JP6051786B2 - Medical three-layer tube and three-layer tube extrusion method - Google Patents

Medical three-layer tube and three-layer tube extrusion method Download PDF

Info

Publication number
JP6051786B2
JP6051786B2 JP2012242659A JP2012242659A JP6051786B2 JP 6051786 B2 JP6051786 B2 JP 6051786B2 JP 2012242659 A JP2012242659 A JP 2012242659A JP 2012242659 A JP2012242659 A JP 2012242659A JP 6051786 B2 JP6051786 B2 JP 6051786B2
Authority
JP
Japan
Prior art keywords
layer
tube
medical
intermediate layer
polybutadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242659A
Other languages
Japanese (ja)
Other versions
JP2013116320A (en
Inventor
石田 真也
真也 石田
益生 勝部
益生 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP2012242659A priority Critical patent/JP6051786B2/en
Publication of JP2013116320A publication Critical patent/JP2013116320A/en
Application granted granted Critical
Publication of JP6051786B2 publication Critical patent/JP6051786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、医療用三層チューブおよび三層チューブの押出成形方法に関し、特に、輸液で使用する医療用三層チューブに関する。   The present invention relates to a medical three-layer tube and a method for extruding the three-layer tube, and more particularly to a medical three-layer tube used for infusion.

輸液セットのように、輸液製剤が入った薬液バッグと先端の針との間や、接続具間にチューブを介在させた医療用品が知られている。このような医療用チューブは、輸液セット用チューブのみならず、種々の太さや長さのものがあり、液体を導通するものとして広く使用されている。また、様々な医療シーンで用いられるため、医療用チューブには、柔軟であって破断しにくい特性が求められる。   As in an infusion set, there is known a medical article in which a tube is interposed between a medical solution bag containing an infusion preparation and a needle at the tip or between connecting tools. Such medical tubes include not only infusion set tubes but also those of various thicknesses and lengths, and are widely used to conduct liquids. Moreover, since it is used in various medical scenes, the medical tube is required to have a characteristic that is flexible and hardly breaks.

このような観点から、従来から医療用チューブにはPVC(ポリ塩化ビニル)が広く用いられている。   From this point of view, PVC (polyvinyl chloride) has been widely used for medical tubes.

また、医療用途であることから一回使用が原則である。このため、結果として、大量の廃棄物が排出されるという実情がある。   In addition, since it is used for medical purposes, it should be used once. Therefore, as a result, there is a situation that a large amount of waste is discharged.

一方で、PVCを初めとする塩素系プラスチックはダイオキシン類の主要発生源であることから、近年ではその使用を低減することが求められている。   On the other hand, since chlorinated plastics such as PVC are the main sources of dioxins, in recent years it has been required to reduce their use.

また、PVCは、薬剤を吸着しやすく微量薬剤の投与には適さず、かつ、内在する可塑剤が溶出しやすいため人体へ影響も懸念される。従って、近年ではPVC製医療用チューブの使用を極力避けたいという潜在的な要請が存在する。   Further, PVC easily adsorbs a drug and is not suitable for administration of a trace amount of drug, and an internal plasticizer is likely to be eluted. Therefore, in recent years there is a potential demand to avoid the use of PVC medical tubes as much as possible.

そこで、PVC代替としてPBD(ポリブタジエン)製の医療用チューブが使用される場合がある。PBDは、薬剤吸着性が小さく可塑剤の溶出もないため、医療用途としては好適である。しかしながら、PBDはPVCに比して破断強度が数割小さくなる傾向があり、弾性率も低い、という問題点がある。   Therefore, a medical tube made of PBD (polybutadiene) may be used as an alternative to PVC. PBD is suitable for medical use because it has a low drug adsorptivity and does not elute a plasticizer. However, PBD has a problem that its breaking strength tends to be several tens of percent smaller than PVC and its elastic modulus is low.

医療現場では輸液バッグを吊すスタンドの移動の際や人間の移動の際に、突っ張ったり引っかけたりすることもあり、PVCと同等以上でなくとも、安全率を考えて、破断強度が極力高く、弾性の高い医療用チューブが望まれる。   In the medical field, when the stand that suspends the infusion bag is moved or when a person moves, it may be stretched or hooked. Even if it is not equal to or higher than PVC, considering the safety factor, the breaking strength is as high as possible and elastic. High medical tubes are desired.

特開2005−103192号JP-A-2005-103192 特許第3192217号Japanese Patent No. 3192217 特許第4419448号Japanese Patent No. 4419448

本発明は上記に鑑みてなされたものであって、実質的に薬剤を吸着せず可塑剤の溶出もない、かつ、破断強度の大きく弾性に富む汎用医療用チューブを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a general-purpose medical tube that does not substantially adsorb a drug, does not elute a plasticizer, and has a high breaking strength and rich elasticity. .

請求項1に記載の医療用三層チューブは、内層がポリブタジエン、外層がポリブタジエンであり、内層と外層との間に、ポリブタジエンと相溶する素材およびポリブタジエンと相溶しない耐破断性素材の混合樹脂であり、内層および外層との局所的な溶着箇所が全域にわたったメカニカルロックが形成された中間層を設け、内層および中間層ならびに外層および中間層が合着した耐破断性素材として成型したことを特徴とする。 Medical three-layer tube of claim 1, the inner layer is Ri polybutadiene, the outer layer is polybutadiene der, between the inner and outer layers, mixing of the rupture-resistance material incompatible with the material and polybutadiene which are compatible with the polybutadiene It is a resin, and an intermediate layer with a mechanical lock formed over the entire area of the local weld with the inner layer and outer layer is provided, and molded as a rupture-resistant material with the inner layer, intermediate layer, outer layer, and intermediate layer bonded together It is characterized by that.

すなわち、請求項1にかかる発明は、三層構造とし、実質的に薬剤を吸着せず可塑剤も溶出しない、かつ、破断強度の大きく弾性に富む、汎用できる医療用チューブの提供が可能となる。医療用チューブは押出成形にて製造されるところ、三層チューブを成型する場合には各層が剥離せず強固に結合している必要がある。本発明では、三層構造とするため、内層と外層の要求物性に由来する最適な素材選択の結果、両者が熱溶着等しない組合せとなっても、中間層を設けることにより両者を合着可能となる That is, the invention according to claim 1 can provide a general-purpose medical tube that has a three-layer structure, substantially does not adsorb a drug and does not elute a plasticizer, and has a high breaking strength and high elasticity. . When a medical tube is manufactured by extrusion molding, when a three-layer tube is molded, each layer needs to be firmly bonded without peeling. In the present invention, since it has a three-layer structure, it is possible to join both layers by providing an intermediate layer even if the combination is such that they are not thermally welded as a result of optimal material selection derived from the required physical properties of the inner layer and outer layer It becomes .

間層は、後述するようにPBDとTPUのように相溶しないものであっても、相互に分散させてこれを押出成形することにより、最終的に中間層で素材同士によるメカニカルロックが形成され、内層や外層の素材との局所的な溶着箇所が全域にわたり、全体として合着した強固な押出成型体を得ることができる。三層とは、必ずしも明瞭な層界面が存在しない態様も含むものとする。 Middle tier, even those incompatible as PBD and TPU as described later, by extruding it was dispersed in each other, and finally mechanical lock according to the material between the intermediate layer is formed In addition, it is possible to obtain a strong extrusion-molded body in which the local welded portions with the inner layer and the outer layer material cover the entire region and are bonded together as a whole . The three layers include an aspect in which a clear layer interface does not necessarily exist.

チューブの太さは特に限定されないが、例えば、内径が0.5mm〜5.0mm、外径が2.0mm〜7.0mmとすることができる。また、内層の肉厚と外層の肉厚との比は、例えば、2:8〜8:2の範囲とする例を挙げることができるが、押出成形性や均質性の観点からは6:4〜4:6の比とすることができる。また、中間層は、全体の10%〜50%の厚みとすることができる。   Although the thickness of a tube is not specifically limited, For example, an internal diameter can be 0.5 mm-5.0 mm, and an outer diameter can be 2.0 mm-7.0 mm. The ratio of the inner layer thickness to the outer layer thickness can be, for example, in the range of 2: 8 to 8: 2, but 6: 4 from the viewpoint of extrusion moldability and homogeneity. The ratio can be ˜4: 6. Further, the intermediate layer can have a thickness of 10% to 50% of the whole.

請求項2に記載の医療用三層チューブは、請求項1に記載の医療用三層チューブにおいて、間層が、ポリブタジエンと熱可塑性ポリウレタンの混合樹脂であり、ポリブタジエン:熱可塑性ポリウレタン=25wt%:75wt%〜60wt%:40wt%の配合比、肉厚を、全体の肉厚の15%〜50%としたことを特徴とする Medical three-layer tube of claim 2 is the medical three-layered tube of claim 1, the middle-layer is a mixed resin of a polybutadiene and a thermoplastic polyurethane, polybutadiene: Thermoplastic polyurethane = 25 wt% : 75 wt% to 60 wt%: 40 wt%, blending ratio, thickness is 15% to 50% of the total thickness

すなわち、請求項2にかかる発明は、医療用として使用実績のある素材を組み合わせつつ耐破断性をPVCと同等以上に高めることが可能で、易接着性ないし易接合性も有する医療用チューブを提供可能になる。   That is, the invention according to claim 2 provides a medical tube that is capable of improving fracture resistance to the same level or higher than PVC while combining materials that have been used for medical purposes, and has easy adhesion or easy joining. It becomes possible.

また、請求項2にかかる発明は、単層のPBDチューブはもとより従来品であるPVCチューブと同等以上の高耐破断性を有する医療用チューブの提供が可能となる。好ましくは、ポリブタジエン:熱可塑性ポリウレタン=30wt%:70wt%〜50wt%:50wt%である。 The invention according to claim 2 can provide a medical tube having a high fracture resistance equal to or higher than that of a conventional PVC tube as well as a single-layer PBD tube. Preferably, polybutadiene: thermoplastic polyurethane = 30 wt%: 70 wt% to 50 wt%: 50 wt%.

請求項3に記載の医療用三層チューブの押出成形方法は、医療用三層チューブを押出成形する方法であって、内層が薬剤非吸着性と可塑剤非溶出性とを備える素材、外層がコネクタその他の医療用接続部品に対する易接着性素材ないし易接合性素材であり、中間層に、内層素材と外層素材との何れにも相溶する素材、および、内層素材と外層素材との少なくとも一方には相溶しない素材であって耐破断性を発現する素材を用い、当該二素材を加熱により混合して溶融し、押出成形により、中間層領域で当該二素材同士によるメカニカルロックを形成させつつ、内層素材および外層素材との局所的な溶着箇所を全域にわたらせ、全体として内層および中間層ならびに外層および中間層が合着した三層チューブを得ることを特徴とする。 The method for extruding a medical three-layer tube according to claim 3 is a method for extruding a medical three-layer tube, wherein the inner layer has a material non-adsorbent and a plasticizer non-eluting property, and the outer layer has Easy-to-adhesive material or easily-bondable material for connectors and other medical connecting parts, intermediate layer, material compatible with both inner layer material and outer layer material, and at least one of inner layer material and outer layer material Using materials that are incompatible with each other and exhibiting fracture resistance , the two materials are mixed by heating and melted, and a mechanical lock is formed between the two materials in the intermediate layer region by extrusion. Further, the present invention is characterized in that a local welded portion with the inner layer material and the outer layer material is spread over the entire region, and a three-layer tube in which the inner layer and the intermediate layer and the outer layer and the intermediate layer are bonded together is obtained as a whole.

すなわち、請求項にかかる発明は、内外層それぞれに要求特性において好適な素材を用いつつ、耐破断性その他の要求特性を持たせる結果内外層とは相溶しない素材を中間層の構成素材として用いる場合であっても、医療用に好適なチューブを得ることができる。また、製造工程の複雑化を招来することなく、既存の設備を用いた製造が可能である。 In other words, the invention according to claim 3 uses, as a constituent material of the intermediate layer, a material that is not compatible with the inner and outer layers as a result of imparting fracture resistance and other required characteristics while using a material suitable for the required characteristics for each of the inner and outer layers. Even when it is used, a tube suitable for medical use can be obtained. Moreover, it is possible to manufacture using existing equipment without incurring complicated manufacturing processes.

請求項に記載の医療用三層チューブの押出成形方法は、請求項に記載の医療用三層チューブの押出成形方法において、内層素材および外層素材をポリブタジエン、中間層をポリブタジエンと熱可塑性ポリウレタンとの混合樹脂とし、中間層を、ポリブタジエン:熱可塑性ポリウレタン=25wt%:75wt%〜60wt%:40wt%の配合比、肉厚を、全体の肉厚の15%〜50%としたことを特徴とする。 The medical three-layer tube extrusion method according to claim 4 is the medical three-layer tube extrusion method according to claim 3 , wherein the inner layer material and the outer layer material are polybutadiene, and the intermediate layer is polybutadiene and a thermoplastic polyurethane. And the intermediate layer has a polybutadiene: thermoplastic polyurethane = 25 wt%: 75 wt% to 60 wt%: 40 wt% blending ratio and wall thickness of 15% to 50% of the total wall thickness And

すなわち、請求項にかかる発明は、単層のPBDチューブはもとより従来品であるPVCチューブと同等以上の高耐破断性を有する医療用チューブの提供が可能となる。好ましくは、ポリブタジエン:熱可塑性ポリウレタン=30wt%:70wt%〜50wt%:50wt%である。 That is, the invention according to claim 4 can provide a medical tube having a high fracture resistance equal to or higher than that of a conventional PVC tube as well as a single-layer PBD tube. Preferably, polybutadiene: thermoplastic polyurethane = 30 wt%: 70 wt% to 50 wt%: 50 wt%.

なお、請求項3を一般化し、三層チューブの押出成形方法であって、中間層に、内層素材とは相溶し外層素材とは相溶しない素材、および、外層素材とは相溶し内層素材とは相溶しない素材を用い、当該二素材を加熱により混合して溶融し、押出成形により、中間層で当該二素材同士によるメカニカルロックを形成させつつ、中間層界面領域で内外層素材と中間層素材との局所的な溶着箇所を全域にわたらせ、全体として内層および中間層ならびに外層および中間層が合着した三層チューブを得てもよい In addition, it is a method for extrusion molding of a three-layer tube , generalizing claim 3 , wherein the intermediate layer is compatible with the inner layer material but not with the outer layer material, and is compatible with the outer layer material and the inner layer. Using a material that is incompatible with the material, the two materials are mixed and melted by heating, and an intermediate layer is formed with the inner and outer layer materials in the intermediate layer interface region by forming a mechanical lock between the two materials in the intermediate layer by extrusion molding. A three-layer tube in which the inner layer and the intermediate layer, and the outer layer and the intermediate layer are bonded as a whole may be obtained by spreading the local welded portion with the intermediate layer material over the entire area.

すなわち、この技術では、中間層領域でメカニカルロックを形成し、種々の特性を持たせた三層チューブを得ることができる。また、製造工程の複雑化を招来することなく、既存の設備を用いた製造が可能である。なお、中間層の二素材はそれぞれ内層素材および外層素材としても良く、この場合は境界面が複雑に入り組んだ二層チューブとなる。すなわち当該技術では、三層チューブとは押出(射出)時に三層である二素材チューブも含まれるものとする。 That is, with this technique, a three-layer tube having various characteristics can be obtained by forming a mechanical lock in the intermediate layer region. Moreover, it is possible to manufacture using existing equipment without incurring complicated manufacturing processes. Note that the two materials of the intermediate layer may be an inner layer material and an outer layer material, respectively, and in this case, a two-layer tube in which the boundary surface is complicated is formed. That is, in this technology , a three-layer tube includes a two-material tube that is a three-layer at the time of extrusion (injection).

本発明によれば、微量薬剤の導通にも使用でき、強度的な信頼性も高い汎用医療用チューブを提供可能となる。
また、内外層それぞれに要求特性において好適な素材を用いつつ、耐破断性その他の要求特性を持たせる結果内層または外層の少なくとも一方とは相溶しない素材を中間層の構成素材として用いる場合であっても、医療用に好適なチューブを得ることができる
According to the present invention, it is possible to provide a general-purpose medical tube that can be used for conducting a trace amount of drug and has high strength and reliability.
In addition, a material suitable for the required characteristics for each of the inner and outer layers is used, and a material that is incompatible with at least one of the inner layer and the outer layer is used as a constituent material of the intermediate layer as a result of having fracture resistance and other required characteristics. However, a tube suitable for medical use can be obtained .

本発明の医療用三層チューブを用いた輸液セットの構成例を示した説明図である。It is explanatory drawing which showed the structural example of the infusion set using the medical three-layer tube of this invention. 本発明の医療用三層チューブの断面概念図を示した説明図である。It is explanatory drawing which showed the cross-sectional conceptual diagram of the medical three-layer tube of this invention. 中間層の配合を異ならせた本発明の医療用三層チューブと従来チューブについて破断強度を比較した図である。It is the figure which compared the breaking strength about the medical three-layer tube of this invention which varied the composition of the intermediate | middle layer, and the conventional tube. 本発明の医療用三層チューブと従来チューブについて引張強度と伸びの関係を測定した結果を表した図である。It is a figure showing the result of having measured the relationship between tensile strength and elongation about the medical three-layer tube of this invention, and the conventional tube. 本発明の三層チューブの内側に接続部材を挿入接着し、引張強度を測定した結果を示した図である。It is the figure which showed the result of having inserted and bonded the connection member inside the three-layer tube of this invention, and measuring the tensile strength. 本発明の三層チューブの中間層の肉厚比を異ならせて引張強度を測定した結果を示した図である。It is the figure which showed the result of having measured the tensile strength by varying the thickness ratio of the intermediate | middle layer of the three-layer tube of this invention. 本発明の三層チューブの太さ等を異ならせて、従来品と引張強度を比較した結果を示した図である。It is the figure which showed the result of having varied the thickness etc. of the three-layer tube of this invention, and comparing the tensile strength with the conventional product.

以下、本発明の実施の形態を図面を参照しながら詳細に説明する。図1は、本発明の医療用三層チューブを用いた輸液セットの構成例を示した説明図である。図2は、本発明の医療用三層チューブの断面概念図を示した説明図である。なお、説明の便宜上、各構成部の縮尺は適宜変更してある。ここでは中間層にPBD+TPUの混合樹脂を用いた例について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing a configuration example of an infusion set using the medical three-layer tube of the present invention. FIG. 2 is an explanatory view showing a conceptual cross-sectional view of the medical three-layer tube of the present invention. For convenience of explanation, the scale of each component is appropriately changed. Here, an example in which a mixed resin of PBD + TPU is used for the intermediate layer will be described.

輸液セット100は、図1に示したように、点滴液が貯留された輸液バッグ101と、チューブ102と、患者Cの静脈(腕)に穿刺する静脈針103とを含んだ構成である。また、チューブ102途中には、点滴液の流量を目視にて確認可能にする点滴筒104と、点滴液の流量調整をおこなうためのクランプ105とが存在している。   As shown in FIG. 1, the infusion set 100 includes an infusion bag 101 in which a drip solution is stored, a tube 102, and a venous needle 103 that punctures a vein (arm) of a patient C. Further, in the middle of the tube 102, there are an infusion tube 104 that makes it possible to visually check the flow rate of the drip solution, and a clamp 105 that adjusts the flow rate of the drip solution.

輸液バッグ101は、スタンドSに吊され、重力により点滴液がチューブ102を通って、患者Cの体内に移送される。このチューブ102は、場合により患者Cの横たわるベッドのある床面に達するなど比較的長く、時として強く引っ張られることがある。   The infusion bag 101 is suspended from the stand S, and the drip solution is transferred to the body of the patient C through the tube 102 by gravity. The tube 102 may be relatively long and sometimes pulled strongly, such as reaching the floor with the bed on which the patient C lies.

そこで、チューブ102は破断強度を確保するために、図2に断面を示したように三層構造としている。内層121はPBD、中間層122はPBDとTPUの混合樹脂、外層123はPBDにより構成されている。これらは、管構造であって互いに密着しているが、接着剤により貼着するのでなく、押出成形により互いを合着させて製造している。   Therefore, the tube 102 has a three-layer structure as shown in a cross section in FIG. 2 in order to ensure the breaking strength. The inner layer 121 is made of PBD, the intermediate layer 122 is made of a mixed resin of PBD and TPU, and the outer layer 123 is made of PBD. Although these are tube structures and are in close contact with each other, they are manufactured not by adhering with an adhesive but by adhering each other by extrusion.

外層123にPBDを用いたのは、輸液バッグ101や静脈針103や点滴筒104などの他のコネクタないし部品との接着性や接合性を確保するためである。なお、組立性や操作性を向上させるため、滑剤を添加して成型しても良い。   The reason why the PBD is used for the outer layer 123 is to ensure adhesiveness and bondability with other connectors or components such as the infusion bag 101, the venous needle 103, and the drip tube 104. In addition, in order to improve assembly property and operativity, you may add and shape | mold a lubricant.

内層121にもPBDを用いたのは、薬品を吸着し難く、微量薬剤を移送するときに好適であり、かつ、可塑剤の溶出もないためである。またPBDであればこれまでの使用実績もあるためである。この他、他の部品をチューブ102に内挿する場合もあり、外層に用いるのと同様に、PBDを用いることにより接着性や接合性も確保される。なお、微量薬剤を用いるときだけPBD製の単層チューブを用いることもできるが、医療用チューブは、通常、透明であって、PBD製であるかPVC製であるか現場では確認しにくく、また場合により確認する時間がない。よって、どのような薬剤を導通するときでもチューブの素材を意識せず使用できるようにチューブ102は三層チューブとしており、汎用性を確保している。なお、内層のPBDには、気泡除去性を高めるために、適宜界面活性剤を添加し親水性を向上させて成型してもよい。   The reason why PBD is used for the inner layer 121 is that it is difficult to adsorb chemicals, is suitable for transferring a trace amount of chemicals, and does not elute a plasticizer. Moreover, it is because there is a past use result in the case of PBD. In addition, other parts may be inserted into the tube 102, and adhesiveness and bondability can be ensured by using PBD in the same manner as the outer layer. Although a single-layer tube made of PBD can be used only when a small amount of drug is used, the medical tube is usually transparent, and it is difficult to confirm whether it is made of PBD or PVC, and Sometimes there is no time to check. Therefore, the tube 102 is a three-layer tube so that it can be used without being conscious of the material of the tube when any medicine is conducted, ensuring versatility. In addition, in order to improve bubble removal property, a PBD may be added to the inner layer PBD so as to improve the hydrophilicity and be molded.

中間層122は、PBDとTPUの混合樹脂層としている。これらは相溶しないが、押出成型機にそれぞれのペレットを投入し、溶融した混合樹脂として押し出される。内層121と外層123はともにPBDであるため、これが中間層素材のPBD部分と相溶して一体となり、かつ、中間層領域でTPUが小塊状、繊維状、網目状に複雑に散在し、強度発現を担う。これにより、両素材の特性を生かした医療用に適したチューブを提供可能となる。   The intermediate layer 122 is a mixed resin layer of PBD and TPU. Although these are not compatible, each pellet is put into an extruder and extruded as a molten mixed resin. Since the inner layer 121 and the outer layer 123 are both PBDs, they are integrated with the PBD part of the intermediate layer material, and the TPU is scattered in a small lump shape, fiber shape, and mesh shape in the intermediate layer region. Responsible for expression. This makes it possible to provide a tube suitable for medical use that takes advantage of the characteristics of both materials.

内層121と外層123とは同程度の厚みとしているが、これに限らず、内層121は薬品耐吸着性および可塑剤非溶出性が確保されればよいので、例えば外層123の1/3の厚みとすることができる。また、中間層122は、TPUの混合比率を低減する場合には、中間層122の厚みを相対的に厚くするようにしてもよい。中間層122は、いわば内層121と外層123との接着部材、かつ、強度発現層として機能すればよいので、その厚みは例えば、全体の15%の厚みとすることができる。   The inner layer 121 and the outer layer 123 have the same thickness. However, the thickness is not limited to this, and the inner layer 121 only needs to have chemical adsorption resistance and plasticizer non-eluting properties. It can be. Further, in the intermediate layer 122, when the mixing ratio of TPU is reduced, the thickness of the intermediate layer 122 may be relatively increased. Since the intermediate layer 122 only needs to function as an adhesive member between the inner layer 121 and the outer layer 123 and as a strength developing layer, the thickness of the intermediate layer 122 can be, for example, 15% of the total thickness.

次に、本発明の三層チューブの引張強度試験について説明する。三層チューブは、外層および内層PBD、中間層PBD+TPUの混合樹脂とした。また、比較例として、従来、医療用途として用いられているPVC単層チューブ(可塑剤DEHP添加)、PVC単層チューブ(可塑剤TOTM添加)、PBD単層チューブについても引張強度を測定した。   Next, the tensile strength test of the three-layer tube of the present invention will be described. The three-layer tube was a mixed resin of an outer layer, an inner layer PBD, and an intermediate layer PBD + TPU. As comparative examples, tensile strength was also measured for PVC single-layer tubes (added with plasticizer DEHP), PVC single-layer tubes (added with plasticizer TOTM), and PBD single-layer tubes conventionally used for medical purposes.

実験は、総て内径φ3.2mm×外径φ4.6mmとして統一した。また、三層チューブについては、外層厚0.30mm、中間層厚0.15mm、内層厚0.25mmとし、PBDとTPUの混合比(重量)をPBD:TPU=1:9,3:7,5:5としてそれぞれの破断強度を測定した。結果を図3に示す。   All experiments were standardized with an inner diameter of φ3.2 mm and an outer diameter of φ4.6 mm. For the three-layer tube, the outer layer thickness is 0.30 mm, the intermediate layer thickness is 0.15 mm, the inner layer thickness is 0.25 mm, and the mixing ratio (weight) of PBD and TPU is PBD: TPU = 1: 9, 3: 7, The respective breaking strengths were measured as 5: 5. The results are shown in FIG.

図から明らかなように、PBD:TPU=1:9〜3:7であれば、驚くべきことに従来のPVCより耐破断性が向上することがわかった。   As is apparent from the figure, it was found that when PBD: TPU = 1: 9 to 3: 7, the fracture resistance is improved more than the conventional PVC.

次に、中間層PBD:TPU=3:7としたチューブの保持間隔を30mm、引張速度200mm/minとし、横軸に伸び(歪み%)、縦軸に応力(MPa)として、破断までの伸びと応力との関係を測定した。なお、ここでは、従来チューブもあわせて測定し、また、内外層PBD、中間層にポリエチレン(PE)+TPUの混合樹脂とした三層チューブも測定した。中間層PE+TPUのチューブは、内径φ2.7mm、外径φ4.6mm(外層厚0.25mm、中間層厚0.40mm、内層厚0.30mm)であり、他のチューブより肉厚のものを使用した。結果を図4に示す。   Next, the tube holding interval of the intermediate layer PBD: TPU = 3: 7 is set to 30 mm, the tensile speed is set to 200 mm / min, the horizontal axis indicates elongation (strain%), and the vertical axis indicates stress (MPa). The relationship between stress and stress was measured. In addition, here, a conventional tube was also measured, and a three-layer tube in which a mixed resin of polyethylene (PE) + TPU was used for the inner and outer layers PBD and the intermediate layer was also measured. The tube of the intermediate layer PE + TPU has an inner diameter of 2.7 mm and an outer diameter of 4.6 mm (outer layer thickness of 0.25 mm, intermediate layer thickness of 0.40 mm, inner layer thickness of 0.30 mm), and is thicker than other tubes did. The results are shown in FIG.

図から明らかなように、本発明の三層チューブは、PVCに比して、引っ張られても追従して伸び、かつ、切れにくいことが確認でき、医療現場で使用するのに好適なチューブであることがわかった。なお、中間層がPE+TPUである場合は、中途で応力低下が見られる。これは、層剥離が生じていることを示している。換言すれば、本発明の三層チューブは、層剥離を生じることなく、PVCより破断強度が高まった優れたチューブであるといえる。   As can be seen from the figure, the three-layer tube of the present invention is a tube suitable for use in the medical field because it can be confirmed that the three-layer tube of the present invention can be stretched to follow even when pulled and is not easily cut. I found out. In addition, when the intermediate layer is PE + TPU, a stress reduction is observed in the middle. This indicates that delamination has occurred. In other words, the three-layer tube of the present invention can be said to be an excellent tube having a higher breaking strength than PVC without causing delamination.

次に、中間層(PBD+TPU)の配合比率と全体の厚みに対する肉厚比とを調整し、各種測定をおこなった。チューブは、内径φ3.2mm、外径φ4.6mmとし、外層厚0.315mm、内層厚0.315mmとして、中間層厚を全体の10%の厚みである0.07mmに固定し、中間層をPBD:TPU=10wt%:90wt%〜90wt%:10wt%で、10%ずつ配合比を異ならせて試料を作成した(内外層とも素材はPBDとした)。   Next, various measurements were performed by adjusting the blending ratio of the intermediate layer (PBD + TPU) and the wall thickness ratio with respect to the entire thickness. The tube has an inner diameter of 3.2 mm, an outer diameter of 4.6 mm, an outer layer thickness of 0.315 mm, an inner layer thickness of 0.315 mm, and the intermediate layer thickness is fixed to 0.07 mm, which is 10% of the total thickness. PBD: TPU = 10 wt%: 90 wt% to 90 wt%: 10 wt%, and samples were prepared with different blending ratios of 10% (both inner and outer layers were made of PBD).

チューブ内側に、接続部材としてPC製管を挿入接着し、チャック間距離を40mm、引張速度200mm/minとして引張強度を測定した。結果を図5に示す。   A PC pipe was inserted and bonded as a connecting member inside the tube, and the tensile strength was measured with a distance between chucks of 40 mm and a tensile speed of 200 mm / min. The results are shown in FIG.

図示したように、PBD=10wt%、20wt%では層間剥離が生じ、それ以上の混合比率ではチューブ破断が生じた。これは、PBDが少ない場合は、内外層との接着部分が小さく、相溶しないTPUが多いため層間で剥離が生じ、逆にPBDが多い場合は、内外層との接着部分が多くなるもののTPUの強度発現が十分とはならず、PBD由来の破断が生じるものと考えられた。   As shown in the figure, delamination occurred when PBD = 10 wt% and 20 wt%, and tube breakage occurred when the mixing ratio was higher. This is because when the PBD is small, the adhesive portion with the inner and outer layers is small and there are many incompatible TPUs, so peeling occurs between the layers. Conversely, when the PBD is large, the adhesive portion with the inner and outer layers increases. It was considered that the strength expression of PBD was not sufficient, and PBD-derived fracture occurred.

特に好適なのは、測定結果を外挿し引張強度が60N以上となる、配合比がPBD:TPU=25wt%:75wt%〜60wt%:40wt%の範囲である。好ましくは、70N以上となる、PBD:TPU=30wt%:70wt%〜50wt%:50wt%の範囲である。なお、図示しないが、同様に配合比を変えて、部材と接続せず、チューブ両端をはさんでチューブ自体の引張強度を測定したところ、上記配合比範囲では引張強度が略100Nの一定強度を有することを確認した。また、チューブの耐水圧強度に関しても、上記配合比範囲では略同レベルの良好な結果を示した。チューブの耐キンク性については、上記配合比範囲では略同レベルであるもののPBDの配合比が高まるほどより良好な結果を示した。   Particularly preferred is an extrapolation of the measurement results to give a tensile strength of 60 N or more, and the blending ratio is in the range of PBD: TPU = 25 wt%: 75 wt% to 60 wt%: 40 wt%. Preferably, PBD: TPU = 30 wt%: 70 wt% to 50 wt%: 50 wt%, which is 70 N or more. Although not shown, when the blending ratio was similarly changed and the tensile strength of the tube itself was measured across both ends of the tube without being connected to the member, a constant strength of about 100 N in the blending ratio range was obtained. Confirmed to have. Further, regarding the water pressure resistance of the tube, good results of substantially the same level were shown in the above-mentioned blending ratio range. Regarding the kink resistance of the tube, the results were better as the blending ratio of PBD was higher, although it was approximately the same level in the blending ratio range.

次に、中間層の肉厚比に対するチューブ自体の引張強度を測定した。チューブは、内径φ3.2mm、外径φ4.6mmとし、外層厚と内層厚を同一として、中間層の肉厚を全体の5%〜50%まで5%刻みで異ならせて試料を作成した。ここで、内外層の素材はPBD、中間層はPBD:TPU=40wt%:60wt%とした。結果を図6に示す。また、同形のPVC単層チューブ、PBD単層チューブの結果もあわせて示した。   Next, the tensile strength of the tube itself with respect to the thickness ratio of the intermediate layer was measured. The tube had an inner diameter of 3.2 mm and an outer diameter of 4.6 mm, the outer layer thickness was the same as the inner layer thickness, and the thickness of the intermediate layer was varied from 5% to 50% in 5% increments to prepare samples. Here, the inner and outer layer materials were PBD, and the intermediate layer was PBD: TPU = 40 wt%: 60 wt%. The results are shown in FIG. Moreover, the result of the PVC single layer tube of the same shape and the PBD single layer tube was also shown collectively.

図示したように、肉厚比が全体の15%であればPVCと略同レベルであり、20%を越えるとPVC以上の引張強度を発揮することが確認できた。なお、肉厚比が40%を越えると、引張強度は横ばいとなった。一方、肉厚比が50%を越えるとチューブが硬くなってくるため、肉厚比は50%以下が好適である。   As shown in the figure, it was confirmed that when the thickness ratio was 15% of the whole, it was almost the same level as PVC, and when it exceeded 20%, it was confirmed that a tensile strength higher than PVC was exhibited. Note that when the thickness ratio exceeded 40%, the tensile strength was flat. On the other hand, when the thickness ratio exceeds 50%, the tube becomes hard, and therefore the thickness ratio is preferably 50% or less.

最後に、チューブの太さおよび配合比肉厚比を変え、チューブ自身の引張強度を従来品と比較した。図7(a)は、他社品も含めて内径φ3.2mm×外径φ4.6mm程度の径の大きなチューブを用いた結果である。本発明の三層チューブについては、内外層(PBD)が同厚、中間層厚が全体の20%、中間層におけるPBD:TPU=40wt%:60wt%とした結果である。図7(b)は、他社品も含めて内径φ1.0mm×外径φ2.7mm程度の径の小さなチューブを用いた結果である。本発明の三層チューブは、内外層(PBD)が同厚、中間層厚が全体の40%、中間層におけるPBD:TPU=50wt%:50wt%とした結果である。何れも、PVC単層チューブと同等の引張強度を有することが確認できる。   Finally, the tube thickness and blending ratio thickness ratio were changed, and the tensile strength of the tube itself was compared with the conventional product. FIG. 7 (a) shows the result of using a tube having a large diameter of about 3.2 mm inside diameter x 4.6 mm outside diameter including products of other companies. For the three-layer tube of the present invention, the inner and outer layers (PBD) have the same thickness, the intermediate layer thickness is 20% of the whole, and the PBD: TPU in the intermediate layer is 40 wt%: 60 wt%. FIG. 7B shows the result of using a tube having a small diameter of about 1.0 mm inside diameter and about 2.7 mm outside diameter including products of other companies. In the three-layer tube of the present invention, the inner and outer layers (PBD) have the same thickness, the intermediate layer thickness is 40% of the whole, and the PBD in the intermediate layer: TPU = 50 wt%: 50 wt%. All can confirm that it has the tensile strength equivalent to a PVC single layer tube.

以上各結果が示すように、本発明によれば、PVCと同等の強度を有しつつPVCのような薬剤吸着や可塑剤溶出のない、PVCフリーの医療用用途に好適な新規代替チューブを提供可能となることが確認できた。   As shown above, according to the present invention, the present invention provides a novel alternative tube suitable for PVC-free medical use that has the same strength as PVC and does not have drug adsorption or plasticizer elution like PVC. It was confirmed that it was possible.

なお、以上の実験は中間層をPBD+TPUとしたが、中間層は強度発現を目的として、同様の熱可塑性エラストマー、すなわち、TPU以外に、SEBS、SBS、SEEPSを用いることができる。   In the above experiment, the intermediate layer is made of PBD + TPU, but the intermediate layer can be made of SEBS, SBS, or SEEPS in addition to the same thermoplastic elastomer, that is, TPU, for the purpose of strength development.

また、上述のように相溶しない樹脂を用いた場合であっても、全体として強固に合着した押出成チューブを得られることがわかる。   Moreover, even if it is a case where the resin which is not compatible as mentioned above is used, it turns out that the extrusion tube | tube which was firmly joined as a whole can be obtained.

すなわち、医療用三層チューブを押出成形する方法であって、中間層に、内層素材と外層素材との何れにも相溶する素材、および、内層素材と外層素材との少なくとも一方には相溶しない素材であって耐破断性、伸縮性その他の特性を発現する素材を用い、当該二素材を加熱により混合して溶融し、押出成形により、中間層領域で当該二素材同士によるメカニカルロックを形成させつつ、内層素材および外層素材との局所的な溶着箇所を全域にわたらせ、全体として内層および中間層ならびに外層および中間層が合着した三層チューブを得ることができる。   That is, a method of extruding a medical three-layer tube, wherein the intermediate layer is compatible with at least one of the inner layer material and the outer layer material, and is compatible with at least one of the inner layer material and the outer layer material. This material is a material that does not break, exhibits resistance to breakage, stretchability, and other characteristics. The two materials are mixed and melted by heating, and a mechanical lock is formed between the two materials in the intermediate layer region by extrusion. In this way, a local welded portion with the inner layer material and the outer layer material is spread over the entire region, and a three-layer tube in which the inner layer and the intermediate layer and the outer layer and the intermediate layer are bonded together can be obtained as a whole.

また、さらに一般化し、三層チューブを押出成形する方法であって、中間層に、内層素材とは相溶し外層素材とは相溶しない素材、および、外層素材とは相溶し内層素材とは相溶しない素材を用い、当該二素材を加熱により混合して溶融し、押出成形により、中間層で当該二素材同士によるメカニカルロックを形成させつつ、中間層界面領域で内外層素材と中間層素材との局所的な溶着箇所を全域にわたらせ、全体として内層および中間層ならびに外層および中間層が合着した三層チューブを得ることができる。   Further, it is a generalized method of extruding a three-layer tube, in which the intermediate layer is compatible with the inner layer material but not the outer layer material, and the outer layer material is compatible with the inner layer material. Uses incompatible materials, mixes and melts the two materials by heating, and forms a mechanical lock between the two materials in the intermediate layer by extrusion, while forming the inner and outer layer materials and the intermediate layer in the intermediate layer interface region. It is possible to obtain a three-layer tube in which the inner layer and the intermediate layer and the outer layer and the intermediate layer are bonded together as a whole by locally spreading the welded portion with the material.

これらは、適宜、2ないし3の押出成型機に各材料を入れ、加熱溶融または加熱混合をおこない、三層チューブ形成用の金型へ素材注入して押し出し、直近下流の冷却水槽で冷却して成形すればよく、現行の設備を用いた生産が可能となるという利点も有する。   As appropriate, put each material in 2 to 3 extrusion molding machines, heat melt or heat mix, inject the material into a mold for forming a three-layer tube, extrude it, and cool it in the cooling water tank immediately downstream What is necessary is just to shape | mold and it has the advantage that the production using the present installation is attained.

本発明によれば、輸液セット以外でも例えば、人工心肺回路といった、比較的大径のチューブに適用することもできる。   According to the present invention, the present invention can be applied to a tube having a relatively large diameter such as an artificial cardiopulmonary circuit other than an infusion set.

また、輸液回路中においてでも、瓶針から点滴筒までのいわゆる上部管、点滴筒から下流のいわゆるポンプチューブ、その他中間チューブ、延長チューブ等の各チューブでは、耐キンク性、部品接着性等、それぞれの優先指標が異なるが、適宜内/外/中間層の素材、内径、外径を適正化することにより、より好適な医療用チューブを提供することができる。   Also, even in the infusion circuit, so-called upper tubes from the bottle needle to the drip tube, so-called pump tubes downstream from the drip tube, other tubes such as intermediate tubes, extension tubes, kink resistance, component adhesion, etc. However, by appropriately optimizing the material, inner diameter, and outer diameter of the inner / outer / intermediate layer, a more suitable medical tube can be provided.

100 輸液セット
101 輸液バッグ
102 チューブ
103 静脈針
104 点滴筒
105 クランプ
121 内層
122 中間層
123 外層
S スタンド
C 患者
100 Infusion set 101 Infusion bag 102 Tube 103 Intravenous needle 104 Drip tube 105 Clamp 121 Inner layer 122 Intermediate layer 123 Outer layer S Stand C Patient

Claims (4)

内層がポリブタジエン、外層がポリブタジエンであり、
内層と外層との間に、ポリブタジエンと相溶する素材およびポリブタジエンと相溶しない耐破断性素材の混合樹脂であり、内層および外層との局所的な溶着箇所が全域にわたったメカニカルロックが形成された中間層を設け、
内層および中間層ならびに外層および中間層が合着した耐破断性素材として成型したことを特徴とする医療用三層チューブ。
The inner layer is polybutadiene, the outer layer is polybutadiene der is,
Between the inner layer and the outer layer, it is a mixed resin of a material that is compatible with polybutadiene and a fracture-resistant material that is not compatible with polybutadiene, and a mechanical lock is formed over the entire area where the inner and outer layers are welded. Provided an intermediate layer,
A medical three-layer tube characterized by being molded as a fracture-resistant material in which an inner layer and an intermediate layer, and an outer layer and an intermediate layer are bonded.
間層は、ポリブタジエンと熱可塑性ポリウレタンの混合樹脂であり、ポリブタジエン:熱可塑性ポリウレタン=25wt%:75wt%〜60wt%:40wt%の配合比、肉厚を、全体の肉厚の15%〜50%としたことを特徴とする請求項に記載の医療用三層チューブ。 Middle-layer is a mixed resin of a polybutadiene and a thermoplastic polyurethane, polybutadiene: Thermoplastic polyurethane = 25wt%: 75wt% ~60wt% : 40wt% blend ratio, the thickness, 15% of the overall thickness of 50 medical three-layer tube according to claim 1, characterized in that percent was. 医療用三層チューブを押出成形する方法であって、
内層が薬剤非吸着性と可塑剤非溶出性とを備える素材、外層がコネクタその他の医療用接続部品に対する易接着性素材ないし易接合性素材であり、
中間層に、内層素材と外層素材との何れにも相溶する素材、および、内層素材と外層素材との少なくとも一方には相溶しない素材であって耐破断性を発現する素材を用い、
当該二素材を加熱により混合して溶融し、
押出成形により、中間層領域で当該二素材同士によるメカニカルロックを形成させつつ、内層素材および外層素材との局所的な溶着箇所を全域にわたらせ、全体として内層および中間層ならびに外層および中間層が合着した三層チューブを得ることを特徴とする医療用三層チューブの押出成形方法。
A method of extruding a medical three-layer tube,
The inner layer is a material with non-drug-adsorbing properties and plasticizer-non-eluting properties, and the outer layer is an easily-adhesive material or an easily-bondable material for connectors and other medical connection parts,
For the intermediate layer, a material that is compatible with both the inner layer material and the outer layer material, and a material that is incompatible with at least one of the inner layer material and the outer layer material and that exhibits fracture resistance ,
The two materials are mixed and melted by heating,
Extrusion molding forms a mechanical lock between the two materials in the intermediate layer region, while spreading the local welds between the inner layer material and the outer layer material over the entire area, so that the inner layer and the intermediate layer as well as the outer layer and the intermediate layer are joined together. A method for extruding a medical three-layer tube, characterized by obtaining a worn three-layer tube.
内層素材および外層素材をポリブタジエン、中間層をポリブタジエンと熱可塑性ポリウレタンとの混合樹脂とし、中間層を、ポリブタジエン:熱可塑性ポリウレタン=25wt%:75wt%〜60wt%:40wt%の配合比、肉厚を、全体の肉厚の15%〜50%としたことを特徴とする請求項に記載の医療用三層チューブの押出成形方法。

The inner layer material and the outer layer material are polybutadiene, the intermediate layer is a mixed resin of polybutadiene and thermoplastic polyurethane, and the intermediate layer is made of polybutadiene: thermoplastic polyurethane = 25 wt%: 75 wt% to 60 wt%: 40 wt% 4. The method for extruding a medical three-layer tube according to claim 3 , wherein the thickness is 15% to 50% of the total wall thickness.

JP2012242659A 2011-11-04 2012-11-02 Medical three-layer tube and three-layer tube extrusion method Active JP6051786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242659A JP6051786B2 (en) 2011-11-04 2012-11-02 Medical three-layer tube and three-layer tube extrusion method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011241834 2011-11-04
JP2011241834 2011-11-04
JP2012242659A JP6051786B2 (en) 2011-11-04 2012-11-02 Medical three-layer tube and three-layer tube extrusion method

Publications (2)

Publication Number Publication Date
JP2013116320A JP2013116320A (en) 2013-06-13
JP6051786B2 true JP6051786B2 (en) 2016-12-27

Family

ID=48711287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242659A Active JP6051786B2 (en) 2011-11-04 2012-11-02 Medical three-layer tube and three-layer tube extrusion method

Country Status (1)

Country Link
JP (1) JP6051786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101513531B1 (en) * 2014-02-04 2015-04-21 한국생산기술연구원 Wire by extrusion and method of fabricating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL126099C (en) * 1964-11-02 1900-01-01
US4707389A (en) * 1983-09-30 1987-11-17 Baxter Travenol Laboratories, Inc. Multilayer tube, assembly and method
JPH06171040A (en) * 1992-12-09 1994-06-21 Terumo Corp Polyolefin-based base material for medical container
JP2001269403A (en) * 2000-03-27 2001-10-02 Kawasumi Lab Inc Medical tube
JP4995471B2 (en) * 2006-03-10 2012-08-08 テルモ株式会社 Medical tube
JP4855145B2 (en) * 2006-05-24 2012-01-18 テルモ株式会社 Medical device manufacturing method

Also Published As

Publication number Publication date
JP2013116320A (en) 2013-06-13

Similar Documents

Publication Publication Date Title
US6431219B1 (en) Coextruded tubing
JP5632226B2 (en) Medical multilayer tube and medical infusion bag
EP2358806B1 (en) Solvent bondable thermoplastic elastomers
EP2349712B1 (en) Multilayer flexible tubing
US10716927B2 (en) Extrudable tubing for delivery of medicinal fluids
AU2008240022B2 (en) NON-PVC system tube for biomedical
US20020061375A1 (en) Insulated intravenous administration tubing
JP6051786B2 (en) Medical three-layer tube and three-layer tube extrusion method
JP2010051631A (en) Medical multilayer tube
US20230347127A1 (en) Continuous tubing with alternating compositions for medical devices
JP4386738B2 (en) Medical tubes and circuits incorporating these tubes
KR101704627B1 (en) Extrusion-molded two-layer tube for medical use and infusion bag product
JP4432734B2 (en) Medical device and manufacturing method thereof
JP4995471B2 (en) Medical tube
CN114452509A (en) Multilayer medical tubing with low absorbency
JP2012024357A (en) Medical multilayer tube
US20130072873A1 (en) Non-stick medical tubing
JP2001269403A (en) Medical tube
US20230133021A1 (en) Medical tubing and formulations therefor
JP4289104B2 (en) Medical device and manufacturing method thereof
JP2002143292A (en) Tube for medical care
JP2006314468A (en) Infusion/blood transfusion set
US20200306416A1 (en) Tube Connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250