズがパルス途中で発生した場合、そのパルスを無効にできるので、正常なパルスのみを抽出して電圧異常を判断できる。   In the present embodiment, the FPGA 55 further invalidates the pulses generated continuously in the same phase when the pulses generated in the respective phases are continuously arranged in the same phase. Therefore, the numerical control device 1 can invalidate the pulse when noise caused by an instantaneous voltage drop or the like is generated in the middle of the pulse, so that only the normal pulse can be extracted to determine the voltage abnormality.

本実施形態ではさらに、CPU11は電圧情報と異常情報とのうち少なくとも何れかを表示装置18に表示する。故に使用者は現状の電圧値と異常の有無について容易に監視できる。   In the present embodiment, the CPU 11 further displays at least one of voltage information and abnormality information on the display device 18. Therefore, the user can easily monitor the current voltage value and the presence or absence of abnormality.

なお本発明は上記実施の形態に限定されず、様々な変形が可能である。上記実施形態は、三相交流電源19が供給する三相交流電圧の異常を検出するものであるが、二相でもよく、又は三相以上の複数の相でもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. In the embodiment described above, an abnormality in the three-phase AC voltage supplied from the three-phase AC power source 19 is detected, but two phases may be used, or a plurality of three or more phases may be used.

また上記実施形態では、各基準回路51〜53はフォトカプラ64,74,84を備えているが、受光素子デバイスであればよく、例えば光MOSFETでもよい。   In the above embodiment, each of the reference circuits 51 to 53 includes the photocouplers 64, 74, and 84. However, any light receiving element device may be used, and for example, an optical MOSFET may be used.

また上記実施形態では、CPU11はFPGA55が出力した異常情報を表示装置18に表示する。CPU11は異常情報に基づき、工作機械2の動作を停止する制御を行ってもよい。例えば過電圧又は電圧低下を検知した場合、CPU11は工作機械2の動作を停止してもよい。また上記実施形態は過電圧と電圧低下を第一閾値と第二閾値と比較して検知するが、さらに複数の閾値を用いることで、過電圧と電圧低下を多段階で検知してもよい。この場合、過電圧と電圧低下のレベルまで検知できる。さらに過電圧又は電圧低下のレベルに応じて、表示装置18で異常報知を行い、工作機械2の動作を強制停止してもよい。   In the above embodiment, the CPU 11 displays the abnormality information output from the FPGA 55 on the display device 18. The CPU 11 may perform control to stop the operation of the machine tool 2 based on the abnormality information. For example, when detecting an overvoltage or a voltage drop, the CPU 11 may stop the operation of the machine tool 2. Moreover, although the said embodiment detects an overvoltage and a voltage drop by comparing with a 1st threshold value and a 2nd threshold value, you may detect an overvoltage and a voltage drop in multiple steps further using a some threshold value. In this case, it is possible to detect the level of overvoltage and voltage drop. Further, according to the level of overvoltage or voltage drop, the display device 18 may notify the abnormality and forcibly stop the operation of the machine tool 2.

また上記実施形態は、本発明の電圧異常検出装置の一実施形態として、数値制御装置1を説明したが、数値制御装置1とは独立した電圧異常検出装置であってもよい。   Moreover, although the said embodiment demonstrated the numerical control apparatus 1 as one Embodiment of the voltage abnormality detection apparatus of this invention, the voltage abnormality detection apparatus independent of the numerical control apparatus 1 may be sufficient.

また上記実施形態では、FPGA55はパルス幅とパルス周期からデューティ比を算出して第一閾値と第二閾値と比較して異常を判断したが、パルス幅のみで異常を判断してもよい。   In the above embodiment, the FPGA 55 calculates the duty ratio from the pulse width and the pulse period and compares the first threshold value with the second threshold value to determine the abnormality. However, the FPGA 55 may determine the abnormality only with the pulse width.

1 数値制御装置
15 電圧異常検出回路
19 三相交流電源
51 R相基準回路
52 S相基準回路
53 T相基準回路
55 FPGA
61,62 抵抗
64 フォトカプラ
71,72 抵抗
74 フォトカプラ
81,82 抵抗
84 フォトカプラ
DESCRIPTION OF SYMBOLS 1 Numerical control apparatus 15 Voltage abnormality detection circuit 19 Three-phase alternating current power supply 51 R phase reference circuit 52 S phase reference circuit 53 T phase reference circuit 55 FPGA
61, 62 Resistor 64 Photocoupler 71, 72 Resistor 74 Photocoupler 81, 82 Resistor 84 Photocoupler

Claims (6)

交流電圧の異常を検出する電圧異常検出装置であって、
前記交流電圧を複数の相に分圧する分圧手段と、
前記分圧手段が分圧した各相を夫々基準相としたときに、前記基準相とは異なる他の相のうち低い方の相である対象相との電位差が所定電圧以上になったときにパルスを出力するパルス出力手段と、
前記パルス出力手段が出力した前記パルスの幅と周期を前記相毎に測定する測定手段と、
前記測定手段が前記相毎に夫々測定した前記幅と周期と、メモリに予め記憶した基準情報とに基づき、前記交流電圧に異常が有るか否か判定する異常判定手段と
を備えたことを特徴とする電圧異常検出装置。
A voltage abnormality detection device for detecting an abnormality in an AC voltage,
Voltage dividing means for dividing the AC voltage into a plurality of phases;
When each phase divided by the voltage dividing means is used as a reference phase, when a potential difference with a target phase which is a lower phase among other phases different from the reference phase becomes a predetermined voltage or more Pulse output means for outputting a pulse;
Measuring means for measuring the width and period of the pulse output by the pulse output means for each phase;
An abnormality determining means for determining whether or not there is an abnormality in the AC voltage based on the width and period measured for each phase by the measuring means and reference information stored in advance in a memory. Voltage abnormality detection device.
前記測定手段が前記相毎に測定した前記幅と周期からデューティ比を算出する算出手段を備え、
前記分圧手段は受光素子デバイスを備え、
前記異常判定手段は、
前記算出手段が前記相毎に算出した前記デューティ比と、前記基準情報とを夫々比較し、前記交流電圧に異常が有るか否か判定することを特徴とする請求項1に記載の電圧異常検出装置。
The measuring means comprises a calculating means for calculating a duty ratio from the width and period measured for each phase,
The voltage dividing means includes a light receiving device,
The abnormality determining means includes
2. The voltage abnormality detection according to claim 1, wherein the calculation unit compares the duty ratio calculated for each phase with the reference information to determine whether or not the AC voltage is abnormal. apparatus.
前記測定手段が測定した前記周期から前記パルスの周波数を特定する周波数特定手段を備え、
前記基準情報は、前記周波数毎に前記基準情報を夫々有し、
前記異常判定手段は、
前記算出手段が算出した前記デューティ比と、前記周波数特定手段が特定した前記周波数に対応する前記基準情報とを夫々比較し、前記交流電圧に異常が有るか否か判定することを特徴とする請求項2に記載の電圧異常検出装置。
A frequency specifying means for specifying the frequency of the pulse from the period measured by the measuring means;
The reference information has the reference information for each frequency,
The abnormality determining means includes
The duty ratio calculated by the calculating means and the reference information corresponding to the frequency specified by the frequency specifying means are respectively compared to determine whether or not the AC voltage is abnormal. Item 3. The voltage abnormality detection device according to Item 2.
前記測定手段は、前記各相に夫々発生する前記パルスが前記複数の相が順に並ぶ相順ではなく、同一の相が連続して並んだ場合、前記同一の相で連続して発生した前記パルスを無効化する無効化手段を備えたことを特徴とする請求項1から3の何れかに記載の電圧異常検出装置。   The measuring means is configured such that, when the pulses generated in the respective phases are not in the phase order in which the plurality of phases are sequentially arranged, and the same phase is continuously arranged, the pulses generated continuously in the same phase. The voltage abnormality detection device according to claim 1, further comprising invalidating means for invalidating the voltage. 前記交流電圧は三相交流電圧であって、
前記分圧手段は、前記三相交流電圧をR相、S相、T相に夫々分圧することを特徴とする請求項1から4の何れかに記載の電圧異常検出装置。
The AC voltage is a three-phase AC voltage,
5. The voltage abnormality detection device according to claim 1, wherein the voltage dividing unit divides the three-phase AC voltage into an R phase, an S phase, and a T phase.
前記測定手段が測定した前記パルス幅に基づき、前記交流電圧の電圧値を算出する電圧値算出手段と、
前記電圧値算出手段が算出した前記電圧値の情報と、前記異常判定手段の判定結果の情報との少なくとも何れかを表示部に表示する表示手段と
を備えたことを特徴とする請求項1から5の何れかに記載の電圧異常検出装置。
Voltage value calculating means for calculating a voltage value of the AC voltage based on the width of the pulse measured by the measuring means;
2. The display device according to claim 1, further comprising: a display unit configured to display at least one of information on the voltage value calculated by the voltage value calculation unit and information on a determination result of the abnormality determination unit on a display unit. The voltage abnormality detection device according to any one of 5.
JP2012269955A 2012-12-11 2012-12-11 Voltage abnormality detector Active JP6070139B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012269955A JP6070139B2 (en) 2012-12-11 2012-12-11 Voltage abnormality detector
CN201310479766.8A CN103869139B (en) 2012-12-11 2013-10-14 Electric voltage exception detection means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269955A JP6070139B2 (en) 2012-12-11 2012-12-11 Voltage abnormality detector

Publications (2)

Publication Number Publication Date
JP2014117089A JP2014117089A (en) 2014-06-26
JP6070139B2 true JP6070139B2 (en) 2017-02-01

Family

ID=50907893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269955A Active JP6070139B2 (en) 2012-12-11 2012-12-11 Voltage abnormality detector

Country Status (2)

Country Link
JP (1) JP6070139B2 (en)
CN (1) CN103869139B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391201A (en) * 2014-11-27 2015-03-04 国家电网公司 Abnormal electricity consumption judging method based on abnormal voltage analysis
CN106330975A (en) * 2016-11-03 2017-01-11 上海三零卫士信息安全有限公司 Method for periodic exception detection based on SCADA system
JP6866800B2 (en) * 2017-08-04 2021-04-28 ブラザー工業株式会社 Voltage abnormality detector
JP7056058B2 (en) * 2017-09-29 2022-04-19 ブラザー工業株式会社 AC voltage detector, image forming equipment and industrial machinery
CN108062616B (en) * 2017-11-20 2024-01-23 国网福建省电力有限公司 Electricity consumption anomaly detection system with constraint conditions
CN108120872A (en) * 2017-12-27 2018-06-05 奥克斯空调股份有限公司 A kind of protection system and method for three-phase electricity air-conditioner controller
CN110535094A (en) * 2019-10-15 2019-12-03 深圳市伟邦自动化科技有限公司 Three-phase four-wire system voltage protector and its control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015575B2 (en) * 1992-02-19 2000-03-06 四国電力株式会社 Voltage drop detector
JP2001258151A (en) * 2000-03-08 2001-09-21 Yaskawa Electric Corp Power supply voltage failure detection circuit and method thereof
JP3654645B2 (en) * 2002-05-21 2005-06-02 三菱電機株式会社 Abnormality detection device for motor drive system
FI115092B (en) * 2003-05-15 2005-02-28 Abb Oy Phase monitor and device comprising phase monitor
CN101682292B (en) * 2007-07-02 2012-09-05 株式会社安川电机 Inverter and method for detecting output voltage of the same
CN101833049B (en) * 2009-02-09 2014-01-15 富士电机株式会社 Anomaly monitoring device
CN101673933A (en) * 2009-08-25 2010-03-17 山东中瑞电气有限公司 Protection device of power supply line disconnection fault
JP2011053108A (en) * 2009-09-02 2011-03-17 Kyoritsu Keiki Co Ltd Reverse phase/phase interruption detecting device

Also Published As

Publication number Publication date
JP2014117089A (en) 2014-06-26
CN103869139B (en) 2017-08-29
CN103869139A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP6070139B2 (en) Voltage abnormality detector
US9759774B2 (en) Anomaly diagnosis system, method, and apparatus
US9618558B2 (en) Motor driving apparatus including life determining unit of direct-current capacitor
JP5024827B2 (en) Inverter device
EP2613163B1 (en) Self-diagnostic apparatus and method for electric device
JPWO2017122309A1 (en) Electric motor control device
EP2985105B1 (en) Wire electric discharge machine determining whether or not electrical discharge machining of workpiece can be perfomed
KR101626458B1 (en) Apparatus for detecting malfunction of tool for machine tool
JP6865406B2 (en) Arc detection circuit, breaker system, junction box system, power conditioner, microinverter, DC optimizer and arc detection method
JP6924529B1 (en) Machine tool current measurement system and its method
JP2018183006A (en) Power conversion device and abnormality detection method
JP6680368B2 (en) Uninterruptible power system
CN109387694B (en) Voltage abnormality detection device
JP6457589B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6457583B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP5288931B2 (en) Motor drive device for determining the cause of phase loss in a multi-phase motor
CN114175496B (en) Power conversion device and symptom diagnosis method used therein
JP2012007924A (en) Insulation diagnostic device of rotating electrical machine
US9753456B2 (en) Device for detecting decrease in rotational speed of cooling fan of machine tool
JP2008011622A (en) Inverter device, its alternating-current motor diagnosis, and method for representing diagnostic outcome
JP2017123701A (en) Motor maintenance device and motor system
JP2014151355A (en) Arc-welding apparatus
CN113691152B (en) Power conversion device and abnormality detection method
CN110161844B (en) Parameter determination support device and computer-readable medium having program recorded thereon
KR101203560B1 (en) Washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150