JP6050291B2 - Method for producing solanone and synthetic intermediate thereof - Google Patents

Method for producing solanone and synthetic intermediate thereof Download PDF

Info

Publication number
JP6050291B2
JP6050291B2 JP2014161076A JP2014161076A JP6050291B2 JP 6050291 B2 JP6050291 B2 JP 6050291B2 JP 2014161076 A JP2014161076 A JP 2014161076A JP 2014161076 A JP2014161076 A JP 2014161076A JP 6050291 B2 JP6050291 B2 JP 6050291B2
Authority
JP
Japan
Prior art keywords
formula
represented
methyl
solanone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014161076A
Other languages
Japanese (ja)
Other versions
JP2016037462A (en
Inventor
和 宮澤
和 宮澤
大地 小黒
大地 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP2014161076A priority Critical patent/JP6050291B2/en
Priority to CN201910292930.1A priority patent/CN110003135A/en
Priority to CN201510476119.0A priority patent/CN105367517A/en
Publication of JP2016037462A publication Critical patent/JP2016037462A/en
Priority to HK16105123.1A priority patent/HK1217192A1/en
Application granted granted Critical
Publication of JP6050291B2 publication Critical patent/JP6050291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds

Description

本発明は、香料化合物などに有用なソラノンの新規製造方法およびソラノンを製造するのに有用な新規中間体に関する。   The present invention relates to a novel process for producing solanone useful for a perfume compound and the like, and a novel intermediate useful for producing solanone.

ソラノンはタバコ科植物に含まれるジテルペンであるセンブラノイドの酸化的分解物として1965年にタバコの重要な香気成分として単離され、有機合成により構造が決定された(非特許文献1)。分子内に共役した二重結合を有する炭素数13のケトンであり、タバコの香気、特に喫味に優れた効果が確認され、多くの合成法が提案されている。   Solanone was isolated as an important aroma component of tobacco in 1965 as an oxidative degradation product of cembranoid, which is a diterpene contained in tobacco plants, and its structure was determined by organic synthesis (Non-patent Document 1). It is a ketone having 13 carbon atoms having a double bond conjugated in the molecule, and an excellent effect on tobacco aroma, particularly taste, has been confirmed, and many synthetic methods have been proposed.

イソバレルアルデヒドとアクリロニトリルを原料とし、ウィッティヒ反応で共役二重結合を導入したニトリルから合成する方法(非特許文献1)が実験室レベルの合成法としては簡便である。しかしながら、工業的な生産にはシアノ基からメチルケトンへ変換するグリニャール試薬との反応に際して、溶媒をジエチルエーテルからベンゼンに交換するなどの難点が存在する。脱水法により共役二重結合を導入する試みも提案されているが、脱水反応時に共役二重結合が移動しイソソラノンが生成する問題点がある。また、シアノ基からメチルケトンへの変換には、発火性の高いメチルリチウムを使用する問題点がある(特許文献1)。イソ吉草酸エチルから類似の方法により合成する方法も提案されている(非特許文献2)。   A method of synthesizing from a nitrile in which conjugated double bonds are introduced by Wittig reaction using non-patent literature 1 using isovaleraldehyde and acrylonitrile as a raw material is simple as a laboratory-level synthesis method. However, industrial production has difficulties such as exchanging the solvent from diethyl ether to benzene during the reaction with the Grignard reagent for converting cyano group to methyl ketone. Attempts to introduce conjugated double bonds by the dehydration method have also been proposed, but there is a problem that the conjugated double bonds move during the dehydration reaction to produce isosolanone. Moreover, there exists a problem which uses methyl lithium with high ignitability in conversion from a cyano group to methyl ketone (patent document 1). A method of synthesizing from ethyl isovalerate by a similar method has also been proposed (Non-patent Document 2).

その他、転位反応による合成法も提案されているが、共役二重結合が移動したイソソラノンが生成する問題点がある(特許文献2)。   In addition, a synthesis method using a rearrangement reaction has also been proposed, but there is a problem that isosolanone in which a conjugated double bond has moved is generated (Patent Document 2).

一方、天然原料であるリモネンを原料とした試みが提案されている。光酸化反応と鍵反応として、アセチレン中間体を経由する方法(非特許文献3)、また、パラメンテンをオゾン酸化して得られるケトアルデヒドから、ソラノンを合成する方法も提案されている(特許文献3および非特許文献4)。しかしながら、保護、脱保護工程を含み、また共役二重結合の導入に高温条件が必要となる。さらに、パラメンテンをオゾン分解、還元、アセタール化して得られるケトアセタールから、ソラノンを合成する方法も提案されている(特許文献4)。しかしながら、多くの工程を必要とするため、工業化には向いていない。   On the other hand, attempts have been made to use natural raw material limonene as a raw material. As a photo-oxidation reaction and a key reaction, a method via an acetylene intermediate (Non-patent Document 3) and a method of synthesizing solanone from ketoaldehyde obtained by ozone oxidation of paramentene have been proposed (Patent Document 3). And Non-Patent Document 4). However, protection and deprotection steps are involved, and high temperature conditions are required for the introduction of conjugated double bonds. Furthermore, a method for synthesizing solanone from ketoacetal obtained by ozonolysis, reduction, and acetalization of paramentene has also been proposed (Patent Document 4). However, since many processes are required, it is not suitable for industrialization.

原料としてリモネンオキサイドを選択し、オゾン酸化を使用しないソラノン中間体の製法も提案されている(特許文献5)。これらの方法は天然型の光学活性ソラノンが得られる長所は存在するが、多くの工程を必要とし、工業的に大量のソラノンを供給する製法ではない。   A method for producing a solanone intermediate without using ozone oxidation by selecting limonene oxide as a raw material has also been proposed (Patent Document 5). Although these methods have an advantage that a natural type optically active solanone can be obtained, they require many steps and are not a method for industrially supplying a large amount of solanone.

不安定な共役二重結合の構築と簡便なメチルケトンへの変換の両方を満足する製造法は開発されていない。このように、香料化合物として重要なソラノンを少ない工程でかつ、安全な手法により大量合成する製造方法は提案されていない。特に、不安定な共役二重結合の構築と簡便なメチルケトンへの変換の両方を満足する製造法の開発が望まれている。   A production method that satisfies both the construction of an unstable conjugated double bond and the simple conversion to methyl ketone has not been developed. Thus, no production method has been proposed for synthesizing a large amount of solanone, which is important as a perfume compound, with a small number of steps and a safe technique. In particular, development of a production method that satisfies both the construction of an unstable conjugated double bond and the simple conversion to methyl ketone is desired.

米国特許第4412083号明細書U.S. Pat.No. 4,420,083 米国特許第4433695号明細書U.S. Pat. No. 4,433,695 特開昭64−66137号公報JP-A-64-66137 特公平7−100675号公報Japanese Patent Publication No. 7-100675 特開2013−1695号公報JP 2013-1695 A

The Journal of Organic Chemistry(1965),30(9),2918−2921The Journal of Organic Chemistry (1965), 30 (9), 2918-2921. Bulletin of the Korean Chemical Society(1993),14(5),639−641Bulletin of the Korean Chemical Society (1993), 14 (5), 639-641. Journal of the Chemical Society,Chemical Communications(1981),951−952Journal of the Chemical Society, Chemical Communications (1981), 951-952. Synthesis,1994(7),692−694Synthesis, 1994 (7), 692-694.

本発明の目的は、香料化合物として重要なソラノンを少ない工程でかつ、安全な手法により工業的に大量に製造する方法を提供するものである。   The object of the present invention is to provide a method for industrially producing a large amount of solanone, which is important as a perfume compound, in a small number of steps and in a safe manner.

本発明者らは、上記の課題を解決するために鋭意研究を行ってきた結果、N−(3−メチル−1−ブテニル)ピペリジンを4−アクリロイルモルホリンにマイケル付加反応させ、続く酸加水分解により新規なアルデヒドを生成させ、このアルデヒドをウィッティヒ反応させ新規なモルホリンアミドを生成させ、さらにこれをグリニャール試薬と反応させることにより、ソラノンを工業的な手法により大量に製造する方法を見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have made Michael addition reaction of N- (3-methyl-1-butenyl) piperidine to 4-acryloylmorpholine, followed by acid hydrolysis. A novel aldehyde was formed, and this aldehyde was subjected to Wittig reaction to form a new morpholine amide, which was further reacted with a Grignard reagent to find a method for producing solanone in a large amount by an industrial technique, and the present invention was found. It came to be completed.

式(1)で示される新規なモルホリンアミド化合物は、分子中の共役二重結合を保持したまま簡易にメチルケトン等への誘導ができ、ソラノンをはじめとする各種のテルペン類を製造するためのキー合成中間体といえる化合物である。また、この化合物は、本発明者等が知る限り、文献未載の新規化合物でもある。   The novel morpholine amide compound represented by the formula (1) can be easily derived into methyl ketone while retaining the conjugated double bond in the molecule, and is a key for producing various terpenes such as solanone. It is a compound that can be said to be a synthetic intermediate. In addition, as far as the present inventors know, this compound is also a novel compound not described in any literature.

したがって、本発明は、下記の、かような合成中間体である化合物、その製造方法、該化合物からソラノンの製造方法、さらには、該中間体を製造するための新規前駆体たる化合物を提供する。   Accordingly, the present invention provides the following compounds that are such synthetic intermediates, methods for producing the compounds, methods for producing solanone from the compounds, and compounds that are novel precursors for producing the intermediates. .

〔1〕下記式(1)で表される化合物。 [1] A compound represented by the following formula (1).

Figure 0006050291
Figure 0006050291

〔2〕〔1〕に記載の式(1)で表される化合物の製造方法であって、
下記式(4)
[2] A method for producing a compound represented by the formula (1) according to [1],
Following formula (4)

Figure 0006050291
Figure 0006050291

で表される、N−(3−メチル−1−ブテニル)ピペリジンを、下記式(5) N- (3-methyl-1-butenyl) piperidine represented by the following formula (5)

Figure 0006050291
Figure 0006050291

で表される、4−アクリロイルモルホリンにマイケル付加反応させ、続く酸加水分解により下記式(6) And 4-acryloylmorpholine represented by the following formula (6):

Figure 0006050291
Figure 0006050291

で表される化合物を得る工程、
こうして得た式(6)で表される化合物に下記式(7)
Obtaining a compound represented by:
The compound represented by the formula (6) thus obtained was added to the following formula (7)

Figure 0006050291
Figure 0006050291

(式中Xはハロゲン原子を示し、Phはフェニル基を示す)で表される、ハロゲン化2−メチル−2−プロペニルトリフェニルホスホニウムとウィッティヒ反応させる工程
を含んでなる、製造方法。
(Wherein X represents a halogen atom and Ph represents a phenyl group), which comprises a step of causing a Wittig reaction with a halogenated 2-methyl-2-propenyltriphenylphosphonium.

〔3〕下記式(8) [3] The following formula (8)

Figure 0006050291
Figure 0006050291

で表されるソラノンの製造方法であって、
〔1〕に記載の式(1)で表される化合物のモルホリンアミド部分をメチルカルボニルに変換することのできるグリニャール試薬を反応させる工程を含んでなる、製造方法。
A method for producing solanone represented by:
[1] A production method comprising a step of reacting a Grignard reagent capable of converting a morpholinamide moiety of a compound represented by the formula (1) according to [1] into methylcarbonyl.

〔4〕下記式(6)で表される化合物。 [4] A compound represented by the following formula (6).

Figure 0006050291
Figure 0006050291

本発明によれば、香料化合物として有用なソラノンを従来の製法と比較して短工程で、工業的な手法により大量に製造することができる方法が提供できるとともに、ソラノンをはじめとする各種テルペン類を効果的に製造できる新規合成中間体を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method capable of producing a large amount of solanone useful as a perfume compound by an industrial technique in a short process compared to the conventional production method, and various terpenes including solanone. It is possible to provide a novel synthetic intermediate that can be effectively produced.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の態様の一つは、下記式(1)   One aspect of the present invention is the following formula (1):

Figure 0006050291
Figure 0006050291

で表される、ソラノンをはじめとする各種テルペン類を製造する合成中間体として重要な新規化合物に関する。ソラノン以外のかようなテルペン類としては、限定されるものではないが、他のタバコ香料組成物を構成し得る、イソソラノン(5−イソプロピル−8−メチル−5,7−ノナジエン−2−オン)、ノルソラナジオン(5−イソプロピル−6−ノネン−2,8−ジオン)、ソラノール(5−イソプロピル−8−メチル−6,8−ノナジエン−2−オール)、8−オキソ−5−イソプロピル−2−メチル−3−ノネン−2−オール、8−オキソ−5−イソプロピル−2−メチル−4−ノネン−2−オール、8−オキソ−5−イソプロピル−3−ノネン−2−オール、8−イソプロピル−11−メチル−9,11−ドデカジエン−5−オン、7−イソプロピル−2,10−ジメチル−8,10−ウンデカジエン−4−オン、7−イソプロピル−3,10−ジメチル−8,10−ウンデカジエン−4−オンなどを挙げることができる。 And a novel compound important as a synthetic intermediate for producing various terpenes including solanone. Such terpenes other than solanone include, but are not limited to, isosolanone (5-isopropyl-8-methyl-5,7-nonadien-2-one), which may constitute other tobacco fragrance compositions, Norsolanadione (5-isopropyl-6-nonene-2,8-dione), solanol (5-isopropyl-8-methyl-6,8-nonadien-2-ol), 8-oxo-5-isopropyl-2-methyl- 3-nonen-2-ol, 8-oxo-5-isopropyl-2-methyl-4-nonen-2-ol, 8-oxo-5-isopropyl-3-nonen-2-ol, 8-isopropyl-11- Methyl-9,11-dodecadien-5-one, 7-isopropyl-2,10-dimethyl-8,10-undecadien-4-one, 7-isopropyl-3 , And the like 10-dimethyl-8,10-undecadiene-4-one.

本発明の出発物質として用いられる前記式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンは、従来公知の方法で調製することができ、例えば、下記の反応式で示したように、ピペリジンを原料として、イソバレルアルデヒドを滴下することにより製造することができる。   N- (3-methyl-1-butenyl) piperidine represented by the above formula (4) used as a starting material of the present invention can be prepared by a conventionally known method. For example, it is represented by the following reaction formula. As described above, it can be produced by dropping isovaleraldehyde from piperidine as a raw material.

Figure 0006050291
Figure 0006050291

式(2)で表されるピペリジンおよび式(3)で表されるイソバレルアルデヒドから式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンを製造するために使用されるイソバレルアルデヒドは、ピペリジンの1モルに対して0.2モル〜2モル、好ましくは0.8〜1.2モルを用いることができる。   Used to produce N- (3-methyl-1-butenyl) piperidine represented by formula (4) from piperidine represented by formula (2) and isovaleraldehyde represented by formula (3) Isovaleraldehyde can be used in an amount of 0.2 mol to 2 mol, preferably 0.8 to 1.2 mol, relative to 1 mol of piperidine.

前記の反応式で、前記式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンを製造するために使用される炭酸カリウムは、ピペリジン1モルに対して0.1〜0.5モル、好ましくは0.2〜0.4モル使用することにより、式(4)の化合物の収率を高めることができる。   In the above reaction formula, potassium carbonate used for producing N- (3-methyl-1-butenyl) piperidine represented by the formula (4) is 0.1 to 0 per 1 mol of piperidine. By using 0.5 mol, preferably 0.2 to 0.4 mol, the yield of the compound of the formula (4) can be increased.

式(2)で表されるピペリジンおよび式(3)で表されるイソバレルアルデヒドから式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンを製造するには、あらかじめピペリジンと炭酸カリウムを反応容器に仕込み、窒素雰囲気下、低温下にて反応容器にイソバレルアルデヒドを滴下することが好ましく、反応温度は、0℃〜30℃の範囲であることが好ましい。   In order to produce N- (3-methyl-1-butenyl) piperidine represented by formula (4) from piperidine represented by formula (2) and isovaleraldehyde represented by formula (3), piperidine is used in advance. And potassium carbonate are charged into a reaction vessel, and isovaleraldehyde is preferably added dropwise to the reaction vessel in a nitrogen atmosphere and at a low temperature. The reaction temperature is preferably in the range of 0 ° C to 30 ° C.

下記式(6)で表されるアルデヒドは、従来の文献に未記載の新規化合物であり、下記の反応式で示したように、下記式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンを下記式(5)で示される4−アクリロイルモルホリンにマイケル付加反応させ、続いて酸加水分解することにより製造することができる。したがって、該式(6)で表される化合物は、また、本発明にしたがう式(1)で表される化合物の重要な合成中間体であり、本発明の一態様として提供される。   The aldehyde represented by the following formula (6) is a novel compound not described in the conventional literature, and as shown by the following reaction formula, N- (3-methyl-) represented by the following formula (4) 1-butenyl) piperidine can be produced by Michael addition reaction with 4-acryloylmorpholine represented by the following formula (5), followed by acid hydrolysis. Therefore, the compound represented by the formula (6) is also an important synthetic intermediate of the compound represented by the formula (1) according to the present invention, and is provided as one embodiment of the present invention.

Figure 0006050291
Figure 0006050291

式(5)で示される、4−アクリロイルモルホリンはポリマー原料であることから工業
的に安価に入手することができる。例えば、4−アクリロイルモルホリン(東京化成工業社製)、4−アクリロイルモルホリン(和光純薬工業社製)、4−アクリロイルモルホリン(興人フィルム&ケミカル社製)などを挙げることができる。
Since 4-acryloylmorpholine represented by the formula (5) is a polymer raw material, it can be obtained industrially at low cost. For example, 4-acryloyl morpholine (manufactured by Tokyo Chemical Industry Co., Ltd.), 4-acryloyl morpholine (manufactured by Wako Pure Chemical Industries, Ltd.), 4-acryloyl morpholine (manufactured by Kojin Film & Chemical Co., Ltd.) and the like can be mentioned.

式(4)で表される化合物と式(5)で表される化合物をマイケル付加反応した後に、酸加水分解することで式(6)の化合物を製造することができる。この際に用いられる式(5)で表される化合物は、式(4)で表される化合物1モルに対して0.5〜3.0モル、さらには1.0〜2.0モル使用することが好ましい。   The compound of formula (6) can be produced by subjecting the compound represented by formula (4) and the compound represented by formula (5) to a Michael addition reaction and then acid hydrolysis. The compound represented by the formula (5) used in this case is used in an amount of 0.5 to 3.0 mol, more preferably 1.0 to 2.0 mol, with respect to 1 mol of the compound represented by the formula (4). It is preferable to do.

前記反応は、窒素雰囲気下で加熱撹拌反応することが好ましい。加熱温度は100℃〜150℃、さらには120℃〜140℃で反応させることが好ましく、加熱時間は30分〜12時間、好ましくは2時間〜6時間の条件を提示することができる。   The reaction is preferably carried out with stirring under a nitrogen atmosphere. The reaction is preferably performed at a heating temperature of 100 ° C. to 150 ° C., more preferably 120 ° C. to 140 ° C., and a heating time of 30 minutes to 12 hours, preferably 2 hours to 6 hours.

前記反応式で、酸加水分解で使用される酸は、加水分解できる酸であれば特に限定されないが、強酸弱塩基の塩であることが好ましい。例えば、塩化アンモニウム、硫酸アンモニウムなどを挙げることができる。   In the reaction formula, the acid used in the acid hydrolysis is not particularly limited as long as it can be hydrolyzed, but is preferably a salt of a strong acid and a weak base. Examples thereof include ammonium chloride and ammonium sulfate.

下記式(1)で表されるモルホリンアミド化合物は、従来の文献に未記載の新規化合物であり、下記の反応式で示したように、下記式(6)で表されるアルデヒドに、下記式(7)で表されるハロゲン化2−メチル−2−プロペニルトリフェニルホスホニウムとアルカリ水素化物の存在下、ウィッティヒ反応することにより製造することができる。   The morpholine amide compound represented by the following formula (1) is a novel compound not described in the conventional literature, and as shown by the following reaction formula, the aldehyde represented by the following formula (6) It can be produced by a Wittig reaction in the presence of 2-methyl-2-propenyltriphenylphosphonium halide represented by (7) and an alkali hydride.

Figure 0006050291
Figure 0006050291

(式中Xはハロゲン原子を示し、Phはフェニル基を示す)   (Wherein X represents a halogen atom and Ph represents a phenyl group)

前記式のウィッティヒ反応をする際のウィッティヒ試薬である、式(7)で表される化合物は、トリフェニルホスフィンおよび2−メチル−2−プロペニルハライドを反応させることより得ることができる。このウィッティヒ試薬は特に、塩化2−メチル−2−プロペニルトリフェニルホスホニウム、臭化2−メチル−2−プロペニルトリフェニルホスホニウムなどが好ましい。   The compound represented by the formula (7), which is a Wittig reagent for the Wittig reaction of the above formula, can be obtained by reacting triphenylphosphine and 2-methyl-2-propenyl halide. The Wittig reagent is particularly preferably 2-methyl-2-propenyltriphenylphosphonium chloride, 2-methyl-2-propenyltriphenylphosphonium bromide, or the like.

前記反応式で使用される式(7)で表されるウィッティヒ試薬は、式(6)で表されるアルデヒド1モルに対して0.5〜5.0モル、好ましくは、1.0〜3.0モル使用することにより、ウィッティヒ反応が促進される。   The Wittig reagent represented by the formula (7) used in the reaction formula is 0.5 to 5.0 mol, preferably 1.0 to 3 with respect to 1 mol of the aldehyde represented by the formula (6). By using 0.0 mol, the Wittig reaction is promoted.

前記式のウィッティヒ反応をする際に使用されるアルカリ水素化物は、例えば、水素化ナトリウム、水素化カリウム、水素化カルシウム、水素化マグネシウムを挙げることができる。また、このアルカリ水素化物は、式(6)で表されるアルデヒド1モルに対して0.2〜5.0モル、好ましくは、1.0〜2.0モル使用することにより、ウィッティヒ反応が促進される。   Examples of the alkali hydride used when performing the Wittig reaction of the above formula include sodium hydride, potassium hydride, calcium hydride, and magnesium hydride. The alkali hydride is used in an amount of 0.2 to 5.0 moles, preferably 1.0 to 2.0 moles per mole of the aldehyde represented by the formula (6). Promoted.

前記式のウィッティヒ反応をする際に使用される溶媒は、例えば、ジエチルエーテル、ジイソプロピルエーテル、メチルt−ブチルエーテル、シクロペンチルメチルエーテル、2−メチルプロピルメチルエーテル、1,4−ジオキサン、テトラヒドロフランなどのエーテル系の溶媒を挙げることができるが、特にテトラヒドロフランが好適である。   Examples of the solvent used for the Wittig reaction of the above formula include ether ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, cyclopentyl methyl ether, 2-methylpropyl methyl ether, 1,4-dioxane, and tetrahydrofuran. Among them, tetrahydrofuran is particularly preferable.

前記式のウィッティヒ反応をする際の反応時間は30分〜6時間、好ましくは2時間〜4時間を挙げることができ、ウィッティヒ反応をする際の反応温度は40℃〜90℃、好ましくは55℃〜75℃を挙げることができる。   The reaction time for carrying out the Wittig reaction of the above formula can be 30 minutes to 6 hours, preferably 2 to 4 hours. The reaction temperature for carrying out the Wittig reaction is 40 ° C. to 90 ° C., preferably 55 ° C. ˜75 ° C. can be mentioned.

下記式(1)で表される化合物は、下記の反応式で示すように、式(1)中のモルホリンアミド部分をメチルカルボニルに変換することのできるメチルマグネシウムハライドを用いるグリニャール反応を行うことにより式(8)で表されるソラノンを製造することができる。   As shown in the following reaction formula, the compound represented by the following formula (1) is subjected to a Grignard reaction using a methylmagnesium halide capable of converting the morpholinamide moiety in the formula (1) into methylcarbonyl. A solanone represented by the formula (8) can be produced.

Figure 0006050291
Figure 0006050291

(式中X’はハロゲン原子を示す)   (Wherein X 'represents a halogen atom)

前記反応式のX’はハロゲン原子を示し、例えば、塩素、臭素、ヨウ素などを挙げることができる。また、MeMgX’で表されるグリニャール試薬の使用量は、式(1)で表される化合物1モルに対して0.2〜5.0モルが好ましく、さらには1.0〜2.0モルがより好ましい。   X ′ in the reaction formula represents a halogen atom, and examples thereof include chlorine, bromine, iodine and the like. The amount of Grignard reagent represented by MeMgX ′ is preferably 0.2 to 5.0 mol, more preferably 1.0 to 2.0 mol, relative to 1 mol of the compound represented by formula (1). Is more preferable.

前記式(1)で表されるモルホリンアミド化合物からグリニャール反応により式(8)で表されるソラノンを製造する際に使用される溶媒は、例えば、ジエチルエーテル、ジイソプロピルエーテル、メチルt−ブチルエーテル、シクロペンチルメチルエーテル、2−メチルプロピルメチルエーテル、1,4−ジオキサン、テトラヒドロフランなどのエーテル系の溶媒を挙げることができるが、特にテトラヒドロフランが好適である。   Examples of the solvent used in producing the solanone represented by the formula (8) by the Grignard reaction from the morpholine amide compound represented by the formula (1) include diethyl ether, diisopropyl ether, methyl t-butyl ether, cyclopentyl. Mention may be made of ether solvents such as methyl ether, 2-methylpropyl methyl ether, 1,4-dioxane and tetrahydrofuran, with tetrahydrofuran being particularly preferred.

前記式(1)で表されるモルホリンアミド化合物からグリニャール反応により式(8)で表されるソラノンを製造するには、あらかじめ式(1)の化合物および溶媒を反応容器に仕込み、窒素雰囲気下、低温下にて反応容器にグリニャール試薬を滴下することが好ましい。また、その際の温度は、反応系内の温度を上昇させないことが望ましく、−20℃〜20℃を例示することができる。   In order to produce the solanone represented by the formula (8) from the morpholine amide compound represented by the formula (1) by a Grignard reaction, the compound of the formula (1) and a solvent are charged in a reaction vessel in advance, It is preferable to add the Grignard reagent dropwise to the reaction vessel at a low temperature. Moreover, as for the temperature in that case, it is desirable not to raise the temperature in a reaction system, and -20 degreeC-20 degreeC can be illustrated.

前記反応で得られた式(1)、式(4)、式(6)および式(8)で表される化合物は通常の精製方法、例えば蒸留あるいはシリカゲルクロマトグラフィーといった操作で精製することが出来る。   The compounds represented by the formula (1), formula (4), formula (6) and formula (8) obtained by the above reaction can be purified by an ordinary purification method such as distillation or silica gel chromatography. .

前記に示す工程により、化学純度90%以上の高品質な、前記式(8)で表される、ソラノンを製造することが出来る。   Through the steps described above, high-quality solanone represented by the formula (8) having a chemical purity of 90% or more can be produced.

かくして得られた、前記式(8)で表される、ソラノンは、例えば、穀物製品、米製品、タピオカ製品、ビスケット、ペストリー、パン製品、菓子、デザート、ガム、チューインガム、チョコレート、アイス、蜂蜜、糖蜜、酵母製品、ベーキングパウダー、食塩および香辛料、マスタード、食用酢、ソース、タバコ、加工食品、調理した果物および野菜製品、肉および肉製品、ゼリー、ジャム、果実ソース、卵製品、牛乳および乳製品、チーズ、バターおよびバター代用製品、牛乳代用品、大豆製品、食用油脂、医薬、飲料、アルコール飲料、ビール、清涼飲料、ミネラルウォーター、ノンアルコール飲料、果実飲料、果汁、コーヒー、茶、ココア、食用エキス、植物エキス、肉エキス、調味料、甘味料、栄養補給食品、ゼラチン、薬用および非薬用ガム、錠剤、トローチ剤、ドロップ、シロップなどの食品に直接またはソラノンを含有する食品に加えるべきフレーバーとして提供することができる。   The solanone represented by the formula (8) thus obtained is, for example, a cereal product, a rice product, a tapioca product, a biscuit, a pastry, a bakery product, a confectionery, a dessert, a gum, a chewing gum, a chocolate, an ice, a honey, Molasses, yeast products, baking powder, salt and spices, mustard, edible vinegar, sauces, tobacco, processed foods, cooked fruit and vegetable products, meat and meat products, jelly, jam, fruit sauces, egg products, milk and dairy products , Cheese, butter and butter substitute products, milk substitutes, soy products, edible oils and fats, pharmaceuticals, beverages, alcoholic beverages, beer, soft drinks, mineral water, non-alcoholic beverages, fruit beverages, fruit juice, coffee, tea, cocoa, edible Extract, plant extract, meat extract, seasoning, sweetener, nutritional supplement, gelatin, medicinal and Unmedicated gums, tablets, lozenges, can be provided as a flavor to be added to foods containing food directly or Soranon such as drop, syrup.

前記のフレーバーは、十分知られている食品添加物、例えば、溶媒、結合剤、希釈剤、崩壊剤、潤滑剤、フレーバー添加剤、着色剤、保存剤、酸化防止剤、乳化剤、安定剤、フレーバー増強剤、甘味剤、などを含んでいてもよい。   The above flavors are well known food additives such as solvents, binders, diluents, disintegrants, lubricants, flavor additives, colorants, preservatives, antioxidants, emulsifiers, stabilizers, flavors. An enhancer, sweetener, and the like may be included.

また、前記のフレーバーを、すべての好適な形態で、例えば液体として、ペーストとして、または担体/粒子上に結合もしくはコーティングされた被包された形態で、または粉末として、食品に加えてもよい。   The flavor may also be added to the food product in any suitable form, for example as a liquid, as a paste, or in an encapsulated form bound or coated on a carrier / particle, or as a powder.

前記式(8)で表される、ソラノンは、フレーバーに対する配合量としては、目的とする香気、フレーバーの用途などによって異なるが、一般的にはフレーバー中に0.01〜20質量%、好ましくは0.1〜10質量%配合することができる。   The solanone represented by the formula (8) varies depending on the target fragrance, the use of the flavor, etc., as a blending amount with respect to the flavor, but generally 0.01 to 20% by mass in the flavor, preferably 0.1-10 mass% can be mix | blended.

以下、本発明を実施例によりさらに具体的に説明する。なお、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these.

参考例1:N−(3−メチル−1−ブテニル)ピペリジン(前記式(4)の化合物)の合成
3L四つ口フラスコに炭酸カリウム(420.0g、3.04mol、35.3 mol%)、ピペリジン(874.0g、10.3mol、1.2eq.)を仕込み、窒素雰囲気下および氷水冷却下にて撹拌を行った。内温が10℃になった時点でイソバレルアルデヒド(741.0g、8.60mol)を2.5時間滴下した(内温25℃以下)。滴下後、室温で2.5時間撹拌し、その後濾過、乾燥および濃縮を行い、粗精製物を1608.2g得た。この粗精製物を減圧蒸留により精製し、前記式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジンを1170.9g得た(収率88.8%)。
Reference Example 1: Synthesis of N- (3-methyl-1-butenyl) piperidine (compound of formula (4)) Potassium carbonate (420.0 g, 3.04 mol, 35.3 mol%) in a 3 L four-necked flask , Piperidine (874.0 g, 10.3 mol, 1.2 eq.) Was charged, and the mixture was stirred under a nitrogen atmosphere and ice water cooling. When the internal temperature reached 10 ° C, isovaleraldehyde (741.0 g, 8.60 mol) was added dropwise for 2.5 hours (internal temperature 25 ° C or lower). After dropping, the mixture was stirred at room temperature for 2.5 hours, and then filtered, dried and concentrated to obtain 1608.2 g of a crude product. This crude product was purified by distillation under reduced pressure to obtain 1170.9 g of N- (3-methyl-1-butenyl) piperidine represented by the above formula (4) (yield 88.8%).

また、上記の参考例1で得られた、N−(3−メチル−1−ブテニル)ピペリジンをガスクロマトグラフ分析した結果、化学純度は99.1%であった(分析条件、カラム:TC−1701(30m×0.53mm)、昇温条件:100℃〜260℃、100℃にて2min保持後、20.0℃/min昇温、キャリアガス:窒素、線速度:60cm/sec、保持時間:4.7min)。   Further, as a result of gas chromatographic analysis of N- (3-methyl-1-butenyl) piperidine obtained in Reference Example 1, the chemical purity was 99.1% (analysis conditions, column: TC-1701). (30 m × 0.53 mm), temperature rising conditions: 100 ° C. to 260 ° C., holding for 2 min at 100 ° C., 20.0 ° C./min temperature rising, carrier gas: nitrogen, linear velocity: 60 cm / sec, holding time: 4.7 min).

実施例1:アルデヒド(前記式(6)の化合物)の合成
2L四つ口フラスコに前記式(4)で表されるN−(3−メチル−1−ブテニル)ピペリジン(333.5g、2.18 mol)および4−アクリロイルモルホリン(461.8g、3.27mol、1.5eq.)を仕込み、窒素雰囲気下、130℃で4時間加熱撹拌した。その後、反応液を室温まで冷やし、20%塩化アンモニウム水(5000g)が入った18Lベッセルに、反応液および酢酸エチル(500g)を加えた。終夜撹拌後、10%硫酸(1250g)を加えpHを1〜2の範囲とし、塩化ナトリウム(1400g)にて水層を飽和させてから有機層を分離した。その後水層を酢酸エチル(500g×2回)で抽出した。有機層を合わせ、20%食塩水(500g)、15%炭酸ナトリウム水溶液(500g)の順に洗浄し、その後乾燥、濃縮を行い、前記式(6)で表されるアルデヒドの粗精製物を438.5g得た(粗精製物収率88.5%)。
Example 1 Synthesis of Aldehyde (Compound of Formula (6)) N- (3-methyl-1-butenyl) piperidine (333.5 g) represented by Formula (4) in a 2 L four-necked flask was obtained. 18 mol) and 4-acryloylmorpholine (461.8 g, 3.27 mol, 1.5 eq.) Were charged, and the mixture was heated and stirred at 130 ° C. for 4 hours under a nitrogen atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution and ethyl acetate (500 g) were added to an 18 L vessel containing 20% aqueous ammonium chloride (5000 g). After stirring overnight, 10% sulfuric acid (1250 g) was added to adjust the pH to a range of 1 to 2, the aqueous layer was saturated with sodium chloride (1400 g), and then the organic layer was separated. Thereafter, the aqueous layer was extracted with ethyl acetate (500 g × twice). The organic layers were combined, washed with 20% brine (500 g) and 15% aqueous sodium carbonate solution (500 g) in this order, then dried and concentrated, and the crude purified product of aldehyde represented by the above formula (6) was 438. 5 g was obtained (yield of crude product: 88.5%).

また、上記の実施例1で得られた、前記式(6)で表されるアルデヒドの粗精製物をガ
スクロマトグラフ分析した結果、化学純度は95.1%であった(分析条件、カラム:TC−1701(30m×0.53mm)、昇温条件:100℃〜260℃、100℃にて2min保持後、20.0℃/min昇温、キャリアガス:窒素、線速度:60cm/sec、保持時間:10.8min)。
In addition, as a result of gas chromatographic analysis of the crude purified product of aldehyde represented by the above formula (6) obtained in Example 1, the chemical purity was 95.1% (analysis conditions, column: TC -1701 (30 m × 0.53 mm), temperature rising condition: 100 ° C. to 260 ° C., holding at 100 ° C. for 2 min, 20.0 ° C./min heating, carrier gas: nitrogen, linear velocity: 60 cm / sec, holding Time: 10.8 min).

式(6)アルデヒドの物性データ
1H−NMR(400MHz、CDCl3):δppm 0.96(d,J=6.8Hz,3H),1.00(d,J=6.8Hz,3H),1.77−1.94(m,2H),2.02−2.11(m,1H),2.13−2.22(m,2H),2.31−2.39(m,1H),3.42−3.45(m,2H),3.54−3.61(m,2H),3.62−3.66(m,4H),9.63(d,J=2.4Hz,3H)
13C−NMR(100MHz、CDCl3):δppm 19.4,20.3,20.8,28.4,30.9,41.9,45.8,57.7,66.6,66.8,170.9,205.4
MS(m/z):41,43,55,56,57,69,70,86,87,88,99,114,129,199,227
Physical property data of formula (6) aldehyde
1 H-NMR (400 MHz, CDCl 3 ): δ ppm 0.96 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 1.77-1.94 ( m, 2H), 2.02-2.11 (m, 1H), 2.13-2.22 (m, 2H), 2.31-2.39 (m, 1H), 3.42-3. 45 (m, 2H), 3.54-3.61 (m, 2H), 3.62-3.66 (m, 4H), 9.63 (d, J = 2.4 Hz, 3H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm 19.4, 20.3, 20.8, 28.4, 30.9, 41.9, 45.8, 57.7, 66.6, 66. 8, 170.9, 205.4
MS (m / z): 41, 43, 55, 56, 57, 69, 70, 86, 87, 88, 99, 114, 129, 199, 227

参考例2:ウィッティヒ試薬(塩化2−メチル−2−プロペニルトリフェニルホスホニウム)の合成
5L四つ口フラスコにトリフェニルホスフィン(1000.0g、3.81mol)、2−メチル−2−プロペニルクロリド(420.0g、4.64mol、1.2 eq.)、キシレン(2390 g)を仕込み、19時間加熱還流した。その後、反応液を室温まで冷やし、濾紙濾過をした後、トルエン(1000 g)で洗浄後、エバポレーター及び真空ポンプで乾燥を行い、塩化2−メチル−2−プロペニルトリフェニルホスホニウムを1001.7g得た(収率74.5%)。
Reference Example 2: Synthesis of Wittig reagent (2-methyl-2-propenyltriphenylphosphonium chloride) Triphenylphosphine (1000.0 g, 3.81 mol), 2-methyl-2-propenyl chloride (420) were added to a 5 L four-necked flask. 0.0 g, 4.64 mol, 1.2 eq.) And xylene (2390 g) were charged, and the mixture was heated to reflux for 19 hours. Thereafter, the reaction solution was cooled to room temperature, filtered through filter paper, washed with toluene (1000 g), and then dried with an evaporator and a vacuum pump to obtain 1001.7 g of 2-methyl-2-propenyltriphenylphosphonium chloride. (Yield 74.5%).

実施例2:モルホリンアミド化合物(前記式(1)の化合物)の合成
10L四つ口フラスコに、参考例2で合成したウィッティヒ試薬(988.0g、2.81mol、1.5eq.)およびテトラヒドロフラン(1800g、MS5Åで脱水済み)を仕込み、窒素雰囲気下にて撹拌を行い、そこに水素化ナトリウム(110.0g、2.75mol、1.5 eq.)を素早く加え、水素の発生がなくなるまで、50℃で2時間撹拌した。その後、反応液を10℃まで冷やし、そこに前記式(6)で表されるアルデヒドの粗精製物(438.5g、純度95.1%、1.83mmolと仮定)とテトラヒドロフラン(200g)を、滴下ロートを用いて20分で滴下し、滴下後、3時間加熱還流した。反応液を室温まで冷却後、メタノール(20g)でクエンチし、ヘプタン(2000g)を加え30分撹拌した。それをセライト濾過し、濾液を20%食塩水(2000g)、10%炭酸ナトリウム水溶液(2000g)の順に洗浄し、その後乾燥、濃縮を行い粗精製物を576.9g得た。そのうち349.0gを用いて130℃、10Paで蒸留精製し、前記式(1)で表されるモルホリンアミド化合物を251.1g得た(2段階収率70.6%)。
Example 2: Synthesis of morpholine amide compound (compound of formula (1)) In a 10 L four-necked flask, the Wittig reagent (988.0 g, 2.81 mol, 1.5 eq.) Synthesized in Reference Example 2 and tetrahydrofuran ( 1800 g, dehydrated with MS 5Å), stirred under a nitrogen atmosphere, sodium hydride (110.0 g, 2.75 mol, 1.5 eq.) Was quickly added thereto, and hydrogen generation was stopped until Stir at 50 ° C. for 2 hours. Thereafter, the reaction solution was cooled to 10 ° C., and a crude product of the aldehyde represented by the formula (6) (438.5 g, purity 95.1%, assuming 1.83 mmol) and tetrahydrofuran (200 g) were added. The mixture was dropped using a dropping funnel in 20 minutes, and after the dropping, the mixture was heated to reflux for 3 hours. The reaction solution was cooled to room temperature, quenched with methanol (20 g), added heptane (2000 g), and stirred for 30 minutes. It was filtered through Celite, and the filtrate was washed with 20% brine (2000 g) and 10% aqueous sodium carbonate solution (2000 g) in this order, then dried and concentrated to obtain 576.9 g of a crude product. Of these, 349.0 g was distilled and purified at 130 ° C. and 10 Pa to obtain 251.1 g of the morpholine amide compound represented by the formula (1) (2 stage yield: 70.6%).

また、上記の実施例2で得られた、前記式(1)で表されるモルホリンアミド化合物をガスクロマトグラフ分析した結果、化学純度は85.4%であった(分析条件、カラム:TC−1701(30m×0.53mm)、昇温条件:100℃〜260℃、100℃にて2min保持後、20.0℃/min昇温、キャリアガス:窒素、線速度:60cm/sec、保持時間:11.3min)。   Further, as a result of gas chromatographic analysis of the morpholine amide compound represented by the formula (1) obtained in Example 2 above, the chemical purity was 85.4% (analysis conditions, column: TC-1701). (30 m × 0.53 mm), temperature rising conditions: 100 ° C. to 260 ° C., holding for 2 min at 100 ° C., 20.0 ° C./min temperature rising, carrier gas: nitrogen, linear velocity: 60 cm / sec, holding time: 11.3 min).

式(1)モルホリンアミド化合物の物性データ
1H−NMR(400MHz、CDCl3):δppm 0.85(d,J=6.8Hz,3H),0.90(d,J=6.8Hz,3H),1.50−1.67(m,2H),1
.78−1.91(m,5H),2.13−2.31(m,2H),3.38−3.43(m,2H),3.54−3.66(m,6H),4.86−4.89(m,2H),5.38(dd,J=9.2Hz,15.6Hz,1H),6.07(d,J=15.6Hz,1H)
13C−NMR(100MHz、CDCl3):δppm 18.8,19.2,20.7,27.7,31.2,32.5,41.8,45.9,49.5,66.6,66.9,114.6,132.2,134.4,141.9,171.9
MS(m/z):57,70,86,87,88,114,129,265
Physical property data of formula (1) morpholine amide compound
1 H-NMR (400 MHz, CDCl 3 ): δ ppm 0.85 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 1.50-1.67 ( m, 2H), 1
. 78-1.91 (m, 5H), 2.13-2.31 (m, 2H), 3.38-3.43 (m, 2H), 3.54-3.66 (m, 6H), 4.86-4.89 (m, 2H), 5.38 (dd, J = 9.2 Hz, 15.6 Hz, 1H), 6.07 (d, J = 15.6 Hz, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm 18.8, 19.2, 20.7, 27.7, 31.2, 32.5, 41.8, 45.9, 49.5, 66. 6, 66.9, 114.6, 132.2, 134.4, 141.9, 171.9
MS (m / z): 57, 70, 86, 87, 88, 114, 129, 265

実施例3:ソラノン(前記式(8)の化合物)の合成
1L四つ口フラスコに前記式(1)で表されるモルホリンアミド化合物(90.00g、純度85.4%、290mmolと仮定)、テトラヒドロフラン(160mL、MS5Åで脱水済み)を仕込み、窒素雰囲気下、氷水冷却下にて撹拌を行い、そこに2.0Mメチルマグネシウムクロリドのテトラヒドロフラン溶液(174mL、348mmol、1.2eq.)を5〜15℃で30分かけて加えた。滴下後、同温下で20分撹拌後、室温で1時間40分撹拌した。この反応液を、冷やした10%硫酸(1200g)が入ったフラスコに5℃以下で投入してpHを1にし、15分間撹拌後した。その後、反応液をメチルt−ブチルエーテル(600mL)で抽出し、有機層を20%食塩水(200g)、5%炭酸ナトリウム水溶液(200g)の順に洗浄し、その後乾燥、濃縮を行い粗精製物を77.40g得た。
Example 3: Synthesis of solanone (compound of formula (8)) In a 1 L four-necked flask, a morpholine amide compound represented by formula (1) (90.00 g, assuming a purity of 85.4%, 290 mmol), Tetrahydrofuran (160 mL, dehydrated with MS5Å) was charged, and the mixture was stirred under cooling with ice water under a nitrogen atmosphere. A tetrahydrofuran solution of 2.0 M methylmagnesium chloride (174 mL, 348 mmol, 1.2 eq.) Was added to 5 to 15. Added at 30 ° C. over 30 minutes. After dropping, the mixture was stirred at the same temperature for 20 minutes, and then stirred at room temperature for 1 hour and 40 minutes. The reaction solution was added to a cooled flask containing 10% sulfuric acid (1200 g) at 5 ° C. or lower to adjust the pH to 1, followed by stirring for 15 minutes. Thereafter, the reaction solution was extracted with methyl t-butyl ether (600 mL), and the organic layer was washed with 20% brine (200 g) and 5% aqueous sodium carbonate solution (200 g) in that order, and then dried and concentrated to obtain a crude product. 77.40 g was obtained.

この粗精製物を減圧蒸留により精製し、前記式(8)で表されるソラノンを37.51g得た(収率56.9%)。   This crude product was purified by distillation under reduced pressure to obtain 37.51 g of solanone represented by the formula (8) (yield 56.9%).

式(8)ソラノンの物性データ
1H−NMR(400MHz、CDCl3):δppm 0.84(d,J=6.8Hz,3H),0.89(d,J=6.8Hz,3H),1.42−1.67(m,2H),1.72−1.86(m,5H),2.10(s,3H),2.26−2.47(m,2H),4.86−4.89(m,2H),5.35(dd,J=9.2Hz,16。0Hz,1H),6.06(d,J=16.0Hz,1H)
13C−NMR(100MHz、CDCl3):δppm 18.7,19.2,20.7,26.2,30.1,32.3,42.1,49.4,114.6,132.2,134.4,141.9,209.3
MS(m/z):41,43,79,91,93,121,136,194
なお、メジャーのジアステレオマーがE体であることは1H−NMRの結合定数より決定した。
Formula (8) Physical property data of solanon
1 H-NMR (400 MHz, CDCl 3 ): δ ppm 0.84 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H), 1.42-1.67 ( m, 2H), 1.72-1.86 (m, 5H), 2.10 (s, 3H), 2.26-2.47 (m, 2H), 4.86-4.89 (m, 2H), 5.35 (dd, J = 9.2 Hz, 16.0 Hz, 1H), 6.06 (d, J = 16.0 Hz, 1H)
13 C-NMR (100 MHz, CDCl 3 ): δ ppm 18.7, 19.2, 20.7, 26.2, 30.1, 32.3, 42.1, 49.4, 114.6, 132. 2,134.4, 141.9, 209.3
MS (m / z): 41, 43, 79, 91, 93, 121, 136, 194
The major diastereomer was determined to be E form from the binding constant of 1 H-NMR.

また、上記の実施例3で得られた、前記式(8)で表されるソラノンをガスクロマトグラフ分析した結果、化学純度は96.8%(E、Z体合計)であった(分析条件、カラム:TC−1701(30m×0.25mm)、昇温条件:70℃〜220℃、3℃/min昇温、キャリアガス:窒素、線速度:27cm/sec、保持時間:Z体21.7min、E体22.2min)。さらに、ジアステレオマー比はガスクロマトグラフ分析によりE:Z=12:1であると決定した。   In addition, as a result of gas chromatographic analysis of the solanone represented by the formula (8) obtained in Example 3 above, the chemical purity was 96.8% (total of E and Z isomers) (analysis conditions, Column: TC-1701 (30 m × 0.25 mm), temperature rising conditions: 70 ° C. to 220 ° C., 3 ° C./min temperature rising, carrier gas: nitrogen, linear velocity: 27 cm / sec, holding time: Z body 21.7 min , E body 22.2 min). Furthermore, the diastereomeric ratio was determined to be E: Z = 12: 1 by gas chromatographic analysis.

Claims (4)

下記式(1)で表される化合物。
Figure 0006050291
A compound represented by the following formula (1).
Figure 0006050291
請求項1に記載の式(1)で表される化合物の製造方法であって、
下記式(4)
Figure 0006050291
で表される、N−(3−メチル−1−ブテニル)ピペリジンを、下記式(5)
Figure 0006050291
で表される、4−アクリロイルモルホリンにマイケル付加反応させ、続く酸加水分解により下記式(6)
Figure 0006050291
で表される化合物を得る工程、
こうして得た式(6)で表される化合物に下記式(7)
Figure 0006050291
(式中Xはハロゲン原子を示し、Phはフェニル基を示す)で表される、ハロゲン化2−メチル−2−プロペニルトリフェニルホスホニウムとウィッティヒ反応させる工程
を含んでなる、製造方法。
It is a manufacturing method of the compound represented by Formula (1) of Claim 1, Comprising:
Following formula (4)
Figure 0006050291
N- (3-methyl-1-butenyl) piperidine represented by the following formula (5)
Figure 0006050291
And 4-acryloylmorpholine represented by the following formula (6):
Figure 0006050291
Obtaining a compound represented by:
The compound represented by the formula (6) thus obtained was added to the following formula (7)
Figure 0006050291
(Wherein X represents a halogen atom and Ph represents a phenyl group), which comprises a step of causing a Wittig reaction with a halogenated 2-methyl-2-propenyltriphenylphosphonium.
下記式(8)
Figure 0006050291
で表されるソラノンの製造方法であって、
請求項1に記載の式(1)で表される化合物のモルホリンアミド部分をメチルカルボニルに変換することのできるグリニャール試薬を反応させる工程を含んでなる、製造方法。
Following formula (8)
Figure 0006050291
A method for producing solanone represented by:
A production method comprising a step of reacting a Grignard reagent capable of converting a morpholinamide moiety of a compound represented by the formula (1) according to claim 1 into methylcarbonyl.
下記式(6)で表される化合物。
Figure 0006050291
A compound represented by the following formula (6).
Figure 0006050291
JP2014161076A 2014-08-07 2014-08-07 Method for producing solanone and synthetic intermediate thereof Active JP6050291B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014161076A JP6050291B2 (en) 2014-08-07 2014-08-07 Method for producing solanone and synthetic intermediate thereof
CN201910292930.1A CN110003135A (en) 2014-08-07 2015-08-06 The preparation method and its synthetic intermediate of solanone
CN201510476119.0A CN105367517A (en) 2014-08-07 2015-08-06 Preparation method of solanone and synthetic intermediate thereof
HK16105123.1A HK1217192A1 (en) 2014-08-07 2016-05-05 A method for manufacturing solanone and the synthetic intermediate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161076A JP6050291B2 (en) 2014-08-07 2014-08-07 Method for producing solanone and synthetic intermediate thereof

Publications (2)

Publication Number Publication Date
JP2016037462A JP2016037462A (en) 2016-03-22
JP6050291B2 true JP6050291B2 (en) 2016-12-21

Family

ID=55370205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161076A Active JP6050291B2 (en) 2014-08-07 2014-08-07 Method for producing solanone and synthetic intermediate thereof

Country Status (3)

Country Link
JP (1) JP6050291B2 (en)
CN (2) CN105367517A (en)
HK (1) HK1217192A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111004105B (en) * 2019-12-06 2022-08-12 云南中烟工业有限责任公司 (Z) -type 7-iodo-5-isopropyl-6-en-2-one compound, and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412083A (en) * 1982-03-11 1983-10-25 International Flavors & Fragrances Inc. Process for producing solanone, norsolanadione and intermediates therefor
US4560499A (en) * 1982-05-20 1985-12-24 International Flavors & Fragrances Inc. Isosolanone and solanone intermediates and organoleptic uses
US4433695A (en) * 1982-05-20 1984-02-28 International Flavors & Fragrances Inc. Process for the production of isosolanone and solanone, intermediates useful in said process and organoleptic uses of said intermediates
US4609754A (en) * 1982-05-20 1986-09-02 International Flavors & Fragrances Inc. Process for the production of isosolanone and solanone, intermediates useful in said process and organoleptic uses of said intermediates
JPH07100675B2 (en) * 1987-09-08 1995-11-01 長谷川香料株式会社 Process for producing (+)-5S-isopropyl-8-methyl-6E, 8-nonagen-2-one
SG139587A1 (en) * 2006-07-28 2008-02-29 Givaudan Sa Method of using organic compounds
WO2008153042A1 (en) * 2007-06-11 2008-12-18 Kyowa Hakko Kirin Co., Ltd. Anti-tumor agent
MA34245B1 (en) * 2010-04-27 2013-05-02 Takeda Pharmaceutcal Company Ltd DERIVATIVES OF BICYCLIC COMPOUNDS AND THE USE THEREOF AS INHIBITORS OF ACC.
WO2012108478A1 (en) * 2011-02-09 2012-08-16 武田薬品工業株式会社 Monocyclic compound
JP5715893B2 (en) * 2011-06-21 2015-05-13 富士フレーバー株式会社 Process for producing 5-isopropyl-7,7-dimethoxyheptan-2-yl acetate and solanone
CN102875581B (en) * 2012-09-24 2015-05-13 西安近代化学研究所 Preparation method and application of trifluoro-isopropenyl Grignard reagent

Also Published As

Publication number Publication date
HK1217192A1 (en) 2016-12-30
CN105367517A (en) 2016-03-02
CN110003135A (en) 2019-07-12
JP2016037462A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP2009082048A (en) Citrus-based aroma composition, food, and method for reinforcing aroma or flavor
JP6050291B2 (en) Method for producing solanone and synthetic intermediate thereof
JP4643424B2 (en) Method for producing 2-acetyl-1-pyrroline
JP2006527285A (en) Improvements in or related to organic compounds
JP2021161035A (en) Method for Producing Nitrogen-Containing Alicyclic Compound
JP5824735B2 (en) Food and beverage additives
TWI403498B (en) 6, 8, 10-undecatrien-3 or 4-one and perfume composition
JPS6154030B2 (en)
JP4472262B2 (en) Process for producing wine lactone and its intermediate and its application
JP4143683B1 (en) 6,8,10-Undecatrien-3 or 4-ol and perfume composition
JP2007091663A (en) (z)-9-tetradecen-5-olide, method for producing the same and perfume composition containing the same
WO2018155720A1 (en) Novel spirosesquiterpene compound, flavoring composition and food/drink containing said compound, and method for producing said food/drink
JP5014732B2 (en) Method for producing anteisoaliphatic aldehyde and perfume composition containing the same
JP5999872B2 (en) How to add flavor
JP2006290843A (en) Geranyl derivative
JPH0517959B2 (en)
JP7051527B2 (en) Method for producing caffeoflan or its derivative
JP5030100B2 (en) Method for producing optically active δ-lactone
JP2008024685A (en) Method for producing 9-decen-5-olide
JP2010083913A (en) Perfume compound and perfume composition containing the perfume compound
JP6639436B2 (en) 3-Methyl-4-dodesenic acid and method for producing the same
JP2009084190A (en) 6,8,10-undecatrien-4-one and perfume composition
JP2010083894A (en) Production method and application for wine lactone and intermediate thereof
JP2014530217A (en) Method for preparing vanillin derivatives
JP2021075467A (en) γ-METHYL-γ,δ-EPOXY-α,β-UNSATURATED ALDEHYDE COMPOUND AND FLAVOR COMPOSITION CONTAINING THAT COMPOUND

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161124

R150 Certificate of patent or registration of utility model

Ref document number: 6050291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150