JP6048001B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6048001B2
JP6048001B2 JP2012189775A JP2012189775A JP6048001B2 JP 6048001 B2 JP6048001 B2 JP 6048001B2 JP 2012189775 A JP2012189775 A JP 2012189775A JP 2012189775 A JP2012189775 A JP 2012189775A JP 6048001 B2 JP6048001 B2 JP 6048001B2
Authority
JP
Japan
Prior art keywords
light emitting
substrate
light
emitting element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012189775A
Other languages
Japanese (ja)
Other versions
JP2014033168A (en
Inventor
哲平 国宗
哲平 国宗
蔵本 雅史
雅史 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2012189775A priority Critical patent/JP6048001B2/en
Publication of JP2014033168A publication Critical patent/JP2014033168A/en
Application granted granted Critical
Publication of JP6048001B2 publication Critical patent/JP6048001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、発光装置に関し、特に発光素子を実装部材に接合する接合部材を備える発光装置に関するものである。   The present invention relates to a light emitting device, and more particularly to a light emitting device including a joining member that joins a light emitting element to a mounting member.

例えば特許文献1,2に記載されているように、従来、半導体素子を配線基板やリードフレームに接合する接合材料として、銀などの金属粒子を有機溶剤に分散させた焼結型のペースト(以降、「金属粒子焼結型ペースト」と呼称する)が知られている。   For example, as described in Patent Documents 1 and 2, conventionally, as a bonding material for bonding a semiconductor element to a wiring board or a lead frame, a sintered paste in which metal particles such as silver are dispersed in an organic solvent (hereinafter, referred to as a bonding material) (Referred to as “metal particle sintered paste”).

この金属粒子焼結型ペーストは、200℃前後の加熱によって、有機溶剤を揮発させ、金属粒子同士を焼結させることで接合を行うことができる。また、その接合後の理論的耐熱限界は、その金属粒子の融点(例えば銀であれば約962℃)となる。このため、一般的に融点が300℃以上であり、接合後もその融点付近の温度で再溶融する鉛フリーの共晶半田に比べ、金属粒子焼結型ペーストは、接合温度、耐熱性において優れている。また、樹脂を含む接着剤と比べても、金属粒子焼結型ペーストは、耐熱性や放熱性において優れている。   The metal particle sintered paste can be bonded by heating the temperature around 200 ° C. to volatilize the organic solvent and sinter the metal particles. In addition, the theoretical heat limit after the bonding is the melting point of the metal particles (for example, about 962 ° C. for silver). For this reason, the metal particle sintered paste is generally superior in bonding temperature and heat resistance compared to lead-free eutectic solder that has a melting point of 300 ° C. or higher and remelts at a temperature near the melting point after bonding. ing. In addition, the metal particle sintered paste is superior in heat resistance and heat dissipation as compared with an adhesive containing resin.

特開2010−257880号公報JP 2010-257880 A 特開2011−091213号公報JP 2011-091213 A WO2011/010659号公報WO2011 / 010659 Publication WO2010/084746号公報WO2010 / 084746 WO2010/084742号公報WO2010 / 084742 Publication 特開2010−170916号公報JP 2010-170916 A WO2009/090915号公報WO2009 / 090915 特開2008−198962号公報JP 2008-198962 A 特開平11−284234号公報Japanese Patent Laid-Open No. 11-284234

しかしながら、金属粒子焼結型ペーストを焼成して得られる焼結体は、隣接する金属粒子間の隙間が空隙となって内部に残るために多孔質となり、また表面には金属粒子の形状に起因する微細な凹凸構造を有するものとなることがある。このため、金属粒子焼結型ペーストを発光素子の接合に適用した場合、金属粒子の焼結体の表面の凹凸構造により光損失が発生し、光の取り出し効率が低下する虞がある。   However, the sintered body obtained by firing the metal particle sintered paste becomes porous because the gap between adjacent metal particles becomes a void and remains inside, and the surface is caused by the shape of the metal particles. It may have a fine concavo-convex structure. For this reason, when the metal particle sintered paste is applied to bonding of light emitting elements, light loss occurs due to the uneven structure on the surface of the sintered body of metal particles, and the light extraction efficiency may be reduced.

そこで、本発明は、かかる事情に鑑みてなされたものであり、発光素子と実装部材の接合性に優れ、光の取り出し効率の高い発光装置を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a light-emitting device that is excellent in bondability between a light-emitting element and a mounting member and has high light extraction efficiency.

上記課題を解決するために、本発明に係る発光装置は、基板と、前記基板の上面側に設けられた発光素子構造と、前記基板と前記発光素子構造の間に設けられた、金属反射膜又は誘電体多層膜を含む接合層と、を有する発光素子と、前記発光素子が実装される実装部材と、金属粒子の焼結体であって、前記発光素子の基板の下面側と前記実装部材を接合する接合部材と、を備えることを特徴とする。   In order to solve the above-described problems, a light-emitting device according to the present invention includes a substrate, a light-emitting element structure provided on the upper surface side of the substrate, and a metal reflective film provided between the substrate and the light-emitting element structure. Or a light emitting element having a bonding layer including a dielectric multilayer film, a mounting member on which the light emitting element is mounted, a sintered body of metal particles, and a lower surface side of the substrate of the light emitting element and the mounting member And a joining member for joining together.

また、本発明に係る発光装置は、以下のように構成することができる。
前記接合部材は、前記基板の側面の少なくとも一部を被覆していてもよい。
前記接合部材の表面を被覆する白色の被覆部材を備えていてもよい。
前記被覆部材は、前記基板の側面の少なくとも一部を被覆していてもよい。
前記基板は、遮光性基板であってもよい。
前記金属粒子は、銀又は銀合金であってもよい。
Moreover, the light emitting device according to the present invention can be configured as follows.
The bonding member may cover at least a part of the side surface of the substrate.
You may provide the white coating | coated member which coat | covers the surface of the said joining member.
The covering member may cover at least a part of the side surface of the substrate.
The substrate may be a light shielding substrate.
The metal particles may be silver or a silver alloy.

本発明によれば、発光素子構造から出射される光を接合層により上方に反射させて、金属粒子の焼結体である接合部材への光入射を低減し、高い光の取り出し効率を得ることができる。   According to the present invention, the light emitted from the light emitting element structure is reflected upward by the bonding layer, so that the light incident on the bonding member, which is a sintered body of metal particles, is reduced, and high light extraction efficiency is obtained. Can do.

本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのA−A断面における概略断面図(b)である。It is the schematic top view (a) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (b) in the AA cross section. 本発明の一実施の形態に係る発光装置の概略上面図(a)と、そのB−B断面における概略断面図(b)である。It is the schematic top view (a) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (b) in the BB cross section.

以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. In addition, the size, positional relationship, and the like of members illustrated in each drawing may be exaggerated for clarity of explanation.

<実施の形態1>
図1(a)は、実施の形態1に係る発光装置を示す概略上面図であり、図1(b)は、図1(a)におけるA−A断面を示す概略断面図である。図1に示すように、実施の形態1に係る発光装置100は、発光素子10と、実装部材20と、接合部材30と、を備えている。
<Embodiment 1>
FIG. 1A is a schematic top view showing the light-emitting device according to Embodiment 1, and FIG. 1B is a schematic cross-sectional view showing the AA cross section in FIG. As shown in FIG. 1, the light-emitting device 100 according to Embodiment 1 includes a light-emitting element 10, a mounting member 20, and a joining member 30.

発光素子10は、1個の発光ダイオード(LED)チップである。発光素子10は、基板11と、その基板の上面側に設けられた発光素子構造13と、を含んでいる。また、発光素子10の上面には、蛍光体を含有する波長変換部材60が設けられている。この波長変換部材60は、上面視において、発光素子10と略同じ形状である。よって、発光素子10は、波長変換部材一体型の発光素子と考えることもできる。なお、基板11の下面には、金属膜17が設けられていてもよい。   The light emitting element 10 is one light emitting diode (LED) chip. The light emitting element 10 includes a substrate 11 and a light emitting element structure 13 provided on the upper surface side of the substrate. A wavelength conversion member 60 containing a phosphor is provided on the upper surface of the light emitting element 10. The wavelength conversion member 60 has substantially the same shape as the light emitting element 10 in a top view. Therefore, the light emitting element 10 can also be considered as a wavelength conversion member integrated light emitting element. A metal film 17 may be provided on the lower surface of the substrate 11.

実装部材20は、発光素子10が実装される部材である。実装部材20は、正負一対のリードフレームである導電部材21と、この導電部材21と一体成形された樹脂の成形体である基体23と、を有するパッケージである。実装部材20は凹部を備えており、発光素子10はその凹部内に収容されている。   The mounting member 20 is a member on which the light emitting element 10 is mounted. The mounting member 20 is a package having a conductive member 21 that is a pair of positive and negative lead frames, and a base body 23 that is a molded body of resin integrally formed with the conductive member 21. The mounting member 20 includes a recess, and the light emitting element 10 is accommodated in the recess.

発光装置100は、発光素子10を封止する封止部材50をさらに備えている。封止部材50は、ほぼ透明な樹脂の成形体である。また、封止部材50は、実装部材20の凹部に充填され、さらにその表面が上方に突出した凸面に形成されている。   The light emitting device 100 further includes a sealing member 50 that seals the light emitting element 10. The sealing member 50 is a substantially transparent resin molded body. Further, the sealing member 50 is formed in a convex surface that is filled in the concave portion of the mounting member 20 and whose surface further protrudes upward.

接合部材30は、発光素子10の基板11の下面側と実装部材20(特に導電部材21)を接合する部材である。接合部材30は、金属粒子35の焼結体である。この接合部材30は、金属粒子焼結型ペーストが焼成されて得られるものであり、多孔質で、表面には凹凸が形成されている。   The joining member 30 is a member that joins the lower surface side of the substrate 11 of the light emitting element 10 and the mounting member 20 (particularly the conductive member 21). The joining member 30 is a sintered body of the metal particles 35. The joining member 30 is obtained by firing a metal particle sintered paste, is porous, and has irregularities formed on the surface.

そして、発光素子10は、基板11と発光素子構造13の間に、接合層15を有している。この接合層15は、金属反射膜又は誘電体多層膜を含んでいる。これにより、発光素子構造13から出射される光を接合層15の金属反射膜又は誘電体多層膜によって上方に効率良く反射させ、接合部材15への光入射を低減し、また発光素子構造13から出射される光が基板11内部に進行することを抑制して、光の取り出し効率を高めることができる。このように、本実施形態では、発光素子10を金属粒子の焼結体である接合部材30により実装部材20と接合することで、放熱性や耐熱性に優れながら、さらに接合層15により接合部材30への光入射を低減して、光の取り出し効率の高い発光装置とすることができる。なお、接合層15の金属反射膜又は誘電体多層膜は、発光素子構造13に接して、又は、発光素子構造13に接して設けられた導電性酸化物膜などの透光膜に接して、設けられることが、その光反射機能を発揮しやすいので好ましい。   The light emitting element 10 has a bonding layer 15 between the substrate 11 and the light emitting element structure 13. The bonding layer 15 includes a metal reflective film or a dielectric multilayer film. Thereby, the light emitted from the light emitting element structure 13 is efficiently reflected upward by the metal reflective film or the dielectric multilayer film of the bonding layer 15 to reduce the light incident on the bonding member 15, and from the light emitting element structure 13. It is possible to increase the light extraction efficiency by suppressing the emitted light from traveling into the substrate 11. As described above, in the present embodiment, the light emitting element 10 is bonded to the mounting member 20 by the bonding member 30 that is a sintered body of metal particles, so that the bonding member 15 is further bonded to the bonding member 15 while being excellent in heat dissipation and heat resistance. Light incidence to 30 can be reduced, and a light emitting device with high light extraction efficiency can be obtained. Note that the metal reflective film or the dielectric multilayer film of the bonding layer 15 is in contact with the light emitting element structure 13 or a light transmitting film such as a conductive oxide film provided in contact with the light emitting element structure 13. It is preferable to be provided because the light reflecting function is easily exhibited.

以下、発光装置100の好ましい形態について詳述する。   Hereinafter, the preferable form of the light-emitting device 100 is explained in full detail.

図1に示す例の発光装置100において、接合部材30は、基板11の側面の一部を被覆している。接合部材30は、基板11の側面の全部を被覆していてもよい。このように、接合部材30が、基板11の側面の少なくとも一部を被覆していることにより、発光素子10と実装部材20の接合強度や発光素子10の放熱性を高めることができる。また、接合層15の金属反射膜又は誘電体多層膜によって、基板11内部への光の進行を抑制して、基板11の側面を被覆する接合部材30による光損失を抑制することができる。   In the light emitting device 100 of the example illustrated in FIG. 1, the bonding member 30 covers a part of the side surface of the substrate 11. The bonding member 30 may cover the entire side surface of the substrate 11. As described above, since the bonding member 30 covers at least a part of the side surface of the substrate 11, the bonding strength between the light emitting element 10 and the mounting member 20 and the heat dissipation of the light emitting element 10 can be improved. In addition, the metal reflection film or the dielectric multilayer film of the bonding layer 15 can suppress the progress of light to the inside of the substrate 11 and suppress the light loss due to the bonding member 30 that covers the side surface of the substrate 11.

また、図1に示す例の発光装置100において、接合部材30の表面は、被覆部材40により被覆されている。被覆部材40は、白色であることが好ましい。これにより、発光素子構造13から出射される光を被覆部材40により上方に効率良く反射させ、接合部材30への光入射を低減して、高い光の取り出し効率を得ることができる。また、発光装置外部から侵入する硫黄含有ガスなどの腐食性ガスや水分によって、接合部材30が変色などの劣化をきたしても、接合部材30の表面を被覆する被覆部材40により、接合部材30への光入射を低減して、高い光の取り出し効率を維持することができる。これは、金属粒子35が比較的変色しやすい銀や銀合金である場合、特に効果的である。   In the light emitting device 100 of the example shown in FIG. 1, the surface of the bonding member 30 is covered with a covering member 40. The covering member 40 is preferably white. Thereby, the light emitted from the light emitting element structure 13 can be efficiently reflected upward by the covering member 40, the light incident on the bonding member 30 can be reduced, and high light extraction efficiency can be obtained. Further, even when the joining member 30 is deteriorated such as discoloration due to corrosive gas such as sulfur-containing gas or moisture entering from the outside of the light emitting device, the covering member 40 that covers the surface of the joining member 30 is used to join the joining member 30. Therefore, it is possible to maintain high light extraction efficiency. This is particularly effective when the metal particles 35 are silver or a silver alloy that is relatively easily discolored.

さらに、図1に示す例の発光装置100において、被覆部材40は、基板11の側面の全部を被覆している。このように、被覆部材40が基板11の側面の少なくとも一部を被覆していることにより、被覆部材40による接合部材30の被覆面積が大きくなり、接合部材30の表面による光損失を抑制しやすい。また、接合層15の金属反射膜又は誘電体多層膜によって、基板11内部への光の進行を抑制して、基板11の側面を被覆する被覆部材40による光の閉じ込めを抑制することができる。また、特に基板11が遮光性基板である場合には、基板11の側面による光損失を抑制することができる。   Furthermore, in the light emitting device 100 of the example illustrated in FIG. 1, the covering member 40 covers the entire side surface of the substrate 11. As described above, since the covering member 40 covers at least a part of the side surface of the substrate 11, the covering area of the joining member 30 by the covering member 40 is increased, and light loss due to the surface of the joining member 30 can be easily suppressed. . In addition, the metal reflection film or the dielectric multilayer film of the bonding layer 15 can suppress the progress of light into the substrate 11, thereby suppressing light confinement by the covering member 40 that covers the side surface of the substrate 11. In particular, when the substrate 11 is a light-shielding substrate, light loss due to the side surface of the substrate 11 can be suppressed.

また、被覆部材40は、発光素子構造13(特に活性層)の側面を被覆している。さらに、被覆部材40は、波長変換部材60の側面を被覆している。これにより、発光素子構造13及び波長変換部材60から直接的に側方に光が出射されるのを抑制し、発光素子構造13から波長変換部材60に光が効率良く入射され、色斑の少ない発光が可能な発光装置とすることができる。また、被覆部材40は、発光素子10の周囲の実装部材20上を連続的に被覆している。これにより、封止部材50中を進行する光(発光素子構造13からの光及び蛍光体からの波長変換光)を被覆部材40によって効率良く上方に反射させ、実装部材20や接合部材30への光入射を低減して、高い光の取り出し効率を得ることができる。   The covering member 40 covers the side surface of the light emitting element structure 13 (particularly the active layer). Further, the covering member 40 covers the side surface of the wavelength conversion member 60. Thereby, it is possible to suppress the light from being directly emitted from the light emitting element structure 13 and the wavelength conversion member 60 to the side, the light is efficiently incident on the wavelength conversion member 60 from the light emitting element structure 13, and there are few color spots. A light emitting device capable of emitting light can be obtained. The covering member 40 continuously covers the mounting member 20 around the light emitting element 10. Thereby, the light (light from the light emitting element structure 13 and wavelength converted light from the phosphor) traveling in the sealing member 50 is efficiently reflected upward by the covering member 40, and is applied to the mounting member 20 and the bonding member 30. Light incidence can be reduced and high light extraction efficiency can be obtained.

なお、被覆部材40は、金属粒子35より平均粒径が小さい粒子45を含有していることが好ましい。これにより、被覆部材40が含有する粒子45が、接合部材30の表面の凹部上に密に配置されやすく、接合部材30による光損失を抑制しやすい。さらには、被覆部材40が含有する粒子45が、接合部材30の表面の凹部内に配置されていることがより好ましく、さらには凹部に充填されているとなお良い。   The covering member 40 preferably contains particles 45 having an average particle size smaller than that of the metal particles 35. Thereby, the particles 45 contained in the covering member 40 are easily arranged densely on the concave portions on the surface of the bonding member 30, and light loss due to the bonding member 30 is easily suppressed. Furthermore, it is more preferable that the particles 45 contained in the covering member 40 are disposed in the recesses on the surface of the bonding member 30, and it is even more preferable that the recesses are filled.

<実施の形態2>
図2(a)は、実施の形態2に係る発光装置を示す概略上面図であり、図2(b)は、図2(a)におけるB−B断面を示す概略断面図である。図2に示すように、実施の形態2に係る発光装置200は、発光素子10と、実装部材20と、接合部材30と、を備えている。
<Embodiment 2>
2A is a schematic top view showing the light-emitting device according to Embodiment 2, and FIG. 2B is a schematic cross-sectional view showing a BB cross section in FIG. 2A. As illustrated in FIG. 2, the light-emitting device 200 according to Embodiment 2 includes a light-emitting element 10, a mounting member 20, and a joining member 30.

発光素子10は、基板11と、その基板の上面側に設けられた発光素子構造13と、これらの間に設けられた接合層15と、を含むLEDチップであり、複数個設けられている。なお、基板11の下面には、金属膜17が設けられていてもよい。   The light emitting element 10 is an LED chip including a substrate 11, a light emitting element structure 13 provided on the upper surface side of the substrate, and a bonding layer 15 provided therebetween, and a plurality of the light emitting elements 10 are provided. A metal film 17 may be provided on the lower surface of the substrate 11.

実装部材20は、配線である導電部材22と、この導電部材22を表面に有する基板の母材である基体24と、を有する配線基板である。実装部材20の上面には、導電部材22上に実装される全ての発光素子10を囲むように、枠状の突起が設けられている。この突起は、白色の樹脂の成形体である。   The mounting member 20 is a wiring board having a conductive member 22 which is a wiring and a base body 24 which is a base material of a substrate having the conductive member 22 on the surface. A frame-shaped protrusion is provided on the upper surface of the mounting member 20 so as to surround all the light emitting elements 10 mounted on the conductive member 22. This protrusion is a molded body of white resin.

封止部材50は、突起の内側に充填され、全ての発光素子10を覆っており、その表面はほぼ平坦に形成されている。この封止部材50は、蛍光体を含有する樹脂の成形体であり、波長変換部材61でもある。   The sealing member 50 is filled inside the protrusion and covers all the light emitting elements 10, and the surface thereof is formed substantially flat. The sealing member 50 is a molded body of resin containing a phosphor, and is also a wavelength conversion member 61.

接合部材30は、金属粒子35の焼結体であり、基板11の下面側に加え側面の一部を被覆して、各発光素子10と実装部材20を接合している。この接合部材30は、金属粒子焼結型ペーストが焼成されたものであり、多孔質で、表面には凹凸が形成されている。   The joining member 30 is a sintered body of the metal particles 35, covers a part of the side surface in addition to the lower surface side of the substrate 11, and joins each light emitting element 10 and the mounting member 20. The joining member 30 is obtained by firing a metal particle sintered paste, is porous, and has irregularities formed on the surface.

図2に示す例の発光装置200において、被覆部材40は、各発光素子10の基板11の側面の一部を被覆している。したがって、各発光素子10の発光素子構造13(特に活性層)の側面は、被覆部材40から露出されている。これにより、被覆部材40による光の閉じ込めを抑制して、発光素子構造13から効率良く光を取り出すことができる。また、被覆部材40は、各発光素子10の間の実装部材20上を連続的に被覆している。これにより、封止部材50(波長変換部材61)中を進行する光(発光素子構造13からの光及び蛍光体からの波長変換光)を被覆部材40によって効率良く上方に反射させ、実装部材20や接合部材30への光入射を低減して、高い光の取り出し効率を得ることができる。また、被覆部材40が含有する粒子45の光散乱効果により、発光素子構造13からの光と蛍光体からの波長変換光の混色を促進し、色斑の少ない発光が可能な発光装置とすることができる。   In the light emitting device 200 of the example shown in FIG. 2, the covering member 40 covers a part of the side surface of the substrate 11 of each light emitting element 10. Therefore, the side surface of the light emitting element structure 13 (particularly the active layer) of each light emitting element 10 is exposed from the covering member 40. Thereby, light confinement by the covering member 40 can be suppressed, and light can be efficiently extracted from the light emitting element structure 13. The covering member 40 continuously covers the mounting member 20 between the light emitting elements 10. Thereby, the light (light from the light emitting element structure 13 and wavelength converted light from the phosphor) traveling in the sealing member 50 (wavelength conversion member 61) is efficiently reflected upward by the covering member 40, and the mounting member 20 In addition, it is possible to reduce the incidence of light on the bonding member 30 and obtain high light extraction efficiency. Further, the light scattering effect of the particles 45 contained in the covering member 40 promotes the color mixture of the light from the light emitting element structure 13 and the wavelength converted light from the phosphor, and the light emitting device can emit light with less color spots. Can do.

以下、本発明の発光装置の各構成要素について説明する。   Hereinafter, each component of the light emitting device of the present invention will be described.

(発光素子10)
発光素子10は、少なくとも基板11と、発光素子構造13と、により構成される。発光素子10の上面視形状は、四角形、特に長方形であることが好ましいが、その他の形状であってもよい。発光素子10(特に基板11)の側面は、上面に対して、略垂直であってもよいし、内側又は外側に傾斜していてもよい。
(Light emitting element 10)
The light emitting element 10 includes at least a substrate 11 and a light emitting element structure 13. The shape of the light emitting element 10 when viewed from above is preferably a quadrangle, particularly a rectangle, but may be other shapes. The side surface of the light emitting element 10 (particularly the substrate 11) may be substantially perpendicular to the upper surface, or may be inclined inward or outward.

(基板11)
基板11は、例えば、結晶成長用基板から分離した発光素子構造13に接合させる接合用基板である。基板11が導電性を有することで、上下電極構造(対向電極構造)を採用することができ、発光面積を大きくしやすい。また、発光素子構造13に面内均一に給電しやすく、発光効率を高めやすい。また、発光素子構造13から基板11内部への光の進行を抑制する接合層15があれば、基板11は、光学特性よりも熱伝導性や導電性を優先的に考慮して選択することができる。特に、基板11は、遮光性基板であることが好ましい。遮光性基板は、熱伝導性に優れるものが多く、発光素子10の放熱性を高めやすい。具体的には、基板11は、シリコン、炭化珪素、窒化アルミニウム、銅、銅−タングステン、ガリウム砒素、セラミックスなどを用いることができる。なかでも、発光素子構造13との熱膨張率差の観点では、シリコン、炭化珪素、銅−タングステンが好ましく、費用の観点では、シリコン、銅−タングステンが好ましい。基板11の厚さは、例えば20μm以上1000μm以下であり、基板11の強度や発光装置100,200の厚さの観点において、50μm以上500μm以下であることが好ましい。
(Substrate 11)
The substrate 11 is, for example, a bonding substrate that is bonded to the light emitting element structure 13 separated from the crystal growth substrate. Since the substrate 11 has conductivity, an upper and lower electrode structure (counter electrode structure) can be employed, and the light emitting area can be easily increased. In addition, it is easy to supply power uniformly to the light emitting element structure 13 in the surface, and it is easy to increase the light emission efficiency. Further, if there is a bonding layer 15 that suppresses the progress of light from the light emitting element structure 13 to the inside of the substrate 11, the substrate 11 can be selected by giving priority to thermal conductivity and conductivity over optical characteristics. it can. In particular, the substrate 11 is preferably a light-shielding substrate. Many of the light-shielding substrates are excellent in thermal conductivity, and it is easy to improve the heat dissipation of the light-emitting element 10. Specifically, the substrate 11 can be made of silicon, silicon carbide, aluminum nitride, copper, copper-tungsten, gallium arsenide, ceramics, or the like. Among these, silicon, silicon carbide, and copper-tungsten are preferable from the viewpoint of the difference in thermal expansion coefficient from the light emitting element structure 13, and silicon and copper-tungsten are preferable from the viewpoint of cost. The thickness of the substrate 11 is, for example, 20 μm or more and 1000 μm or less, and is preferably 50 μm or more and 500 μm or less from the viewpoint of the strength of the substrate 11 or the thickness of the light emitting devices 100 and 200.

(発光素子構造13)
発光素子構造13は、半導体層の積層体であり、少なくともn型半導体層とp型半導体層を含み、さらに活性層をその間に介することが好ましい。発光素子構造13の発光波長は、半導体材料やその混晶比によって、紫外から赤外まで選択することができる。半導体材料としては、蛍光体を効率良く励起できる短波長の光を発光可能な窒化物半導体(主として一般式InAlGa1−x−yN(0≦x≦1、0≦y≦1、x+y≦1)で表される)を用いることが好ましい。このほか、InAlGaAs系半導体、InAlGaP系半導体、硫化亜鉛、セレン化亜鉛、炭化珪素などを用いることもできる。
(Light Emitting Element Structure 13)
The light-emitting element structure 13 is a stacked body of semiconductor layers, and preferably includes at least an n-type semiconductor layer and a p-type semiconductor layer, and further has an active layer interposed therebetween. The emission wavelength of the light-emitting element structure 13 can be selected from ultraviolet to infrared depending on the semiconductor material and its mixed crystal ratio. As a semiconductor material, a nitride semiconductor capable of emitting light with a short wavelength capable of efficiently exciting a phosphor (mainly general formula In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1 X + y ≦ 1) is preferred. In addition, an InAlGaAs-based semiconductor, an InAlGaP-based semiconductor, zinc sulfide, zinc selenide, silicon carbide, or the like can also be used.

(接合層15)
接合層15は、上述の接合用基板である基板11と、結晶成長用基板から分離した発光素子構造13と、を接合させる層である。接合層15が含む金属反射膜は、銀、アルミニウム、ロジウム、プラチナ、金、又はこれらの合金を用いることができ、なかでも光反射性に優れる銀又は銀合金が好ましい。接合層15が含む誘電体多層膜は、例えば(Nb/SiO(ただしnは自然数)の積層構造など、シリコン、チタン、ジルコニウム、ニオブ、タンタル、アルミニウムのうちのいずれか一種の酸化物又は窒化物の少なくとも2つを繰り返し積層したものを用いることができる。金属反射膜は、接合層15の一部又は全部に設けられ、誘電体多層膜は、接合層15の一部に設けられる。金属反射膜や誘電体多層膜が接合層15の一部に設けられる場合、接合層15の他の部位は、金、錫、プラチナ、パラジウム、ロジウム、ニッケル、タングステン、モリブデン、クロム、チタン、又はこれらの合金やそれらの組み合わせにより構成することができる。なお、接合層15は、基板11が結晶成長用基板である場合、又は接合用基板である基板11と、結晶成長用基板から分離した発光素子構造13と、を表面活性化接合や熱圧着などにより直接接合する場合には、省略することができる。
(Joining layer 15)
The bonding layer 15 is a layer for bonding the substrate 11 which is the bonding substrate described above and the light emitting element structure 13 separated from the crystal growth substrate. Silver, aluminum, rhodium, platinum, gold, or an alloy thereof can be used for the metal reflective film included in the bonding layer 15, and silver or a silver alloy excellent in light reflectivity is particularly preferable. The dielectric multilayer film included in the bonding layer 15 is, for example, any one of silicon, titanium, zirconium, niobium, tantalum, and aluminum, such as a stacked structure of (Nb 2 O 5 / SiO 2 ) n (where n is a natural number). A laminate in which at least two of the oxides or nitrides are repeatedly stacked can be used. The metal reflective film is provided on a part or all of the bonding layer 15, and the dielectric multilayer film is provided on a part of the bonding layer 15. When a metal reflective film or a dielectric multilayer film is provided on a part of the bonding layer 15, other parts of the bonding layer 15 are gold, tin, platinum, palladium, rhodium, nickel, tungsten, molybdenum, chromium, titanium, or These alloys and combinations thereof can be used. Note that the bonding layer 15 is formed by surface activated bonding, thermocompression bonding, or the like when the substrate 11 is a crystal growth substrate or when the substrate 11 is a bonding substrate and the light emitting element structure 13 separated from the crystal growth substrate. In the case of direct joining, it can be omitted.

(金属膜17)
金属膜17が基板11の下面に設けられることで、発光素子10の実装部材20への接合強度を高めることができ、また低温で高い接合強度が得られやすくなる。金属膜17の材料としては、銀、プラチナ、金、チタン、アルミニウム又はこれらの合金を用いることができ、なかでも銀が好ましい。金属膜17は、単層膜でも多層膜でもよい。金属膜17は、スパッタ法、めっき法、蒸着法などにより形成することができる。なお、金属膜17は省略することもでき、基板11の下面が接合部材30と接していてもよい。
(Metal film 17)
By providing the metal film 17 on the lower surface of the substrate 11, the bonding strength of the light emitting element 10 to the mounting member 20 can be increased, and high bonding strength can be easily obtained at a low temperature. As a material of the metal film 17, silver, platinum, gold, titanium, aluminum, or an alloy thereof can be used, and silver is particularly preferable. The metal film 17 may be a single layer film or a multilayer film. The metal film 17 can be formed by sputtering, plating, vapor deposition or the like. The metal film 17 can be omitted, and the lower surface of the substrate 11 may be in contact with the bonding member 30.

(実装部材20)
実装部材20は、多くの場合、導電部材21,22と、基体23,24と、を含んで構成される。なお、実装部材は、ランプ型(砲弾型)の発光装置(不図示)のように、リードフレームである導電部材が基体を兼ねる形態であってもよい。
(Mounting member 20)
In many cases, the mounting member 20 includes conductive members 21 and 22 and bases 23 and 24. The mounting member may have a form in which a conductive member as a lead frame also serves as a base, like a lamp type (bullet type) light emitting device (not shown).

(導電部材21,22)
導電部材21,22は、発光素子10と電気的に接続され、発光素子10に電力を供給する部材である。導電部材21,22は、リードフレームや配線などである。導電部材21,22の材料としては、銅、鉄、ニッケル、タングステン、クロム、アルミニウム、銀、金、チタン又はそれらの合金が挙げられる。特に、放熱性の観点においては銅又は銅合金、半導体素子との接合信頼性においては鉄又は鉄合金が好ましい。導電部材21,22の表面には、銀、プラチナ、錫、金、銅、ロジウム、又はこれらの合金、若しくは酸化銀や銀合金の酸化物などの被膜が形成されていてもよい。特に、導電部材21,22の半導体素子10が接合される部位の表面が銀で被覆されていてもよい。これらの被膜は、鍍金、蒸着、スパッタ、印刷、塗布などにより形成することができる。
(Conductive members 21, 22)
The conductive members 21 and 22 are members that are electrically connected to the light emitting element 10 and supply power to the light emitting element 10. The conductive members 21 and 22 are a lead frame and wiring. Examples of the material of the conductive members 21 and 22 include copper, iron, nickel, tungsten, chromium, aluminum, silver, gold, titanium, and alloys thereof. In particular, copper or copper alloy is preferable from the viewpoint of heat dissipation, and iron or iron alloy is preferable from the viewpoint of bonding reliability with the semiconductor element. A film of silver, platinum, tin, gold, copper, rhodium, or an alloy thereof, or an oxide of silver oxide or a silver alloy may be formed on the surfaces of the conductive members 21 and 22. In particular, the surface of the part to which the semiconductor element 10 of the conductive members 21 and 22 is joined may be covered with silver. These coatings can be formed by plating, vapor deposition, sputtering, printing, coating, or the like.

(基体23,24)
基体23,24は、導電部材21,22を保持する部材である。基体23,24は、凹部(カップ部)を有するものや平板状のものなどを用いることができる。凹部を有するものは光の取り出し効率を高めやすく、平板状のものは発光素子10を実装しやすい。主として、前者はパッケージ、後者は配線基板の形態である。パッケージを構成する基体23としては、リードフレームと一体成形されたものの他、パッケージを成形後に鍍金などにより配線を設けたものでもよい。パッケージを構成する基体23の材料としては、例えばポリフタルアミドや液晶ポリマーなどの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂、ガラスエポキシ、セラミックスなどが挙げられる。また、発光素子10からの光を効率良く反射させるために、これらの樹脂に酸化チタンなどの白色顔料を配合してもよい。パッケージの成形方法としては、インサート成形、射出成形、押出成形、トランスファ成形などを用いることができる。配線基板を構成する基体24としては、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタン又はこれらの混合物を含むセラミックス基板、銅、鉄、ニッケル、クロム、アルミニウム、銀、金、チタン又はこれらの合金を含む金属基板、ガラスエポキシ基板、BTレジン基板、ガラス基板、樹脂基板、紙基板などが挙げられる。ポリイミドなどの可撓性基板(フレキシブル基板)でもよい。
(Substrate 23, 24)
The bases 23 and 24 are members that hold the conductive members 21 and 22. As the substrates 23 and 24, those having a recess (cup portion), a flat plate, or the like can be used. Those having recesses are likely to increase the light extraction efficiency, and those having a flat shape are easy to mount the light emitting element 10. The former is mainly in the form of a package, and the latter is in the form of a wiring board. As the base 23 constituting the package, in addition to the one integrally formed with the lead frame, a wiring provided by plating or the like after the package is formed may be used. Examples of the material of the substrate 23 constituting the package include thermoplastic resins such as polyphthalamide and liquid crystal polymer, thermosetting resins such as epoxy resin, glass epoxy, and ceramics. Moreover, in order to reflect the light from the light emitting element 10 efficiently, you may mix | blend white pigments, such as a titanium oxide, with these resin. As a molding method of the package, insert molding, injection molding, extrusion molding, transfer molding, or the like can be used. As the substrate 24 constituting the wiring board, a ceramic substrate containing aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride or a mixture thereof, copper, iron, nickel, chromium, aluminum, silver, gold, A metal substrate containing titanium or an alloy thereof, a glass epoxy substrate, a BT resin substrate, a glass substrate, a resin substrate, a paper substrate, and the like can be given. A flexible substrate (flexible substrate) such as polyimide may be used.

(接合部材30)
接合部材30は、金属粒子35と有機溶剤を含有する金属粒子焼結型ペーストを焼成することにより得られるものである。接合部材30は、樹脂を実質的に含有しない。金属粒子35は、金、銀、銅、ニッケル、パラジウム、プラチナ、ロジウム、アルミニウム、亜鉛、又はこれらの合金を用いることができる。なかでも、金属粒子35は、焼結温度や大気雰囲気での焼結性の観点において、銀又は銀合金であることが好ましい。また、金属粒子が銀又は銀合金である場合には、金属粒子焼結型ペーストに金属酸化物の粒子、好ましくは酸化銀の粒子を添加してもよい。金属粒子35の平均粒径(メジアン径)は、低温で発光素子10と実装部材20を接合しやすくするために、0.02μm以上10μm以下であることが好ましく、0.06μm以上7μm以下であることがより好ましい。なお、金属粒子35の平均粒径(メジアン径)は、レーザ回折・散乱法などにより測定することができる。また、金属粒子35の比表面積は、例えば0.1m/g以上3m/g以下であり、0.15m/g以上2.8m/g以下であることが好ましく、0.19m/g以上2.7m/g以下であることがより好ましい。金属粒子35の比表面積がこのような範囲であれば、金属粒子35同士の結合面積を大きくでき、低温で発光素子10と実装部材20を接合しやすい。なお、金属粒子35の比表面積は、BETなどにより測定することができる。金属粒子35は、2種類の粒子の混合物であってもよい。この場合、金属粒子35は、平均粒径(メジアン径)が0.1μm以上1μm以下の第1粒子と、平均粒径(メジアン径)が2μm以上15μm以下の第2粒子と、の混合物であることが好ましい。また、第1粒子と第2粒子の重量比は、2:3であることが好ましい。このような粒子の混合物を用いることにより、低温で発光素子10と実装部材20を接合しやすい。接合部材30は、内部に多数の空隙を含むので、柔軟性に富んでいる。特に、平均粒径(メジアン径)の比較的大きい(例えばμmオーダ、より詳細には上記のような範囲の平均粒径の)金属粒子35を含む金属粒子焼結型ペーストの場合、隣接する金属粒子間の隙間が大きくなり、空隙となって内部に残りやすくなるために、接合部材30が多孔質となりやすい。
(Jointing member 30)
The joining member 30 is obtained by firing a metal particle sintered paste containing metal particles 35 and an organic solvent. The joining member 30 contains substantially no resin. As the metal particles 35, gold, silver, copper, nickel, palladium, platinum, rhodium, aluminum, zinc, or an alloy thereof can be used. Especially, it is preferable that the metal particle 35 is silver or a silver alloy from a viewpoint of sintering temperature or sinterability in an air atmosphere. When the metal particles are silver or a silver alloy, metal oxide particles, preferably silver oxide particles, may be added to the metal particle sintered paste. The average particle diameter (median diameter) of the metal particles 35 is preferably 0.02 μm or more and 10 μm or less, and preferably 0.06 μm or more and 7 μm or less in order to facilitate the joining of the light emitting element 10 and the mounting member 20 at a low temperature. It is more preferable. The average particle diameter (median diameter) of the metal particles 35 can be measured by a laser diffraction / scattering method or the like. The specific surface area of the metal particles 35 is, for example, 0.1 m 2 / g or more 3m 2 / g or less, preferably less 0.15 m 2 / g or more 2.8m 2 / g, 0.19m 2 / G or more and 2.7 m 2 / g or less is more preferable. When the specific surface area of the metal particles 35 is in such a range, the bonding area between the metal particles 35 can be increased, and the light emitting element 10 and the mounting member 20 can be easily joined at a low temperature. The specific surface area of the metal particles 35 can be measured by BET or the like. The metal particles 35 may be a mixture of two types of particles. In this case, the metal particles 35 are a mixture of first particles having an average particle diameter (median diameter) of 0.1 μm to 1 μm and second particles having an average particle diameter (median diameter) of 2 μm to 15 μm. It is preferable. The weight ratio of the first particles to the second particles is preferably 2: 3. By using such a mixture of particles, the light emitting element 10 and the mounting member 20 can be easily joined at a low temperature. Since the joining member 30 includes a large number of voids inside, the joining member 30 is rich in flexibility. In particular, in the case of a metal particle sintered paste containing metal particles 35 having a relatively large average particle diameter (median diameter) (for example, on the order of μm, more specifically, an average particle diameter in the above range), adjacent metals Since the gap between the particles becomes large and becomes a void and tends to remain inside, the joining member 30 tends to be porous.

有機溶剤は、各種の低級アルコールを用いることができるが、低温で発光素子10と実装部材20を接合しやすくするために、ジオールとエーテルの混合物であることが好ましい。ジオールとしては、例えば、2−エチル−1,3−ヘキサンジオールなどの脂肪族ジオール類;2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、およびそのアルキレンオキサイド付加物;1,4−シクロヘキサンジオールなどの脂環族ジオール類が挙げられる。エーテルとしては、例えば、トリプロピレングリコールメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルなどが挙げられる。金属粒子35と有機溶剤の重量比は、低温で発光素子10と実装部材20を接合しやすくするために、4〜9:1であることが好ましく、8〜9:1であることがより好ましい。なお、金属粒子35と有機溶剤を混合した後、メッシュなどを用いてろ過することで、均質な金属粒子焼結型ペーストが得られ、低温で均質に発光素子10と実装部材20を接合しやすい。   As the organic solvent, various lower alcohols can be used, but a mixture of diol and ether is preferable in order to facilitate bonding of the light emitting element 10 and the mounting member 20 at a low temperature. Examples of the diol include aliphatic diols such as 2-ethyl-1,3-hexanediol; 2,2-bis (4-hydroxycyclohexyl) propane, and alkylene oxide adducts thereof; 1,4-cyclohexanediol, and the like. Of the alicyclic diols. Examples of the ether include tripropylene glycol methyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and ethylene glycol monoethyl ether. The weight ratio between the metal particles 35 and the organic solvent is preferably 4 to 9: 1 and more preferably 8 to 9: 1 so that the light emitting element 10 and the mounting member 20 can be easily joined at a low temperature. . The metal particles 35 and the organic solvent are mixed and then filtered using a mesh or the like, so that a homogeneous metal particle sintered paste can be obtained. .

(接合工程)
発光素子10は、例えば次のようにして実装部材20に接合することができる。まず、実装部材20上に金属粒子焼結型ペーストを塗布する。このとき、金属粒子焼結型ペーストは、発光素子10の下面側の全面が濡れる量で設けられることが好ましい。そうすることで、発光素子10と実装部材20との接合の耐熱衝撃性を高めやすい。次に、金属粒子焼結型ペースト上に発光素子10を載置した後、加熱して、発光素子10と実装部材20を接合する。このときの加熱温度は、150℃以上250℃以下であることが好ましい。また、加熱時間は、0.5時間以上5時間以下であることが好ましい。さらに、加熱は、大気雰囲気中又は酸素雰囲気中で行われるのが好ましい。このような雰囲気中で加熱することにより、金属粒子35同士の接合点が増加しやすく、発光素子10と実装部材20の接合強度の向上が期待できる。なお、実装部材20には、発光素子10に加え、ツェナーダイオード等の静電保護素子の他、抵抗やコンデンサなどの電子素子を実装してもよく、これらの電子素子を金属粒子焼結型ペーストにより実装部材20に接合してもよい。
(Joining process)
The light emitting element 10 can be bonded to the mounting member 20 as follows, for example. First, a metal particle sintered paste is applied on the mounting member 20. At this time, it is preferable that the metal particle sintered paste is provided in such an amount that the entire lower surface of the light emitting element 10 is wetted. By doing so, it is easy to improve the thermal shock resistance of joining of the light emitting element 10 and the mounting member 20. Next, after the light emitting element 10 is placed on the metal particle sintered paste, the light emitting element 10 and the mounting member 20 are joined by heating. The heating temperature at this time is preferably 150 ° C. or higher and 250 ° C. or lower. The heating time is preferably 0.5 hours or more and 5 hours or less. Furthermore, the heating is preferably performed in an air atmosphere or an oxygen atmosphere. By heating in such an atmosphere, the joint points between the metal particles 35 are likely to increase, and an improvement in the joint strength between the light emitting element 10 and the mounting member 20 can be expected. In addition to the light emitting element 10, in addition to the electrostatic protection element such as a Zener diode, an electronic element such as a resistor or a capacitor may be mounted on the mounting member 20. May be joined to the mounting member 20.

(被覆部材40)
被覆部材40は、少なくとも接合部材30を被覆する、白色の部材である。被覆部材40は、粒子45を含有する樹脂、又は粒子45の集合体で構成することができる。被覆部材40は、粒子45を含有する樹脂である場合、ディスペンス法などにより形成でき、粒子45の集合体である場合、電気泳動電着などにより形成することができる。粒子45の屈折率は、例えば1.8以上であって、光を効率的に散乱し高い光取り出し効率を得るために、2以上であることが好ましく、2.5以上であることがより好ましい。被覆部材40が粒子45を含有する樹脂で構成される場合、樹脂と粒子45の屈折率差は、例えば0.4以上であって、光を効率的に散乱し高い光取り出し効率を得るために、0.7以上であることが好ましく、0.9以上であることがより好ましい。また、粒子45の濃度は、好ましい光反射特性や形成のしやすさ等を考慮して、10重量パーセント濃度(wt%)以上50重量パーセント濃度以下であることが好ましく、20重量パーセント濃度以上40重量パーセント濃度であることがより好ましい。粒子45の平均粒径(メジアン径)は、高い効率で光散乱効果を得られる、0.08μm以上10μm以下であることが好ましく、0.1μm以上5μm以下であることがより好ましい。粒子45は、白色であることが好ましい。具体的に、粒子45としては、酸化チタン、酸化ジルコニウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜鉛、チタン酸バリウム、酸化アルミニウムなどを用いることができる。なかでも、酸化チタンは、水分などに対して比較的安定で且つ高屈折率であるため好ましい。樹脂は、下記の封止部材と同様のものを用いることができ、なかでもシリコーン樹脂又はエポキシ樹脂が好ましく、特に耐光性、耐熱性に優れるシリコーン樹脂がより好ましい。なお、発光素子構造13から出射される光に対する被覆部材40の光反射率は、接合部材30の表面のそれより高いことが好ましい。また、発光素子構造13から出射される光に対する被覆部材40の光反射率は、基板11の表面のそれより高いことが好ましい。
(Coating member 40)
The covering member 40 is a white member that covers at least the bonding member 30. The covering member 40 can be composed of a resin containing the particles 45 or an aggregate of the particles 45. The covering member 40 can be formed by a dispensing method or the like when it is a resin containing the particles 45, and can be formed by electrophoretic electrodeposition or the like when it is an aggregate of the particles 45. The refractive index of the particles 45 is, for example, 1.8 or more, and is preferably 2 or more, more preferably 2.5 or more in order to efficiently scatter light and obtain high light extraction efficiency. . When the covering member 40 is made of a resin containing the particles 45, the difference in refractive index between the resin and the particles 45 is, for example, 0.4 or more, and the light is efficiently scattered to obtain high light extraction efficiency. 0.7 or more, more preferably 0.9 or more. The concentration of the particles 45 is preferably 10 weight percent concentration (wt%) or more and 50 weight percent concentration or less, preferably 20 weight percent concentration or more and 40 weight percent, considering preferable light reflection characteristics and ease of formation. More preferred is a weight percent concentration. The average particle diameter (median diameter) of the particles 45 is preferably 0.08 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less, at which a light scattering effect can be obtained with high efficiency. The particles 45 are preferably white. Specifically, as the particles 45, titanium oxide, zirconium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide, barium titanate, aluminum oxide, or the like can be used. . Of these, titanium oxide is preferable because it is relatively stable against moisture and has a high refractive index. The same resin as the following sealing member can be used as the resin, and among these, a silicone resin or an epoxy resin is preferable, and a silicone resin that is particularly excellent in light resistance and heat resistance is more preferable. Note that the light reflectance of the covering member 40 with respect to the light emitted from the light emitting element structure 13 is preferably higher than that of the surface of the bonding member 30. The light reflectance of the covering member 40 with respect to the light emitted from the light emitting element structure 13 is preferably higher than that of the surface of the substrate 11.

(封止部材50)
封止部材50は、発光素子10やワイヤ、被覆部材40、導電部材21,22の一部などを、封止して、埃や外力などから保護する部材である。封止部材50の母材は、電気的絶縁性を有し、発光素子構造13から出射される光を透過可能(好ましくは透過率70%以上)であればよい。具体的には、シリコーン樹脂、シリコーン変性樹脂、シリコーン変成樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン樹脂、又はこれらの樹脂を1種以上含むハイブリッド樹脂が挙げられる。ガラスでもよい。なかでも、シリコーン樹脂は、耐熱性や耐光性に優れ、固化後の体積収縮が少ないため、好ましい。特に、封止部材50の母材は、フェニルシリコーン樹脂を主成分とすることが好ましい。封止部材50の表面を凸面とする場合には、ジメチルシリコーン樹脂よりフェニルシリコーン樹脂が光の取り出し効率に優れている。また、フェニルシリコーン樹脂は、ガスバリア性にも優れ、腐食性ガスによる導電部材21,22の劣化を抑制しやすい。
(Sealing member 50)
The sealing member 50 is a member that seals the light emitting element 10, the wire, the covering member 40, a part of the conductive members 21 and 22, and protects them from dust and external force. The base material of the sealing member 50 has only to be electrically insulative and can transmit light emitted from the light emitting element structure 13 (preferably a transmittance of 70% or more). Specific examples include silicone resins, silicone-modified resins, silicone-modified resins, epoxy resins, phenol resins, polycarbonate resins, acrylic resins, TPX resins, polynorbornene resins, or hybrid resins containing one or more of these resins. Glass may be used. Of these, silicone resins are preferred because they are excellent in heat resistance and light resistance and have little volume shrinkage after solidification. In particular, the base material of the sealing member 50 is preferably composed mainly of phenyl silicone resin. When the surface of the sealing member 50 is a convex surface, the phenyl silicone resin is more excellent in light extraction efficiency than the dimethyl silicone resin. In addition, the phenyl silicone resin is excellent in gas barrier properties and easily suppresses deterioration of the conductive members 21 and 22 due to corrosive gas.

封止部材50は、その母材中に、充填剤や蛍光体など、種々の機能を持つ粒子が添加されてもよい。充填剤は、拡散剤や着色剤などを用いることができる。具体的には、シリカ、酸化チタン、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜鉛、チタン酸バリウム、酸化アルミニウム、酸化鉄、酸化クロム、酸化マンガン、ガラス、カーボンブラックなどが挙げられる。充填剤の粒子の形状は、破砕状でも球状でもよい。また、中空又は多孔質のものでもよい。   The sealing member 50 may include particles having various functions such as a filler and a phosphor in the base material. As the filler, a diffusing agent, a coloring agent, or the like can be used. Specifically, silica, titanium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide, barium titanate, aluminum oxide, iron oxide, chromium oxide, manganese oxide, glass And carbon black. The shape of the filler particles may be crushed or spherical. Further, it may be hollow or porous.

蛍光体は、発光素子構造13から出射される一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を出射する。具体的には、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al2O−SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば白色系)を出射する発光装置や、紫外光の一次光に励起されて可視波長の二次光を出射する発光装置とすることができる。 The phosphor absorbs at least part of the primary light emitted from the light emitting element structure 13 and emits secondary light having a wavelength different from that of the primary light. Specifically, activated yttrium aluminum garnet with cerium (YAG), europium and / or chromium activated nitrogen containing calcium aluminosilicate (CaO-Al2O 3 -SiO 2) , activated silicates europium ( (Sr, Ba) 2 SiO 4 ) and the like. Thus, a light emitting device that emits mixed light (for example, white light) of primary light and secondary light having a visible wavelength, or a light emitting device that emits visible light secondary light when excited by the primary light of ultraviolet light is used. Can do.

(波長変換部材60,61)
波長変換部材60,61は、上記のような蛍光体を含有する透光性の部材である。具体的には、波長変換部材60,61は、上記封止部材50と同様の樹脂又はガラスの母材中に蛍光体を添加して成形したものの他、蛍光体の結晶や焼結体、又は蛍光体と無機物の結合材との焼結体などを用いることができる。波長変換部材60,61は、図1に示すような平板状や薄膜状に形成することができ、またその表面を凸面や凹面、凹凸面などにしてもよい。また特に、波長変換部材60が発光素子10の近傍に設けられ、封止部材50が実質的に蛍光体を含有しない構成とすることで、発光素子10の近傍に限って蛍光体による光の波長変換及び散乱がなされるため、封止部材50の表面に対して光源部を小さくでき、光の取り出し効率を高めやすく、また本発光装置を光源として利用する装置の光学設計が容易となる。
(Wavelength conversion member 60, 61)
The wavelength conversion members 60 and 61 are translucent members containing the above phosphors. Specifically, the wavelength conversion members 60 and 61 are formed by adding a phosphor to the same resin or glass base material as that of the sealing member 50, a phosphor crystal or sintered body, or A sintered body of a phosphor and an inorganic binder can be used. The wavelength conversion members 60 and 61 can be formed in a flat plate shape or a thin film shape as shown in FIG. 1, and the surface thereof may be a convex surface, a concave surface, an uneven surface, or the like. In particular, the wavelength conversion member 60 is provided in the vicinity of the light emitting element 10, and the sealing member 50 does not substantially contain the phosphor, so that the wavelength of light by the phosphor is limited to the vicinity of the light emitting element 10. Since conversion and scattering are performed, the light source portion can be made smaller with respect to the surface of the sealing member 50, the light extraction efficiency can be easily improved, and the optical design of the device using the light emitting device as a light source is facilitated.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1の発光装置は、図1に示す例に類似の構造を有する、表面実装型のLEDである。実施例1では、本発光装置を以下のように作製する。
<Example 1>
The light emitting device of Example 1 is a surface-mount type LED having a structure similar to the example shown in FIG. In Example 1, the light emitting device is manufactured as follows.

まず、金属粒子35と有機溶剤を重量比5:0.47で混合して、金属粒子焼結型ペーストを得る。金属粒子35は、フレーク状銀粒子(製品名「AgC−239」(福田金属箔粉工業株式会社製)、平均粒径(メジアン径):2.0〜3.2μm、比表面積:0.6〜0.9m/g)と、球状銀粒子(製品名「EHD」(三井金属鉱業株式会社製)、平均粒径(メジアン径):0.4〜1.2μm、比表面積:1.6m/g)と、を重量比6:4で混合したものである。有機溶剤は、2−エチル−1,3−ヘキサンジオールと、ジエチレングリコールモノブチルエーテルと、を重量比8:2で混合したものである。 First, the metal particles 35 and the organic solvent are mixed at a weight ratio of 5: 0.47 to obtain a metal particle sintered paste. The metal particles 35 are flaky silver particles (product name “AgC-239” (manufactured by Fukuda Metal Foil Powder Co., Ltd.), average particle diameter (median diameter): 2.0 to 3.2 μm, specific surface area: 0.6. -0.9 m 2 / g) and spherical silver particles (product name “EHD” (manufactured by Mitsui Metal Mining Co., Ltd.), average particle diameter (median diameter): 0.4-1.2 μm, specific surface area: 1.6 m 2 / g) and a weight ratio of 6: 4. The organic solvent is a mixture of 2-ethyl-1,3-hexanediol and diethylene glycol monobutyl ether in a weight ratio of 8: 2.

実装部材20は、正負一対の導電部材21であるリードフレームに、基体23となる樹脂成形体が一体成形されて構成されている。導電部材21は、表面に銀の鍍金が施された銅製の板材をプレス又はエッチングにより加工したものである。基体23は、充填剤を含有するポリフタルアミド樹脂製である。実装部材20には、導電部材21の上面を底面に含む凹部が設けられている。   The mounting member 20 is configured by integrally molding a resin molded body serving as a base 23 on a lead frame which is a pair of positive and negative conductive members 21. The conductive member 21 is obtained by processing a copper plate having a surface plated with silver by pressing or etching. The substrate 23 is made of a polyphthalamide resin containing a filler. The mounting member 20 is provided with a recess including the upper surface of the conductive member 21 on the bottom surface.

発光素子10は、上面視2mm角の略直方体形状のLEDチップである。この発光素子10は、厚さ0.3mmのシリコン基板11の上面に、厚さ4μmの窒化物半導体の発光素子構造13が接合されたものである。接合層15は、発光素子構造13側に銀の金属反射膜を含み、その他の大部分は金−錫で構成されている。また、基板11の下面には、厚さ0.5μmの銀の金属膜17が設けられている。さらに、発光素子構造13の上面には、金の突起電極と、該突起電極を除く領域を被覆する波長変換部材60としてYAG:Ceの蛍光体を含有するシリコーン樹脂の成形体(厚さ50μm)と、が設けられている。   The light emitting element 10 is a substantially rectangular parallelepiped LED chip having a 2 mm square in a top view. The light emitting element 10 is formed by bonding a light emitting element structure 13 of a nitride semiconductor having a thickness of 4 μm to an upper surface of a silicon substrate 11 having a thickness of 0.3 mm. The bonding layer 15 includes a silver metal reflective film on the light emitting element structure 13 side, and most of the other is made of gold-tin. A silver metal film 17 having a thickness of 0.5 μm is provided on the lower surface of the substrate 11. Further, on the upper surface of the light emitting element structure 13, a molded body of a silicone resin (thickness: 50 μm) containing a gold protruding electrode and a YAG: Ce phosphor as a wavelength conversion member 60 covering a region excluding the protruding electrode. And are provided.

金属粒子焼結型ペーストを、スタンピング法により、凹部底面に位置する導電部材21の上面に塗布して、その上に発光素子10を載置する。次に、発光素子10が載置された実装部材20を、120℃の大気雰囲気下で30分間、さらに175℃で90分加熱し、その後、冷却する。これにより、金属粒子焼結型ペーストが焼成されて多孔質の焼結体の接合部材30となり、発光素子10の基板11の下面側が導電部材21に接合される。なお、接合部材30は、基板11の側面の一部を被覆している。   The metal particle sintered paste is applied to the upper surface of the conductive member 21 located on the bottom surface of the recess by a stamping method, and the light emitting element 10 is mounted thereon. Next, the mounting member 20 on which the light emitting element 10 is mounted is heated in an air atmosphere at 120 ° C. for 30 minutes, further at 175 ° C. for 90 minutes, and then cooled. As a result, the metal particle sintered paste is fired to form a porous sintered joined member 30, and the lower surface side of the substrate 11 of the light emitting element 10 is joined to the conductive member 21. Note that the bonding member 30 covers a part of the side surface of the substrate 11.

次に、発光素子10の突起電極と、導電部材21と、を金のワイヤによって接続する。その後、被覆部材40として、屈折率が約1.4のシリコーン樹脂に、平均粒径が約0.3μm、屈折率が約2.5の酸化チタンの粒子45を濃度30wt%で配合したものを、ディスペンス法によって、接合部材30を被覆するように塗布する。このとき、被覆部材40は、発光素子の基板11の側面の少なくとも一部を被覆し、また発光素子10周囲の実装部材20の凹部底面(特に導電部材21)上を被覆するように設ける。最後に、シリコーン樹脂の封止部材50を、略半球状の表面を有するように実装部材20上に設けて、発光装置を得る。   Next, the protruding electrode of the light emitting element 10 and the conductive member 21 are connected by a gold wire. After that, the covering member 40 is prepared by blending titanium oxide particles 45 having an average particle diameter of about 0.3 μm and a refractive index of about 2.5 in a silicone resin having a refractive index of about 1.4 at a concentration of 30 wt%. The bonding member 30 is coated so as to be covered by a dispensing method. At this time, the covering member 40 is provided so as to cover at least a part of the side surface of the substrate 11 of the light emitting element, and to cover the bottom surface of the recess of the mounting member 20 around the light emitting element 10 (particularly, the conductive member 21). Finally, a silicone resin sealing member 50 is provided on the mounting member 20 so as to have a substantially hemispherical surface to obtain a light emitting device.

<実施例2>
実施例2の発光装置は、被覆部材を設けないこと以外、実施例1と同様に作製する。
<Example 2>
The light emitting device of Example 2 is manufactured in the same manner as Example 1 except that the covering member is not provided.

<比較例1>
比較例1の発光装置は、銀粒子焼結型ペーストの代わりに、フラックスを含有し融点が280℃付近である金−錫ペーストを用いて、300℃付近のリフロー炉で接合を行うこと以外、実施例2と同様に作製する。しかしながら、比較例1の発光装置は、リフロー炉の冷却工程において、発光素子が破壊してしまった。高温での接合のため、膨張率の大きい銅のリードフレームの冷却時の応力に発光素子が耐えられなかったと考えられる。
<Comparative Example 1>
The light emitting device of Comparative Example 1 uses a gold-tin paste containing a flux and having a melting point of about 280 ° C., instead of the silver particle sintered paste, except that bonding is performed in a reflow furnace near 300 ° C. It is produced in the same manner as in Example 2. However, in the light emitting device of Comparative Example 1, the light emitting element was destroyed in the cooling process of the reflow furnace. It is considered that the light emitting element could not withstand the stress at the time of cooling the copper lead frame having a large expansion coefficient due to the bonding at a high temperature.

<比較例2>
比較例2の発光装置は、リードフレームの材質を、銅の代わりに、鉄と銅の複合材にすること以外、比較例1と同様に作製する。
<Comparative example 2>
The light emitting device of Comparative Example 2 is manufactured in the same manner as Comparative Example 1 except that the lead frame is made of a composite material of iron and copper instead of copper.

<検証1>
実施例1,2及び比較例2の発光装置について、積分球を用いて光束を測定する。順電流は350mAであり、色度x=0.32、y=0.32(国際照明委員会(CIE)のxyz表色系に準拠)において比較する。実施例1の発光装置の光束は158.36ルーメン、実施例2の発光装置の光束は156.69ルーメン、比較例2の発光装置の光束は157.25ルーメンである。このように、実施例1の発光装置は、実施例2及び比較例2の発光装置より高い光束を得られることが確認できる。また、実施例1の発光装置は、比較例1の発光装置に比べて構成部材の損傷を抑えられることが確認できる。
<Verification 1>
For the light emitting devices of Examples 1 and 2 and Comparative Example 2, the luminous flux is measured using an integrating sphere. The forward current is 350 mA, and the comparison is made at chromaticity x = 0.32, y = 0.32 (according to the International Commission on Illumination (CIE) xyz color system). The luminous flux of the light emitting device of Example 1 is 158.36 lumens, the luminous flux of the light emitting device of Example 2 is 156.69 lumens, and the luminous flux of the light emitting device of Comparative Example 2 is 157.25 lumens. Thus, it can be confirmed that the light emitting device of Example 1 can obtain a higher luminous flux than the light emitting devices of Example 2 and Comparative Example 2. Moreover, it can be confirmed that the light emitting device of Example 1 can suppress the damage of the constituent members as compared with the light emitting device of Comparative Example 1.

<検証2>
実施例1,2及び比較例2の発光装置について、硫化試験前後における光束維持率を測定する。硫化試験は、発光装置と1gの硫化ナトリウムを圧力容器内に入れて、120℃のオーブンで20時間加熱するものである。実施例1の発光装置の光束維持率は98.1%、実施例2の発光装置の光束維持率は97.9%、比較例2の発光装置の光束維持率は97.0%である。このように、硫化試験後においても、実施例1の発光装置は、実施例2及び比較例2の発光装置より高い光束を維持可能であることが確認できる。
<Verification 2>
For the light emitting devices of Examples 1 and 2 and Comparative Example 2, the luminous flux maintenance factor before and after the sulfidation test is measured. In the sulfidation test, a light emitting device and 1 g of sodium sulfide are placed in a pressure vessel and heated in an oven at 120 ° C. for 20 hours. The luminous flux maintenance factor of the light emitting device of Example 1 is 98.1%, the luminous flux maintenance factor of the light emitting device of Example 2 is 97.9%, and the luminous flux maintenance factor of the light emitting device of Comparative Example 2 is 97.0%. Thus, even after the sulfidation test, it can be confirmed that the light emitting device of Example 1 can maintain a higher luminous flux than the light emitting devices of Example 2 and Comparative Example 2.

本発明に係る発光装置は、液晶ディスプレイのバックライト光源、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置などに利用することができる。   The light emitting device according to the present invention includes a backlight source of a liquid crystal display, various lighting devices, a large display, various display devices such as advertisements and destination guidance, and an image reading device in a digital video camera, a facsimile, a copier, a scanner, and the like It can be used for projector devices.

10…発光素子(11…基板、13…発光素子構造、15…接合層、17…金属膜)、20…実装部材(21,22…導電部材、23,24…基体)、30…接合部材(35…金属粒子)、40…被覆部材(45…粒子)、50…封止部材、60,61…波長変換部材、100,200…発光装置   DESCRIPTION OF SYMBOLS 10 ... Light emitting element (11 ... Board | substrate, 13 ... Light emitting element structure, 15 ... Joining layer, 17 ... Metal film), 20 ... Mounting member (21, 22 ... Conductive member, 23, 24 ... Base | substrate), 30 ... Joining member ( 35 ... metal particles), 40 ... coating member (45 ... particles), 50 ... sealing member, 60, 61 ... wavelength conversion member, 100, 200 ... light emitting device

Claims (7)

基板と、前記基板の上面側に設けられた発光素子構造と、前記基板と前記発光素子構造の間に設けられた、金属反射膜又は誘電体多層膜を含む接合層と、を有する発光素子と、
前記発光素子が実装される実装部材と、
金属粒子の焼結体であって、前記基板の側面の少なくとも一部を被覆し、前記発光素子の基板の下面側と前記実装部材を接合する接合部材と、
前記基板の側面の少なくとも一部と前記接合部材の表面とを被覆する白色の被覆部材と、
を備え、
前記発光素子の側面は、上面に対して、垂直、又は、内側若しくは外側に傾斜しており、
前記被覆部材は、前記発光素子構造を覆っていない発光装置。
A light emitting device comprising: a substrate; a light emitting device structure provided on an upper surface side of the substrate; and a bonding layer including a metal reflective film or a dielectric multilayer film provided between the substrate and the light emitting device structure; ,
A mounting member on which the light emitting element is mounted;
A sintered body of metal particles, covering at least part of the side surface of the substrate, and a bonding member for bonding the lower surface side of the substrate of the light emitting element and the mounting member;
A white covering member that covers at least part of the side surface of the substrate and the surface of the bonding member;
With
The side surface of the light emitting element is perpendicular to the upper surface, or is inclined inward or outward,
The light emitting device, wherein the covering member does not cover the light emitting element structure.
前記被覆部材は樹脂に白色の粒子が含有されており、前記被覆部材に対する前記白色の粒子の濃度は10重量%濃度以上50重量%濃度以下である請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the covering member contains white particles in a resin, and the concentration of the white particles with respect to the covering member is not less than 10 wt% and not more than 50 wt%. 前記接合部材は、樹脂を実質的に含有しない請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the joining member does not substantially contain a resin. 前記白色の粒子の平均粒径(メジアン径)は、0.1μm以上5μm以下である請求項2又は3に記載の発光装置。 4. The light emitting device according to claim 2, wherein an average particle diameter (median diameter) of the white particles is from 0.1 μm to 5 μm. 前記基板は、遮光性基板である請求項1乃至4のいずれか一項に記載の発光装置。   The light emitting device according to claim 1, wherein the substrate is a light shielding substrate. 前記金属粒子は、銀又は銀合金である請求項1乃至5のいずれか一項に記載の発光装置。   The light emitting device according to claim 1, wherein the metal particles are silver or a silver alloy. 前記金属粒子は、0.02μm以上10μm以下である請求項1乃至6のいずれか一項に記載の発光装置。  The light emitting device according to claim 1, wherein the metal particles have a size of 0.02 μm to 10 μm.
JP2012189775A 2012-07-13 2012-08-30 Light emitting device Active JP6048001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189775A JP6048001B2 (en) 2012-07-13 2012-08-30 Light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012157354 2012-07-13
JP2012157354 2012-07-13
JP2012189775A JP6048001B2 (en) 2012-07-13 2012-08-30 Light emitting device

Publications (2)

Publication Number Publication Date
JP2014033168A JP2014033168A (en) 2014-02-20
JP6048001B2 true JP6048001B2 (en) 2016-12-21

Family

ID=50282749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189775A Active JP6048001B2 (en) 2012-07-13 2012-08-30 Light emitting device

Country Status (1)

Country Link
JP (1) JP6048001B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102224077B1 (en) * 2014-06-05 2021-03-09 엘지이노텍 주식회사 Light emitting device
US9508907B2 (en) * 2014-09-15 2016-11-29 Koninklijke Philips N.V. Light emitting device on a mount with a reflective layer
JP2017139203A (en) * 2016-02-06 2017-08-10 交和電気産業株式会社 Lighting device module
JP6431013B2 (en) * 2016-09-21 2018-11-28 シャープ株式会社 Aluminum nitride semiconductor deep ultraviolet light emitting device
JP6888401B2 (en) 2017-04-28 2021-06-16 日亜化学工業株式会社 Metal powder sintered paste and its manufacturing method, and conductive material manufacturing method
JP7403944B2 (en) * 2018-05-30 2023-12-25 シーシーエス株式会社 LED light emitting device
CN112321155B (en) * 2020-11-06 2022-11-25 焦作市吉成磁电有限公司 Laser lighting assembly and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655267B2 (en) * 2002-07-17 2005-06-02 株式会社東芝 Semiconductor light emitting device
JP2005050874A (en) * 2003-07-29 2005-02-24 Kyocera Corp Optical printer head
JP4150980B2 (en) * 2003-11-04 2008-09-17 信越半導体株式会社 Light emitting element
JP2008166661A (en) * 2007-01-05 2008-07-17 Sanken Electric Co Ltd Semiconductor light-emitting apparatus
JP5417861B2 (en) * 2009-01-23 2014-02-19 日亜化学工業株式会社 Conductive material, manufacturing method thereof, electronic device including conductive material, light emitting device
JP5611537B2 (en) * 2009-04-28 2014-10-22 日立化成株式会社 Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby
JP2011091213A (en) * 2009-10-22 2011-05-06 Toshiba Lighting & Technology Corp Light-emitting module and lighting device

Also Published As

Publication number Publication date
JP2014033168A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP7054025B2 (en) Light emitting device
JP6048001B2 (en) Light emitting device
JP6368924B2 (en) Semiconductor device
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP5582048B2 (en) Light emitting device
JP6127468B2 (en) Light emitting device
JP6648467B2 (en) Light emitting device
JP2017033967A (en) Light-emitting device and manufacturing method therefor
JP6583247B2 (en) Light emitting device
JP2017117858A (en) Light-emitting device
JP2009295892A (en) Light-emitting device
JP2014093311A (en) Light-emitting device and manufacturing method thereof
JP6669197B2 (en) Light emitting device and method of manufacturing the same
JP6524624B2 (en) Light emitting device
JP2018190770A (en) Light-emitting device
JP2016174120A (en) Light emission device
JP6985615B2 (en) Luminescent device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP6308286B2 (en) Light emitting device
JP6607036B2 (en) Light emitting device
JP2018191015A (en) Method for manufacturing light-emitting device
JP5515693B2 (en) Light emitting device
JP6575282B2 (en) Light emitting device
JP2017224867A (en) Light-emitting device and manufacturing method therefor
JP6920618B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6048001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250