JP6066318B2 - 電極カテーテルシステム - Google Patents

電極カテーテルシステム Download PDF

Info

Publication number
JP6066318B2
JP6066318B2 JP2013119722A JP2013119722A JP6066318B2 JP 6066318 B2 JP6066318 B2 JP 6066318B2 JP 2013119722 A JP2013119722 A JP 2013119722A JP 2013119722 A JP2013119722 A JP 2013119722A JP 6066318 B2 JP6066318 B2 JP 6066318B2
Authority
JP
Japan
Prior art keywords
liquid
electrode
discharge mode
pump device
irrigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013119722A
Other languages
English (en)
Other versions
JP2014236788A (ja
Inventor
小島 康弘
康弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Lifeline Co Ltd
Original Assignee
Japan Lifeline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Lifeline Co Ltd filed Critical Japan Lifeline Co Ltd
Priority to JP2013119722A priority Critical patent/JP6066318B2/ja
Publication of JP2014236788A publication Critical patent/JP2014236788A/ja
Application granted granted Critical
Publication of JP6066318B2 publication Critical patent/JP6066318B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、電極カテーテルシステムに関し、更に詳しくは、先端電極の表面の灌注機構を備えた電極カテーテルと、先端電極に高周波エネルギーを出力する高周波発生装置と、灌注用液体を吐出するためのポンプ装置とを備えた電極カテーテルシステムに関する。
電極カテーテルであるアブレーションカテーテルにおいて、焼灼時に高温となった先端電極を冷却するとともに、先端電極の周辺の血液を攪拌・希釈して先端電極の表面に血栓が形成されることを防止するために、灌注機構を備えているものが使用されている。
灌注機構を備えた従来のカテーテルとしては、カテーテルシャフトを通って先端電極の内部に供給された生理食塩水を当該先端電極の表面に形成された複数の開口から噴射するタイプのものが紹介されている(下記特許文献1および特許文献2参照)。
また、焼灼時において先端電極の一部に異常な温度上昇が生じることがなく、先端電極の表面の冷却効果および先端電極の表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができるアブレーションカテーテルとして、本出願人は、液体流路となるルーメンを少なくとも1つ有するカテーテルシャフトと、このカテーテルシャフトの先端側に接続された絶縁性灌注部材と、この絶縁性灌注部材の先端側に接続された先端電極とを備えてなり、絶縁性灌注部材には、カテーテルシャフトから供給される液体の貯留空間と、当該貯留空間内の液体を排出するために、絶縁性灌注部材の外周に沿って等角度間隔に配置された複数の開口と、複数の開口の各々から先端方向に延びる液体の案内溝とが形成され、先端電極の基端部には、絶縁性灌注部材の案内溝の各々に連続する液体の案内溝が形成されている電極カテーテルを紹介している(下記特許文献3参照)。
特許第2562861号公報 特開2006−239414号公報 特開2012−176119
灌注機構を備えた従来のカテーテルにおいて、焼灼治療中に灌注用の開口が血栓などによって塞がれてしまうことがある。
また、灌注用液体の流路となるカテーテルシャフトのルーメンに異物が浸入し、これが液体の流路を閉塞してしまうことも考えられる。
このような場合には、ポンプ装置から吐出される液体を灌注用の開口から噴射することができなくなって、灌注による効果(先端電極の表面の冷却効果および先端電極の表面における血栓の形成抑制効果)を奏することができなくなる。
そして、この状態で焼灼治療(高周波エネルギーの出力)を継続すると、先端電極近傍の体内組織が高温となって損傷を受ける虞がある。
また、灌注用の開口が塞がれていたり、カテーテルシャフトの液体流路に閉塞を生じたりしている状態で、ポンプ装置の吐出を継続すると、液体流路の圧力が上昇してカテーテルシャフトが破裂したり、行き場を失った液体が制御ハンドルなどから漏れ出したりする虞がある。
しかしながら、灌注機構を備えた従来のカテーテルシステムでは、焼灼治療中において灌注用の開口が血栓などにより塞がれていることおよびカテーテルシャフトの液体流路に閉塞を生じていることを感知することができず、治療行為(手技)に支障をきたす虞があった。
本発明は、以上のような事情に基いてなされたものである。
本発明の目的は、焼灼治療中において、灌注用の開口が血栓などで塞がれたり、カテーテルシャフトの液体流路に閉塞を生じたりしても、治療行為に支障をきたすことを避けることができる電極カテーテルシステムを提供することにある。
(1)本発明の電極カテーテルシステムは、灌注用液体の流路を形成する少なくとも1つのルーメンを有するカテーテルシャフトと、このカテーテルシャフトの先端側に位置し、その表面が接触する体内組織に高周波エネルギーを付与して焼灼するための先端電極と、この先端電極の表面を灌注するための灌注機構とを備えた電極カテーテルと;
前記電極カテーテルの先端電極に高周波エネルギーを出力する高周波発生装置と;
所定流量の液体を吐出する本吐出モードと、スタンバイ流量の液体を吐出する予備吐出モードとの間で切り替えが可能なポンプ装置と;
前記ポンプ装置から吐出される灌注用液体が前記カテーテルシャフトのルーメンに供給されるよう、前記ポンプ装置と前記電極カテーテルとを連結する液体注入用チューブと; 前記液体注入用チューブに接続されている液圧計と;
前記高周波発生装置による高周波エネルギーの出力を開始するときには、予備吐出モードから本吐出モードに切り替えるよう前記ポンプ装置に信号を送信し、
前記高周波発生装置による高周波エネルギーの出力を停止したときには、本吐出モードから予備吐出モードに切り替えるよう前記ポンプ装置に信号を送信し、
前記高周波発生装置による高周波エネルギーの出力中に、前記液圧計により測定された圧力が所定の値を超えたときには、前記高周波発生装置による出力を停止させると同時に前記ポンプ装置による吐出を停止させるよう、前記高周波発生装置と前記ポンプ装置とに緊急停止信号を送信する制御装置とを備え
前記電極カテーテルは、前記カテーテルシャフトと、このカテーテルシャフトの先端側に接続された絶縁性灌注部材と、この絶縁性灌注部材の先端側に接続された前記先端電極とを備えてなり、
前記絶縁性灌注部材には、前記カテーテルシャフトから供給される液体の貯留空間と、当該貯留空間内の液体を排出するために、前記絶縁性灌注部材の外周に沿って等角度間隔に配置された複数の開口と、前記複数の開口の各々から先端方向に延びる液体の案内溝とが形成され、
前記先端電極の基端部には、前記絶縁性灌注部材の案内溝の各々に連続する液体の案内溝が形成されていることを特徴とする。
このような構成の電極カテーテルシステムによれば、高周波発生装置が高周波エネルギーの出力を開始するときにはポンプ装置が予備吐出モードから本吐出モードに切り替えられ、高周波発生装置が高周波エネルギーの出力を停止したときにはポンプ装置が本吐出モードから予備吐出モードに切り替えられるので、高周波発生装置による高周波エネルギーの出力中におけるポンプ装置は常に本吐出モードとなり、焼灼治療中において所定流量の液体を先端電極の表面に灌注することができる。
また、高周波発生装置による高周波エネルギーの出力中(焼灼治療中)に、灌注機構を構成する灌注用開口が血栓によって塞がれたり、カテーテルシャフトのルーメンに閉塞を生じたりしたときには、カテーテルシャフトのルーメンおよびこれに連通する液体注入用チューブの内孔(灌注用液体の流路)の圧力が上昇するので、液体注入用チューブに接続された液圧計により測定されるこの圧力変化を監視することにより、ポンプ装置から吐出される液体が電極カテーテルの灌注用の開口から適正に噴射(灌注)されているか否かを監視することができ、この圧力が所定の値を超えたときには、電極カテーテルの灌注用の開口から液体が適正に噴射されていないものと判断して、制御装置により送信された緊急停止信号に基いて、高周波発生装置による高周波エネルギーの出力およびポンプ装置による液体の吐出を同時に停止することができる。これにより、先端電極の近傍の体内組織が高温となって損傷を受けたり、カテーテルシャフトが破裂したり、流路以外のカテーテルの内部へ液体が漏れ出したり(カテーテルの制御ハンドルなどから液体が漏れ出したり)することを確実に回避することができ、この結果、治療行為に支障をきたすことを避けることができる。
また、高周波エネルギーの出力時(焼灼治療中)において先端電極の一部に異常な温度上昇が生じることがなく、先端電極の表面の冷却効果および先端電極の表面における血栓の形成抑制効果に優れ、しかも、効率的な焼灼治療を行うことができる。
(2)本発明の電極カテーテルシステムにおいて、前記制御装置は、前記高周波発生装置による高周波エネルギーの出力が正常に停止してから一定時間経過後に、本吐出モードから予備吐出モードに切り替えるよう前記ポンプ装置に信号を送信することが好ましい。
このような構成の電極カテーテルシステムによれば、高周波発生装置による高周波エネルギーの出力を停止してから一定時間は、本吐出モードによる所定流量の液体が吐出されるので、先端電極の余熱を十分に除去することにより、灌注効果の更なる向上を図ることができる。
(3)上記(2)の電極カテーテルシステムにおいて、前記制御装置は、前記ポンプ装置が予備吐出モードから本吐出モードに切り替えられてから一定時間経過後に、高周波エネルギーの出力を開始するよう前記高周波発生装置に信号を送信することが好ましい。
このような構成の電極カテーテルシステムによれば、高周波エネルギーの出力開始時に、本吐出モードで吐出された液体を先端電極の表面に到達させる(灌注する)ことができるので、出力開始時における先端電極の昇温および血栓の形成を更に抑制することができる。
(4)上記(2)の電極カテーテルシステムにおいて、前記制御装置は、前記ポンプ装置が予備吐出モードから本吐出モードに切り替えられたことによる前記先端電極の内部温度の低下を確認した後に、高周波エネルギーの出力を開始するよう前記高周波発生装置に信号を送信することが好ましい。
このような構成の電極カテーテルシステムによれば、本吐出モードで吐出された液体が先端電極の表面に到達していることを、先端電極の内部温度の低下によって確認した後に高周波エネルギーの出力を開始するので、先端電極の表面の灌注が十分に行われていない段階で高周波エネルギーが出力されることを防止することができる。
本発明の電極カテーテルシステムによれば、焼灼治療中において、ポンプ装置から吐出される液体が電極カテーテルの灌注用の開口から適正に噴射(灌注)されているか否かを灌注用液体の流路の圧力情報から常時監視することができ、灌注用の開口が血栓などで塞がれたり、カテーテルシャフトの液体流路に閉塞を生じたりしても、治療行為に支障をきたすことを避けることができる。
本発明の電極カテーテルシステムの一実施形態に係るアブレーションカテーテルシステムのブロック図である。 図1に示したアブレーションカテーテルシステムの一部(アブレーションカテーテル、液体注入用チューブおよび液圧計)の具体的形態を示す正面図である。 図2に示したアブレーションカテーテルの先端部分を示す正面図である。 図2に示したアブレーションカテーテルの先端部分における縦断面図(図3の III−III 断面図)である。 図2に示したアブレーションカテーテルの先端部分における横断面図(図4のIV−IV断面図)である。 図2に示したアブレーションカテーテルの先端部分における横断面図(図4のV−V断面図)である。 図2に示したアブレーションカテーテルの先端部分における縦断面図(図5のVI−VI断面図)である。 図2に示したアブレーションカテーテルの先端部分における横断面図(図7の VII−VII 断面図)である。 図2に示したアブレーションカテーテルを構成する灌注部材を示す斜視図である。 図2に示したアブレーションカテーテルを構成する灌注部材を示す斜視図である。 図2に示したアブレーションカテーテルを構成する灌注部材の内部を示す断面斜視図である。 灌注部材のジャケット空間に継手チューブが挿入された状態を示す斜視図である。 ジャケット空間に継手チューブが挿入された状態の灌注部材の内部を示す断面斜視図である。 継手チューブが挿入された絶縁性灌注部材のジャケット空間にシール材が充填された状態を示す斜視図である。 図2に示したアブレーションカテーテルにおいて、カテーテルシャフトと、灌注部材と、先端電極との接続状態を示す斜視図である。 図1に示す電極カテーテルシステムにおいて、高周波発生装置による出力とポンプ装置による吐出量の経時変化を模式的に示す説明図である。 図1に示す電極カテーテルシステムにおいて、液圧計によって測定された圧力が一定の値を超えた場合の、高周波発生装置による出力とポンプ装置による吐出量の経時変化を模式的に示す説明図である。 図1に示す電極カテーテルシステムの動作および操作を示すフローチャートの一部(STEP1〜PTEP9)である。 図1に示す電極カテーテルシステムの動作および操作を示すフローチャートの残部(STEP9〜PTEP22)である。
以下、本発明の電極カテーテルシステムの一実施形態について図面を用いて説明する。 図1に示す本実施形態の電極カテーテルシステムは、図2〜図8に示す電極カテーテル(心臓における不整脈の治療に用いられるアブレーションカテーテル)を備えたアブレーションカテーテルシステムである。
図1に示すように、本実施形態のアブレーションカテーテルシステムは、アブレーションカテーテル100と、高周波発生装置200と、ポンプ装置300と、液体注入用チューブ400と、液圧計500と、三方活栓600と、制御装置700とを備えている。
図1において、C1は、高周波発生装置200からの高周波エネルギーをアブレーションカテーテル100(先端電極)に伝達するためのケーブル、C2は、制御装置700からの信号を高周波発生装置200に伝達するためのケーブル、C3は、制御装置700からの信号をポンプ装置300に伝達するためのケーブル、C4は、液圧計500によって測定された圧力情報を制御装置700に伝達するためのケーブルである。
本実施形態のアブレーションカテーテルシステムを構成するアブレーションカテーテル100は、灌注用液体の流路となる少なくとも1つのルーメンを有するカテーテルシャフトと、このカテーテルシャフトの先端側に位置し、その表面が接触する体内組織に高周波エネルギーを付与して焼灼するための先端電極と、この先端電極の表面を灌注するための灌注機構とを備えている。
なお、アブレーションカテーテル100を構成する先端電極は、カテーテルシャフトの先端に直接接続されている必要はなく、後述するように、灌注部材(灌注機構)などの中間部材を介して、カテーテルシャフトの先端に接続されていることが好ましい。
以下、アブレーションカテーテル100の具体的構成を説明する。
図2乃至図8に示すアブレーションカテーテル100は、液体の流路となる8本のルーメン11を有するカテーテルシャフト10と、このカテーテルシャフト10の先端側に接続された絶縁性の灌注部材20と、この灌注部材20の先端側に接続された先端電極30と、カテーテルシャフト10の先端部に装着されたリング状電極40と、カテーテルの先端偏向操作を行うための引張ワイヤ61,62と、カテーテルシャフト10の基端側に接続された制御ハンドル70とを備えてなり、
カテーテルシャフト10には、先端電極30に接続されたリード線(図示省略)を延在させる(引き通す)ための中央ルーメン13と、この中央ルーメン13の周囲に等角度間隔(36°間隔)で配置された10本のルーメン(液体の流路となる8本のルーメン11および引張ワイヤの挿通路となる2本のルーメン12)とが形成され、
灌注部材20は、先端電極30の内側凹部35に連通する空間を区画する内管部23と、外管部(外管薄肉部21および外管厚肉部22)との二重管構造を有し、灌注部材20には、カテーテルシャフト10のルーメン11の各々から供給される液体の貯留空間として、内管部23と外管部(外管薄肉部21および外管厚肉部22)とにより仕切られたジャケット空間(以下、「貯留ジャケット空間」という)24が形成されているとともに、この貯留ジャケット空間24に供給された液体を排出するために、灌注部材20の外周に沿って等角度間隔(45°間隔)に配置された8つの開口25と、これらの開口25の各々から先端方向に延びる液体の案内溝26とが形成され、
先端電極30の基端部(頸部32)には、灌注部材20の案内溝26の各々に連続する液体の案内溝36が形成されており、
カテーテルシャフト10の先端部(先端に形成された凹部)に灌注部材20の基端部(内管部23および外管薄肉部21)が挿入されることにより、カテーテルシャフト10の先端側に灌注部材20が接続され、
カテーテルシャフト10に形成された中央ルーメン13が、第1の継手チューブ51を介して、灌注部材20の内管部23の内部空間と連通し、カテーテルシャフト10に形成された8本のルーメン11(液体の流路となるルーメン)の各々が、第2の継手チューブ52を介して、灌注部材20の貯留ジャケット空間24と連通し、カテーテルシャフト10に形成された2本のルーメン12(引張ワイヤの挿通路となるのルーメン)の各々が、第3の継手チューブ53を介して、灌注部材20における引張ワイヤの挿通路27と連通している電極カテーテルである。
図2に示した制御ハンドル70は、カテーテルシャフト10の基端側に接続されており、カテーテルの先端偏向操作を行うための回転板75を備えている。
図8に示すように、アブレーションカテーテル100を構成するカテーテルシャフト10には、その中心軸を囲むように形成され、先端電極30およびリング状電極40の各々に接続されたリード線(図示省略)などが引き通される中央ルーメン13と、この中央ルーメン13の周りに等角度(36°=360°/10)の間隔で配置された10本のルーメンが形成されている。
中央ルーメン13の周りに等間隔で形成されている10本のルーメンは、同一の外径を有している。10本のルーメンのうちの2本のルーメン12には、アブレーションカテーテル100の先端偏向操作を行うための引張ワイヤ61,62が挿通されている。そして、引張ワイヤ61,62が挿通されていない8本のルーメン11が液体の流路となる。
なお、図8において、15は、引張ワイヤ61,62による偏向操作を確実に行わせるためにカテーテルシャフト10内に埋め込まれた剛性体である。
剛性体15は、Ni−Ti合金などの金属製の棒ばねからなり、曲げ方向(引張ワイヤ61,62の配列方向)に対して垂直方向に配列された剛性体15,15により曲げ方向の異方性を担保することができる。
カテーテルシャフト10は、軸方向に沿って同じ特性の材料で構成してもよいが、軸方向に沿って剛性(硬度)の異なる材料を用いて一体的に形成することが好ましい。具体的には、近位端側の構成材料が相対的に高い剛性を有し、遠位端側の構成材料が相対的に低い剛性を有するものであることが好ましい。
カテーテルシャフト10は、例えばポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン、ナイロン、PEBAX(ポリエーテルブロックアミド)などの合成樹脂で構成される。また、カテーテルシャフト10の近位端側は、これらの合成樹脂からなるチューブをステンレス素線で編組したブレードチューブであってもよい。
カテーテルシャフト10の外径は1.0〜3.0mmであることが好ましく、更に好ましくは1.6〜2.7mmとされ、好適な一例を示せば2.36mmである。
カテーテルシャフト10の長さは600〜1500mmであることが好ましく、更に好ましくは900〜1200mmとされる。
灌注部材20を示す図9〜図12において、21は外管薄肉部、22は外管厚肉部、23は内管部、24は貯留ジャケット空間、25は貯留ジャケット空間24内の液体を排出するための開口、26は液体の案内溝、27は引張ワイヤの挿通路、28は中央開口、29は抜け止め用凸部である。
この灌注部材20において、開口25、液体の案内溝26は、それぞれ、灌注部材20の外周に沿って45°間隔で8つずつ設けられている。
灌注部材20は、絶縁性樹脂または絶縁性セラミックの成型品からなる。これにより、複雑な形状・構造であっても、安価に製造することができるとともに、灌注部材20にエッジが形成されていても、アブレーションカテーテル100の使用(焼灼)時に、エッジ部分に電流が集中して高温になることはない。
図7、図10および図11に示したように、アブレーションカテーテル100を構成する灌注部材20は、内管部23と、外管部(外管薄肉部21および外管厚肉部22)との二重管構造を有しており、内管部23と外管部(外管薄肉部21および外管厚肉部22)とにより貯留ジャケット空間24が仕切られている。
内管部23の内部空間は、先端電極30の内側凹部35に連通する空間である。
内管部23と外管部(外管薄肉部21および外管厚肉部22)とにより仕切られる貯留ジャケット空間24は、カテーテルシャフト10のルーメン11の各々から灌注部材20に供給される液体を合流させるための空間である。
図10および図11に示したように、貯留ジャケット空間24は、引張ワイヤの挿通路27を区画する管状部分によって2室に分割されている。
貯留ジャケット空間24には、挿通路27を区画する管状部分以外に、周方向の隔壁がないために、貯留ジャケット空間24(何れかの室)に流入した液体を当該室内において周方向に自由に流動させることができる。
灌注部材20には、その外周に沿って等角度間隔(45°間隔)に配置された8つの開口25が形成されている。開口25は、貯留ジャケット空間24に貯留された液体を排出するための噴射口である。
また、灌注部材20の先端部(外部)には、開口25の各々の形成位置から先端方向に延びる液体の案内溝26が形成されている。
この案内溝26により、開口25から排出(噴射)される液体を、先端電極30に向けて確実に案内(誘導)することができる。
また、図7に示すように、案内溝26の各々は、灌注部材20の軸方向に対して外側(灌注部材20の半径方向の外側)に傾斜するように形成されている。
これにより、開口25から排出された液体は、先端方向外側(灌注部材20の軸方向における先端側で、かつ半径方向における外側)に向けて噴射される。このため、ある程度サイズの大きな先端電極30の表面に対しても灌注することが可能になる。
また、図4および図9〜図11に示したように、灌注部材20には、先端偏向操作を行うための引張ワイヤの挿通路27が形成されている。
引張ワイヤ61,62は、それぞれの近位端が、制御ハンドル70の回転板75(図2参照)に連結され、図4に示したように、カテーテルシャフト10のルーメン12,12、灌注部材20の挿通路27,27を通り、それぞれの遠位端が、灌注部材20の先端において固定されている。
これにより、例えば、図2に示すA1方向に回転板75を回転させると、引張ワイヤ61が引っ張られ、カテーテル100の先端部分が矢印A方向に偏向動作し、図2に示すB1方向に回転板75を回転させると、引張ワイヤ62が引っ張られ、カテーテル100の先端部分が矢印B方向に偏向動作する。
灌注部材20の構成する樹脂材料としては、医療分野で使用されている絶縁性樹脂であれば特に限定されるものではないが、ポリエーテルエーテルケトン(PEEK)などの芳香族ポリエーテルケトンなどが好ましい。また、灌注部材20の構成するセラミック材料としても特に限定されるものではない。灌注部材20は、例えば射出成形により製造することができる。
灌注部材20の長さ(カテーテルシャフト10に接続するときに埋め込まれる部分を含む)は、例えば1〜5mmとされ、好適な一例を示せば2mmである。
灌注部材20の外径(外管厚肉部22における外径)は、カテーテルシャフト10の外径と同じであることが好ましい。
図4および図7に示したように、カテーテルシャフト10の先端部分(先端から1〜5mm程度の範囲に形成された凹部)に、灌注部材20の基端部(内管部23および外管薄肉部21)が挿入されることにより、カテーテルシャフト10の先端側に灌注部材20が接続されている。
この状態において、カテーテルシャフト10の先端部分(凹部)における中央ルーメン13の開口縁(開口の周囲の端面部分)と、灌注部材20の内管部23の基端側端面とが当接しているとともに、中央ルーメン13の先端領域(開口から1〜10mm程度)、および内管部23の内部空間の基端領域(基端から0.5〜5mm程度)には、第1の継手チューブ51が挿入されている。
これにより、カテーテルシャフト10の中央ルーメン13は、第1の継手チューブ51を介して、灌注部材20の内管部23の内部空間と連通している。
また、図7に示したように、この状態において、カテーテルシャフト10の先端部分(凹部)におけるルーメン11の各々の先端領域(開口から1〜10mm程度)、および貯留ジャケット空間24の基端領域(基端から0.5〜5mm程度)には、第2の継手チューブ52が挿入されている。
これにより、カテーテルシャフト10に形成された8本のルーメン11(液体の流路となるルーメン)の各々は、第2の継手チューブ52を介して、灌注部材20の貯留ジャケット空間24と連通している。
また、図4に示したように、この状態において、カテーテルシャフト10の先端部分(凹部)における2本のルーメン12の各々の先端領域(開口から1〜10mm程度)、および引張ワイヤの挿通路27の基端領域(基端から0.5〜3mm程度)には、第3の継手チューブ53が挿入されている。
これにより、カテーテルシャフト10に形成された2本のルーメン12(引張ワイヤの挿通路となるルーメン)の各々は、第3の継手チューブ53を介して、灌注部材20における引張ワイヤの挿通路27と連通している。
図12および図13は、灌注部材20に継手チューブが挿入された状態を示している。ここに、第1の継手チューブ51、第2の継手チューブ52および第3の継手チューブ53は、それぞれ、内管部23の内部空間、貯留ジャケット空間24、引張ワイヤの挿通路27に挿入されている。
ここで、第2の継手チューブ52の貯留ジャケット空間24への挿入を確保するため、図10に示したように、灌注部材20を構成する内管部23の外周および外管部の内周には、第2の継手チューブ52の挿入を確保するための溝23Cおよび溝21Cが形成されている。溝23Cおよび溝21Cは、第2の継手チューブ52の外周に適合する形状を有している。これらの溝が形成されていることにより、貯留ジャケット空間24への継手チューブの挿入作業の容易化を図ることができる。
また、内管部23と外管部(外管薄肉部21)の肉厚が十分に確保されることにより、灌注部材20の成形の容易化を図ることができる。そのような溝を形成しない場合には、継手チューブを挿入するために、内管部および外管部の肉厚をきわめて薄くしなければならず、灌注部材の成形性に問題を生じるおそれがある。
図14は、第2の継手チューブ52が挿入された灌注部材20の貯留ジャケット空間24(継手チューブの間の空隙部分)にシール材80が充填された状態を示している。
これにより、中央ルーメン13への液体の浸入を確実に防止することができる。
アブレーションカテーテル100を構成する先端電極30は、半球状の先端膨出部31と、頸部32と、円筒状部分33とを有する。
図4および図7に示したように、先端電極30は、その円筒状部分33が、図9に示す中央開口28から灌注部材20の内部(内管部23の内部空間)に挿入固着されることにより、灌注部材20の先端側に接続される。
先端電極30の先端膨出部31の径としては1.0〜3.3mmであることが好ましく、更に好ましくは2.2〜2.6mm、特に好ましくは2.3〜2.5mm、好適な一例を示せば2.36mmである。
また、先端膨出部31の径(先端電極30の最大径)をD1、カテーテルシャフト10の管径をD2とするとき、D1/D2の値が1.0以上であることが好ましく、更に好ましくは1.0〜1.5とされ、好適な一例を示せば1.0(D1/D2=2.36mm/2.36mm)である。
D1/D2の値が過小である場合には、そのような先端電極を備えたカテーテルにより効率的な焼灼治療を行うことが困難となる。
他方、D1/D2の値が過大である場合には、そのような先端電極の表面に対して十分な量の液体を灌注すること(十分に冷却効果・血栓の形成抑制効果を発現させること)が困難となる。
なお、D1/D2の値が1.0以上である先端電極30の表面に対して十分な量の液体を灌注できるのは、灌注部材20に形成されている案内溝26の各々を、灌注部材20の軸方向に対して外側(灌注部材20の半径方向の外側)に傾斜させていることによって、傾斜させない場合よりも開口25を外側に位置させているからである。この点においても、灌注部材20を介在させる意義がある。
また、先端電極30の基端部(頸部32)には、灌注部材20の案内溝26の各々に連続する液体の案内溝36が形成されている。
この案内溝36が形成されていることにより、灌注部材20に形成された案内溝26を通って先端電極30の基端部に到達した液体を、先端電極30の先端部に案内(誘導)することができ、これにより、先端膨出部31を含む先端電極30の表面全体に対して液体を供給することができる。
なお、先端電極30に形成された案内溝36は緩やかなR形状を有しているので、焼灼時においても、この部分において異常な温度上昇は起こらない。
このアブレーションカテーテル100は下記のようにして製造することができる。
先ず、内管部23の内部空間の基端領域に第1の継手チューブ51の先端側を挿入し、貯留ジャケット空間24の基端領域に8本の第2の継手チューブ52の先端側を挿入し、第2の継手チューブ52を挿入した貯留ジャケット空間24の基端領域(継手チューブの間の空隙部分)にシール材80を充填し、引張ワイヤの挿通路27の基端領域に2本の第3の継手チューブ53の先端側を挿入し、引張ワイヤの挿通路27(第3の継手チューブ53)に引張ワイヤ61,62を挿入した状態の灌注部材20を準備する。
次いで、図15に示すように、第1の継手チューブ51の基端側が中央ルーメン13に挿入され、第2の継手チューブ52の各々の基端側がルーメン11に挿入され、引張ワイヤ61,62および第3の継手チューブ53の各々の基端側がルーメン12に挿入されるようにして、灌注部材20の基端部(内管部23および外管薄肉部21)を、カテーテルシャフト10の先端部分(凹部)に挿入する。これによって、カテーテルシャフト10の先端側に灌注部材20が接続される。なお、引張ワイヤ61,62の後端は、制御ハンドル70の回転板75(図2参照)に連結する。
次いで、図15に示したように、先端電極30の円筒状部分33を、中央開口28から灌注部材20の内部(内管部23の内部空間)に挿入固着することにより、灌注部材20の先端側に先端電極30を接続する。
このアブレーションカテーテル100によれば、液体を噴射する開口25が絶縁性の灌注部材20に形成されていて、導電性の先端電極30には開口を形成する必要がなく、開口の形成に伴うエッジが存在しないので、アブレーションカテーテル100の使用時(焼灼時)において先端電極30の一部に異常な温度上昇(高温部)を生じることはなく、そのような高温部に血液が接触することによる血栓の形成が抑制される。
従って、このアブレーションカテーテル100は、先端電極に灌注用の開口が形成されている従来公知のカテーテルと比較して、先端電極30の表面における血栓形成抑制効果が格段に優れている。
しかも、先端電極30には開口を形成する必要がないので、焼灼するために十分な表面積を確保することができ、効率的な焼灼治療を行うことができる。
また、このアブレーションカテーテル100によれば、後方にある灌注部材20から先端電極30の表面に対して液体が灌注されるので、先端電極30の表面に十分な量の液体を接触させることができる。
しかも、先端電極30の表面に灌注される液体は、先端電極30の基端部(頸部32)から先端部(先端膨出部31)に向かって、先端電極30の表面に沿うように流れる(先端電極30の周辺の血液は十分に攪拌・希釈される)。
従って、このアブレーションカテーテル100は、先端電極に灌注用の開口が形成されている従来公知のカテーテルと比較して、先端電極30の表面の冷却効果に優れるとともに、先端電極30の周辺の血液が十分に攪拌・希釈されることによって、更に優れた血栓形成抑制効果が奏される。
また、灌注部材20の外周に沿って等角度(45°)間隔に配置された8つの開口25と、これらの開口25の各々の形成位置から先端方向に延びる8本の案内溝26とが形成されているので、先端電極30の表面を周方向の全域(360°)にわたり灌注することができる。
また、カテーテルシャフト10の外周に沿って配置されているルーメン11の各々から灌注部材20に供給された液体は、貯留ジャケット空間24において合流して流れを整えた後、灌注部材20の外周に沿って等角度(45°)間隔で配置された8つの開口25の各々から排出(噴射)されるので、カテーテルシャフト10から灌注部材20に供給される液体の量に周方向のバラツキ(例えば、液体の流路とならないルーメン12が形成され、液体の流路であるルーメン11が全周にわたって形成されていないことに起因するバラツキ)があるにも関わらず、8つの開口25の間で噴射する液量にはバラツキがなくなり、先端電極30の表面を周方向の全域(360°)にわたり均等に灌注することができる。
また、灌注部材に、開口25の各々の形成位置から先端方向に延びる液体の案内溝26が形成されていることにより、開口25の各々から排出(噴射)される液体を、先端電極30に向けて確実に案内(誘導)することができる。
また、先端電極30の基端部(頸部32)表面に、案内溝26の各々に連続する液体の案内溝36が形成されていることにより、灌注部材20に形成された案内溝26を通って先端電極30の基端部に到達した液体を、先端電極30の先端部(先端膨出部31)に案内(誘導)することができ、これにより、先端電極30の表面全体に液体を供給することができる。
また、カテーテルシャフト10の先端部(凹部)に灌注部材20の基端部(内管部23および外管薄肉部21)が挿入されることによって、カテーテルシャフト10の先端側に灌注部材20が接続され、カテーテルシャフト10に形成された中央ルーメン13が第1の継手チューブ51を介して灌注部材20の内管部23の内部空間と連通し、カテーテルシャフト10に配置された8本のルーメン11の各々が第2の継手チューブ52を介して灌注部材20の貯留ジャケット空間24と連通し、カテーテルシャフト10に配置された2本のルーメン12の各々が第3の継手チューブ53を介して灌注部材20の挿通路27と連通し、第2の継手チューブ52が挿入された貯留ジャケット空間24にシール材80が充填されていることにより、カテーテルシャフト10の先端部と、灌注部材20の後端部との接続を確実なものとすることができる。
また、カテーテルシャフト10の中央ルーメン13と灌注部材20の内管部23の内部空間とが第1の継手チューブ51を介して連通していることにより、先端電極30のリード線などを、先端電極30の内側凹部35、灌注部材20の内管部23の内部空間およびカテーテルシャフト10の中央ルーメン13に延在させることができる。
また、カテーテルシャフト10のルーメン11の各々と灌注部材20の貯留ジャケット空間24とが第2の継手チューブ52を介して連通していることによって、ルーメン11の各々からの液体を貯留ジャケット空間24に確実に供給させることができる。
また、ルーメン11の各々の先端領域および貯留ジャケット空間24の基端領域に挿入することによって第2の継手チューブ52を介在させるとともに、貯留ジャケット空間24(隣り合う第2の継手チューブ52の間の空隙部分)にシール材80が充填されていることにより、カテーテルシャフト10の先端面(ルーメン11の開口面)と灌注部材20の基端面との当接箇所からの液体の漏れ(これに伴う中央ルーメン13への液体の浸入)を確実に防止することができる。
また、灌注部材20に形成された案内溝26および先端電極30に形成された案内溝36の各々は、灌注部材20の軸方向に対して外側に傾斜するように形成されているので、ある程度サイズの大きな先端電極(D1/D2の値が1.0以上である先端電極30)の表面に対しても十分に灌注することができる。
本実施形態のアブレーションカテーテルシステムを構成する高周波発生装置200は、アブレーションカテーテル100の先端電極30に、高周波エネルギー(高周波電流)を出力する装置である。
高周波発生装置200の操作パネルには、高周波エネルギーの出力条件、および出力の開始・停止の命令などを入力する入力部が設けられており、この入力部からの入力情報に基いて高周波エネルギーが出力される。ここに、高周波発生装置200の入力部には、最大出力の設定ダイヤル、最大出力時間の設定ボタン(タイマー)、目標温度の設定ボタン、出力開始ボタン、出力停止ボタンなどが含まれ、出力条件に係る入力情報は、制御装置700に送信され、当該制御装置700によって記憶される。
本実施形態のアブレーションカテーテルシステムを構成するポンプ装置300は、後述する液体注入用チューブ400を介して、カテーテルシャフト10のルーメン11に供給する灌注用液体を吐出するポンプ装置である。
ここに、「灌注用液体」としては、生理食塩水を挙げることができる。
ポンプ装置300は、所定流量の液体を吐出する本吐出モードと、スタンバイ流量の液体を吐出する予備吐出モードとの間で切り替えが可能である。
本吐出モードにおける「所定流量」は、アブレーションカテーテル100の先端電極30の表面を灌注するために必要な流量であり、後述する流量設定ダイヤルにより設定することができる。
本吐出モードにおける「スタンバイ流量」は、通常、ポンプ装置300における最小の流量であり、スタンバイ流量の液体によっては灌注効果を奏することはできない。
予備吐出モードにおいて吐出される液体の流量(スタンバイ流量)としては5cc/分以下であることが好ましく、好適な一例を示せば2cc/分とされる。
ポンプ装置300の操作パネルには、装置を起動するためのメインスイッチ、流量設定ダイヤル、フラッシュボタンなどが設けられている。
起動時におけるポンプ装置300は予備吐出モードであり、ポンプ装置300の吐出口からはスタンバイ流量(例えば2cc/分)の液体が吐出される。
「流量設定ダイヤル」は、本吐出モードにおいて吐出させる液体の流量(上記の所定流量)を設定するダイヤルであり、例えば、5〜50cc/分の範囲で流量を設定することができる。
本吐出モードにおいて吐出される液体の流量(上記の所定流量)としては17cc/分以上であることが好ましく、好適な一例を示せば30cc/分とされる。
「フラッシュボタン」は、灌注用液体の流路(液体注入用チューブ400の内孔およびカテーテルシャフト10のルーメン11)のフラッシングを行うためのボタンである。
オペレータがフラッシュボタンを押している間は、フラッシングに必要な流量(例えば40cc/分)の液体がポンプ装置300の吐出口から吐出される。フラッシュボタンを離すと、ポンプ装置300は予備吐出モードに戻って、その吐出口からはスタンバイ流量の液体が吐出される。
本実施形態のアブレーションカテーテルシステムにおいて、ポンプ装置300の予備吐出モードと本吐出モードとの切り替えは、ポンプ装置300を操作することにより行われるのではなく、高周波発生装置200の出力状況に応じて、後述する制御装置700から送信される信号によって行われる。
本実施形態のアブレーションカテーテルシステムを構成する液体注入用チューブ400は、ポンプ装置300から吐出される灌注用の液体がカテーテルシャフト10のルーメン11に供給されるよう、ポンプ装置300と電極カテーテル100(制御ハンドル70の基端部)とを連結するチューブである。すなわち、この液体注入用チューブ400の内孔と、カテーテルシャフト10のルーメン11とは互いに連通し、灌注用液体の流路を形成している。
アブレーションカテーテルシステムを構成する液圧計500は、液体注入用チューブ400の内孔(灌注用液体の流路)における圧力を測定する圧力トランスデューサである。 図1および図2に示すように、液圧計500は、三方活栓600を利用して液体注入用チューブ400に接続されている。
なお、この液圧計500によって測定された圧力の情報は、制御装置700に送信されるように構成されている。
本実施形態のアブレーションカテーテルシステムを構成する制御装置700は、高周波発生装置200による高周波エネルギーの出力状況に応じて、ポンプ装置300に信号(モードの切り替え信号)を送信する。
すなわち、制御装置700は、高周波発生装置200による高周波エネルギーの出力を開始するときには、予備吐出モードから本吐出モードに切り替えるようポンプ装置300に信号を送信し、高周波発生装置200による高周波エネルギーの出力を停止したときには、本吐出モードから予備吐出モードに切り替えるよう、ポンプ装置300に信号を送信する。
高周波発生装置200による高周波エネルギーの出力は、オペレータが高周波発生装置200の出力開始ボタンを押すことによって行われる。
なお、オペレータが出力開始ボタンを押すと、高周波発生装置200より制御装置700に、出力開始ボタンが押された旨の信号が送信される。この信号に基いて、上記のように制御装置700とポンプ装置300との信号の送受信が開始される。
図16は、高周波発生装置200による高周波エネルギーの出力と、ポンプ装置による吐出量(流量)の経時変化の一例を模式的に示している。
同図の(t1 )に示す時点において、メインスイッチがオンにされることによりポンプ装置300が起動し、スタンバイ流量(F1)の液体が吐出される。
同図の(t2 )に示す時点において、高周波発生装置200の出力開始ボタンが押されると、制御装置700は、予備吐出モードから本吐出モードに切り替えるようポンプ装置300に信号を送信し、この信号を受けたポンプ装置300は、直ちに本吐出モードに切り替えられ、その吐出口からは、灌注効果を奏することのできる所定流量(F2)の液体が吐出される。
ポンプ装置300が本吐出モードに切り替えられた時点(t2 )から一定時間が経過した(t3 )に示す時点において、制御装置700は、高周波エネルギーの出力を開始するよう高周波発生装置200に信号を送信し、この信号を受けた高周波発生装置200は、直ちに高周波エネルギーの出力を開始する。
このように、ポンプ装置300が、予備吐出モードから本吐出モードに切り替えられてから一定時間の経過後に出力が開始されること、換言すれば、本吐出モードに切り替えられてから一定時間は高周波エネルギーの出力が開始されないことにより、高周波エネルギーの出力開始時(t3 )において、所定流量(F2)で吐出された液体を先端電極30の表面に確実に到達させる(灌注する)ことができるので、出力開始時における先端電極30の昇温および血栓の形成を確実に抑制することができる。
ここに、本吐出モードに切り替えられてから高周波エネルギーの出力が開始されるまでの時間としては1〜5秒間であることが好ましく、好適な一例を示せば2秒間である。
高周波発生装置200による高周波エネルギーの出力は、最大出力時間の設定ボタンで設定した最大出力時間が経過したことにより正常に停止する。
また、高周波エネルギーの出力は、オペレータが高周波発生装置200の出力停止ボタンを押すことによっても正常に停止させることができる。
図16の(t4 )に示す時点において、高周波エネルギーの出力時間が設定された最大出力時間に達すると、制御装置700は、高周波エネルギーの出力を停止するよう高周波発生装置200に信号を送信し、この信号を受けた高周波発生装置200は、直ちに出力を停止する。
高周波発生装置200による高周波エネルギーの出力を停止した時点(t4 )から一定時間が経過した(t5 )に示す時点において、制御装置700は、本吐出モードから予備吐出モードに切り替えるようポンプ装置300に信号を送信し、この信号を受けたポンプ装置300は直ちに予備吐出モードに切り替えられ、その吐出口からはスタンバイ流量(F1)の液体が吐出される。
図16に示したように、高周波エネルギーの出力中におけるポンプ装置300は、常に本吐出モードとなり、所定流量(F2)の液体を吐出している。
従って、焼灼治療中の先端電極30の表面に対して、常に、所定流量の液体を灌注することができる。
また、高周波発生装置200による高周波エネルギーの出力が正常に停止してから一定時間の経過後に、ポンプ装置300が予備吐出モードに切り替えられること、換言すれば、出力を停止してから一定時間は、本吐出モードのポンプ装置300によって所定流量(F2)の液体が吐出されることにより、出力停止時における先端電極30の余熱を十分に除去することができ、灌注効果の更なる向上を図ることができる。
ここに、高周波発生装置200による高周波エネルギーの出力が停止してから、ポンプ装置が予備吐出モードに切り替えられるまでの時間としては1〜10秒間であることが好ましく、好適な一例を示せば3秒間である。
図16の(t6 )に示す時点において、メインスイッチがオフにされることによりポンプ装置300の動作(液体の吐出)が終了する。
アブレーションカテーテルシステムを構成する制御装置700は、焼灼治療中に灌注用液体の流路の圧力に異常が生じたときには高周波発生装置200およびポンプ装置300にそれぞれ緊急停止信号を送信する。
具体的には、高周波発生装置200による高周波エネルギーの出力中に、液圧計500によって測定された液体注入用チューブ400の内孔(灌注用液体の流路)の圧力が所定の値を超えたとき(圧力の異常が発生したとき)に、そのような圧力情報を液圧計500から受信した制御装置700は、高周波発生装置200による出力を停止させると同時にポンプ装置300による吐出を停止させるよう、高周波発生装置200とポンプ装置300とにそれぞれ緊急停止信号を送信する。
ここに、圧力の異常の基準となる「所定の値」としては、0.2〜0.4MPaであることが好ましく、好適な一例を示せば0.35MPaである。
高周波発生装置200による高周波エネルギーの出力中(焼灼治療中)において、灌注部材20の開口25が血栓によって塞がれたり、カテーテルシャフト10のルーメン11に閉塞を生じたりしたときには、カテーテルシャフト10のルーメン11、およびこれに連通する液体注入用チューブ400の内孔(灌注用液体の流路)の圧力が上昇するので、液圧計500により測定される圧力を制御装置700によって監視すること(所定の値を閾値として、圧力が閾値を超えているか否かを判定すること)ができる。これにより、ポンプ装置300から吐出される液体が灌注部材20の開口25から適正に噴射(灌注)されているか否かを制御装置700によって監視することができる。
そして、液圧計500によって測定された灌注用液体の流路の圧力が所定の値を超えたとき(圧力の異常が発生したとき)には、開口25から液体が適正に噴射されていないと判断することができので、そのような異常な圧力情報を受信した制御装置700は、高周波エネルギーの出力を停止するよう高周波発生装置200に緊急停止信号を送信すると同時に液体の吐出を停止するようポンプ装置300にも緊急停止信号を送信する。
これにより、緊急停止信号を受けた高周波発生装置200は、直ちに高周波エネルギーの出力を停止し、緊急停止信号を受けたポンプ装置300は直ちに液体の吐出を停止する。
図17は、高周波発生装置200による高周波エネルギーの出力と、ポンプ装置による吐出量(流量)の経時変化の他の例を模式的に示している。
同図の(t7 )に示す時点において、液圧計500によって測定された圧力が所定の値を超えた(圧力の異常が発生した)ときには、同図に示したように、高周波エネルギーの出力および液体の吐出が直ちに停止している。
液圧計500により測定された圧力の異常を感知した後、高周波発生装置200による高周波エネルギーの出力が直ちに停止されることにより、先端電極30の近傍の体内組織が高温となって損傷を受けることを確実に回避することができる。
また、圧力の異常を感知した後、ポンプ装置による液体の吐出が直ちに停止されることにより、カテーテルシャフトが破裂したり、行き場を失った液体が制御ハンドル70などから漏れ出したりすることを確実に回避することができる。
以下、本実施形態のアブレーションカテーテルシステムによる焼灼治療の一例について、図18に示すフローチャートに沿って説明する。
先ず、ポンプ装置300の「メインスイッチ」をオンにして、このポンプ装置300を起動する(STEP1)。
起動時におけるポンプ装置300は予備吐出モードとなっており、ポンプ装置300の吐出口からは、スタンバイ流量である2cc/分の液体が吐出される。
次いで、ポンプ装置300の「フラッシュボタン」を押すことによって、灌注用液体の流路である液体注入用チューブ400の内孔およびカテーテルシャフト10のルーメンのフラッシングを行う(STEP2およびSTEP3)。
灌注用液体の流路の気泡が除去されていることを確認した後、「フラッシュボタン」を離してフラッシングを完了する(STEP4)。
「フラッシュボタン」を離すことにより、ポンプ装置300は予備吐出モードに戻り、その吐出口からは、スタンバイ流量の液体が吐出される(STEP5)。
次いで、高周波発生装置200の入力部である最大出力の設定ダイヤル、最大出力時間の設定ボタン、目標温度の設定ボタンを操作して、最大出力(電力)、最大出力時間、目標温度(Ts)を設定して入力する(STEP6)。これらの入力情報は、制御装置700に記憶される。
また、ポンプ装置300の流量設定ダイヤルにおいて、本吐出モードで吐出させる液体の流量(所定流量)を設定する(STEP7)。なお、この流量は、STEP6で設定した最大出力(電力)に応じて自動的に設定することもできる。
次いで、アブレーションカテーテル100を心臓内に挿入して先端電極30を焼灼目的部位の近傍に留置する(STEP8)。
次いで、高周波発生装置200の出力開始ボタンを押す(STEP9)。これにより、高周波発生装置200より制御装置700に、出力開始ボタンが押された旨の信号が送信される。この信号に基いて、制御装置700は、予備吐出モードから本吐出モードに切り替えるようポンプ装置300に信号を送信し、この信号を受けたポンプ装置300は、直ちに本吐出モードに切り替えられ、その吐出口からは、STEP7で設定した所定流量の液体が吐出される(STEP10)。
ポンプ装置300が本吐出モードに切り替えられてから一定時間が経過後、制御装置700は、高周波エネルギーの出力を開始するよう高周波発生装置200に信号を送信し、この信号を受けた高周波発生装置200は、高周波エネルギーの出力(焼灼治療)を開始する(STEP11)。
なお、所定流量の液体により灌注される先端電極30の内部温度は、通常1〜5℃程度低下するので、この温度低下を確認してから、高周波エネルギーの出力を開始するように制御してもよい。
高周波発生装置200による高周波エネルギーの出力中に、先端電極30の内部に配置された温度センサによって先端電極30の内部温度(T)が測定され(STEP12)、STEP12で測定された内部温度(T)と、STEP6で設定した目標温度(Ts)とが比較され(STEP13)、内部温度(T)が目標温度(Ts)±1℃である場合には、現状の出力電力を維持して出力を継続し、内部温度(T)が目標温度(Ts)−1℃より低い場合には、出力電力を上げて出力を継続し(STEP14)、内部温度(T)が目標温度(Ts)+1℃より高い場合には、出力電力を下げて出力を継続するか、出力を一時的に停止する(STEP15)。
次いで、液圧計500により灌注用液体の流路の圧力が測定され、この圧力が所定の値を超えていない場合には、開口25から液体が適正に噴射されているものと判断してSTEP17に進む。他方、この圧力が所定の値を超えている(圧力が異常である)場合には、開口25から液体が適正に噴射されていないものとしてSTEP22に進む(STEP16)。
液圧計500により測定された圧力が所定の値を超えていない場合(異常がない場合)には、STEP6で設定した最大出力時間を経過しているか否かを確認し、経過していなければSTEP12に戻り、経過していれば、STEP18に進む(STEP17)。
液圧計500により測定された圧力が所定の値を超えている場合(異常がある場合)には、そのような異常な圧力情報を受信した制御装置700は、高周波発生装置200に緊急停止信号を送信して、高周波発生装置200による高周波エネルギーの出力を直ちに停止させるとともに、ポンプ装置300に緊急停止信号を送信して、ポンプ装置300による液体の吐出を直ちに停止させる(STEP22)。
なお、このとき、警報をならしてオペレータに注意を喚起することが好ましい。
最大出力時間の経過により、高周波発生装置200による高周波エネルギーの出力が停止する(STEP18)。
高周波発生装置200による高周波エネルギーの出力を停止してから一定時間経過後、制御装置700からの信号(モードの切り替え信号)に基いて、ポンプ装置300が予備吐出モードに切り替えられ、その吐出口からはスタンバイ流量の液体が吐出される(STEP19)。
次いで、焼灼治療を継続するか否かについてオペレータが判断する(STEP20)。焼灼治療の継続が必要であると判断した場合にはSTEP6に戻り、継続を必要としない(治療が完了した)と判断した場合にはSTEP21に進む(STEP20)。
治療が完了したとの判断したオペレータは、ポンプ装置300の「メインスイッチ」をオフにして、このポンプ装置300を動作を終了する(STEP21)。
この実施形態のアブレーションカテーテルシステムによれば、高周波エネルギーの出力中におけるポンプ装置300は常に本吐出モードであるので、焼灼治療中の先端電極30の表面に対して所定流量の液体を確実に灌注することができる。
また、液圧計500によって測定された圧力を監視することにより、ポンプ装置300から吐出される液体が灌注用の開口25から液体が適正に噴射(灌注)されているか否かを監視することができる。
また、ポンプ装置300から吐出される液体が灌注用の開口25から液体が適正に噴射されなくなり、液圧計500によって測定された圧力が所定の値を超えた(圧力の異常が発生した)ときには、高周波発生装置200による高周波エネルギーの出力およびポンプ装置300による液体の吐出が直ちに(同時に)停止するので、先端電極30の近傍の体内組織が高温となって損傷を受けたり、カテーテルシャフト10が破裂したり、制御ハンドル70などから液体が漏れ出したりすることを確実に回避することができる。
また、ポンプ装置300が予備吐出モードから本吐出モードに切り替えられてから一定時間経過後に、制御装置700からの信号を受けた高周波エネルギー200が高周波エネルギーの出力を開始するので、高周波エネルギーの出力開始時において、本吐出モードで吐出された液体を先端電極の表面に到達させることができ、出力開始時における先端電極30の昇温および血栓の形成を更に抑制することができる。
また、高周波発生装置200による高周波エネルギーの出力が正常に停止してから一定時間経過後に、制御装置700からの信号を受けたポンプ装置300のモードが、本吐出モードから予備吐出モードに切り替えられるので、出力停止直後の先端電極30の余熱を十分に除去することができ、灌注効果の更なる向上を図ることができる。
また、液体注入用チューブ400のキンクなどにより、その内孔における液体の流通が阻害されることになったときにも、高周波発生装置200による高周波エネルギーの出力およびポンプ装置300による液体の吐出を直ちに停止することができる。
以上、本発明の一実施形態について説明したが、本発明の電極カテーテルシステムは、これに限定されるものではなく、種々の変更が可能である。
例えば、高周波発生装置200と制御装置700とが一つの筐体に収容されてアブレーション装置を構成してもよい。
また、アブレーションカテーテルは、灌注部材を備えることなく、カテーテルシャフトの先端側に接続された先端電極の表面を、カテーテルシャフトの先端縮径部に配置された複数の灌注用開口から噴射するタイプのもの(特開2013−39219号公報参照)であってもよく、カテーテルシャフトを通って先端電極の内部に供給された液体を当該先端電極の表面に形成された複数の開口から噴射するタイプのものであってもよい。
また、制御装置700が圧力に異常があると判定したときに、緊急停止信号を、高周波発生装置200またはポンプ装置300の一方の装置に送信し、次いで、緊急停止信号を受信した一方の装置が他方の装置にその旨の信号を送信するようにしてもよい。
100 アブレーションカテーテル
10 カテーテルシャフト
11 ルーメン(液体の流路)
12 ルーメン(引張ワイヤの挿通路)
13 中央ルーメン(リード線の挿通路)
15 剛性体(針金)
20 灌注部材
21 外管部(外管薄肉部)
22 外管部(外管厚肉部)
23 内管部
24 貯留ジャケット空間
25 開口
26 液体の案内溝
27 引張ワイヤの挿通路
29 抜け止め用凸部
30 先端電極
31 先端膨出部
32 頸部
33 円筒状部分
35 内側凹部
36 液体の案内溝
40 リング状電極
51 第1の継手チューブ
52 第2の継手チューブ
53 第3の継手チューブ
61 引張ワイヤ
62 引張ワイヤ
70 制御ハンドル
75 回転板
78 液体の注入管
80 シール材
200 高周波発生装置
300 ポンプ装置
400 液体注入用チューブ
500 液圧計
600 三方活栓
700 制御装置

Claims (4)

  1. 灌注用液体の流路となる少なくとも1つのルーメンを有するカテーテルシャフトと、このカテーテルシャフトの先端側に位置し、その表面が接触する体内組織に高周波エネルギーを付与して焼灼するための先端電極と、この先端電極の表面を灌注するための灌注機構とを備えた電極カテーテルと;
    前記電極カテーテルの先端電極に高周波エネルギーを出力する高周波発生装置と;
    所定流量の液体を吐出する本吐出モードと、スタンバイ流量の液体を吐出する予備吐出モードとの間で切り替えが可能なポンプ装置と;
    前記ポンプ装置から吐出される灌注用液体が前記カテーテルシャフトのルーメンに供給されるよう、前記ポンプ装置と前記電極カテーテルとを連結する液体注入用チューブと; 前記液体注入用チューブに接続されている液圧計と;
    前記高周波発生装置による高周波エネルギーの出力を開始するときには、予備吐出モードから本吐出モードに切り替えるよう前記ポンプ装置に信号を送信し、
    前記高周波発生装置による高周波エネルギーの出力を停止したときには、本吐出モードから予備吐出モードに切り替えるよう前記ポンプ装置に信号を送信し、
    前記高周波発生装置による高周波エネルギーの出力中に、前記液圧計により測定された圧力が所定の値を超えたときには、前記高周波発生装置による出力を停止させると同時に前記ポンプ装置による吐出を停止させるよう、前記高周波発生装置と前記ポンプ装置とに緊急停止信号を送信する制御装置とを備え
    前記電極カテーテルは、前記カテーテルシャフトと、このカテーテルシャフトの先端側に接続された絶縁性灌注部材と、この絶縁性灌注部材の先端側に接続された前記先端電極とを備えてなり、
    前記絶縁性灌注部材には、前記カテーテルシャフトから供給される液体の貯留空間と、当該貯留空間内の液体を排出するために、前記絶縁性灌注部材の外周に沿って等角度間隔に配置された複数の開口と、前記複数の開口の各々から先端方向に延びる液体の案内溝とが形成され、
    前記先端電極の基端部には、前記絶縁性灌注部材の案内溝の各々に連続する液体の案内溝が形成されていることを特徴とする電極カテーテルシステム。
  2. 前記制御装置は、前記高周波発生装置による高周波エネルギーの出力が正常に停止してから一定時間経過後に本吐出モードから予備吐出モードに切り替えるよう前記ポンプ装置に信号を送信することを特徴とする請求項1に記載の電極カテーテルシステム。
  3. 前記制御装置は、前記ポンプ装置が予備吐出モードから本吐出モードに切り替えられてから一定時間経過後に高周波エネルギーの出力を開始するよう前記高周波発生装置に信号を送信することを特徴とする請求項2に記載の電極カテーテルシステム。
  4. 前記制御装置は、前記ポンプ装置が予備吐出モードから本吐出モードに切り替えられたことによる前記先端電極の内部温度の低下を確認した後に、高周波エネルギーの出力を開始するよう前記高周波発生装置に信号を送信することを特徴とする請求項2に記載の電極カテーテルシステム。
JP2013119722A 2013-06-06 2013-06-06 電極カテーテルシステム Active JP6066318B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013119722A JP6066318B2 (ja) 2013-06-06 2013-06-06 電極カテーテルシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119722A JP6066318B2 (ja) 2013-06-06 2013-06-06 電極カテーテルシステム

Publications (2)

Publication Number Publication Date
JP2014236788A JP2014236788A (ja) 2014-12-18
JP6066318B2 true JP6066318B2 (ja) 2017-01-25

Family

ID=52134549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119722A Active JP6066318B2 (ja) 2013-06-06 2013-06-06 電極カテーテルシステム

Country Status (1)

Country Link
JP (1) JP6066318B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017154172A1 (ja) * 2016-03-10 2019-01-10 オリンパス株式会社 軟性処置具および医療用チューブ
US10842950B2 (en) * 2017-08-15 2020-11-24 Biosense Webster (Israel) Ltd. Detection of bubbles in irrigation fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048070B2 (en) * 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
JP2004141273A (ja) * 2002-10-22 2004-05-20 Aloka Co Ltd 電気手術装置
JP2012176119A (ja) * 2011-02-25 2012-09-13 Japan Lifeline Co Ltd 電極カテーテル
US9662169B2 (en) * 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
EP2760532B1 (en) * 2011-09-30 2019-08-28 Covidien LP Energy delivery device

Also Published As

Publication number Publication date
JP2014236788A (ja) 2014-12-18

Similar Documents

Publication Publication Date Title
JP7169417B2 (ja) 流体管理システム
WO2012086313A1 (ja) 電極カテーテル
US11819452B2 (en) Balloon catheter
US8348937B2 (en) Irrigated ablation catheter
JP7335366B2 (ja) 密閉電極チップ・アセンブリを含む力検出カテーテル、およびその組み立て方法
JP5876194B1 (ja) 高周波処置具
CN102266245A (zh) 灌注式射频消融导管
JP6066318B2 (ja) 電極カテーテルシステム
JP2012176119A (ja) 電極カテーテル
KR101760166B1 (ko) 전극 카테터
JP5881229B2 (ja) 電極カテーテル
JP5888783B2 (ja) 電極カテーテル
US11064929B2 (en) Flexible electrode tip with halo irrigation
WO2022201340A1 (ja) 電極カテーテル
CN115530922A (zh) 带有液体循环的多腔道型冲击波球囊导管
JP5867917B2 (ja) 電極カテーテル
JP5995367B2 (ja) 電極カテーテル
JP5283135B2 (ja) 電極カテーテル
CN210277328U (zh) 冷冻消融导管
CN219306839U (zh) 带有液体循环的多腔道型冲击波球囊导管
TW202417072A (zh) 橈通路導管

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161215

R150 Certificate of patent or registration of utility model

Ref document number: 6066318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250