JP6866800B2 - Voltage abnormality detector - Google Patents

Voltage abnormality detector Download PDF

Info

Publication number
JP6866800B2
JP6866800B2 JP2017151224A JP2017151224A JP6866800B2 JP 6866800 B2 JP6866800 B2 JP 6866800B2 JP 2017151224 A JP2017151224 A JP 2017151224A JP 2017151224 A JP2017151224 A JP 2017151224A JP 6866800 B2 JP6866800 B2 JP 6866800B2
Authority
JP
Japan
Prior art keywords
phase
voltage
pulse
threshold
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017151224A
Other languages
Japanese (ja)
Other versions
JP2019028043A (en
Inventor
慶 長谷川
慶 長谷川
敏明 鵜飼
敏明 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2017151224A priority Critical patent/JP6866800B2/en
Priority to CN201810876575.8A priority patent/CN109387694B/en
Publication of JP2019028043A publication Critical patent/JP2019028043A/en
Application granted granted Critical
Publication of JP6866800B2 publication Critical patent/JP6866800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、電圧異常検出装置に関する。 The present invention relates to a voltage abnormality detection device.

特許文献1は、三相交流電圧の異常を検出する電圧異常検出装置を開示する。電圧異常検出装置は、三相交流電圧のR相、S相、T相の夫々についてデューティ比を検知する。電圧異常検出装置は、検知したデューティ比を所定閾値と比較し、過電圧又は電圧低下が発生しているか判定する。電圧異常検出装置は、判断結果を表示装置に表示する。 Patent Document 1 discloses a voltage abnormality detecting device that detects an abnormality of a three-phase AC voltage. The voltage abnormality detecting device detects the duty ratio for each of the R phase, the S phase, and the T phase of the three-phase AC voltage. The voltage abnormality detection device compares the detected duty ratio with a predetermined threshold value and determines whether an overvoltage or a voltage drop has occurred. The voltage abnormality detection device displays the determination result on the display device.

特許第6070139号公報Japanese Patent No. 60701139

三相交流電圧の信号線に設けたローパスフィルタ及びバイパスコンデンサの影響により、三相交流電圧の周波数の変動に応じ、デューティ比が変動する。故に、電圧異常検出装置は、周波数の変動に依らず共通の閾値でデューティ比を判定した時、過電圧又は電圧低下の発生を精度良く判定できない時があるという問題点がある。 Due to the influence of the low-pass filter and bypass capacitor provided on the signal line of the three-phase AC voltage, the duty ratio fluctuates according to the fluctuation of the frequency of the three-phase AC voltage. Therefore, the voltage abnormality detection device has a problem that when the duty ratio is determined by a common threshold value regardless of the frequency fluctuation, the occurrence of overvoltage or voltage drop may not be accurately determined.

本発明の目的は、電源異常を精度良く検出できる電圧異常検出装置を提供することである。 An object of the present invention is to provide a voltage abnormality detecting device capable of accurately detecting a power supply abnormality.

本発明に係る電圧異常検出装置は、R相、S相、T相を含む三相交流電源の電圧の異常を検出する電圧異常検出装置であって、前記三相交流電源をR相、S相、T相に分圧する第一組抵抗、第二組抵抗、及び第三組抵抗を含み、三つの基準回路からなる分圧手段であって、前記第一組抵抗、前記第二組抵抗、及び前記第三組抵抗は、夫々、直列に接続された二つの抵抗を含み、前記第一組抵抗と、前記第一組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、R相基準で他のS相とT相とのうち低い方との電位差が所定電圧以上になるとパルスを出力するパルス出力部とを少なくとも含むR相基準回路と、前記第二組抵抗と、前記第二組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、S相基準で他のR相とT相とのうち低い方との電位差が所定電圧以上になるとパルスを出力するパルス出力部とを少なくとも含むS相基準回路と、前記第三組抵抗と、前記第三組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、T相基準で他のR相とS相とのうち低い方との電位差が所定電圧以上になるとパルスを出力するパルス出力部とを少なくとも含むT相基準回路と、を含む分圧手段と、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のパルス周期に対するパルス幅の割合であるデューティ比の閾値を前記三相交流電源の周波数毎に定義した基準情報を、前記バイパスコンデンサの周波数特性を示す回路条件毎に対応付けたテーブルを記憶した記憶部と、前記回路条件を特定可能な指示を、入力装置を介して直接的に受け付けるか、又は、設定スイッチの設定情報に基づいて間接的に受け付け前記記憶部に記憶された前記テーブルのうち受け付けた前記指示が特定する前記回路条件に対応付けられた前記周波数毎の前記基準情報を決定する決定手段と、前記三つの基準回路の各々が出力するパルス信号に基づき前記パルス幅と前記パルス周期を相毎に測定し、相毎に測定したパルス周期に基づき、前記三相交流電源前記周波数を相毎に特定する第一特定手段と、前記決定手段により決定された前記周波数毎の前記基準情報のうち、前記第一特定手段により特定した前記周波数に対応付けられた前記基準情報を相毎に特定する第二特定手段と、前記第二特定手段により相毎に特定した前記基準情報により定義された前記閾値、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号の前記パルス周期に対する前記パルス幅の割合であるデューティ比との大小関係に基づき、前記三相交流電源の電圧に異常があるか否か判定する判定手段とを備えたことを特徴とする。 Voltage abnormality detection apparatus according to the present invention, R phase, S phase, a voltage abnormality detection apparatus for detecting an abnormality of the three-phase AC power supply voltage, including a T-phase, the three-phase AC power supply R phase, S phase , A first set resistance, a second set resistance, and a third set resistance that divide the voltage into the T phase, and is a voltage dividing means consisting of three reference circuits, the first set resistance, the second set resistance, and Each of the third set resistors includes two resistors connected in series, the first set resistor and a bypass capacitor connected in parallel to one of the two resistors included in the first set resistor. An R-phase reference circuit including at least a pulse output unit that outputs a pulse when the potential difference between the other S-phase and the T-phase, whichever is lower than the R-phase, becomes a predetermined voltage or more, the second set of resistors, and the above. A bypass capacitor connected in parallel to one of the two resistors included in the second set of resistors and a pulse is output when the potential difference between the other R phase and T phase, whichever is lower, exceeds a predetermined voltage based on the S phase. An S-phase reference circuit including at least a pulse output unit, a bypass capacitor connected in parallel to one of the third set resistor and one of the two resistors included in the third set resistor, and another T-phase reference. A voltage dividing means including at least a T-phase reference circuit including a pulse output unit that outputs a pulse when the potential difference between the lower of the R phase and the S phase becomes a predetermined voltage or more, and each of the three reference circuits. Reference information that defines the threshold of the duty ratio, which is the ratio of the pulse width to the pulse period of the pulse signal output by the pulse output unit, for each frequency of the three-phase AC power supply, is a circuit condition that indicates the frequency characteristics of the bypass capacitor. a storage unit which stores a table associating each, identifiable instructing said circuit condition, receiving directly through the input device Luke, or indirectly accepted on the basis of the setting information of the setting switch, determining means for determining the reference information for each of the frequencies in which the instruction accepted is attached corresponding to the circuit condition to identify among the tables stored in the storage unit, each of the three criteria circuit outputs the pulse period and the pulse width based on the pulse signal measured for each phase, a first specifying means based on the pulse period measured for each phase, identifying the frequency of the three-phase AC power supply for each phase, the determination among the reference information for each of the frequency determined by the unit, a second specifying unit that particular the reference information which is correlated to the frequency specific to each phase by said first specifying means, the second specific The threshold defined by the reference information specified for each phase by means. Values and, based on the magnitude relation between the pulse duty ratio is the ratio of the width to the pulse period of the three reference circuits each pulse signal the pulse output unit outputs of abnormal voltage of the three-phase AC power supply It is characterized in that it is provided with a determination means for determining whether or not there is.

電圧異常検出装置は、バイパスコンデンサの周波数特性を示す回路条件に応じてデューティ比の閾値を定義した基準情報を、三相交流電源の周波数に対応付けてテーブルに格納し、記憶部に記憶する。電圧異常検出装置は、三相交流電源の周波数を特定し、対応する基準情報をテーブルに基づいて特定する。電圧異常検出装置は、特定した基準情報により定義される閾値、三つの基準回路の各々のパルス出力部が出力するパルス信号のデューティ比との大小関係に基づき三相交流電源の電圧に異常があるか判定する。該時、電圧異常検出装置は、バイパスコンデンサの回路条件(周波数特性)に応じて三相交流電源の周波数が変動する時も、変動した周波数に対応する基準情報に基づいて、三相交流電源の電圧に異常があるかを判定できる。故に、電圧異常検出装置は、三相交流電源の電圧に異常があるかを精度良く検出できる。 The voltage abnormality detection device stores the reference information in which the duty ratio threshold is defined according to the circuit conditions indicating the frequency characteristics of the bypass capacitor in the table in association with the frequency of the three-phase AC power supply and stores it in the storage unit. .. The voltage abnormality detection device identifies the frequency of the three-phase AC power supply and identifies the corresponding reference information based on the table. The voltage abnormality detection device has an abnormality in the voltage of the three-phase AC power supply based on the magnitude relationship between the threshold value defined by the specified reference information and the duty ratio of the pulse signal output by the pulse output unit of each of the three reference circuits. Determine if there is. Said time, the abnormal voltage detecting apparatus, when the frequency of the three-phase AC power source varies according to the circuit condition of the bypass capacitor (frequency characteristic) is also based on the reference information corresponding to a frequency variation, three-phase AC power supply It can be determined whether there is an abnormality in the voltage. Therefore, the voltage abnormality detecting device can accurately detect whether or not there is an abnormality in the voltage of the three-phase AC power supply.

本発明において前記判定手段は、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のうち、二以上のパルス信号のデューティ比が、前記基準情報により定義された前記閾値のうち過電圧を検出する為の第一閾値より大きい時、前記三相交流電源の電圧に過電圧が発生したと判定してもよい。該時、電圧異常検出装置は、三相交流電源の電圧の過電圧を精度良く判定できる。 The determination means in the present invention, among the pulse signals the pulse output unit of each of the three criteria circuit outputs the duty ratio of the pulse signal on the two or more is out of the defined the threshold by the reference information When it is larger than the first threshold value for detecting the overvoltage, it may be determined that the overvoltage has occurred in the voltage of the three-phase AC power supply. At this time, the voltage abnormality detection device can accurately determine the overvoltage of the voltage of the three-phase AC power supply.

本発明において、前記判定手段は、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のデューティ比と、前記基準情報により定義された前記閾値のうち過電圧を検出する為の第一閾値とを繰り返し比較し、前記三つの基準回路の各々が出力するパルス信号のうち何れかのデューティ比が前記第一閾値より所定回数以上連続して大きい時、前記三相交流電源の電圧に過電圧が発生したと判定してもよい。該時、電圧異常検出装置は、三相交流電源の電圧の過電圧を精度良く判定できる。 In the present invention, the determination means is the first for detecting the duty ratio of the pulse signal output by the pulse output unit of each of the three reference circuits and the overvoltage among the threshold values defined by the reference information. When the duty ratio of any of the pulse signals output by each of the three reference circuits is continuously larger than the first threshold value by a predetermined number of times or more, the voltage of the three-phase AC power supply is overvoltage. May be determined to have occurred. At this time, the voltage abnormality detection device can accurately determine the overvoltage of the voltage of the three-phase AC power supply.

本発明において、前記判定手段は、三つの基準回路の各々の前記パルス出力部のうち二以が、パルス信号を所定時間以上出力しない時、前記三相交流電源の電圧に電圧低下が発生したと判定してもよい。該時、電圧異常検出装置は、三相交流電源の電圧の電圧低下を精度良く判定できる。 In the present invention, the determining means, on the two or more of the pulse outputs of each of the three reference circuits, when no output pulse signal for a predetermined time or more, the voltage drop occurs in the voltage of the three-phase AC power supply May be determined. At this time, the voltage abnormality detection device can accurately determine the voltage drop of the voltage of the three-phase AC power supply.

本発明において、前記判定手段は、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のデューティ比と、前記基準情報により定義された前記閾値のうち電圧低下を検出する為の第二閾値とを繰り返し比較し、前記三つの基準回路の各々が出力するパルス信号のデューティ比が、前記第二閾値より所定回数以上連続して小さい時、前記三相交流電源の電圧に電圧低下が発生したと判定してもよい。該時、電圧異常検出装置は、三相交流電源の電圧の電圧低下を精度良く判定できる。 In the present invention, the determination means is a first for detecting a voltage drop among the duty ratio of the pulse signal output by the pulse output unit of each of the three reference circuits and the threshold value defined by the reference information. When the duty ratio of the pulse signal output by each of the three reference circuits is continuously smaller than the second threshold value by a predetermined number of times or more by repeatedly comparing the two threshold values, a voltage drop occurs in the voltage of the three-phase AC power supply. It may be determined that it has occurred. At this time, the voltage abnormality detection device can accurately determine the voltage drop of the voltage of the three-phase AC power supply.

本発明において、前記パルス出力部が出力するパルス信号の前記周波数が大きい程、前記所定回数が大きくてもよい。該時、電圧異常検出装置は、三相交流電圧に異常があるかの判定が終了する迄の時間を均一化できる。 In the present invention, as the frequency of the pulse signal the pulse output unit outputs a large, may be the predetermined number of times is larger. At this time, the voltage abnormality detection device can equalize the time until the determination of whether or not there is an abnormality in the three-phase AC voltage is completed.

本発明において、前記判定手段による判定結果を出力する結果出力手段を更に備えてもよい。該時、電圧異常検出装置は、電圧異常の発生を外部に通知できる。 In the present invention, a result output means for outputting a determination result by the determination means may be further provided. At this time, the voltage abnormality detection device can notify the outside of the occurrence of the voltage abnormality.

数値制御装置1と工作機械2の電気的構成を示すブロック図。The block diagram which shows the electrical structure of a numerical control device 1 and a machine tool 2. 電圧異常検出回路15の回路図。The circuit diagram of the voltage abnormality detection circuit 15. RST相を各基準相とした時のパルス概念図と三相入力の電圧波形図。Conceptual diagram of pulse and voltage waveform diagram of three-phase input when RST phase is used as each reference phase. 閾値テーブル14Aを示す図。The figure which shows the threshold value table 14A. メイン処理の流れ図。Flow diagram of main processing. パルス周期とパルス幅の説明図。Explanatory drawing of pulse period and pulse width. 第一判定処理の流れ図。The flow chart of the first judgment process. 第二判定処理の流れ図。The flow chart of the second judgment process.

以下、本発明の一実施形態を図面を参照して説明する。図1に示す数値制御装置1は本発明の電圧異常検出装置の一例である。数値制御装置1は工作機械2を制御しテーブル(図示略)上面に保持したワークの切削加工を行う。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The numerical control device 1 shown in FIG. 1 is an example of the voltage abnormality detection device of the present invention. The numerical control device 1 controls the machine tool 2 and cuts the work held on the upper surface of the table (not shown).

<工作機械2の概要>
図1を参照し、工作機械2の構成を簡単に説明する。工作機械2の左右方向、前後方向、上下方向は、夫々X軸方向、Y軸方向、Z軸方向である。工作機械2は図示しない主軸機構、主軸移動機構、工具交換装置等を備える。主軸機構は主軸モータ32を備え、工具を装着した主軸を回転する。主軸移動機構は、Z軸モータ31、X軸モータ33、Y軸モータ34を備え、テーブル上面に支持したワークに対し相対的に主軸をXYZの各軸方向に夫々移動する。
<Overview of Machine Tool 2>
The configuration of the machine tool 2 will be briefly described with reference to FIG. The horizontal direction, the front-rear direction, and the vertical direction of the machine tool 2 are the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. The machine tool 2 includes a spindle mechanism (not shown), a spindle moving mechanism, a tool changing device, and the like. The spindle mechanism includes a spindle motor 32 and rotates a spindle equipped with a tool. The spindle moving mechanism includes a Z-axis motor 31, an X-axis motor 33, and a Y-axis motor 34, and moves the spindle in each axial direction of XYZ relative to the work supported on the upper surface of the table.

工具交換装置はマガジンモータ35を備え、複数の工具を保持する工具マガジン(図示略)を駆動し、主軸に装着した工具を他の工具と交換する。工作機械2は操作パネル(図示略)を更に備える。操作パネルは入力装置17と表示装置18を備える。入力装置17は各種入力、設定等を行う為の機器である。表示装置18は各種表示画面、設定画面に加え、後述する通知情報等を表示する。通知情報は過電圧又は電圧低下の状態を含む。入力装置17と表示装置18は数値制御装置1の入出力部16に接続する。 The tool changing device includes a magazine motor 35, drives a tool magazine (not shown) for holding a plurality of tools, and replaces a tool mounted on the spindle with another tool. The machine tool 2 further includes an operation panel (not shown). The operation panel includes an input device 17 and a display device 18. The input device 17 is a device for performing various inputs, settings, and the like. The display device 18 displays notification information and the like, which will be described later, in addition to various display screens and setting screens. The notification information includes a state of overvoltage or voltage drop. The input device 17 and the display device 18 are connected to the input / output unit 16 of the numerical control device 1.

Z軸モータ31はエンコーダ41を備える。主軸モータ32はエンコーダ42を備える。X軸モータ33はエンコーダ43を備える。Y軸モータ34はエンコーダ44を備える。マガジンモータ35はエンコーダ45を備える。エンコーダ41〜45は数値制御装置1の駆動回路21〜25に各々接続する。 The Z-axis motor 31 includes an encoder 41. The spindle motor 32 includes an encoder 42. The X-axis motor 33 includes an encoder 43. The Y-axis motor 34 includes an encoder 44. The magazine motor 35 includes an encoder 45. The encoders 41 to 45 are connected to the drive circuits 21 to 25 of the numerical control device 1, respectively.

<数値制御装置1の概要>
図1を参照し、数値制御装置1の電気的構成を説明する。数値制御装置1は、CPU11、ROM12、RAM13、不揮発性記憶装置14、電圧異常検出回路15、入出力部16、駆動回路21〜25等を備え、三相交流電源19を駆動源とする。CPU11は数値制御装置1を統括制御する。ROM12は各種プログラムを記憶する。RAM13は各種処理実行中の各種データを一時的に記憶する。不揮発性記憶装置14は作業者が入力装置17で入力して登録した複数のNCプログラムを記憶する。NCプログラムは各種制御指令を含む複数のブロックで構成し、工作機械2の軸移動、工具交換等を含む各種動作をブロック単位で制御するものである。又、不揮発性記憶装置14は後述の閾値テーブル14A(図4参照)を記憶する。
<Overview of Numerical Control Device 1>
The electrical configuration of the numerical control device 1 will be described with reference to FIG. The numerical control device 1 includes a CPU 11, a ROM 12, a RAM 13, a non-volatile storage device 14, a voltage abnormality detection circuit 15, an input / output unit 16, drive circuits 21 to 25, and the like, and uses a three-phase AC power supply 19 as a drive source. The CPU 11 controls the numerical control device 1 in an integrated manner. The ROM 12 stores various programs. The RAM 13 temporarily stores various data during execution of various processes. The non-volatile storage device 14 stores a plurality of NC programs input and registered by the operator in the input device 17. The NC program is composed of a plurality of blocks including various control commands, and controls various operations including axis movement and tool change of the machine tool 2 in block units. Further, the non-volatile storage device 14 stores the threshold value table 14A (see FIG. 4) described later.

電圧異常検出回路15は三相交流電源19が供給する三相交流電圧の異常の有無を検出する。駆動回路21はZ軸モータ31とエンコーダ41に接続する。駆動回路22は主軸モータ32とエンコーダ42に接続する。駆動回路23はX軸モータ33とエンコーダ43に接続する。駆動回路24はY軸モータ34とエンコーダ44に接続する。駆動回路25はマガジンモータ35とエンコーダ45に接続する。駆動回路21〜25はCPU11から指令信号を受け、対応する各モータ31〜35に駆動電流を夫々出力する。駆動回路21〜25はエンコーダ41〜45からフィードバック信号を受け、位置と速度のフィードバック制御を行う。入出力部16は入力装置17と表示装置18に夫々接続する。 The voltage abnormality detection circuit 15 detects the presence or absence of abnormality in the three-phase AC voltage supplied by the three-phase AC power supply 19. The drive circuit 21 is connected to the Z-axis motor 31 and the encoder 41. The drive circuit 22 is connected to the spindle motor 32 and the encoder 42. The drive circuit 23 is connected to the X-axis motor 33 and the encoder 43. The drive circuit 24 is connected to the Y-axis motor 34 and the encoder 44. The drive circuit 25 is connected to the magazine motor 35 and the encoder 45. The drive circuits 21 to 25 receive a command signal from the CPU 11 and output drive currents to the corresponding motors 31 to 35, respectively. The drive circuits 21 to 25 receive feedback signals from the encoders 41 to 45 and perform feedback control of position and speed. The input / output unit 16 is connected to the input device 17 and the display device 18, respectively.

使用者は複数のNCプログラムの中から一のNCプログラムを入力装置17で選択可能である。CPU11は選択したNCプログラムを表示装置18に表示する。CPU11は表示装置18に表示したNCプログラムに基づき、工作機械2の動作を制御する。 The user can select one NC program from the plurality of NC programs with the input device 17. The CPU 11 displays the selected NC program on the display device 18. The CPU 11 controls the operation of the machine tool 2 based on the NC program displayed on the display device 18.

図2を参照し、三相交流電源19を説明する。三相交流電源19は電流又は電圧の位相を互いにずらした三系統の単相交流を組み合わせた交流電源であり、例えば200Vの交流電圧を供給する。第一相はR相、第二相はS相、第三相はT相である。図2に示す三相交流電源19はΔ結線(デルタ結線)である。Δ結線は三相各相を相電圧が加わる向きに接続し閉回路とする結線である。三相交流電源19はΔ結線の他にY結線又はV結線でもよい。 The three-phase AC power supply 19 will be described with reference to FIG. The three-phase AC power supply 19 is an AC power supply that combines three systems of single-phase AC that are out of phase with each other in current or voltage, and supplies, for example, an AC voltage of 200 V. The first phase is the R phase, the second phase is the S phase, and the third phase is the T phase. The three-phase AC power supply 19 shown in FIG. 2 has a delta connection. The Δ connection is a connection in which each of the three phases is connected in the direction in which the phase voltage is applied to form a closed circuit. The three-phase AC power supply 19 may be Y-connected or V-connected in addition to the Δ connection.

<電圧異常検出回路15>
図2を参照し、電圧異常検出回路15の構成を説明する。電圧異常検出回路15は三相交流電源19が供給する交流電圧の異常を検出する。電圧異常検出回路15は、R相基準回路51、S相基準回路52、T相基準回路53、FPGA55を備える(以下総称する場合は基準回路51〜53と称す)。
<Voltage abnormality detection circuit 15>
The configuration of the voltage abnormality detection circuit 15 will be described with reference to FIG. The voltage abnormality detection circuit 15 detects an abnormality in the AC voltage supplied by the three-phase AC power supply 19. The voltage abnormality detection circuit 15 includes an R-phase reference circuit 51, an S-phase reference circuit 52, a T-phase reference circuit 53, and an FPGA 55 (hereinafter collectively referred to as reference circuits 51 to 53).

R相基準回路51は、三相交流電源19が出力する三相交流電圧を分圧し、R相を基準として、他のS相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。S相基準回路52は、三相交流電源19が出力する三相交流電圧を分圧し、S相を基準として、他のR相とT相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。T相基準回路53は、三相交流電源19が出力する三相交流電圧を分圧し、T相を基準として、他のR相とS相のうち低い方との電位差が所定電圧以上になった時にパルスを出力する。FPGA55は、後述するメイン処理(図5参照)を実行する。メイン処理は基準回路51〜53が出力したパルスを解析し、電圧異常の発生の有無を判定する。 The R-phase reference circuit 51 divides the three-phase AC voltage output by the three-phase AC power supply 19, and the potential difference between the other S-phase and the T-phase, whichever is lower, becomes equal to or higher than a predetermined voltage with respect to the R-phase. Sometimes it outputs a pulse. The S-phase reference circuit 52 divides the three-phase AC voltage output by the three-phase AC power supply 19, and the potential difference between the other R phase and the lower T phase becomes equal to or higher than a predetermined voltage with the S phase as a reference. Sometimes it outputs a pulse. The T-phase reference circuit 53 divides the three-phase AC voltage output by the three-phase AC power supply 19, and the potential difference between the other R phase and the S phase, whichever is lower, becomes equal to or higher than a predetermined voltage with respect to the T phase. Sometimes it outputs a pulse. The FPGA 55 executes the main process (see FIG. 5) described later. The main process analyzes the pulses output by the reference circuits 51 to 53 and determines whether or not a voltage abnormality has occurred.

図2を参照し、R相基準回路51の構成を説明する。R相基準回路51は、抵抗61,62、シャントレギュレータ63、フォトカプラ64、バイパスコンデンサ65等を備える。抵抗61,62は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。バイパスコンデンサ65は、抵抗62に対して並列に接続する。バイパスコンデンサ65は、分圧したR相の電圧の信号線に接続し、R相の電圧の変動を抑制する。シャントレギュレータ63は、R相基準で他のS相とT相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ63がONすると、フォトカプラ64は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ63はR相基準で他のS相とT相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ63がOFFすると、フォトカプラ64は消灯する。 The configuration of the R-phase reference circuit 51 will be described with reference to FIG. The R-phase reference circuit 51 includes resistors 61 and 62, a shunt regulator 63, a photocoupler 64, a bypass capacitor 65, and the like. The resistors 61 and 62 divide the three-phase AC voltage output by the three-phase AC power supply 19 into the R phase, the S phase, and the T phase, respectively. The bypass capacitor 65 is connected in parallel with the resistor 62. The bypass capacitor 65 is connected to the signal line of the divided R-phase voltage to suppress fluctuations in the R-phase voltage. The shunt regulator 63 is turned on when the potential difference between the other S phase and the lower T phase on the basis of the R phase becomes equal to or higher than a predetermined voltage. When the shunt regulator 63 is turned on, the photocoupler 64 lights up and outputs a pulse to the FPGA 55. The shunt regulator 63 is turned off when the potential difference between the other S phase and the lower T phase is less than a predetermined voltage on the basis of the R phase. When the shunt regulator 63 is turned off, the photocoupler 64 is turned off.

S相基準回路52は、抵抗71,72、シャントレギュレータ73、フォトカプラ74、バイパスコンデンサ75等を備える。抵抗71,72は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。バイパスコンデンサ75は、抵抗72に対して並列に接続する。バイパスコンデンサ75は、分圧したS相の電圧の信号線に接続し、S相の電圧の変動を抑制する。シャントレギュレータ73は、S相基準で他のR相とT相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ73がONすると、フォトカプラ74は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ73は、S相基準で他のR相とT相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ73がOFFすると、フォトカプラ74は消灯する。 The S-phase reference circuit 52 includes resistors 71 and 72, a shunt regulator 73, a photocoupler 74, a bypass capacitor 75, and the like. The resistors 71 and 72 divide the three-phase AC voltage output by the three-phase AC power supply 19 into the R phase, the S phase, and the T phase, respectively. The bypass capacitor 75 is connected in parallel with the resistor 72. The bypass capacitor 75 is connected to the signal line of the divided S-phase voltage to suppress fluctuations in the S-phase voltage. The shunt regulator 73 turns on when the potential difference between the other R phase and the lower T phase on the S phase basis becomes a predetermined voltage or more. When the shunt regulator 73 is turned on, the photocoupler 74 lights up and outputs a pulse to the FPGA 55. The shunt regulator 73 is turned off when the potential difference between the other R phase and the lower T phase on the S phase basis becomes less than a predetermined voltage. When the shunt regulator 73 is turned off, the photocoupler 74 is turned off.

T相基準回路53は、抵抗81,82、シャントレギュレータ83、フォトカプラ84、バイパスコンデンサ85等を備える。抵抗81,82は、三相交流電源19が出力する三相交流電圧をR相、S相、T相に夫々分圧する。バイパスコンデンサ85は、抵抗82に対して並列に接続する。バイパスコンデンサ85は、分圧したT相の電圧の信号線に接続し、T相の電圧の変動を抑制する。シャントレギュレータ83は、T相基準で他のR相とS相のうち低い方との電位差が所定電圧以上になるとONする。シャントレギュレータ83がONすると、フォトカプラ84は点灯し且つパルスをFPGA55に出力する。シャントレギュレータ83は、T相基準で他のR相とS相のうち低い方との電位差が所定電圧未満になるとOFFする。シャントレギュレータ83がOFFすると、フォトカプラ84は消灯する。 The T-phase reference circuit 53 includes resistors 81 and 82, a shunt regulator 83, a photocoupler 84, a bypass capacitor 85, and the like. The resistors 81 and 82 divide the three-phase AC voltage output by the three-phase AC power supply 19 into the R phase, the S phase, and the T phase, respectively. The bypass capacitor 85 is connected in parallel with the resistor 82. The bypass capacitor 85 is connected to the signal line of the divided T-phase voltage to suppress fluctuations in the T-phase voltage. The shunt regulator 83 turns on when the potential difference between the other R phase and the S phase, whichever is lower, becomes a predetermined voltage or more based on the T phase. When the shunt regulator 83 is turned on, the photocoupler 84 lights up and outputs a pulse to the FPGA 55. The shunt regulator 83 is turned off when the potential difference between the other R phase and the S phase, whichever is lower, is less than a predetermined voltage on the basis of the T phase. When the shunt regulator 83 is turned off, the photocoupler 84 is turned off.

図2,図3を参照し、R相基準回路51の作用を説明する。図3の最下段の波形は、RSTの三相を入力した電圧曲線である。各電圧曲線は何れもsinカーブであって120度ずつ位相がずれている。図3の上側三つの波形は、上から順にR相基準、S相基準、T相基準とした場合の各パルス波形の概念図である。各概念図は説明が分かり易いように、電位差が所定電圧以上(例えば152.5V以上)のパルス波形を示す。電位差が所定電圧未満の場合、パルス電圧は零とする。 The operation of the R-phase reference circuit 51 will be described with reference to FIGS. 2 and 3. The waveform at the bottom of FIG. 3 is a voltage curve in which the three phases of RST are input. Each voltage curve is a sine curve and is 120 degrees out of phase. The three upper waveforms in FIG. 3 are conceptual diagrams of each pulse waveform when the R phase reference, the S phase reference, and the T phase reference are used in this order from the top. Each conceptual diagram shows a pulse waveform having a potential difference of a predetermined voltage or more (for example, 152.5 V or more) so that the explanation is easy to understand. If the potential difference is less than the predetermined voltage, the pulse voltage is set to zero.

上述の通り、R相基準回路51は、R相基準で、他のS相とT相のうち低い方とR相との電位差が所定電圧以上になった時にパルスを出力する。例えば図3に示す二点鎖線で囲んだ枠内に着目して説明する。t1では、S相の方がT相より電圧が低く、R相とS相の電位差は同じである。S相の方がT相より電圧が低い場合、図2に示すように、R相基準回路51では点線の矢印Aの方向に電圧がかかる。t1を過ぎると、R相とS相との間に電位差が徐々に生じ、t2で所定電圧以上に達する。シャントレギュレータ63はONする。シャントレギュレータ63のK端子(カソード端子)とA端子(アノード端子)との間に電流が流れる。フォトカプラ64は点灯し、FPGA55にパルスを出力する。パルスはt2から上昇して一定値に達する。R相とS相の電位差は徐々に小さくなる。 As described above, the R-phase reference circuit 51 outputs a pulse when the potential difference between the lower of the other S-phase and the T-phase and the R-phase becomes equal to or higher than a predetermined voltage on the basis of the R-phase. For example, the inside of the frame surrounded by the alternate long and short dash line shown in FIG. 3 will be described. At t1, the voltage of the S phase is lower than that of the T phase, and the potential difference between the R phase and the S phase is the same. When the voltage of the S phase is lower than that of the T phase, the voltage is applied in the direction of the dotted arrow A in the R phase reference circuit 51 as shown in FIG. After t1, a potential difference gradually occurs between the R phase and the S phase, and reaches a predetermined voltage or more at t2. The shunt regulator 63 is turned on. A current flows between the K terminal (cathode terminal) and the A terminal (anode terminal) of the shunt regulator 63. The photocoupler 64 lights up and outputs a pulse to the FPGA 55. The pulse rises from t2 and reaches a constant value. The potential difference between the R phase and the S phase gradually decreases.

t3でS相とT相は逆転する。パルスはt3で少し低下する。t3を過ぎると、T相の方がS相より電圧が低くなるので、図2に示すように、R相基準回路51では二点鎖線の矢印Bの方向に電圧がかかる。t3を過ぎると、R相とT相との間に所定電圧以上の電位差が生じるので、パルスは再上昇して一定値に達する。R相とT相の電位差は徐々に小さくなり、t4で所定電圧未満となる。シャントレギュレータ63はOFFする。フォトカプラ64は消灯する。パルスはt4で零となる。R相基準回路51が出力するパルスはt2〜t4までの波形を一定周期毎に繰り返す。 At t3, the S phase and the T phase are reversed. The pulse drops slightly at t3. After t3, the voltage of the T phase becomes lower than that of the S phase. Therefore, as shown in FIG. 2, the voltage is applied in the direction of the arrow B of the alternate long and short dash line in the R phase reference circuit 51. After t3, a potential difference of a predetermined voltage or more is generated between the R phase and the T phase, so that the pulse rises again and reaches a constant value. The potential difference between the R phase and the T phase gradually decreases and becomes less than a predetermined voltage at t4. The shunt regulator 63 is turned off. The photocoupler 64 is turned off. The pulse becomes zero at t4. The pulse output by the R-phase reference circuit 51 repeats the waveforms from t2 to t4 at regular intervals.

S相基準回路52とT相基準回路53はR相基準回路51と同様に動作する。図3に示すように、S相とT相の各パルス波形は、R相のパルス波形に対して位相がずれている。R相のパルス、S相のパルス、T相のパルスは、RSTの相順でFPGA55に各々出力する。FPGA55は、基準回路51〜53が出力した各パルスに基づいてメイン処理を実行する。 The S-phase reference circuit 52 and the T-phase reference circuit 53 operate in the same manner as the R-phase reference circuit 51. As shown in FIG. 3, the S-phase and T-phase pulse waveforms are out of phase with the R-phase pulse waveform. The R-phase pulse, S-phase pulse, and T-phase pulse are output to the FPGA 55 in the RST phase order, respectively. The FPGA 55 executes the main process based on each pulse output by the reference circuits 51 to 53.

<閾値テーブル14A>
図4は、不揮発性記憶装置14に記憶した閾値テーブル14Aを示す。閾値テーブル14Aは、後述のメイン処理で過電圧を検出する為の第一閾値と、後述のメイン処理で電圧低下を検出する為の第二閾値を格納する。第一閾値と第二閾値は、複数の周波数範囲の夫々に対応づけてある。複数の周波数範囲は、三相交流電源19の基準電圧である50Hz又は60Hzを含む範囲(図中太線枠)を基準とし、夫々5Hz毎の範囲を規定する。
<Threshold table 14A>
FIG. 4 shows a threshold table 14A stored in the non-volatile storage device 14. The threshold table 14A stores a first threshold value for detecting an overvoltage in the main process described later and a second threshold value for detecting a voltage drop in the main process described later. The first threshold and the second threshold are associated with each of a plurality of frequency ranges. The plurality of frequency ranges are based on a range including 50 Hz or 60 Hz, which is the reference voltage of the three-phase AC power supply 19, (thick line frame in the figure), and each defines a range of 5 Hz.

更に、第一閾値と第二閾値は、バイパスコンデンサ65、75、85(図2参照)のパラメータに応じた条件(第一条件〜第三条件、以下、「回路条件」と称す)の夫々に対応付けてある。回路条件は例えば、バイパスコンデンサ65、75、85の周波数特性(カットオフ周波数)等である。以下、第i条件(iは1〜3の何れか)に対応する第一閾値と第二閾値を夫々、「第一閾値(i)」「第二閾値(i)」と称す。 Further, the first threshold value and the second threshold value are set to each of the conditions (first condition to third condition, hereinafter referred to as "circuit condition") corresponding to the parameters of the bypass capacitors 65, 75, 85 (see FIG. 2). It is associated. The circuit conditions are, for example, the frequency characteristics (cutoff frequency) of the bypass capacitors 65, 75, 85 and the like. Hereinafter, the first threshold value and the second threshold value corresponding to the i-th condition (i is any one of 1 to 3) are referred to as "first threshold value (i)" and "second threshold value (i)", respectively.

<メイン処理>
図5を参照し、メイン処理を説明する。メイン処理はFPGA55が実行する。FPGA55は、第一閾値と第二閾値を決定する為の回路条件(第i条件)を特定可能な指示を受け付ける(S11)。例えばFPGA55は、入力装置17を介して回路条件を直接的に受け付けてもよい。又例えばFPGA55は、非図示の設定スイッチ(ディップスイッチ等)の設定情報を受け付けることで、回路条件を間接的に受け付けてもよい。FPGA55は、設定スイッチの設定情報を、回路条件を特定可能な指示として受け付け、回路条件を特定してもよい。FPGA55は、受け付けた回路条件に対応する第一閾値(i)と第二閾値(i)を、閾値テーブル14Aに基づいて決定する(S11)。
<Main processing>
The main process will be described with reference to FIG. The main process is executed by FPGA55. The FPGA 55 receives an instruction capable of specifying the circuit condition (the i-condition) for determining the first threshold value and the second threshold value (S11). For example, the FPGA 55 may directly accept circuit conditions via the input device 17. Further, for example, the FPGA 55 may indirectly accept the circuit condition by accepting the setting information of the setting switch (DIP switch or the like) (not shown). The FPGA 55 may accept the setting information of the setting switch as an instruction that can specify the circuit condition and specify the circuit condition. The FPGA 55 determines the first threshold value (i) and the second threshold value (i) corresponding to the received circuit conditions based on the threshold value table 14A (S11).

FPGA55は、RST相のパルス情報を受信する(S13)。パルス情報は、R相基準回路51、S相基準回路52、T相基準回路53が夫々出力するパルスの情報である。次に、FPGA55は、パルス情報に基づきパルス幅とパルス周期を相毎に測定する(S15)。図6に示すように、パルスは一定周期毎に繰り返す。t7はパルスが基準電圧から立ち上がる時間である。基準電圧は例えば152.5Vの一定電圧である。t8はパルスが最高電圧に達した時間である。t9はパルスが最高電圧から下がり始める時間である。t10はパルスが基準電圧まで下がった時間である。t11は次のパルスが基準電圧から立ち上がる時間である。パルス幅はt7〜t10までの時間である。パルス周期はt7〜t11までの時間である。なおパルス幅はt8〜t9までの時間としてもよい。 The FPGA 55 receives the pulse information of the RST phase (S13). The pulse information is pulse information output by the R-phase reference circuit 51, the S-phase reference circuit 52, and the T-phase reference circuit 53, respectively. Next, the FPGA 55 measures the pulse width and the pulse period for each phase based on the pulse information (S15). As shown in FIG. 6, the pulse is repeated at regular intervals. t7 is the time when the pulse rises from the reference voltage. The reference voltage is, for example, a constant voltage of 152.5V. t8 is the time when the pulse reaches the maximum voltage. t9 is the time when the pulse starts to drop from the maximum voltage. t10 is the time when the pulse drops to the reference voltage. t11 is the time when the next pulse rises from the reference voltage. The pulse width is the time from t7 to t10. The pulse period is the time from t7 to t11. The pulse width may be the time from t8 to t9.

図5に示すように、FPGA55は、相毎に測定したパルス周期に基づき、三相交流電源19の周波数を相毎に算出する(S17)。FPGA55は、閾値テーブル14Aの複数の周波数範囲のうち算出した周波数を含む周波数範囲を、相毎に特定する。FPGA55は、S11により決定した第一閾値(i)と第二閾値(i)のうち、特定した周波数範囲に対応する第一閾値(i)(「第一閾値Th1」と称す)と第二閾値(i)(「第二閾値Th2」と称す)を、相毎に特定する(S19)。FPGA55は、RSTの各相について、パルス周期に対するパルス幅の割合をデューティ比として算出する(S21)。 As shown in FIG. 5, the FPGA 55 calculates the frequency of the three-phase AC power supply 19 for each phase based on the pulse period measured for each phase (S17). The FPGA 55 specifies the frequency range including the calculated frequency from the plurality of frequency ranges of the threshold table 14A for each phase. Of the first threshold value (i) and the second threshold value (i) determined by S11, the FPGA 55 has a first threshold value (i) (referred to as “first threshold value Th1”) and a second threshold value corresponding to the specified frequency range. (I) (referred to as "second threshold Th2") is specified for each phase (S19). The FPGA 55 calculates the ratio of the pulse width to the pulse period as the duty ratio for each phase of the RST (S21).

FPGA55は、過電圧発生の有無を判定する為に第一判定処理(図7参照)を実行する(S23)。図7を参照し、第一判定処理を説明する。FPGA55は、二相以上のデューティ比が第一閾値Th1より大きいか判定する(S41)。FPGA55は、二相以上のデューティ比が第一閾値Th1より大きいと判定した時(S41:YES)、交流電圧に過電圧が発生したと判定する(S45)。FPGA55は、第一判定処理を終了し、処理をメイン処理(図5参照)に戻す。FPGA55は、二相以上のデューティ比が第一閾値より大きくないと判定した時(S41:NO)、処理をS43に進める。FPGA55は、三相のうち何れかの相のデューティ比が三回連続して第一閾値Th1より大きくなったか判定する(S43)。FPGA55は、三相のうち何れかの相のデューティ比が三回連続して第一閾値Th1より大きくなっていないと判定した時(S43:NO)、第一判定処理を終了し、処理をメイン処理(図5参照)に戻す。 The FPGA 55 executes a first determination process (see FIG. 7) in order to determine whether or not an overvoltage has occurred (S23). The first determination process will be described with reference to FIG. 7. The FPGA 55 determines whether the duty ratio of two or more phases is larger than the first threshold Th1 (S41). When the FPGA 55 determines that the duty ratio of two or more phases is larger than the first threshold Th1 (S41: YES), it determines that an overvoltage has occurred in the AC voltage (S45). The FPGA 55 ends the first determination process and returns the process to the main process (see FIG. 5). When the FPGA 55 determines that the duty ratio of two or more phases is not larger than the first threshold value (S41: NO), the processing proceeds to S43. The FPGA 55 determines whether the duty ratio of any of the three phases has become larger than the first threshold Th1 three times in a row (S43). When it is determined that the duty ratio of any one of the three phases is not larger than the first threshold Th1 three times in a row (S43: NO), the FPGA 55 ends the first determination process and mainly performs the process. Return to processing (see FIG. 5).

図5に示すように、FPGA55は、第一判定処理(S23)の終了後、電圧低下発生の有無を判定する為に第二判定処理(図8参照)を実行する(S25)。図8を参照し、第二判定処理を説明する。FPGA55は、基準回路51〜53のうち二相以上の基準回路が50ms以上継続してパルスを出力していないか判定する(S61)。FPGA55は、二相以上の基準回路が50ms以上継続してパルスを出力していないと判定した時(S61:YES)、交流電圧に電圧低下が発生したと判定する(S71)。FPGA55は、第二判定処理を終了し、処理をメイン処理(図5参照)に戻す。FPGA55は、二相以上の基準回路が50ms以内にパルスを出力したと判定した時(S61:NO)、処理をS63に進める。 As shown in FIG. 5, after the completion of the first determination process (S23), the FPGA 55 executes a second determination process (see FIG. 8) in order to determine whether or not a voltage drop has occurred (S25). The second determination process will be described with reference to FIG. The FPGA 55 determines whether or not the reference circuit having two or more phases among the reference circuits 51 to 53 continuously outputs a pulse for 50 ms or more (S61). When the FPGA 55 determines that the reference circuit having two or more phases does not continuously output a pulse for 50 ms or more (S61: YES), it determines that a voltage drop has occurred in the AC voltage (S71). The FPGA 55 ends the second determination process and returns the process to the main process (see FIG. 5). When the FPGA 55 determines that the two-phase or more reference circuit outputs a pulse within 50 ms (S61: NO), the FPGA 55 advances the process to S63.

FPGA55は、S17(図6参照)の処理により算出した各相の周波数が、60Hzより50Hzに近いか判定する(S63)。FPGA55は、50Hzに近いと判定した時(S63:YES)、処理をS65に進める。FPGA55は、三相の全てのデューティ比が三回連続して第二閾値Th2より小さくなったか判定する(S65)。FPGA55は、三相の全てのデューティ比が三回連続して第二閾値Th2より小さくなっていないと判定した時(S65:NO)、第二判定処理を終了し、処理をメイン処理(図5参照)に戻す。 The FPGA 55 determines whether the frequency of each phase calculated by the process of S17 (see FIG. 6) is closer to 50 Hz than 60 Hz (S63). When the FPGA 55 determines that the frequency is close to 50 Hz (S63: YES), the processing proceeds to S65. The FPGA 55 determines whether all the duty ratios of the three phases have become smaller than the second threshold Th2 three times in a row (S65). When the FPGA 55 determines that all the duty ratios of the three phases are not smaller than the second threshold Th2 three times in a row (S65: NO), the second determination process is terminated and the process is the main process (FIG. 5). See).

一方、FPGA55は、各相の周波数が50Hzより60Hzに近いと判定した時(S63:NO)、処理をS67に進める。FPGA55は、三相の全てのデューティ比が四回連続して第二閾値Th2より小さくなったか判定する(S67)。FPGA55は、三相の全てのデューティ比が四回連続して第二閾値Th2より小さくなっていないと判定した時(S67:NO)、第二判定処理を終了し、処理をメイン処理(図5参照)に戻す。 On the other hand, when the FPGA 55 determines that the frequency of each phase is closer to 60 Hz than 50 Hz (S63: NO), the processing proceeds to S67. The FPGA 55 determines whether all the duty ratios of the three phases have become smaller than the second threshold Th2 four times in a row (S67). When the FPGA 55 determines that all the duty ratios of the three phases are not smaller than the second threshold Th2 four times in a row (S67: NO), the second determination process is terminated and the process is the main process (FIG. 5). See).

図5に示すように、FPGA55は、第二判定処理(S25)の終了後、第一判定処理(S23)及び第二判定処理(S25)により、交流電圧に過電圧と電圧低下との少なくとも一方が発生したか判定する(S27)。FPGA55は、交流電圧に過電圧と電圧低下が何れも発生していないと判定した時(S27:NO)、処理をS13に戻す。FPGA55は、S13〜S25の処理を繰り返す。 As shown in FIG. 5, after the completion of the second determination process (S25), the FPGA 55 undergoes at least one of an overvoltage and a voltage drop in the AC voltage by the first determination process (S23) and the second determination process (S25). It is determined whether or not it has occurred (S27). When the FPGA 55 determines that neither an overvoltage nor a voltage drop has occurred in the AC voltage (S27: NO), the processing is returned to S13. The FPGA 55 repeats the processes of S13 to S25.

FPGA55は、図7に示す第一判定処理(S23)を繰り返し、三相のうち何れかの相のデューティ比が三回連続して第一閾値Th1より大きくなったと判定した時(S43:YES)、交流電圧に過電圧が発生したと判定する(S45)。FPGA55は、第一判定処理を終了し、処理をメイン処理(図5参照)に戻す。 When the FPGA 55 repeats the first determination process (S23) shown in FIG. 7 and determines that the duty ratio of any one of the three phases becomes larger than the first threshold Th1 three times in a row (S43: YES). , It is determined that an overvoltage has occurred in the AC voltage (S45). The FPGA 55 ends the first determination process and returns the process to the main process (see FIG. 5).

FPGA55は、図8に示す第二判定処理(S25)を繰り返し、S17(図6参照)の処理により算出した周波数が60Hzより50Hzに近く(S63:YES)、且つ三相の全てのデューティ比が三回連続して第二閾値Th2より小さくなったと判定した時(S65:YES)、交流電圧に電圧低下が発生したと判定する(S71)。FPGA55は、第二判定処理を終了し、処理をメイン処理(図5参照)に戻す。又、FPGA55は、S17の処理により算出した周波数が50Hzより60Hzに近く(S63:NO)、且つ三相の全てのデューティ比が四回連続して第二閾値Th2より小さくなったと判定した時(S67:YES)、交流電圧に電圧低下が発生したと判定する(S71)。FPGA55は、第二判定処理を終了し、処理をメイン処理(図5参照)に戻す。 The FPGA 55 repeats the second determination process (S25) shown in FIG. 8, the frequency calculated by the process of S17 (see FIG. 6) is closer to 50 Hz than 60 Hz (S63: YES), and all the duty ratios of the three phases are set. When it is determined that the second threshold value Th2 is smaller than the second threshold value Th2 three times in a row (S65: YES), it is determined that a voltage drop has occurred in the AC voltage (S71). The FPGA 55 ends the second determination process and returns the process to the main process (see FIG. 5). Further, when the FPGA 55 determines that the frequency calculated by the processing of S17 is closer to 60 Hz than 50 Hz (S63: NO) and the duty ratios of all three phases are smaller than the second threshold Th2 four times in a row ( S67: YES), it is determined that a voltage drop has occurred in the AC voltage (S71). The FPGA 55 ends the second determination process and returns the process to the main process (see FIG. 5).

図5に示すように、FPGA55は、第一判定処理(S23)及び第二判定処理(S25)により、交流電圧に過電圧と電圧低下との少なくとも一方が発生したと判定した時(S27:YES)、処理をS29に進める。FPGA55は、判定結果をCPU11に出力する(S29)。CPU11は出力した判定結果に基づき、過電圧、電圧低下の発生を通知する通知情報を表示装置18に表示する。FPGA55は、メイン処理を終了する。 As shown in FIG. 5, when the FPGA 55 determines that at least one of an overvoltage and a voltage drop has occurred in the AC voltage by the first determination process (S23) and the second determination process (S25) (S27: YES). , The process proceeds to S29. The FPGA 55 outputs the determination result to the CPU 11 (S29). Based on the output determination result, the CPU 11 displays the notification information notifying the occurrence of overvoltage and voltage drop on the display device 18. The FPGA 55 ends the main process.

<本実施形態の作用、効果>
電圧異常検出回路15は、三相交流電源19の各相の電圧の信号線に設けた抵抗62、72、82に並列に接続するバイパスコンデンサ65、75、85を有する。数値制御装置1の不揮発性記憶装置14は、バイパスコンデンサ65、75、85の回路条件(第i条件)毎の第一閾値(i)と第二閾値(i)を、複数の周波数範囲に対応付けて格納した閾値テーブル14Aを記憶する。数値制御装置1は、回路条件を直接的又は間接的に受け付け、受け付けた回路条件に対応する第一閾値(i)と第二閾値(i)を、閾値テーブル14Aに基づいて決定する(S11)。数値制御装置1は、三相交流電圧の各相(R相、S相、T相)の周波数を特定し(S17)、対応する第一閾値Th1と第二閾値Th2を、閾値テーブル14Aに基づいて特定する(S19)。数値制御装置1は、特定した第一閾値Th1と第二閾値Th2と、三相交流電圧のデューティ比との関係に応じ、三相交流電圧に過電圧と電圧低下が生じているか判定する(S23、S25)。該時、数値制御装置1は、バイパスコンデンサ65、75、85の回路条件に応じて三相交流電圧の周波数が変動する時も、変動した周波数に対応する第一閾値Th1と第二閾値Th2に基づいて、三相交流電圧に異常があるかを判定できる。故に、数値制御装置1は、三相交流電圧に異常があるかを精度良く検出できる。
<Action and effect of this embodiment>
The voltage abnormality detection circuit 15 has bypass capacitors 65, 75, 85 connected in parallel to resistors 62, 72, 82 provided in the voltage signal line of each phase of the three-phase AC power supply 19. The non-volatile storage device 14 of the numerical control device 1 corresponds to a plurality of frequency ranges of the first threshold value (i) and the second threshold value (i) for each circuit condition (i-th condition) of the bypass capacitors 65, 75, 85. The threshold table 14A attached and stored is stored. The numerical control device 1 directly or indirectly accepts the circuit conditions, and determines the first threshold value (i) and the second threshold value (i) corresponding to the accepted circuit conditions based on the threshold value table 14A (S11). .. The numerical control device 1 identifies the frequencies of each phase (R phase, S phase, T phase) of the three-phase AC voltage (S17), and sets the corresponding first threshold Th1 and second threshold Th2 based on the threshold table 14A. (S19). The numerical control device 1 determines whether an overvoltage and a voltage drop occur in the three-phase AC voltage according to the relationship between the specified first threshold Th1 and second threshold Th2 and the duty ratio of the three-phase AC voltage (S23, S25). At this time, even when the frequency of the three-phase AC voltage fluctuates according to the circuit conditions of the bypass capacitors 65, 75, 85, the numerical control device 1 sets the first threshold Th1 and the second threshold Th2 corresponding to the fluctuated frequencies. Based on this, it can be determined whether or not there is an abnormality in the three-phase AC voltage. Therefore, the numerical control device 1 can accurately detect whether or not there is an abnormality in the three-phase AC voltage.

三相交流電源19は三相(R相、S相、T相)の交流電源である。基準回路51〜53は、三相交流電圧をR相、S相、T相に分圧する。故に、数値制御装置1は、三相交流電源19の電圧に異常があるかを、各相の電圧に基づいて精度良く判定できる。 The three-phase AC power supply 19 is a three-phase (R-phase, S-phase, T-phase) AC power supply. The reference circuits 51 to 53 divide the three-phase AC voltage into the R phase, the S phase, and the T phase. Therefore, the numerical control device 1 can accurately determine whether or not there is an abnormality in the voltage of the three-phase AC power supply 19 based on the voltage of each phase.

数値制御装置1は、基準回路51〜53により分圧したR相、S相、T相のうち二相以上のデューティ比が第一閾値Th1より大きい時(S41:YES)、交流電圧に過電圧が発生したと判定する(S45)。該時、数値制御装置1は、交流電圧の過電圧を精度良く判定できる。数値制御装置1は、三相のうち二相以上のデューティ比が第一閾値Th1より大きくない時(S41:NO)、且つ、三相のうち何れかの相のデューティ比が第一閾値Th1より三回以上連続して大きい時(S43:YES)、交流電圧に過電圧が発生したと判定する(S45)。該時、数値制御装置1は、交流電圧の過電圧を更に精度良く判定できる。 In the numerical control device 1, when the duty ratio of two or more phases among the R phase, S phase, and T phase divided by the reference circuits 51 to 53 is larger than the first threshold Th1 (S41: YES), the AC voltage has an overvoltage. It is determined that it has occurred (S45). At this time, the numerical control device 1 can accurately determine the overvoltage of the AC voltage. In the numerical control device 1, when the duty ratio of two or more of the three phases is not larger than the first threshold Th1 (S41: NO), and the duty ratio of any one of the three phases is greater than the first threshold Th1. When it is large three times or more continuously (S43: YES), it is determined that an overvoltage has occurred in the AC voltage (S45). At this time, the numerical control device 1 can determine the overvoltage of the AC voltage with higher accuracy.

基準回路51〜53は、分圧したR相、S相、T相の夫々の、他の二相のうち電圧が小さい相との電位差が所定電圧以上の時、パルス信号を出力する。数値制御装置1は、三相に対応するパルス信号のうち二相以上のパルス信号が基準回路51〜53から50ms以上送信しない時(S61:YES)、交流電圧に電圧低下が発生したと判定する(S71)。該時、数値制御装置1は、交流電圧の電圧低下を精度良く判定できる。数値制御装置1は二相以上の基準回路が50ms以内にパルスを出力したと判定した時(S61:NO)、且つ、三相のデューティ比が第二閾値Th2より所定回数(三回又は四回)以上連続して小さい時(S65:YES、S67:YES)、交流電圧に電圧低下が発生したと判定する(S71)。該時、数値制御装置1は、交流電圧の電圧低下を更に精度良く判定できる。 The reference circuits 51 to 53 output a pulse signal when the potential difference between the divided R phase, S phase, and T phase and the other two phases having the smaller voltage is equal to or greater than a predetermined voltage. The numerical control device 1 determines that a voltage drop has occurred in the AC voltage when the pulse signals of two or more phases among the pulse signals corresponding to the three phases are not transmitted from the reference circuits 51 to 53 for 50 ms or more (S61: YES). (S71). At this time, the numerical control device 1 can accurately determine the voltage drop of the AC voltage. When the numerical control device 1 determines that the reference circuit of two or more phases outputs a pulse within 50 ms (S61: NO), and the duty ratio of the three phases is a predetermined number of times (three or four times) from the second threshold Th2. ) When it is continuously small (S65: YES, S67: YES), it is determined that a voltage drop has occurred in the AC voltage (S71). At this time, the numerical control device 1 can determine the voltage drop of the AC voltage with higher accuracy.

数値制御装置1は、交流電圧の各相の周波数が60Hzよりも50Hzに近い時(S63:YES)、且つ三相の全てのデューティ比が三回連続して第二閾値Th2より小さい時(S65:YES)、交流電圧に異常があると判定する(S71)。数値制御装置1は交流電圧の各相の周波数が50Hzより60Hzに近い時(S63:NO)、且つ三相の全てのデューティ比が四回連続して第二閾値Th2より小さい時(S67:YES)、交流電圧に異常があると判定する(S71)。つまり、数値制御装置1は、交流電圧の各相の周波数が相対的に大きい程、第二閾値Th2と比較する回数を多くする。尚、上記方法による判定が終了する迄の時間は、周波数の逆数と、第二閾値Th2との比較回数とを乗算した値に対応する。故に、数値制御装置1は、交流電圧に異常があるかの判定が終了する迄の時間を、交流電圧の各相の周波数に依らず均一化できる。 The numerical control device 1 is used when the frequency of each phase of the AC voltage is closer to 50 Hz than 60 Hz (S63: YES), and when all the duty ratios of the three phases are smaller than the second threshold Th2 three times in a row (S65). : YES), it is determined that there is an abnormality in the AC voltage (S71). The numerical controller 1 is when the frequency of each phase of the AC voltage is closer to 60 Hz than 50 Hz (S63: NO), and when all the duty ratios of the three phases are smaller than the second threshold Th2 four times in a row (S67: YES). ), It is determined that there is an abnormality in the AC voltage (S71). That is, the numerical control device 1 increases the number of times of comparison with the second threshold value Th2 as the frequency of each phase of the AC voltage is relatively large. The time until the determination by the above method is completed corresponds to a value obtained by multiplying the reciprocal of the frequency by the number of comparisons with the second threshold Th2. Therefore, the numerical control device 1 can equalize the time until the determination of whether or not there is an abnormality in the AC voltage is completed regardless of the frequency of each phase of the AC voltage.

FPGA55は、交流電圧に過電圧と電圧低下が発生したかの判定結果を、CPU11に出力する(S29)。CPU11は、出力した判定結果に基づき、過電圧、電圧低下の発生を通知する通知情報を表示装置18に表示する。該時、数値制御装置1は、電圧異常の発生を外部に通知できる。 The FPGA 55 outputs to the CPU 11 a determination result of whether an overvoltage and a voltage drop have occurred in the AC voltage (S29). Based on the output determination result, the CPU 11 displays the notification information notifying the occurrence of overvoltage and voltage drop on the display device 18. At this time, the numerical control device 1 can notify the outside of the occurrence of a voltage abnormality.

<変形例>
本発明は上記実施形態に限らない。数値制御装置1は三相交流電圧の異常を検出したが、二相交流電圧の異常を検出してもよいし、三相以上の交流電圧の異常を検出してもよい。数値制御装置1は、各基準回路51〜53のフォトカプラ64,74,84の代わりに、他の受光素子デバイス(例えば光MOSFET)を備えてもよい。CPU11は、FPGA55が出力した判定結果に基づき、工作機械2の動作を停止してもよい。FPGA55は、パルス幅とパルス周期からデューティ比を算出したが、パルス幅のみで過電圧又は電圧低下を判定してもよい。閾値テーブル14Aは、分圧した電圧の最大値の第一閾値と第二閾値を記憶してもよい。FPGA55は、デューティ比の代わりに電圧の最大電圧を第一閾値と第二閾値と比較することにより、過電圧と電圧低下の発生を判定してもよい。上記実施形態は、本発明の電圧異常検出装置の一実施形態として数値制御装置1を説明したが、数値制御装置1とは独立した電圧異常検出装置であってもよい。第一判定処理及び第二判定処理における各種パラメータ(三回、四回、50ms等)は一例であれ、変更可能である。
<Modification example>
The present invention is not limited to the above embodiment. Although the numerical control device 1 has detected an abnormality in the three-phase AC voltage, it may detect an abnormality in the two-phase AC voltage or an abnormality in the AC voltage of three or more phases. The numerical control device 1 may include another light receiving element device (for example, an optical MOSFET) instead of the photocouplers 64, 74, 84 of each reference circuit 51 to 53. The CPU 11 may stop the operation of the machine tool 2 based on the determination result output by the FPGA 55. Although the FPGA 55 calculates the duty ratio from the pulse width and the pulse period, the overvoltage or voltage drop may be determined only by the pulse width. The threshold table 14A may store the first threshold and the second threshold of the maximum value of the divided voltage. The FPGA 55 may determine the occurrence of overvoltage and voltage drop by comparing the maximum voltage of the voltage with the first threshold and the second threshold instead of the duty ratio. In the above embodiment, the numerical control device 1 has been described as an embodiment of the voltage abnormality detection device of the present invention, but the voltage abnormality detection device may be independent of the numerical control device 1. Various parameters (three times, four times, 50 ms, etc.) in the first determination process and the second determination process can be changed even if they are examples.

閾値テーブル14Aは、バイパスコンデンサ65、75、85のパラメータに応じた回路条件(第i条件)に第一閾値(i)と第二閾値(i)を対応付け、周波数範囲毎に格納した。閾値テーブル14Aは、バイパスコンデンサ65、75、85のパラメータと異なる回路条件に第一閾値(i)と第二閾値(i)を対応付けてもよい。例えば基準回路51〜53は、分圧した電圧の変動を抑制するローパスフィルタ及びハイパスフィルタを備えてもよい。閾値テーブル14Aは、該ローパスフィルタ及びハイパスフィルタの周波数特性を、回路条件として第一閾値(i)と第二閾値(i)を対応付けてもよい。 In the threshold value table 14A, the first threshold value (i) and the second threshold value (i) are associated with the circuit conditions (the i-th condition) corresponding to the parameters of the bypass capacitors 65, 75, and 85, and stored for each frequency range. The threshold table 14A may associate the first threshold (i) and the second threshold (i) with circuit conditions different from the parameters of the bypass capacitors 65, 75, 85. For example, the reference circuits 51 to 53 may include a low-pass filter and a high-pass filter that suppress fluctuations in the divided voltage. In the threshold value table 14A, the first threshold value (i) and the second threshold value (i) may be associated with the frequency characteristics of the low-pass filter and the high-pass filter as circuit conditions.

FPGA55は、三相のうち二相以上のデューティ比が第一閾値Th1より大きい時(S41:YES)のみ、交流電圧に異常があると判定してもよい(S45)。該時、FPGA55は、S43の処理を実行しなくてもよい。FPGA55は、三相のうち何れかの相のデューティ比が第一閾値Th1より三回以上連続して大きい時(S43:YES)のみ、交流電圧に異常があると判定してもよい(S45)。該時、FPGA55は、S41の処理を実行しなくてもよい。 The FPGA 55 may determine that the AC voltage is abnormal only when the duty ratio of two or more phases out of the three phases is larger than the first threshold Th1 (S41: YES) (S45). At that time, the FPGA 55 does not have to execute the process of S43. The FPGA 55 may determine that the AC voltage is abnormal only when the duty ratio of any of the three phases is continuously larger than the first threshold Th1 three times or more (S43: YES) (S45). .. At that time, the FPGA 55 does not have to execute the process of S41.

FPGA55は、基準回路51〜53が二相以上のパルス信号を50ms以上出力しない時(S61:YES)のみ、交流電圧に電圧低下が発生したと判定してもよい(S71)。該時、FPGA55は、S65、S67の処理を実行しなくてもよい。FPGA55は、三相のデューティ比が第二閾値Th2より所定回数(三回又は四回)以上連続して小さい時(S65:YES、S67:YES)のみ、交流電圧に電圧低下が発生したと判定してもよい(S71)。該時、FPGA55は、S61の処理を実行しなくてもよい。 The FPGA 55 may determine that a voltage drop has occurred in the AC voltage only when the reference circuits 51 to 53 do not output a pulse signal of two or more phases for 50 ms or more (S61: YES). At this time, the FPGA 55 does not have to execute the processes of S65 and S67. The FPGA 55 determines that a voltage drop has occurred in the AC voltage only when the duty ratio of the three phases is continuously smaller than the second threshold Th2 a predetermined number of times (three or four times) (S65: YES, S67: YES). It may be done (S71). At that time, the FPGA 55 does not have to execute the process of S61.

FPGA55は、S65又はS67の処理による判定時の判定回数を同一としてもよい。即ち、FPGA55は、交流電圧の各相の周波数に依らず、三相の全てのデューティ比が第二閾値Th2より小さくなる時の判定回数を共通としてもよい。 The FPGA 55 may have the same number of determinations at the time of determination by the processing of S65 or S67. That is, the FPGA 55 may have a common number of determinations when the duty ratios of all three phases are smaller than the second threshold Th2, regardless of the frequency of each phase of the AC voltage.

<その他>
基準回路51〜53は本発明の分圧手段とパルス出力手段の一例である。第一閾値と第二閾値は本発明の基準情報の一例である。閾値テーブル14Aを記憶する不揮発性記憶装置14は本発明の「記憶部」の一例である。S11の処理を実行するFPGA55は、本発明の決定手段の一例である。S17の処理を実行するFPGA55は、本発明の第一特定手段の一例である。S19の処理を実行するFPGA55は、本発明の第二特定手段の一例である。S23、S25の処理を実行するFPGA55は、本発明の判定手段の一例である。S29の処理を行うFPGA55は、本発明の結果出力手段の一例である。
<Others>
Reference circuits 51 to 53 are examples of the voltage dividing means and the pulse output means of the present invention. The first threshold value and the second threshold value are examples of the reference information of the present invention. The non-volatile storage device 14 that stores the threshold table 14A is an example of the “storage unit” of the present invention. The FPGA 55 that executes the process of S11 is an example of the determination means of the present invention. The FPGA 55 that executes the process of S17 is an example of the first specific means of the present invention. The FPGA 55 that executes the process of S19 is an example of the second specific means of the present invention. The FPGA 55 that executes the processes of S23 and S25 is an example of the determination means of the present invention. The FPGA 55 that performs the processing of S29 is an example of the result output means of the present invention.

14 :不揮発性記憶装置
14A :閾値テーブル
15 :電圧異常検出回路
19 :三相交流電源
51、52、53 :基準回路
55 :FPGA
65、75、85 :バイパスコンデンサ
14: Non-volatile storage device 14A: Threshold table 15: Voltage abnormality detection circuit 19: Three-phase AC power supply 51, 52, 53: Reference circuit 55: FPGA
65, 75, 85: Bypass capacitor

Claims (7)

R相、S相、T相を含む三相交流電源の電圧の異常を検出する電圧異常検出装置であって、
前記三相交流電源をR相、S相、T相に分圧する第一組抵抗、第二組抵抗、及び第三組抵抗を含み、三つの基準回路からなる分圧手段であって、
前記第一組抵抗、前記第二組抵抗、及び前記第三組抵抗は、夫々、直列に接続された二つの抵抗を含み、
前記第一組抵抗と、前記第一組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、R相基準で他のS相とT相とのうち低い方との電位差が所定電圧以上になるとパルス信号を出力するパルス出力部とを少なくとも含むR相基準回路と、
前記第二組抵抗と、前記第二組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、S相基準で他のR相とT相とのうち低い方との電位差が所定電圧以上になるとパルス信号を出力するパルス出力部とを少なくとも含むS相基準回路と、
前記第三組抵抗と、前記第三組抵抗に含まれる二つの抵抗の一方に並列に接続されたバイパスコンデンサと、T相基準で他のR相とS相とのうち低い方との電位差が所定電圧以上になるとパルス信号を出力するパルス出力部とを少なくとも含むT相基準回路と、を含む分圧手段と、
前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のパルス周期に対するパルス幅の割合であるデューティ比の閾値を前記三相交流電源の周波数毎に定義した基準情報を、前記バイパスコンデンサの周波数特性を示す回路条件毎に対応付けたテーブルを記憶した記憶部と、
前記回路条件を特定可能な指示を、入力装置を介して直接的に受け付けるか、又は、設定スイッチの設定情報に基づいて間接的に受け付け前記記憶部に記憶された前記テーブルのうち受け付けた前記指示が特定する前記回路条件に対応付けられた前記周波数毎の前記基準情報を決定する決定手段と、
前記三つの基準回路の各々が出力するパルス信号に基づき前記パルス幅と前記パルス周期を相毎に測定し、相毎に測定したパルス周期に基づき、前記三相交流電源前記周波数を相毎に特定する第一特定手段と、
前記決定手段により決定された前記周波数毎の前記基準情報のうち、前記第一特定手段により特定した前記周波数に対応付けられた前記基準情報を相毎に特定する第二特定手段と、
前記第二特定手段により相毎に特定した前記基準情報により定義された前記閾値、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号の前記パルス周期に対する前記パルス幅の割合であるデューティ比との大小関係に基づき、前記三相交流電源の電圧に異常があるか否か判定する判定手段と
を備えたことを特徴とする電圧異常検出装置。
A voltage abnormality detection device that detects abnormalities in the voltage of a three-phase AC power supply including R-phase, S-phase, and T-phase.
It is a voltage dividing means including a first set resistor, a second set resistor, and a third set resistor that divides the three-phase AC power supply into R phase, S phase, and T phase, and is composed of three reference circuits .
The first set resistor, the second set resistor, and the third set resistor each include two resistors connected in series.
The potential difference between the first set resistor, the bypass capacitor connected in parallel to one of the two resistors included in the first set resistor, and the lower of the other S phase and T phase based on the R phase. An R-phase reference circuit that includes at least a pulse output unit that outputs a pulse signal when the voltage exceeds a predetermined voltage, and
The potential difference between the second set resistor, the bypass capacitor connected in parallel to one of the two resistors included in the second set resistor, and the lower of the other R phase and T phase based on the S phase. An S-phase reference circuit that includes at least a pulse output unit that outputs a pulse signal when the voltage exceeds a predetermined voltage, and
The potential difference between the third set resistor, the bypass capacitor connected in parallel to one of the two resistors included in the third set resistor, and the lower of the other R phase and S phase based on the T phase. A voltage dividing means including at least a T-phase reference circuit including a pulse output unit that outputs a pulse signal when the voltage exceeds a predetermined voltage , and
The bypass capacitor provides reference information that defines the duty ratio threshold, which is the ratio of the pulse width to the pulse period of the pulse signal output by the pulse output unit of each of the three reference circuits, for each frequency of the three-phase AC power supply. A storage unit that stores a table associated with each circuit condition showing the frequency characteristics of
Identifiable indication the circuit condition, directly or accepted through the input device, or, indirectly accepted on the basis of the setting information of the setting switch, accepted among the tables stored in the storage unit determining means for determining the reference information for each of the frequency which is correlated to the circuit condition in which the instruction is identified,
Based on said pulse signal, each output of the three reference circuit measures the pulse width and the pulse period for each phase, based on the pulse period measured for each phase, the said frequency of the three-phase AC power supply for each phase The first specific means to identify and
Among the reference information for each of the frequency determined by the determination unit, a second specifying unit that specific for each phase of the reference information that is correlated to the frequency identified by said first identifying means,
The ratio of the pulse width to the pulse period of the pulse signal output by the pulse output unit of each of the three reference circuits and the threshold defined by the reference information specified for each phase by the second specific means. A voltage abnormality detecting device provided with a determination means for determining whether or not there is an abnormality in the voltage of the three-phase AC power supply based on a magnitude relationship with a certain duty ratio.
前記判定手段は、前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のうち、二以上のパルス信号のデューティ比が、前記基準情報により定義された前記閾値のうち過電圧を検出する為の第一閾値より大きい時、前記三相交流電源の電圧に過電圧が発生したと判定することを特徴とする請求項に記載の電圧異常検出装置。 The determination means of the pulse signal the pulse output unit of each of the three criteria circuit outputs the duty ratio of the pulse signal on the two or more is detected an overvoltage of defined the threshold by the reference information the first time threshold is greater than for, the abnormal voltage detecting apparatus according to claim 1, overvoltage voltage of the three-phase AC power source and judging to have occurred. 前記判定手段は、
前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のデューティ比と、前記基準情報により定義された前記閾値のうち過電圧を検出する為の第一閾値とを繰り返し比較し、
前記三つの基準回路の各々が出力するパルス信号のうち何れかのデューティ比が前記第一閾値より所定回数以上連続して大きい時、前記三相交流電源の電圧に過電圧が発生したと判定することを特徴とする請求項に記載の電圧異常検出装置。
The determination means
The duty ratio of the pulse signal output by the pulse output unit of each of the three reference circuits is repeatedly compared with the first threshold value for detecting an overvoltage among the threshold values defined by the reference information.
When the duty ratio of any of the pulse signals output by each of the three reference circuits is continuously larger than the first threshold value by a predetermined number of times or more, it is determined that an overvoltage has occurred in the voltage of the three-phase AC power supply. The voltage abnormality detecting device according to claim 1.
前記判定手段は、三つの基準回路の各々の前記パルス出力部のうち二以が、パルス信号を所定時間以上出力しない時、前記三相交流電源の電圧に電圧低下が発生したと判定することを特徴とする請求項に記載の電圧異常検出装置。 Said determining means, on the two or more of the pulse outputs of each of the three reference circuits, when no output pulse signal for a predetermined time or more, it is determined that the voltage drop in the voltage of the three-phase AC power supply occurs The voltage abnormality detecting device according to claim 1. 前記判定手段は、
前記三つの基準回路の各々の前記パルス出力部が出力するパルス信号のデューティ比と、前記基準情報により定義された前記閾値のうち電圧低下を検出する為の第二閾値とを繰り返し比較し、
前記三つの基準回路の各々が出力するパルス信号のデューティ比が、前記第二閾値より所定回数以上連続して小さい時、前記三相交流電源の電圧に電圧低下が発生したと判定することを特徴とする請求項に記載の電圧異常検出装置。
The determination means
The duty ratio of the pulse signal output by the pulse output unit of each of the three reference circuits is repeatedly compared with the second threshold value for detecting a voltage drop among the threshold values defined by the reference information.
When the duty ratio of the pulse signal output by each of the three reference circuits is continuously smaller than the second threshold value by a predetermined number of times or more, it is determined that a voltage drop has occurred in the voltage of the three-phase AC power supply. The voltage abnormality detection device according to claim 1.
前記パルス出力部が出力するパルス信号の前記周波数が大きい程、前記所定回数が大きいことを特徴とする請求項に記載の電圧異常検出装置。 The higher the pulse output unit is large the frequency of the pulse signal output, voltage abnormality detection device according to claim 5, wherein the predetermined number of times is larger. 前記判定手段による判定結果を出力する結果出力手段を更に備えたことを特徴とする請求項1からの何れかに記載の電圧異常検出装置。 The voltage abnormality detecting device according to any one of claims 1 to 6 , further comprising a result output means for outputting a determination result by the determination means.
JP2017151224A 2017-08-04 2017-08-04 Voltage abnormality detector Active JP6866800B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017151224A JP6866800B2 (en) 2017-08-04 2017-08-04 Voltage abnormality detector
CN201810876575.8A CN109387694B (en) 2017-08-04 2018-08-03 Voltage abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151224A JP6866800B2 (en) 2017-08-04 2017-08-04 Voltage abnormality detector

Publications (2)

Publication Number Publication Date
JP2019028043A JP2019028043A (en) 2019-02-21
JP6866800B2 true JP6866800B2 (en) 2021-04-28

Family

ID=65417511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151224A Active JP6866800B2 (en) 2017-08-04 2017-08-04 Voltage abnormality detector

Country Status (2)

Country Link
JP (1) JP6866800B2 (en)
CN (1) CN109387694B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650494B (en) * 2020-05-27 2023-02-14 上海新时达电气股份有限公司 Safety loop detection device and detection method thereof
CN115597184B (en) * 2022-10-21 2024-07-23 珠海格力电器股份有限公司 Method and device for protecting against wrong connection, air conditioner and storage medium
CN117783837B (en) * 2024-02-27 2024-05-24 苏州长江睿芯电子科技有限公司 Multi-core lockstep SOC internal state detection circuit and detection method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308083A (en) * 1996-05-13 1997-11-28 Hitachi Ltd Phase interruption detection circuit
JP2001258151A (en) * 2000-03-08 2001-09-21 Yaskawa Electric Corp Power supply voltage failure detection circuit and method thereof
FI115092B (en) * 2003-05-15 2005-02-28 Abb Oy Phase monitor and device comprising phase monitor
JP4915982B2 (en) * 2005-09-01 2012-04-11 株式会社リコー Power supply control method and heater control device
JP4757021B2 (en) * 2005-12-28 2011-08-24 オリンパス株式会社 Position detection system
CN101408565B (en) * 2008-10-31 2010-07-07 江苏省电力公司常州供电公司 35KV power distribution station internal and external over voltage monitoring method based on voltage mutual inductor sampling
JP5341842B2 (en) * 2010-08-31 2013-11-13 日立オートモティブシステムズ株式会社 Power supply circuit and power conversion device
JP2012078241A (en) * 2010-10-04 2012-04-19 Yokogawa Electric Corp Instantaneous voltage drop detector and semiconductor testing device
WO2013035183A1 (en) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 Battery system monitoring device
JP2014066566A (en) * 2012-09-25 2014-04-17 Fuji Electric Co Ltd Open-phase detection device
JP6070139B2 (en) * 2012-12-11 2017-02-01 ブラザー工業株式会社 Voltage abnormality detector
DE102014007064B4 (en) * 2013-12-10 2018-03-01 Sew-Eurodrive Gmbh & Co Kg System for transmission of energy and data

Also Published As

Publication number Publication date
CN109387694A (en) 2019-02-26
JP2019028043A (en) 2019-02-21
CN109387694B (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6866800B2 (en) Voltage abnormality detector
JP6070139B2 (en) Voltage abnormality detector
JP6700709B2 (en) System, method, and computer-readable medium for controlling chatter
US9272349B2 (en) Numerical control device, wire electric discharge machining apparatus using the same, and wire electric discharge machining method using the same
US8735762B2 (en) Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
JP5269262B1 (en) Numerical controller
KR101999112B1 (en) Tool life maintenance system and tool life maintenance method for machine tools
JP2011138463A (en) Numerical control device
JP4923409B2 (en) Tool life prediction device
US10972035B2 (en) Motor drive apparatus for estimating stray capacitance
EP2656954A2 (en) Contact detection apparatus for wire electrical discharge machine with capability to vary applied gap voltage
EP2985105B1 (en) Wire electric discharge machine determining whether or not electrical discharge machining of workpiece can be perfomed
KR20150074258A (en) Method and Apparatus for Monitoring Cutting Load of Machine Tool
JPH0481908A (en) Positioning method and positioning device
JP6034835B2 (en) Numerical control device for presenting information for shortening cycle time
JP6924529B1 (en) Machine tool current measurement system and its method
JP5722290B2 (en) Wire electric discharge machine with axis feed control method discrimination function
JP5149410B2 (en) Motor drive control device for limiting motor output according to power supply characteristics of AC power supply
TWM485116U (en) Quick automatic tool selection and tool change system
JPWO2011004426A1 (en) Wire electrical discharge machine
KR20190068858A (en) Tool path changing device of cycle processing of machine tool and method thereof
JP4678711B2 (en) Die-sinker EDM
CN106825797B (en) Spark-erosion machine tool and its control system
JP5247943B1 (en) EDM machine
US20230280707A1 (en) Numerical controller, manufacturing machine, and method of controlling manufacturing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R150 Certificate of patent or registration of utility model

Ref document number: 6866800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150