JP6042963B1 - Temperature difference energy converter - Google Patents

Temperature difference energy converter Download PDF

Info

Publication number
JP6042963B1
JP6042963B1 JP2015237205A JP2015237205A JP6042963B1 JP 6042963 B1 JP6042963 B1 JP 6042963B1 JP 2015237205 A JP2015237205 A JP 2015237205A JP 2015237205 A JP2015237205 A JP 2015237205A JP 6042963 B1 JP6042963 B1 JP 6042963B1
Authority
JP
Japan
Prior art keywords
water
outside air
container
wall
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015237205A
Other languages
Japanese (ja)
Other versions
JP2017101637A (en
Inventor
阿部 俊廣
俊廣 阿部
Original Assignee
阿部 俊廣
俊廣 阿部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿部 俊廣, 俊廣 阿部 filed Critical 阿部 俊廣
Priority to JP2015237205A priority Critical patent/JP6042963B1/en
Priority to PCT/JP2016/084986 priority patent/WO2017094615A1/en
Application granted granted Critical
Publication of JP6042963B1 publication Critical patent/JP6042963B1/en
Publication of JP2017101637A publication Critical patent/JP2017101637A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/10Closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】 冷気を使うことなく、容器内に導入される気体の冷却効率の向上を図ってエネルギー変換できるようにする。【解決手段】 筒状の側壁及び下壁を有し内部に冷却用の液体(W)が入れられる容器(10)を備え、容器(10)の上側に気体を取り入れる上開口(20)を設け、容器(10)の下壁の中央に容器(10)の中心軸(P)を中心とした下開口21を設け、上記容器(10)の上側に、上開口(20)から気体を取り入れその一部若しくは全部を作動気体(G)として旋回させながら圧縮して降下させ内部の液体(W)を下開口(21)を開放したロート状の内表面を有した液体壁部(H)に形成して、作動気体(G)を下開口(21)から導出させるファン機構(40)を設け、容器(10)の中心軸(P)と同軸の軸線を有して下開口(21)に臨み導出する作動気体(G)により回転させられるタービン(T)を設け、このタービン(T)から動力を取り出す。【選択図】図1PROBLEM TO BE SOLVED: To improve energy cooling efficiency of gas introduced into a container without using cold air so that energy can be converted. SOLUTION: A container (10) having a cylindrical side wall and a lower wall, into which a cooling liquid (W) is placed, and an upper opening (20) for taking in gas is provided on the upper side of the container (10). A lower opening 21 centered on the central axis (P) of the container (10) is provided at the center of the lower wall of the container (10), and gas is introduced into the upper side of the container (10) from the upper opening (20). A part or all of the working gas (G) is swirled as it is compressed and lowered to form the liquid (W) inside the liquid wall (H) having a funnel-shaped inner surface with the lower opening (21) open. Then, a fan mechanism (40) for deriving the working gas (G) from the lower opening (21) is provided, and has an axis coaxial with the central axis (P) of the container (10) and faces the lower opening (21). A turbine (T) that is rotated by the working gas (G) to be led out is provided. Remove power from (T). [Selection] Figure 1

Description

本発明は、気体を流通させるとともに加熱及び冷却させ、気体の温度差エネルギーを利用して種々のエネルギーを得る温度差エネルギー変換装置に係り、特に、気体の流通経路の途中にタービンを介装し、タービンにより気体の温度差エネルギーを動力に変換して取り出す温度差エネルギー変換装置に関する。   The present invention relates to a temperature difference energy conversion device that circulates a gas and heats and cools it to obtain various energies using the temperature difference energy of the gas, and in particular, a turbine is interposed in the middle of the gas flow path. The present invention relates to a temperature difference energy conversion apparatus that converts gas temperature difference energy into power by a turbine and extracts the power.

従来、温度差エネルギー変換装置としては、例えば、先に本願出願人が提案した特許文献1(特開2011−52609号公報)に掲載されたものが知られている。図9に示すように、この温度差エネルギー変換装置は、上開口1011及び下開口1012を有したロート状の熱伝動性の筒体1010を備え、この筒体1010の上開口1011から暖気を導入し、導入された暖気を旋回させながら下開口1012側に移動させるとともに、筒体1010の壁部1010aとの熱交換により冷却を行い、下開口1012においてノズル1013から筒体1010内に冷気を噴出させて暖気と混合させて一気に冷却し、この冷却された混合気を筒体1010の下開口1012から導出し、下開口1012に臨む混合気の導出流路に設けたタービンTを回転させ、タービンTの動力を発電機1014を介して電力として取り出すようにしている。   Conventionally, as a temperature difference energy conversion device, for example, a device disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2011-52609) previously proposed by the present applicant is known. As shown in FIG. 9, the temperature difference energy conversion apparatus includes a funnel-shaped heat conductive cylinder 1010 having an upper opening 1011 and a lower opening 1012, and warm air is introduced from the upper opening 1011 of the cylinder 1010. Then, the introduced warm air is moved to the lower opening 1012 side while swirling, and is cooled by heat exchange with the wall portion 1010a of the cylindrical body 1010. Cold air is ejected from the nozzle 1013 into the cylindrical body 1010 in the lower opening 1012. The air-fuel mixture is mixed with warm air and cooled at once. The cooled air-fuel mixture is led out from the lower opening 1012 of the cylindrical body 1010, and the turbine T provided in the air-fuel mixture outlet passage facing the lower opening 1012 is rotated to rotate the turbine. The power of T is taken out as electric power through the generator 1014.

特開2011−52609号公報JP 2011-52609 A

しかしながら、この従来の温度差エネルギー変換装置においては、筒体1010内に導入された暖気に対して、筒体1010の壁部1010aとの熱交換により冷却を行うとともに、下開口1012においてノズル1013から冷気を噴出させて一気に冷却するようにしているが、筒体1010の壁部1010aである固体との熱交換によるので冷却効率が必ずしも良いとは言えず、また、ノズル1013からの冷気の噴出が下開口1012のみなのでこの点でも冷却効率に劣り、それだけ、タービンTの回転力が弱く出力が小さいという欠点があった。更に、ノズル1013から冷気を噴出させているので、冷気を作るための装置が必要になる分、装置が複雑化してしまうという問題もある。   However, in this conventional temperature difference energy conversion device, the warm air introduced into the cylinder 1010 is cooled by heat exchange with the wall 1010a of the cylinder 1010, and from the nozzle 1013 in the lower opening 1012. Although cool air is jetted to cool at once, the cooling efficiency is not necessarily good because of heat exchange with the solid that is the wall portion 1010a of the cylindrical body 1010, and the cool air is not ejected from the nozzle 1013. Since only the lower opening 1012 is used, the cooling efficiency is inferior also in this respect, and there is a disadvantage that the rotational force of the turbine T is weak and the output is small. Further, since the cool air is ejected from the nozzle 1013, there is a problem that the device becomes complicated because a device for producing the cool air is required.

本発明は、このような問題点に鑑みてなされたもので、冷気を使うことなく、容器内に導入される気体の冷却効率の向上を図ってエネルギー変換できるようにした温度差エネルギー変換装置を提供することを目的とする。   The present invention has been made in view of such problems, and a temperature difference energy conversion device capable of energy conversion by improving the cooling efficiency of a gas introduced into a container without using cold air. The purpose is to provide.

このような目的を達成するため、本発明の温度差エネルギー変換装置は、図1に示す原理図に基づいて説明すると、筒状の側壁及び下壁を有し内部に冷却用の液体(W)が入れられる容器(10)を備え、該容器(10)の上側に気体を取り入れる上開口(20)を設け、上記容器(10)の下壁の中央に該容器(10)の中心軸(P)を中心とした下開口21を設け、上記容器(10)の上側に、上記上開口(20)から気体を取り入れその一部若しくは全部を作動気体(G)として旋回させながら圧縮して降下させ上記内部の液体(W)を上記下開口(21)を開放したロート状の内表面を有した液体壁部(H)に形成して該作動気体(G)を上記下開口(21)から導出させるファン機構(40)を設け、上記容器(10)の中心軸(P)と同軸の軸線を有して上記下開口(21)に臨み導出する作動気体(G)により回転させられるタービン(T)を設けた構成としている。そして、このタービン(T)から動力を取り出し、例えば、発電機で発電を行う。   In order to achieve such an object, the temperature difference energy conversion device of the present invention will be described based on the principle diagram shown in FIG. 1. The temperature difference energy conversion device of the present invention has a cylindrical side wall and a lower wall and has a cooling liquid (W) inside. Is provided, and an upper opening (20) for taking in gas is provided on the upper side of the container (10), and the central axis (P) of the container (10) is provided at the center of the lower wall of the container (10). ), And a gas is taken in from the upper opening (20) on the upper side of the container (10), and a part or the whole is swung as a working gas (G) and compressed and lowered. The internal liquid (W) is formed in a liquid wall (H) having a funnel-shaped inner surface with the lower opening (21) open, and the working gas (G) is led out from the lower opening (21). A fan mechanism (40) is provided, and the central axis ( ) And has a configuration in which a turbine (T) which is rotated by a coaxial operating gas having an axis derives faces to the lower opening (21) (G). And power is taken out from this turbine (T), for example, it generates electric power with a generator.

これにより、ファン機構により気体が取り入れられると、作動気体は、容器内を上側から下側に向かって旋回させられながら圧縮して下降させられ、この旋回力によって容器内部の液体を回転させ、下開口を開放したロート状の内表面を有した液体壁部に形成し、下開口から導出されて、タービンを回転させる。この過程において、作動気体は、旋回させられながら圧縮して下降させられると、圧力及び温度が上昇していき、高圧,高温になり、下開口から導出されると、急膨張して冷気になり、タービンを回転させる。この場合、高圧,高温の作動気体は、ロート状の液体壁部に接するので、液体の表面で熱交換が行われることになり、そのため、冷却効率が極めて良くなり、それだけ、下開口から毎秒導出される混合気のロート状内外の比較総合比重を増加させ、それにより遠心力の勢いを増してタービンの出力の向上を図ることができる。   As a result, when the gas is taken in by the fan mechanism, the working gas is compressed and lowered while being swung from the upper side to the lower side in the container. Formed in a liquid wall having a funnel-shaped inner surface with the opening open, and is led out from the lower opening to rotate the turbine. In this process, when the working gas is compressed and lowered while being swirled, the pressure and temperature rise and become high pressure and high temperature. When the working gas is led out from the lower opening, it rapidly expands and becomes cold air. Rotate the turbine. In this case, since the high-pressure and high-temperature working gas contacts the funnel-shaped liquid wall, heat exchange is performed on the surface of the liquid, so that the cooling efficiency is extremely improved, and that is derived from the lower opening every second. It is possible to increase the comparative specific gravity of the mixed gas inside and outside the funnel, thereby increasing the momentum of the centrifugal force and improving the output of the turbine.

この構成において、必要に応じ、上記液体壁部のロート状の内表面の角度を調整可能な液体壁部調整部を備えた構成としている。液体壁部のロート状の内表面の角度を適正な角度に調整して、下開口を確保し、下開口からの作動気体の導出を円滑に行わせることができるようになる。   In this configuration, a liquid wall adjustment unit that can adjust the angle of the funnel-shaped inner surface of the liquid wall as necessary is provided. By adjusting the angle of the funnel-shaped inner surface of the liquid wall to an appropriate angle, the lower opening can be secured and the working gas can be smoothly led out from the lower opening.

この場合、上記側壁に該側壁の内面側から中心軸に対して進退動可能に設けられ、進退動量によって上記液体壁部のロート状の内表面の角度を調整可能な突出体と、該突出体を駆動する駆動部とを設けた構成としたことが有効である。この突出体の突出量により、液体の回転抵抗が異なるので、液体壁部のロート状の内表面の角度を適正な角度に調整して、下開口を確保し、下開口からの作動気体の導出を円滑に行わせることができるようになる。   In this case, a protrusion that is provided on the side wall so as to be movable back and forth with respect to the central axis from the inner surface side of the side wall, and can adjust the angle of the funnel-shaped inner surface of the liquid wall portion by the amount of forward and backward movement, and the protrusion It is effective to have a configuration provided with a drive unit for driving the. Since the rotational resistance of the liquid varies depending on the amount of protrusion of this protrusion, the angle of the funnel-shaped inner surface of the liquid wall is adjusted to an appropriate angle to secure the lower opening and lead out the working gas from the lower opening Can be performed smoothly.

そして、本装置においては、上記取り入れられる気体は大気からなる外気で構成され、上記液体は水で構成されることが有効である。無尽蔵にある外気と水の熱交換によりエネルギーを取り出すことができるので、汎用性を増すことができる。外気と水の場合で説明すると、ファン機構により、作動気体を旋回させながら圧縮して下降させると、圧力及び温度が上昇していき、例えば、約30気圧の高圧,約8000℃もの高温にし、液体壁部の内表面においては液体壁部を構成する水を熱分解させるほどにすることができる。そして、容器内の作動気体が下開口から導出されると、急膨張して冷気になり、タービンを回転させる。この場合、液体壁部の内部は200℃〜300℃程度に上昇するが、相対的に、作動気体から熱を奪い作動気体を冷却することができる。液体の表面で熱交換が行われることになり、そのため、冷却効率が極めて良くなり、それだけ、下開口から毎秒導出される混合気のロート状内外の比較総合比重を増加させ、それにより遠心力の勢いを増してタービンの出力の向上を図ることができる。   In the present apparatus, it is effective that the gas to be taken in is composed of outside air composed of the atmosphere, and the liquid is composed of water. Since energy can be taken out by heat exchange between inexhaustible outside air and water, versatility can be increased. In the case of outside air and water, when the working gas is compressed and swung down by the fan mechanism, the pressure and temperature rise, for example, a high pressure of about 30 atm, a high temperature of about 8000 ° C., On the inner surface of the liquid wall, the water constituting the liquid wall can be thermally decomposed. And if the working gas in a container is derived | led-out from lower opening, it will expand rapidly and it will become cold air, and a turbine is rotated. In this case, the inside of the liquid wall portion rises to about 200 ° C. to 300 ° C., but the working gas can be relatively deprived of heat to cool the working gas. As a result, heat is exchanged on the surface of the liquid, so that the cooling efficiency is extremely improved, and accordingly, the comparative specific gravity inside and outside the funnel of the air-fuel mixture derived from the lower opening is increased, thereby increasing the centrifugal force. The momentum can be increased and the output of the turbine can be improved.

また、必要に応じ、上記液体壁部を構成する水を外部から供給する水供給部と、上記液体壁部を構成する水を循環させる循環水路とを設けた構成としている。水供給部により水を供給することができ、また、循環水路により水を循環させるので、それだけ冷却効率を向上させることができる。   Moreover, it is set as the structure which provided the water supply part which supplies the water which comprises the said liquid wall part from the outside, and the circulating water path which circulates the water which comprises the said liquid wall part as needed. Water can be supplied by the water supply unit, and since water is circulated by the circulation channel, the cooling efficiency can be improved accordingly.

この場合、上記容器の上部に上記液体壁部の上端の水位が所定高さを超えたとき該超えた分の水を流出させて回収する回収路を設け、該回収路を通って回収された水を貯留する回収水貯留槽を設けた構成とすることができる。温度上昇した水を回収して水位調整することができ、液体壁部を安定させることができる。また、回収した水は、飲料水にすることができる。この場合、回収路から液体壁部の上側を構成する水が飲料水として回収されるが、液体壁部においては、これに生じる遠心力により、重水が下側に集約されることから、液体壁部の上側は重水素減少水になっており、回収された水はこの液体壁部の上側の水になるので、重水素減少水を飲料水とすることができ、極めて有用になる。   In this case, when the water level at the upper end of the liquid wall portion exceeds a predetermined height, a recovery path is provided in the upper part of the container to drain out and recover the excess water, and the liquid is recovered through the recovery path. It can be set as the structure which provided the recovered water storage tank which stores water. The water whose temperature has risen can be recovered and the water level can be adjusted, and the liquid wall portion can be stabilized. The recovered water can be used as drinking water. In this case, water constituting the upper side of the liquid wall portion is recovered as drinking water from the recovery path. However, in the liquid wall portion, heavy water is concentrated on the lower side due to centrifugal force generated in the liquid wall portion. Since the deuterium-reduced water is on the upper side of the part and the recovered water becomes water on the upper side of the liquid wall, the deuterium-reduced water can be used as drinking water, which is extremely useful.

更にまた、この場合、上記回収路からの水の流出量の大小を検知する水量センサを設け、該水量センサが水量大を検知したとき上記水供給部からの水供給を停止し、該水量センサが水量小を検知したとき上記水供給部からの水供給を行わせる水供給制御部を備えた構成とすることができる。水供給制御部により、常時、適正な水を維持できるので、液体壁部を安定させることができる。   Furthermore, in this case, a water amount sensor that detects the amount of water outflow from the recovery path is provided, and when the water amount sensor detects a large amount of water, the water supply from the water supply unit is stopped, and the water amount sensor When a small amount of water is detected, a water supply control unit that supplies water from the water supply unit can be provided. Since the water supply control unit can always maintain appropriate water, the liquid wall can be stabilized.

また、必要に応じ、上記容器の上側に上壁を設け、上記上開口を上記上壁の中央に上記容器の中心軸を中心として設け、上記ファン機構を、上記上壁に回転可能に設けられ上記容器の中心軸を中心に回転する第1ファンと、上記上壁に設けられ上記第1ファンを回転させるモータと、上記タービンから延び容器の中心軸を軸線とする上回転軸によって該タービンと同期して回転させられる第2ファンとを備えて構成し、
上記第1ファンを、中央に上記上開口に対応する吸引口を有し上記上壁に近接して対峙する基盤と、該基盤に等角度関係で複数列設され吸引口からの作動気体を遠心方向に送出する第1回転羽根と、上記上回転軸が回転可能に貫通し上記基盤に対向して上記第1回転羽根を覆うとともに外周に作動気体の吹出口を形成する覆い板とを備えて構成し、
上記第2ファンを、上記第1ファンの第1回転羽根の内側であって上記吸引口に対峙し上記吸引口からの作動気体を遠心方向に送出する複数の第2回転羽根を備えて構成している。第1ファンと第2ファンとの2つのファンにより、作動気体に遠心力を付与して旋回させて圧縮するので、確実に高圧,高温にすることができる。
Further, if necessary, an upper wall is provided on the upper side of the container, the upper opening is provided at the center of the upper wall around the central axis of the container, and the fan mechanism is rotatably provided on the upper wall. A first fan that rotates about the central axis of the vessel; a motor that is provided on the upper wall and that rotates the first fan; and an upper rotary shaft that extends from the turbine and has the central axis of the vessel as an axis. A second fan that is rotated synchronously; and
The first fan has a suction port corresponding to the upper opening in the center, and a base that faces the upper wall close to the first fan, and a plurality of lines are equiangularly arranged on the base, and the working gas from the suction port is centrifuged. A first rotating blade that feeds in a direction, and a cover plate that penetrates the upper rotating shaft so as to be rotatable, covers the first rotating blade so as to face the base, and forms a working gas outlet on the outer periphery. Configure
The second fan, a inside the first rotary blade of said first fan and configured with a plurality of second rotary blades for delivering working gas from the suction port facing to the suction port in the centrifugal direction ing. The two fans, the first fan and the second fan, impart a centrifugal force to the working gas and rotate and compress it, so that the high pressure and high temperature can be reliably achieved.

この構成において、上記液体壁部を構成する水を外部から供給する水供給部と、上記液体壁部を構成する水を循環させる循環水路とを設け、該循環水路を、上記第1ファンの基盤と上記上壁との間へ水を供給する水供給管を備えて構成したことが有効である。内部圧により、第1ファンが上壁側に押されても、水供給管により、第1ファンの基盤と上壁との間へ水が供給されるので、水が潤滑水の役目をし、第1ファンに下側に押し下げる力が作用し、そのため、第1ファンの回転を円滑に維持できるようになる。   In this configuration, a water supply unit for supplying water constituting the liquid wall portion from the outside and a circulation water channel for circulating the water constituting the liquid wall portion are provided, and the circulation water channel is provided as a base of the first fan. It is effective to provide a water supply pipe for supplying water between the upper wall and the upper wall. Even if the first fan is pushed to the upper wall side by the internal pressure, water is supplied between the base of the first fan and the upper wall by the water supply pipe, so that the water serves as lubricating water, The first fan is pushed downward, so that the rotation of the first fan can be maintained smoothly.

この場合、上記水供給部を、上記水供給管を通して水を供給する構成にしたことが有効である。水供給管により、循環水と新しい水と同時に供給することができ、共用できるので、装置の効率化を図ることができる。   In this case, it is effective that the water supply unit is configured to supply water through the water supply pipe. The water supply pipe can be supplied simultaneously with circulating water and new water, and can be shared, so that the efficiency of the apparatus can be improved.

また、必要に応じ、上記容器の上側に、上記ファン機構の吸引力により外気を取り入れて作動気体として該ファン機構に送給する作動気体生成部を設け、該作動気体生成部を、外周に設けられた外気取入口と、内側に設けられ上記上開口に連通する作動気体出口と、上記外気取入口と作動気体出口との間に設けられ外気を比重分離して比重の小さい側の気体を作動気体とする分離通路とを備えて構成している。比重の重い酸素や二酸化炭素を比重分離して、主に窒素を作動気体とすることができるようになる。そのため、酸素を減少させることで、容器内での窒素酸化物(NOx)の有害ガスの発生を減少させることができる。   In addition, if necessary, a working gas generation unit that takes in outside air by the suction force of the fan mechanism and supplies it to the fan mechanism as working gas is provided on the upper side of the container, and the working gas generation unit is provided on the outer periphery. The outside air intake provided, the working gas outlet provided inside and communicating with the upper opening, and provided between the outside air intake and the working gas outlet are separated by specific gravity to operate the gas having a smaller specific gravity. And a separation passage for forming a gas. Oxygen and carbon dioxide with heavy specific gravity can be separated by specific gravity, so that mainly nitrogen can be used as working gas. Therefore, by reducing oxygen, generation of nitrogen oxide (NOx) harmful gas in the container can be reduced.

更に、必要に応じ、上記分離通路を、外気が入り込む通路入口と上記作動気体出口との間に設けられ上記容器の中心軸を中心とする螺旋状の第1螺旋通路と、該第1螺旋通路の上側に設けられ該第1螺旋通路の上記作動気体出口側に連通するとともに外周側に比重の大きい気体の気体出口を有した上記容器の中心軸を中心とする螺旋状の第2螺旋通路とを備えて構成している。これにより、第1螺旋通路を経て作動気体出口に至る外気は、遠心力により第2螺旋通路に入り込み、比重分離されて比重の大きい気体が気体出口から排出され、比重の小さい気体が作動気体として作動気体出口に吸引されていく。螺旋の経路で比重分離するので、効率よく分離を行うことができる。   Furthermore, if necessary, the separation passage is provided between a passage inlet into which outside air enters and the working gas outlet, and a spiral first spiral passage centering on the central axis of the container, and the first spiral passage A spiral second spiral passage centering on the central axis of the container having a gas outlet of a gas having a large specific gravity on the outer peripheral side and communicating with the working gas outlet side of the first spiral passage. It is configured with. As a result, outside air that reaches the working gas outlet through the first spiral passage enters the second spiral passage by centrifugal force, is separated by specific gravity, and a gas having a large specific gravity is discharged from the gas outlet, and a gas having a small specific gravity is used as the working gas. It is sucked into the working gas outlet. Since the specific gravity is separated by the spiral path, the separation can be performed efficiently.

更にまた、必要に応じ、上記作動気体生成部を開閉可能にし、閉時に上記容器内部の圧力が所定以上上昇したとき開になって圧力を逃がすことを可能にした構成としている。容器内部の圧力が所定以上上昇し、所謂バックファイヤーが生じても、作動気体生成部が開になって圧力が逃げるので、安全を図ることができる。   Furthermore, if necessary, the working gas generating unit can be opened and closed, and when the pressure inside the container rises more than a predetermined value when closed, the working gas generating unit is opened so that the pressure can be released. Even if the pressure inside the container rises by more than a predetermined level and a so-called backfire occurs, the working gas generator opens and the pressure escapes, so safety can be achieved.

また、必要に応じ、上記外気取入口と作動気体出口との間に、外気を水で洗浄する洗浄部を設けた構成としている。洗浄部で外気を洗浄することができるので、液体壁部の水を飲料水として取り出す場合に有効になる。   Moreover, it is set as the structure which provided the washing | cleaning part which wash | cleans external air with water between the said external air intake and the working gas outlet as needed. Since the outside air can be washed by the washing unit, it is effective when taking out water from the liquid wall as drinking water.

この場合、上記洗浄部を、水が貯留される洗浄槽と、該洗浄槽に上記液体壁部の下側を構成する水を配給する水配給路とを備えて構成し、該洗浄槽の底壁に取り入れられた外気を洗浄槽内に吹き込む多数の小孔を形成し、該洗浄槽に汚れた水を排水する配水管を連携させた構成とすることができる。これにより、水配給路から液体壁部の下側を構成する水が洗浄水として配給されるが、液体壁部においては、これに生じる遠心力により、重水が下側に集約されることから、洗浄水はこの重水の多い水を用いることになり、洗浄後は排水されるので、効率よく重水の多い水を排水することができる。また、洗浄槽に多数の小孔から外気を噴出して洗浄するので、洗浄効率が極めて良くなる。   In this case, the cleaning unit includes a cleaning tank in which water is stored, and a water distribution path that distributes water constituting the lower side of the liquid wall to the cleaning tank, and the bottom of the cleaning tank A large number of small holes for blowing the outside air taken into the wall into the cleaning tank can be formed, and a water distribution pipe for draining dirty water into the cleaning tank can be linked. Thereby, water constituting the lower side of the liquid wall portion is distributed as washing water from the water distribution path, but in the liquid wall portion, heavy water is concentrated on the lower side due to centrifugal force generated in this, The washing water uses this heavy water and is drained after washing, so that the heavy water can be drained efficiently. In addition, since the outside air is jetted into the cleaning tank to be cleaned, the cleaning efficiency is extremely improved.

また、必要に応じ、上記タービンを通過した作動気体が排気ガスとして排気される排気通路を設け、外気を取り入れる第2外気取入口を設け、該第2外気取入口から上記タービンの動力により回転させられる吸引ファンによって外気を吸引する外気吸引通路を設け、上記排気通路の一部と上記外気吸引通路の一部とを熱交換板を介して並設し、該熱交換板により外気中の水分を凝縮して取り出す外気中水分取出し部を設けた構成としている。これにより、排気ガスと外気との熱交換を行うので、外気を水分の極めて少ない気体として利用することができる。また、外気中から取り出した水を利用することができる。   Further, if necessary, an exhaust passage through which the working gas that has passed through the turbine is exhausted as exhaust gas is provided, a second outside air intake for taking in outside air is provided, and the second outside air intake is rotated by the power of the turbine. An outside air suction passage for sucking outside air by a suction fan is provided, and a part of the exhaust passage and a part of the outside air suction passage are arranged side by side through a heat exchange plate, and moisture in the outside air is removed by the heat exchange plate. It is configured to provide an outside air moisture extraction unit that condenses and takes out. As a result, heat exchange between the exhaust gas and the outside air is performed, so that the outside air can be used as a gas with very little moisture. Moreover, the water taken out from the outside air can be used.

この場合、上記外気吸引通路の第2外気取入口側に、外気を水で洗浄する第2洗浄部を設けたことが有効である。第2洗浄部で外気を洗浄することができる。   In this case, it is effective to provide a second cleaning section for cleaning the outside air with water on the second outside air intake side of the outside air suction passage. Outside air can be washed in the second washing section.

また、必要に応じ、上記第2洗浄部を、水が貯留される第2洗浄槽と、該第2洗浄槽に上記液体壁部の下側を構成する水を配給する水配給路とを備えて構成し、該第2洗浄槽の底壁に取り入れられた外気を該第2洗浄槽内に吹き込む多数の小孔を形成し、該第2洗浄槽に汚れた水を排水する配水管を連携させた構成としている。これにより、水配給路から液体壁部の下側を構成する水が洗浄水として配給されるが、液体壁部においては、これに生じる遠心力により、重水が下側に集約されることから、洗浄水はこの重水の多い水を用いることになり、洗浄後は排水されるので、効率よく重水の多い水を排水することができる。また、第2洗浄槽に多数の小孔から外気を噴出して洗浄するので、洗浄効率が極めて良くなる。   In addition, if necessary, the second cleaning section includes a second cleaning tank in which water is stored, and a water distribution path that distributes water constituting the lower side of the liquid wall section to the second cleaning tank. A large number of small holes for blowing outside air taken into the bottom wall of the second cleaning tank into the second cleaning tank are formed, and a water distribution pipe for draining dirty water into the second cleaning tank is linked. It is made the composition made to do. Thereby, water constituting the lower side of the liquid wall portion is distributed as washing water from the water distribution path, but in the liquid wall portion, heavy water is concentrated on the lower side due to centrifugal force generated in this, The washing water uses this heavy water and is drained after washing, so that the heavy water can be drained efficiently. Moreover, since the outside air is jetted into the second cleaning tank from a large number of small holes for cleaning, the cleaning efficiency is extremely improved.

この場合、上記外気中水分取出し部を、上記排気通路及び外気吸引通路が上記容器の中心軸に平行になるように上記容器の外周に設け、上記熱交換板を上記排気通路及び外気吸引通路が交互に列設されるように蛇腹状に形成し、該外気中水分取出し部の下側に上記熱交換板を伝って落下する外気中水分の外気中水分貯留槽を設けた構成とすることができる。熱交換板を排気通路及び外気吸引通路が交互に列設されるように蛇腹状に形成したので、熱交換効率を向上させることができる。また、蛇腹状の熱交換板によって、容器の外周の強度を増すことができる。   In this case, the outside air moisture extraction portion is provided on the outer periphery of the container so that the exhaust passage and the outside air suction passage are parallel to the central axis of the container, and the heat exchange plate is provided on the exhaust passage and the outside air suction passage. It is formed in a bellows shape so as to be alternately arranged, and has a configuration in which an outside air moisture storage tank for outside water falling along the heat exchange plate is provided below the outside air moisture extraction unit. it can. Since the heat exchange plate is formed in a bellows shape so that the exhaust passage and the outside air suction passage are alternately arranged, the heat exchange efficiency can be improved. Moreover, the strength of the outer periphery of the container can be increased by the bellows-like heat exchange plate.

また、必要に応じ、上記容器の下側の排気通路を螺旋状に形成した構成としている。排気の遠心力を増すことができ、それだけ、タービンの出力を増すことができる。また、容器の底壁側の強度を増すことができる。   Moreover, it is set as the structure which formed the exhaust passage of the lower side of the said container helically as needed. The centrifugal force of the exhaust can be increased, and the output of the turbine can be increased accordingly. Further, the strength on the bottom wall side of the container can be increased.

更に、必要に応じ、上記吸引ファンを上記タービンの下側において該タービンの下側回転軸に設け、上記容器の下側に上記吸引ファンに至る上記外気吸引通路の終端部を設け、該終端部の下側に上記吸引ファンからの外気の排気が送出され上記外気中水分取出し部を構成する排気通路に合流する外気排気通路を設け、該外気排気通路の下側に外気の排気から凝縮した水が流出させられる水分流出路を設けた構成としている。水分の分離を効率よく行うことができる。   Further, if necessary, the suction fan is provided on the lower rotating shaft of the turbine below the turbine, and a terminal portion of the outside air suction passage leading to the suction fan is provided below the container, An outside air exhaust passage is provided below the outside air exhaust passage to which the outside air exhaust from the suction fan is sent and merged with the exhaust passage constituting the outside air moisture extraction section, and the water condensed from the outside air exhaust is provided below the outside air exhaust passage. It is set as the structure which provided the water | moisture-content outflow path through which water flows out. Water separation can be performed efficiently.

この場合、上記外気排気通路及び水分流出路を螺旋状に形成した構成としている。遠心力を増すことができ、この点でも、水分の分離を効率よく行うことができる。また、容器の底壁側の強度を増すことができる。   In this case, the outside air exhaust passage and the moisture outflow passage are formed in a spiral shape. Centrifugal force can be increased, and also in this respect, water can be separated efficiently. Further, the strength on the bottom wall side of the container can be increased.

また、必要に応じ、上記タービンの上側に該タービンから延び容器の中心軸を軸線とする上回転軸を設け、該上回転軸を管状に形成するとともに管壁に軸方向に沿って多数の小孔を開設し、上記外気中水分取出し部を、上記排気通路及び外気吸引通路が上記容器の中心軸に平行になるように上記容器の外周に設け、上記熱交換板を上記排気通路及び外気吸引通路が交互に列設されるように蛇腹状に形成し、該外気中水分取出し部の下側に上記熱交換板を伝って落下する外気中水分の外気中水分貯留槽を設け、該外気中水分貯留槽に貯留される水及び上記水分流出路からの水を上記上回転軸内に送給して小孔から容器内に噴出させる噴出水流路を設けた構成としている。外気中水分貯留槽に貯留される水及び上記水分流出路からの水は、上回転軸の小孔から噴射され、作動気体内に分散し、冷却の用に供される。この場合、小孔からの噴射によるので、冷却効率が高くなる。また、噴射された水は、溶液壁部の表面に一体化して行き、一部は熱分解する。また、噴射される水は、第2外気取入口から取り入れた外気からの水なので、外気中の水の利用効率が向上させられる。 If necessary, the central axis of the container extending from the turbine to the upper side of the turbine provided with the rotary shaft on the axis, numerous small in the axial direction to the tube wall thereby forming a tubular said on the rotation axis A hole is formed , and the moisture extraction part in the outside air is provided on the outer periphery of the container so that the exhaust passage and the outside air suction passage are parallel to the central axis of the container, and the heat exchange plate is provided in the exhaust passage and the outside air suction. formed in a bellows like passage is arrayed alternately provided outside air in the water reservoir of the outside air in the water to fall down along the heat exchange plate to the lower side in the outer air moisture extraction unit, the outside air during The structure is provided with a jet water flow path that feeds water stored in the water storage tank and water from the water outflow path into the upper rotating shaft and jets the water into the container from the small hole. The water stored in the moisture storage tank in the outside air and the water from the water outflow passage are jetted from the small hole of the upper rotating shaft , dispersed in the working gas, and used for cooling. In this case, the cooling efficiency is increased because of injection from the small holes. Moreover, the jetted water is integrated with the surface of the solution wall portion, and a part thereof is thermally decomposed. Moreover, since the water to be injected is water from the outside air taken in from the second outside air intake, the utilization efficiency of the water in the outside air is improved.

更に、必要に応じ、上記容器の上記液体壁部の上端より上から上記容器内で生成される酸素を回収する酸素回収通路と、上記容器の上記液体壁部の下端側から上記容器内で生成される水素を回収する水素回収通路とを設けた構成としている。容器内部においては、作動気体の圧力及び温度が上昇して、例えば、約30気圧の高圧,約8000℃もの高温になるので、液体壁部の内表面においては液体壁部を構成する水が熱分解させられ、酸素と水素が発生するが、酸素回収通路により、酸素を回収し、水素回収通路により水素を回収することができる。   Further, if necessary, an oxygen recovery passage for recovering oxygen generated in the container from above the upper end of the liquid wall portion of the container, and generation in the container from the lower end side of the liquid wall portion of the container. And a hydrogen recovery passage for recovering the generated hydrogen. Inside the container, the pressure and temperature of the working gas rise, for example, a high pressure of about 30 atmospheres and a high temperature of about 8000 ° C., so that water constituting the liquid wall is heated on the inner surface of the liquid wall. Oxygen and hydrogen are generated by being decomposed, but oxygen can be recovered through the oxygen recovery passage, and hydrogen can be recovered through the hydrogen recovery passage.

このことにより、重水素減少水の製造方法を提案することができる。重水素減少水の製造に当たって、従来技術として、水を電気分解して水素と酸素に分け重力や質量の差を利用して軽水素のみに分解し再度、酸素と結合させる方法があるが、エネルギー消費コストが高くなる欠点がある。しかし、本発明によれば、容器内で作動気体を遠心高熱分解し、水素と酸素を強力遠心比重分離させるので、軽水素のみが回転する液体壁部の遠心減圧された中心部に集合して下部の水素回収通路から取り出される。そのため、図示しない焼却炉で軽水素と酸素とを結合させることにより、重水素減少水を精製出来るようになる。水素回収通路に導入されなかった重水素はタービンの外周部から減圧されて排気されるので、重水素のみを分離して燃焼処理をすることでその燃焼熱は本発明の導入外気の加温に利用し、出力アップに寄与できる。   This makes it possible to propose a method for producing deuterium reduced water. In the production of deuterium-reduced water, as a conventional technique, there is a method in which water is electrolyzed, divided into hydrogen and oxygen, decomposed only into light hydrogen using the difference in gravity and mass, and then combined with oxygen again. There is a drawback that the consumption cost is high. However, according to the present invention, the working gas is subjected to centrifugal high pyrolysis in the container, and hydrogen and oxygen are separated by strong centrifugal specific gravity, so that only light hydrogen gathers at the centrifugally reduced central portion of the rotating liquid wall. It is taken out from the lower hydrogen recovery passage. Therefore, deuterium-reduced water can be purified by combining light hydrogen and oxygen in an incinerator (not shown). Since deuterium that has not been introduced into the hydrogen recovery passage is decompressed and exhausted from the outer periphery of the turbine, only the deuterium is separated and subjected to combustion treatment, so that the combustion heat is used to warm the introduced outside air of the present invention. It can be used to contribute to increased output.

そしてまた、必要に応じ、上記下壁の下側に、上記側壁に一体に設けられ上記下壁との間に下部空間を形成する隔壁を設け、上記下壁の少なくとも外周部を上記側壁の内側に設けたフランジに対して上下に摺動可能な移動部として構成し、該移動部の上端位置を規制するストッパを設け、一端側が上記容器内に開口し他端側が上記下部空間に開口し上記容器内の圧力と上記下部空間との圧力を等しくするための連通管を設け、上記移動部を上記ストッパに常時押圧する付勢手段を設け、上記容器内部の圧力が所定以上急上昇したとき、上記付勢手段の付勢力に抗して該移動部がフランジを摺動して下部空間内に落ち込み、該移動部とフランジ内周との間に形成された間隙から容器内の圧力を逃がすことを可能にした構成としている。これにより、容器内部と下部空間との間は連通管により接続されているので、常時は、容器内の圧力と下部空間との圧力が等しく保たれ、下壁は一定位置に位置させられる。万一、容器内部の圧力が所定以上上昇し、所謂バックファイヤーが生じると、付勢手段の付勢力に抗して下壁の移動部がフランジを摺動して下部空間内に落ち込み、移動部とフランジ内周との間に形成された間隙から容器内の圧力が逃げるので、安全を図ることができる。   In addition, if necessary, a partition wall that is provided integrally with the side wall and forms a lower space with the lower wall is provided on the lower side of the lower wall, and at least an outer peripheral portion of the lower wall is disposed on the inner side of the side wall. And a stopper that regulates the upper end position of the moving portion, one end side is opened in the container, and the other end side is opened in the lower space. A communication pipe for equalizing the pressure in the container and the pressure in the lower space is provided, an urging means for constantly pressing the moving part against the stopper is provided, and when the pressure inside the container rises more than a predetermined value, The moving part slides on the flange against the urging force of the urging means and falls into the lower space, and the pressure in the container is released from the gap formed between the moving part and the flange inner periphery. The configuration is made possible. Thus, since the inside of the container and the lower space are connected by the communication pipe, the pressure in the container and the pressure in the lower space are always kept equal, and the lower wall is positioned at a fixed position. Should the pressure inside the container rise above a predetermined level and a so-called backfire occurs, the moving part of the lower wall slides on the flange against the urging force of the urging means and falls into the lower space. Since the pressure in the container escapes from the gap formed between the flange and the inner periphery of the flange, safety can be achieved.

本発明の温度差エネルギー変換装置によれば、ファン機構により気体が取り入れられると、作動気体は、容器内を上側から下側に向かって旋回させられながら圧縮して下降させられ、この旋回力によって容器内部の液体を回転させ、下開口を開放したロート状の内表面を有した液体壁部に形成し、下開口から導出されていく。そのため、作動気体は、容器内で圧力及び温度が上昇して高圧,高温になり、下開口から導出されると、急膨張して冷気になり、タービンを回転させる。この場合、高圧,高温の作動気体は、ロート状の液体壁部に接するので、液体の表面で熱交換が行われることになり、そのため、冷却効率が極めて良くなり、それだけ、下開口から毎秒導出される混合気のロート状内外の比較総合比重を増加させ、それにより遠心力の勢いを増してタービンの出力の向上を図ることができる。   According to the temperature difference energy conversion device of the present invention, when the gas is taken in by the fan mechanism, the working gas is compressed and lowered while being swung from the upper side to the lower side in the container. The liquid inside the container is rotated to form a liquid wall portion having a funnel-shaped inner surface with the lower opening opened, and is led out from the lower opening. Therefore, the working gas rises in pressure and temperature in the container to become high pressure and high temperature, and when it is led out from the lower opening, it rapidly expands to become cold air, and rotates the turbine. In this case, since the high-pressure and high-temperature working gas contacts the funnel-shaped liquid wall, heat exchange is performed on the surface of the liquid, so that the cooling efficiency is extremely improved, and that is derived from the lower opening every second. It is possible to increase the comparative specific gravity of the mixed gas inside and outside the funnel, thereby increasing the momentum of the centrifugal force and improving the output of the turbine.

本発明の温度差エネルギー変換装置の原理を示す図である。It is a figure which shows the principle of the temperature difference energy converter of this invention. 本発明の実施の形態に係る温度差エネルギー変換装置を示す断面図である。It is sectional drawing which shows the temperature difference energy converter which concerns on embodiment of this invention. 本発明の実施の形態に係る温度差エネルギー変換装置を示す部分断面斜視図である。It is a partial section perspective view showing the temperature difference energy conversion device concerning an embodiment of the invention. 本発明の実施の形態に係る温度差エネルギー変換装置の上側を示す拡大断面図である。It is an expanded sectional view showing the upper side of the temperature difference energy conversion device concerning an embodiment of the invention. 本発明の実施の形態に係る温度差エネルギー変換装置の下側を示す拡大断面図である。It is an expanded sectional view which shows the lower side of the temperature difference energy converter which concerns on embodiment of this invention. 本発明の実施の形態に係る温度差エネルギー変換装置を示す図2中A−A線断面図である。It is the sectional view on the AA line in FIG. 2 which shows the temperature difference energy converter which concerns on embodiment of this invention. 本発明の実施の形態に係る温度差エネルギー変換装置を示す図2中B−B線断面図である。It is the BB sectional drawing in FIG. 2 which shows the temperature difference energy converter which concerns on embodiment of this invention. 本発明の別の実施の形態に係る温度差エネルギー変換装置を示す原理図である。It is a principle figure which shows the temperature difference energy converter which concerns on another embodiment of this invention. 従来の温度差エネルギー変換装置の一例を模式的に示す図である。It is a figure which shows typically an example of the conventional temperature difference energy converter.

以下、添付図面に基づいて本発明の実施の形態に係る温度差エネルギー変換装置を説明する。本装置は、例えば、直径が1m〜300m、高さが1.2m〜400mの大きさのものである。
図2乃至図7には、本発明の実施の形態に係る温度差エネルギー変換装置Sを示している。この温度差エネルギー変換装置Sは、基台1とこの基台1に立設される本体2とを備えている。基台1は、コンクリートの基礎3に設置され内部に後述の発電機55,56を収容する発電機室8を形成している。本体2は、支持台4に支持された容器10を備えている。支持台4は、基台1に支持され、上板5,下板6及び側板7で形成さている。下板6は、基台1の上面部を形成する。
Hereinafter, a temperature difference energy conversion device according to an embodiment of the present invention will be described with reference to the accompanying drawings. This apparatus has a diameter of 1 m to 300 m and a height of 1.2 m to 400 m, for example.
2 to 7 show a temperature difference energy conversion device S according to an embodiment of the present invention. The temperature difference energy conversion device S includes a base 1 and a main body 2 erected on the base 1. The base 1 is installed on a concrete foundation 3 and forms a generator room 8 that houses generators 55 and 56 described later. The main body 2 includes a container 10 supported on the support base 4. The support base 4 is supported by the base 1 and is formed of an upper plate 5, a lower plate 6, and side plates 7. The lower plate 6 forms the upper surface portion of the base 1.

容器10は、筒状の側壁11,上壁12及び下壁13を有し内部に冷却用の液体としての水Wが入れられる。容器10において、上部には上壁12との間に上部空間14を形成する上隔壁15が設けられ、側壁11下部の内側には、下壁13との間に下部空間16を形成し中央部が支持台4の上板5で形成された下隔壁17が設けられている。容器10の上壁12の中央には、容器10の中心軸Pと同軸で気体を取り入れる上開口20が形成されている。容器10の下壁13の中央には、容器10の中心軸Pを中心とした下開口21が設けられている。また、容器10の側壁11の外側には、この側壁11とともに後述の噴出水流路170の主流路173を形成する筒状の第1外筒22が設けられ、第1外筒22の外側には、この第1外筒22とともに後述の外気中水分取出し部160を形成する第2外筒23とが備えられている。   The container 10 has a cylindrical side wall 11, an upper wall 12 and a lower wall 13, and water W as a cooling liquid is placed therein. In the container 10, an upper partition wall 15 that forms an upper space 14 between the upper wall 12 and the upper wall 12 is provided at the upper portion, and a lower space 16 is formed between the lower wall 13 and the inner side of the lower portion of the side wall 11. Is provided with a lower partition wall 17 formed by the upper plate 5 of the support base 4. An upper opening 20 is formed in the center of the upper wall 12 of the container 10 to take in gas coaxially with the central axis P of the container 10. In the center of the lower wall 13 of the container 10, a lower opening 21 centering on the central axis P of the container 10 is provided. In addition, a cylindrical first outer cylinder 22 that forms a main flow path 173 of a later-described ejection water flow path 170 together with the side wall 11 is provided outside the side wall 11 of the container 10. The first outer cylinder 22 is provided with a second outer cylinder 23 that forms an outside air moisture extraction portion 160 described later.

容器10の上側にはファン機構40が設けられている。ファン機構40は、後で詳述するが、上開口20から気体としての大気からなる外気を取り入れその一部若しくは全部(実施の形態では比重分離した一部)を作動気体Gとして旋回させながら圧縮して降下させ、内部の液体である水Wを下開口21を開放したロート状の内表面を有した液体壁部Hに形成して、作動気体Gを下開口21から導出させるものである。   A fan mechanism 40 is provided on the upper side of the container 10. As will be described in detail later, the fan mechanism 40 takes in outside air made up of the atmosphere as gas from the upper opening 20 and compresses while rotating a part or all (part of the specific gravity separated in the embodiment) as the working gas G. The water W, which is an internal liquid, is formed on the liquid wall H having a funnel-shaped inner surface with the lower opening 21 open, and the working gas G is led out from the lower opening 21.

また、容器10の下側には、容器10中心軸Pと同軸の軸線を有した回転軸50を有し下開口21に臨み導出する作動気体Gにより回転させられるタービンTが設けられている。タービンTの回転軸50は上側に突出する上回転軸51と下側に突出する下回転軸52とを有した管状に形成されている。下回転軸52の下端部は中実軸であり基台1に軸受部53を介して軸支されている。また、基台1内部において、タービンTの下回転軸53の下端にはかさ歯車機構54を介して回転させられて発電を行う一対の発電機(Ge)55,56が設置されている。一方の発電機56は、本装置の始動時にセルモータ(Sm)として外部電源により駆動され、定常時においては切換えられて発電機として機能する。符号57はかさ歯車機構54の潤滑用オイルが貯留されるオイル溜である。   A turbine T that has a rotating shaft 50 having an axis coaxial with the central axis P of the container 10 and is rotated by a working gas G that faces the lower opening 21 and is led out is provided below the container 10. The rotating shaft 50 of the turbine T is formed in a tubular shape having an upper rotating shaft 51 protruding upward and a lower rotating shaft 52 protruding downward. The lower end portion of the lower rotating shaft 52 is a solid shaft and is pivotally supported on the base 1 via a bearing portion 53. In addition, in the base 1, a pair of generators (Ge) 55 and 56 that generate power by being rotated via a bevel gear mechanism 54 are installed at the lower end of the lower rotating shaft 53 of the turbine T. One generator 56 is driven by an external power source as a cell motor (Sm) when the present apparatus is started, and is switched during normal operation to function as a generator. Reference numeral 57 denotes an oil reservoir in which lubricating oil for the bevel gear mechanism 54 is stored.

容器10において、下壁13は、下開口21が形成されにタービンTを囲繞するとともに支持台4の上板5に固定される下開口管24と、下開口管24に上下に摺動可能且つ側壁11の内側に設けたフランジ25に対して上下に摺動可能で下壁13の壁面を形成する円盤状の移動部26とを備えて構成されている。下開口管24の上端には、移動部26の上端位置を規制するストッパ27が固定されている。そして、一端側が容器10内に開口し他端側が下部空間16に開口して容器10内の圧力と下部空間16との圧力を等しくするための連通管30が設けられている。図4に示すように、容器10の上部内周には、矩形の平断面を形成するチャンネル部材で形成されたリング状の周管31が付設されており、この周管31の半周の側壁11には容器10内と連通する多数の連通口32が列設されている。そして、連通管30は側壁11の軸方向に沿って側壁11外側に設けられ、その一端は周管31の連通口32の内側(a)に開口し、他端が下部空間16(b)に開口している。   In the container 10, the lower wall 13 surrounds the turbine T with the lower opening 21 formed therein, and is slidable up and down on the lower opening pipe 24, and is fixed to the upper plate 5 of the support 4. A disc-shaped moving portion 26 that can slide up and down with respect to a flange 25 provided inside the side wall 11 and forms a wall surface of the lower wall 13 is provided. A stopper 27 that restricts the upper end position of the moving portion 26 is fixed to the upper end of the lower opening tube 24. One end side opens into the container 10 and the other end opens into the lower space 16, and a communication pipe 30 is provided for equalizing the pressure in the container 10 and the pressure in the lower space 16. As shown in FIG. 4, a ring-shaped peripheral tube 31 formed of a channel member that forms a rectangular flat cross section is attached to the upper inner periphery of the container 10. A number of communication ports 32 communicating with the inside of the container 10 are arranged in a row. The communication pipe 30 is provided on the outer side of the side wall 11 along the axial direction of the side wall 11. One end of the communication pipe 30 opens to the inner side (a) of the communication port 32 of the peripheral pipe 31, and the other end extends to the lower space 16 (b). It is open.

また、下部空間16には、移動部26をストッパ27に常時押圧する付勢手段が設けられている。付勢手段は、中心軸Pを中心に等角度関係で列設される複数のコイルスプリング33で構成されている。これにより、容器10内部の圧力が所定以上急上昇したとき、付勢手段としてのコイルスプリング33の付勢力に抗して移動部26が下開口管24及びフランジ25を摺動して下部空間16内に落ち込み、移動部26とフランジ25内周との間に形成された間隙から容器10内の圧力を逃がすことを可能にしている。   The lower space 16 is provided with urging means for constantly pressing the moving part 26 against the stopper 27. The urging means is composed of a plurality of coil springs 33 arranged in an equiangular relationship around the central axis P. As a result, when the pressure inside the container 10 suddenly rises above a predetermined level, the moving part 26 slides on the lower opening pipe 24 and the flange 25 against the urging force of the coil spring 33 as the urging means and moves into the lower space 16. The pressure in the container 10 can be released from the gap formed between the moving part 26 and the inner periphery of the flange 25.

ファン機構40は、図4及び図6に示すように、上壁12に回転可能に設けられ容器10の中心軸Pを中心に回転する第1ファン41と、上壁12に設けられ第1ファン41を回転させるモータ(M)42と、タービンTから延び容器10の中心軸Pを軸線とする上回転軸51によってタービンTと同期して回転させられる第2ファン60とを備えて構成されている。第1ファン41の回転主軸43と上回転軸51とは同軸であり、スラストメカニカルシール61を介して互いに独立して回転可能に連設されている。モータ42は、始動時から定常運転に至るまでの間及び必要に応じ適時に、外部電源で駆動され、定常運転後は発電機55,56からの電力で駆動される。   As shown in FIGS. 4 and 6, the fan mechanism 40 is provided on the upper wall 12 so as to be rotatable and rotates around the central axis P of the container 10, and the first fan 41 provided on the upper wall 12. A motor (M) 42 that rotates 41, and a second fan 60 that extends from the turbine T and is rotated in synchronization with the turbine T by an upper rotating shaft 51 that has the central axis P of the container 10 as an axis. Yes. The rotation main shaft 43 and the upper rotation shaft 51 of the first fan 41 are coaxial, and are connected to each other via a thrust mechanical seal 61 so as to be independently rotatable. The motor 42 is driven by an external power source from the start to the steady operation and at an appropriate time as necessary. After the steady operation, the motor 42 is driven by electric power from the generators 55 and 56.

第1ファン41は、中央に上開口20に対応する吸引口44を有し上壁12に近接して対峙し回転主軸43に固定されて回転させられるとともに上壁12にラジアルメカニカルシール62を介して軸支される基盤45と、基盤45に等角度関係で複数列設され吸引口44からの作動気体Gを遠心方向に送出する第1回転羽根46と、上回転軸51が回転可能に貫通し基盤45に対向して第1回転羽根46を覆うとともに外周に作動気体Gの吹出口47を形成する覆い板48とを備えて構成されている。第1回転羽根46の外周は、遠心力により内側に水Wを保持可能な覆い側板49で被覆されている。モータ42は、上壁12に支持部材63を介して支持されており、支持部材63の下側は、回転主軸43を包容し後述もする液体壁部Hからの水が入り込む包容空間64を形成する包容部65に形成されている。   The first fan 41 has a suction port 44 corresponding to the upper opening 20 in the center, confronts the upper wall 12, faces the upper wall 12, is fixed to the rotary main shaft 43 and is rotated, and a radial mechanical seal 62 is provided on the upper wall 12. The base 45 that is pivotally supported, the first rotary blade 46 that is provided in a plurality of rows in an equiangular relationship with the base 45 and sends out the working gas G from the suction port 44 in the centrifugal direction, and the upper rotary shaft 51 penetrates rotatably. A cover plate 48 that covers the first rotary blade 46 and faces the base 45 and forms a blowout port 47 for the working gas G on the outer periphery is provided. The outer periphery of the first rotary blade 46 is covered with a cover side plate 49 that can hold water W inside by centrifugal force. The motor 42 is supported on the upper wall 12 via a support member 63, and the lower side of the support member 63 encloses the rotation main shaft 43 and forms a containment space 64 into which water from the liquid wall portion H, which will be described later, enters. It is formed in the containing part 65 to do.

第2ファン60は、第1ファン41の第1回転羽根46の内側であって、吸引口44に対峙し回転させられて吸引口44からの作動気体Gを遠心方向に送出して吹出口47から吹き出す複数の第2回転羽根66を備えて構成されている。 The second fan 60 is inside the first rotary blade 46 of the first fan 41 and is rotated against the suction port 44 to send the working gas G from the suction port 44 in the centrifugal direction to blow out the blowout port 47. A plurality of second rotary blades 66 that are blown out are provided.

容器10の上側には、上隔壁15に支持され、ファン機構40の吸引力により外気を取り入れて作動気体Gとしてファン機構40に送給する作動気体生成部70が設けられている。この作動気体生成部70は、外周に設けられた複数の第1外気取入口71と、内側に設けられ上開口20に連通する作動気体出口72とを備えている。作動気体出口72は、逆円錐台筒状に形成されモータ42の支持部材63を囲繞するダクト体73で形成されている。符号73aは支持部材63から放射状に延びてダクト体73を内側から支持する複数の補強板である。また、作動気体生成部70は、第1外気取入口71と作動気体出口72との間に設けられ外気を比重分離して比重の小さい側の気体を作動気体Gとする分離通路74を備えている。   On the upper side of the container 10, there is provided a working gas generation unit 70 that is supported by the upper partition 15 and takes in outside air by the suction force of the fan mechanism 40 and supplies it as the working gas G to the fan mechanism 40. The working gas generation unit 70 includes a plurality of first outside air intakes 71 provided on the outer periphery, and a working gas outlet 72 provided on the inner side and communicating with the upper opening 20. The working gas outlet 72 is formed of a duct body 73 that is formed in an inverted truncated cone shape and surrounds the support member 63 of the motor 42. Reference numeral 73a denotes a plurality of reinforcing plates that extend radially from the support member 63 and support the duct body 73 from the inside. The working gas generation unit 70 includes a separation passage 74 that is provided between the first outside air inlet 71 and the working gas outlet 72 and separates the outside air by specific gravity and uses the gas having the smaller specific gravity as the working gas G. Yes.

分離通路74は、ダクト体73の上側に連設されたドーナツ状の円盤体75内に形成されており、第1外気取入口71側の通路入口76を有し作動気体出口72に連通する上下2段であって中心軸Pを中心とする螺旋状に形成されている。詳しくは、分離通路74は、通路入口76からの外気が流入させられ容器10の中心軸Pを中心とする螺旋状の第1螺旋通路74aと、第1螺旋通路74aの上側に設けられ第1螺旋通路74aの作動気体出口72側に連通し第1螺旋通路74aからの外気が流入させられるとともに外周側に比重の大きい気体の気体出口を有した容器10の中心軸を中心とする螺旋状の第2螺旋通路74bとを備えて構成されている。気体出口は円盤体75の上部に複数形成され、外周側から順に、主に二酸化炭素用の気体出口77,主に酸素用の気体出口78,主にアルゴン用の気体出口79として備えられている。これにより、ファン機構40の吸引力により容器10内に送給される作動気体Gは、主に窒素ガスとなる。   The separation passage 74 is formed in a donut-shaped disc body 75 provided on the upper side of the duct body 73. The separation passage 74 has a passage inlet 76 on the first outside air intake 71 side and communicates with the working gas outlet 72. It has two stages and is formed in a spiral shape with the central axis P as the center. Specifically, the separation passage 74 is provided on the upper side of the first spiral passage 74a and the first spiral passage 74a having a spiral shape around the central axis P of the container 10 through which the outside air flows from the passage inlet 76. A spiral shape centering on the central axis of the container 10 that communicates with the working gas outlet 72 side of the spiral passage 74a and from which the outside air from the first spiral passage 74a flows in and has a gas outlet of gas having a large specific gravity on the outer peripheral side. And a second spiral passage 74b. A plurality of gas outlets are formed in the upper part of the disk body 75, and are provided as a gas outlet 77 mainly for carbon dioxide, a gas outlet 78 mainly for oxygen, and a gas outlet 79 mainly for argon in order from the outer peripheral side. . Thus, the working gas G fed into the container 10 by the suction force of the fan mechanism 40 is mainly nitrogen gas.

作動気体生成部70の円盤体75は、中心軸Pを中心に放射状に複数に分割形成され、外周側がヒンジ装置を介して開閉可能に設けられており、閉時に容器10内部の圧力が所定以上上昇したとき、図4の上部において点線で示すように、開になって圧力を逃がすことを可能にしてある。   The disc body 75 of the working gas generation unit 70 is divided into a plurality of pieces radially about the central axis P, and the outer peripheral side is provided so that it can be opened and closed via a hinge device. When raised, as shown by the dotted line in the upper part of FIG.

また、第1外気取入口71と作動気体出口72との間には、外気を水で洗浄する第1洗浄部80が設けられている。円盤体75と上隔壁15との間には周壁で囲繞された空間が設けられており、この第1洗浄部80は、この空間に設けられ水が貯留される第1洗浄槽81と、第1洗浄槽81に液体壁部Hの下側を構成する水Wを配給する水配給路82とを備えて構成されている。第1洗浄槽81は、水配給路82から配給される水を旋回させるリング状に形成されている。第1洗浄槽81の底壁83には取り入れられた外気を第1洗浄槽81内に吹き込む多数の小孔84が形成されている。第1洗浄槽81は負圧になっており、外気はこの小孔84から泡状になって槽内に吹き出していき洗浄される。また、第1洗浄槽81には、汚れた水を排水する第1配水管85が連携されている。第1配水管85は、後述の第2洗浄槽151に排水を供給する。水配給路82は、容器10の側壁11に沿って付設された水配給パイプ86で形成され、下端が容器10内の下側(c)に開口し、上端が第1洗浄槽81内(d)に開口しており、液体壁部Hの圧力により液体壁部Hの下側を構成する水Wを第1洗浄槽81内に供給する。   A first cleaning unit 80 that cleans the outside air with water is provided between the first outside air inlet 71 and the working gas outlet 72. A space surrounded by a peripheral wall is provided between the disc body 75 and the upper partition 15, and the first cleaning unit 80 includes a first cleaning tank 81 provided in this space and storing water, A water distribution path 82 for distributing water W constituting the lower side of the liquid wall H is provided in one cleaning tank 81. The first cleaning tank 81 is formed in a ring shape that swirls the water distributed from the water distribution path 82. The bottom wall 83 of the first cleaning tank 81 is formed with a large number of small holes 84 through which the outside air taken in is blown into the first cleaning tank 81. The first cleaning tank 81 has a negative pressure, and the outside air is bubbled from the small holes 84 and blown into the tank for cleaning. The first cleaning tank 81 is associated with a first water distribution pipe 85 that drains dirty water. The first water distribution pipe 85 supplies drainage to a second cleaning tank 151 described later. The water distribution path 82 is formed by a water distribution pipe 86 attached along the side wall 11 of the container 10, the lower end opens to the lower side (c) in the container 10, and the upper end in the first cleaning tank 81 (d The water W constituting the lower side of the liquid wall H is supplied into the first cleaning tank 81 by the pressure of the liquid wall H.

本装置Sには、液体壁部Hを構成する水Wを外部から供給する水供給部90と、液体壁部Hを構成する水Wを循環させる循環水路91とが設けられている。水供給部90は、水道水W(s)を供給する水供給パイプ92を備えて構成されている。循環水路91は、容器10の側壁11に沿って付設された左右一対の循環パイプ93で形成され、その下端が容器10内の下側(e)に開口し、上端側が水供給管94として構成され、この水供給管94の先端が第1ファン41の基盤45と上壁12との間であって、上開口20側(f)に開口し、この第1ファン41の基盤45と上壁12との間に水を供給する。水供給管94の基端にはギヤポンプ95が介装されており、このギヤポンプ95の駆動により、液体壁部Hを構成する水を循環させる。循環水路91を構成する一方の循環パイプ93(図4中右側)においては、ギヤポンプ95の手前に、循環パイプ93を通る高圧熱水と熱交換を行って暖房の用に供する熱交換部96が接続されており、水Wはこの熱交換部96を通ってから、ギヤポンプ95に至る。循環水路91を構成する他方の循環パイプ93(図4中左側)においては、ギヤポンプ95の手前に分岐管97が接続され、分岐管97に介装した開閉弁の開閉により適時に高圧熱水を取出して種々の用途に使用可能にしている。   The apparatus S is provided with a water supply part 90 for supplying water W constituting the liquid wall part H from the outside, and a circulation water channel 91 for circulating the water W constituting the liquid wall part H. The water supply unit 90 includes a water supply pipe 92 that supplies tap water W (s). The circulation water channel 91 is formed by a pair of left and right circulation pipes 93 provided along the side wall 11 of the container 10, the lower end thereof opens to the lower side (e) in the container 10, and the upper end side is configured as a water supply pipe 94. The tip of the water supply pipe 94 is between the base 45 and the upper wall 12 of the first fan 41 and opens to the upper opening 20 side (f), and the base 45 and the upper wall of the first fan 41 are opened. 12 to supply water. A gear pump 95 is interposed at the base end of the water supply pipe 94, and the water constituting the liquid wall portion H is circulated by driving the gear pump 95. In one circulation pipe 93 (the right side in FIG. 4) constituting the circulation water channel 91, a heat exchanging unit 96 that performs heat exchange with high-pressure hot water passing through the circulation pipe 93 and is used for heating is provided in front of the gear pump 95. The water W passes through the heat exchanging section 96 and then reaches the gear pump 95. In the other circulation pipe 93 (the left side in FIG. 4) constituting the circulation water channel 91, a branch pipe 97 is connected in front of the gear pump 95, and high-pressure hot water is supplied in a timely manner by opening and closing an on-off valve interposed in the branch pipe 97. It is taken out and can be used for various purposes.

基盤45の上面には、螺旋状の溝98が形成されており、水供給管94から供給された水は、この溝98にガイドされるとともに、第1ファン41の基盤45と上壁12との間に充満されて流出し、第1ファン41の覆い側板49の外側面を伝わって容器10内に供給される。そして、水道水を供給する水供給パイプ92は、一方のギヤポンプ95(図4中左側)に接続されており、水供給部90を、水供給管94を通して水を供給する構成にしている。これにより、水が潤滑剤の役目をし、基盤45の上壁12に対する摩擦が低減され、基盤45の冷却も行われる。   A spiral groove 98 is formed on the upper surface of the base 45, and the water supplied from the water supply pipe 94 is guided by the groove 98, and the base 45 and the upper wall 12 of the first fan 41 are Between the first fan 41 and the outer side surface of the cover side plate 49, and is supplied into the container 10. The water supply pipe 92 for supplying tap water is connected to one gear pump 95 (left side in FIG. 4), and the water supply unit 90 is configured to supply water through the water supply pipe 94. Thereby, water serves as a lubricant, friction against the upper wall 12 of the base 45 is reduced, and the base 45 is cooled.

また、本装置Sには、液体壁部Hのロート状の内表面の角度を調整可能な液体壁部調整部100が備えられている。この液体壁部調整部100は、容器10の側壁11にその内面側から中心軸Pに対して進退動可能に設けられ、進退動量によって液体壁部Hのロート状の内表面の角度を調整可能な突出体101と、突出体101を駆動する駆動部102とが設けられている。詳しくは、容器10内には、側壁11内周に沿って、側壁11との間に所定間隔の隠れ空間103を有し、下壁13近傍から側壁11の上側で第1ファン41の外周よりも所定間隔下側の位置までの所定高さを有した筒状の内壁板104が設けられている。突出体101は上下方向に延びる棒状の板材で形成され、4本設けられている。内壁板104には、等角度関係(実施の形態では90°間隔)で、突出体101が通過可能な挿通溝105を形成し、各挿通溝105に突出体101を配し、各突出体101をその上端を内壁板104の側壁11側でこの内壁板104に揺動可能に支持し、揺動により隠れ空間から内壁板104外に出没可能にしている。駆動部102は、側壁11に付設され、例えば、パルスモータで進退可能に回転させられ先端が突出体101の下端に係止するボールネジを有したアクチュエータ106で構成され、パルスモータによるボールネジの回転量により、突出体101の進退動量を変えて、液体壁部Hのロート状の内表面の角度を調整可能にしている。   Further, the apparatus S is provided with a liquid wall adjustment unit 100 that can adjust the angle of the funnel-shaped inner surface of the liquid wall H. The liquid wall adjustment unit 100 is provided on the side wall 11 of the container 10 so as to be able to advance and retreat from the inner surface side with respect to the central axis P. The angle of the funnel-shaped inner surface of the liquid wall H can be adjusted by the amount of advancement and retraction. The protrusion 101 and the drive part 102 which drives the protrusion 101 are provided. Specifically, the container 10 has a hidden space 103 with a predetermined interval between the side wall 11 and the inner periphery of the side wall 11, and from the outer periphery of the first fan 41 above the side wall 11 from the vicinity of the lower wall 13. Also, a cylindrical inner wall plate 104 having a predetermined height up to a position below a predetermined interval is provided. The protruding body 101 is formed of a bar-shaped plate material extending in the vertical direction, and four protruding bodies are provided. The inner wall plate 104 is formed with insertion grooves 105 through which the protrusions 101 can pass at an equiangular relationship (in the embodiment, at intervals of 90 °), and the protrusions 101 are arranged in the respective insertion grooves 105. The upper end of the inner wall plate 104 is swingably supported by the inner wall plate 104 on the side wall 11 side of the inner wall plate 104, and can move out of the inner wall plate 104 from the hidden space by swinging. The drive unit 102 is attached to the side wall 11 and includes, for example, an actuator 106 having a ball screw that is rotated by a pulse motor so as to be advanced and retracted, and whose tip is locked to the lower end of the projecting body 101. Thus, the angle of the funnel-shaped inner surface of the liquid wall H can be adjusted by changing the amount of forward and backward movement of the protrusion 101.

容器10の内壁板104より上の上部には、液体壁部Hの上端の水位が所定高さを超えたとき、超えた分の水を流出させて回収する回収路110が設けられている。回収路110は回収路パイプ111で形成される。また、本体2の外側には回収路110を通って回収された水を飲料水として貯留する回収水貯留槽112が設けられている。この回収水貯留槽112は、第2外筒23と、この第2外筒23を囲繞する第3外筒113と、第2外筒23及び第3外筒113との間の上下を塞ぐ板114で構成されている。また、回収路110からの水の流出量の大小を検知する水量センサを設け、水量センサが水量大を検知したとき水供給部90からの水供給を停止し、水量センサが水量小を検知したとき水供給部90からの水供給を行わせる水供給制御部115が備えられている。   A recovery path 110 is provided above the inner wall plate 104 of the container 10 so that when the water level at the upper end of the liquid wall H exceeds a predetermined height, the excess water is discharged and recovered. The recovery path 110 is formed by a recovery path pipe 111. Further, a recovered water storage tank 112 that stores water recovered through the recovery path 110 as drinking water is provided outside the main body 2. The recovered water storage tank 112 is a plate that blocks the top and bottom between the second outer cylinder 23, the third outer cylinder 113 surrounding the second outer cylinder 23, and the second outer cylinder 23 and the third outer cylinder 113. 114. Moreover, the water amount sensor which detects the magnitude of the outflow amount of the water from the collection path 110 is provided, and when the water amount sensor detects the large amount of water, the water supply from the water supply unit 90 is stopped, and the water amount sensor detects the small amount of water. In some cases, a water supply control unit 115 for supplying water from the water supply unit 90 is provided.

具体的には、回収水貯留槽112の上には、水の流下管120を介して一時的に回収路110からの水を貯留する中間貯留槽116が設けられている。容器10の上部と中間貯留槽116との間に回収路パイプ111が水Wが流下可能に架設されている。そして、中間貯留槽116には中間貯留槽116内の水位の所定の上位と所定の下位を検知する水量センサとしてのフロートスイッチ117が設けられており、フロートスイッチ117が水位の上位を検知すると、水量大として水供給パイプ92に介装した電磁バルブ118を閉にして水供給部90のからの水供給を停止するとともに、流下管120に介装した電磁バルブ121を開にして、中間貯留槽116から回収水貯留槽112へ水を流下させる。一方、フロートスイッチ117が水位の下位を検知すると、水量小として水供給パイプ92に介装した電磁バルブ121を開にして水供給部90のからの水供給を行い、流下管120に介装した電磁バルブ118を閉にする。122は回収水貯留槽112の下部に設けられ飲料水を取り出す取出口、123は取出口122に設けられ飲料水を送給する送給ポンプ、124は回収水貯留槽112の上部に設けられ飲料水が満杯になったとき飲料水を排出するドレン管である。125は回収水貯留槽112の上部に設けられ交換可能なフィルタである。   Specifically, an intermediate storage tank 116 for temporarily storing water from the recovery path 110 is provided on the recovered water storage tank 112 via a water flow down pipe 120. A recovery path pipe 111 is installed between the upper part of the container 10 and the intermediate storage tank 116 so that the water W can flow down. The intermediate storage tank 116 is provided with a float switch 117 as a water amount sensor for detecting a predetermined upper level and a predetermined lower level of the water level in the intermediate storage tank 116, and when the float switch 117 detects the upper level of the water level, As the amount of water is large, the electromagnetic valve 118 interposed in the water supply pipe 92 is closed to stop the water supply from the water supply unit 90, and the electromagnetic valve 121 interposed in the flow down pipe 120 is opened to open the intermediate storage tank Water is allowed to flow from 116 to the recovered water storage tank 112. On the other hand, when the float switch 117 detects the lower level of the water level, the electromagnetic valve 121 interposed in the water supply pipe 92 is opened as the amount of water is small, and water is supplied from the water supply unit 90 and is inserted in the downflow pipe 120. The electromagnetic valve 118 is closed. Reference numeral 122 denotes an outlet provided in the lower part of the recovered water storage tank 112 to take out drinking water, 123 denotes a feed pump provided in the outlet 122 to feed drinking water, and 124 denotes an upper part of the recovered water storage tank 112 provided in the beverage. A drain pipe that drains drinking water when the water is full. Reference numeral 125 denotes a replaceable filter provided at the top of the recovered water storage tank 112.

また、本装置においては、タービンTを通過した作動気体Gが排気ガスとして排気される排気通路130が設けられている。排気通路130は、容器10の下側の支持台4内、及び、後述の外気中水分取出し部160を構成する第1外筒22と第2外筒23との間に形成されている。容器10の下側の支持台4内において、支持台4の上板5の下部には、排気通路130の円盤状の始端部131が設けられている。この排気通路130の始端部131は、内側に下開口管24に連通しタービンTの下部が臨む入口132を有し、外周に出口133を有している。また、排気通路130の始端部131は、中心軸Pを中心とする螺旋状に形成されている。第2外筒23の上側には、排気通路130に連通する周状の側部ダクト135が設けられており、この側部ダクト135に排気口136が形成されている。排気通路130を構成する下板137にはタービンTの下回転軸52を軸支する軸受部138が設けられている。   Further, in the present apparatus, an exhaust passage 130 through which the working gas G that has passed through the turbine T is exhausted as exhaust gas is provided. The exhaust passage 130 is formed in the support base 4 on the lower side of the container 10 and between the first outer cylinder 22 and the second outer cylinder 23 that constitute an outside air moisture extraction section 160 described later. In the support base 4 on the lower side of the container 10, a disk-shaped start end portion 131 of the exhaust passage 130 is provided below the upper plate 5 of the support base 4. The start end 131 of the exhaust passage 130 has an inlet 132 that communicates with the lower opening pipe 24 on the inside and faces the lower portion of the turbine T, and an outlet 133 on the outer periphery. Further, the start end 131 of the exhaust passage 130 is formed in a spiral shape with the central axis P as the center. A circumferential side duct 135 that communicates with the exhaust passage 130 is provided on the upper side of the second outer cylinder 23, and an exhaust port 136 is formed in the side duct 135. The lower plate 137 constituting the exhaust passage 130 is provided with a bearing portion 138 that supports the lower rotating shaft 52 of the turbine T.

更に、上記の第1外気取入口71からの外気の取入とは別に、第2外気取入口141からタービンTの動力により回転させられる吸引ファン142によって外気を吸引する外気吸引通路140が設けられている。上壁12は外側にフランジ状に突出しており、第2外気取入口141はこの上壁12の外側に設けた周状の上部ダクト143の外側に設けられている。そして、吸引ファン142は支持台4内であってタービンTの下側においてタービンTの下回転軸52に設けられている。外気吸引通路140は、後述の外気中水分取出し部160を構成する第1外筒22と第2外筒23との間、及び、容器10の下側であって排気通路130の下側の支持台4内に形成されている。   Further, apart from the intake of the outside air from the first outside air intake 71 described above, an outside air suction passage 140 that sucks the outside air from the second outside air inlet 141 by the suction fan 142 rotated by the power of the turbine T is provided. ing. The upper wall 12 projects outwardly in a flange shape, and the second outside air inlet 141 is provided outside a circumferential upper duct 143 provided outside the upper wall 12. The suction fan 142 is provided on the lower rotating shaft 52 of the turbine T in the support base 4 and below the turbine T. The outside air suction passage 140 is supported between a first outer cylinder 22 and a second outer cylinder 23 that constitute an outside air moisture extraction section 160 described later, and below the container 10 and below the exhaust passage 130. It is formed in the table 4.

更にまた、容器10の下側の支持台4内において、排気通路130の下側には、吸引ファン142に至る外気吸引通路140の終端部144が設けられるが、この外気吸引通路140の終端部144には、上側とは流下パイプ145を通して外気が流入する。この外気吸引通路140の終端部144の下側には、吸引ファン142からの外気の排気が送出され容器10の下側の排気通路130の出口133に接続パイプ146を通して合流する外気排路147が設けられている。また、外気排路147の下側には、外気の排気から凝縮した水が流出させられる水分流出路148が設けられている。外気排路147及び水分流出路148も、中心軸Pを中心とする螺旋状に形成されている。水分流出路148の外側には、水分流出路148からの水を貯める水溜部149が設けられている。   Furthermore, in the support base 4 on the lower side of the container 10, an end portion 144 of the outside air suction passage 140 reaching the suction fan 142 is provided below the exhaust passage 130, and the end portion of the outside air suction passage 140 is provided. Outside air flows into the pipe 144 through the downflow pipe 145 from the upper side. Below the end portion 144 of the outside air suction passage 140 is an outside air exhaust passage 147 through which the exhaust of the outside air from the suction fan 142 is sent and merges through the connection pipe 146 to the outlet 133 of the exhaust passage 130 below the container 10. Is provided. Further, a water outflow path 148 through which water condensed from the exhaust of the external air flows out is provided below the outside air exhaust path 147. The outside air exhaust passage 147 and the water outflow passage 148 are also formed in a spiral shape with the central axis P as the center. A water reservoir 149 that stores water from the water outflow passage 148 is provided outside the water outflow passage 148.

外気吸引通路140の第2外気取入口141側には、外気を水で洗浄する第2洗浄部150が設けられている。この第2洗浄部150は、水が貯留される第2洗浄槽151と、第2洗浄槽151に液体壁部Hの下側を構成する水を配給する上記の水配給路82とを備えて構成されている。第2洗浄槽151は、上部ダクト143内に設けられ、水配給路82から配給される水を旋回させるリング状に形成されている。具体的には、水配給路82からの水は、第1洗浄槽81に至り、その後、第1配水管85を通して第2洗浄槽151に供給される。第2洗浄槽151の底壁152には、取り入れられた外気を第2洗浄槽151内に吹き込む多数の小孔153が形成されている。水が貯留される第2洗浄槽151は負圧になっており、外気はこの小孔153から泡になって槽内に噴出していき洗浄される。また、第2洗浄槽151には汚れた水を排水する第2配水管154が連携されている。第2配水管154は、基台1側部に設けた排水槽155に至っており、落差を利用して水を排水する。排水槽155は汚れた水の逆流を防止する。汚れた水は排水槽155に一時貯留されてから排水される。   A second cleaning unit 150 that cleans the outside air with water is provided on the second outside air inlet 141 side of the outside air suction passage 140. This 2nd washing | cleaning part 150 is provided with the 2nd washing tank 151 in which water is stored, and said water distribution path 82 which distributes the water which comprises the lower side of the liquid wall part H to the 2nd washing tank 151. It is configured. The second cleaning tank 151 is provided in the upper duct 143 and is formed in a ring shape for turning the water distributed from the water distribution path 82. Specifically, the water from the water distribution path 82 reaches the first cleaning tank 81 and is then supplied to the second cleaning tank 151 through the first water distribution pipe 85. The bottom wall 152 of the second cleaning tank 151 is formed with a large number of small holes 153 for blowing the taken outside air into the second cleaning tank 151. The second cleaning tank 151 in which water is stored has a negative pressure, and the outside air is bubbled from the small holes 153 and is jetted into the tank to be cleaned. In addition, a second water distribution pipe 154 that drains dirty water is linked to the second cleaning tank 151. The second water distribution pipe 154 reaches a drainage tank 155 provided on the side of the base 1 and drains water using a drop. The drain tank 155 prevents the backflow of dirty water. The dirty water is temporarily stored in the drain tank 155 and then drained.

また、排気通路130の一部と外気吸引通路140の一部とを熱交換板161を介して並設し、熱交換板161により外気中の水分を凝縮して取り出す外気中水分取出し部160が設けられている。外気中水分取出し部160は、排気通路130及び外気吸引通路140が容器10の中心軸Pに平行になるように容器10の外周に容器10を囲繞して設けられ、具体的には、第1外筒22と第2外筒23との間に形成されている。熱交換板161は、排気通路130及び外気吸引通路140が交互に列設されるように蛇腹状に形成され、その頂部において第1外筒22及び第2外筒23に固設されている。外気中水分取出し部160の下側には、熱交換板161を伝って落下する外気中水分を、上記の流下パイプ145を通して受けて貯留する外気中水分貯留槽162が設けられている。外気中水分貯留槽162から溢れた水は水溜部149に至る。163は外気中水分貯留槽162のドレンである。   A part of the exhaust passage 130 and a part of the outside air suction passage 140 are arranged in parallel via the heat exchange plate 161, and an outside air moisture extraction unit 160 that condenses and extracts moisture in the outside air by the heat exchange plate 161. Is provided. The outside air moisture extraction section 160 is provided so as to surround the container 10 on the outer periphery of the container 10 such that the exhaust passage 130 and the outside air suction passage 140 are parallel to the central axis P of the container 10. It is formed between the outer cylinder 22 and the second outer cylinder 23. The heat exchange plate 161 is formed in a bellows shape so that the exhaust passages 130 and the outside air suction passages 140 are alternately arranged, and is fixed to the first outer cylinder 22 and the second outer cylinder 23 at the top. An outside air moisture storage tank 162 is provided below the outside air moisture extraction unit 160 to receive and store outside air moisture that has fallen through the heat exchange plate 161 through the flow pipe 145. Water overflowing from the outside air moisture storage tank 162 reaches the water reservoir 149. Reference numeral 163 denotes a drain of the outside air moisture storage tank 162.

更に、タービンTの上側には、タービンTから延び容器10の中心軸Pを軸線とする上回転軸51が設けられているが、この上回転軸51は、管状に形成され、タービンTの近傍で仕切部材171で閉塞され、上端が上記のモータ42の管状の回転軸50に連通している。モータ42の管状の回転軸50の上部は上記の支持部材63の包容部65の包容空間64に開放しており、上回転軸51の内部はこの包容部65に連通している。また。上回転軸51の管壁には軸方向に沿って多数の小孔172が開設されている。そして、外気中水分貯留槽163に貯留される水及び水分流出路148からの水であって、水溜部149に至った水を上回転軸51内に送給して小孔172から容器10内に噴出させる噴出水流路170が設けられている。この噴出水流路170は、容器10の側壁11と第1外筒22とで形成される主流路173と、水溜部149と主流路173の下部との間に接続される下部給水管174と、主流路173の上部に設けられ一時的に水を貯める一時水槽175と、一時水槽175と包容部65の包容空間64との間に接続される上部給水管176とで構成される。主流路173は側壁11及び第1外筒22に付設される蛇腹状の補強板177で補強されている。この主流路173内には、上記の連通管30,水配給パイプ86,循環パイプ93が引き通されている。   Further, an upper rotating shaft 51 extending from the turbine T and having the central axis P of the container 10 as an axis is provided on the upper side of the turbine T. The upper rotating shaft 51 is formed in a tubular shape and is in the vicinity of the turbine T. The upper end communicates with the tubular rotary shaft 50 of the motor 42. The upper portion of the tubular rotating shaft 50 of the motor 42 is open to the containing space 64 of the containing portion 65 of the support member 63, and the inside of the upper rotating shaft 51 communicates with the containing portion 65. Also. A large number of small holes 172 are formed in the tube wall of the upper rotating shaft 51 along the axial direction. Then, the water stored in the outside air moisture storage tank 163 and the water from the moisture outflow path 148, which has reached the water reservoir 149, is fed into the upper rotating shaft 51 and is supplied from the small hole 172 into the container 10. An ejection water flow path 170 is provided for ejection. The spouting water flow path 170 includes a main flow path 173 formed by the side wall 11 of the container 10 and the first outer cylinder 22, a lower water supply pipe 174 connected between the water reservoir 149 and the lower part of the main flow path 173, A temporary water tank 175 is provided in the upper part of the main flow path 173 and temporarily stores water, and an upper water supply pipe 176 is connected between the temporary water tank 175 and the containing space 64 of the containing part 65. The main flow path 173 is reinforced by a bellows-like reinforcing plate 177 attached to the side wall 11 and the first outer cylinder 22. In the main flow path 173, the communication pipe 30, the water distribution pipe 86, and the circulation pipe 93 are drawn.

また、本装置Sは、容器10の液体壁部Hの上端より上から容器10内で生成される酸素を回収する酸素回収通路180を備えている。酸素回収路110は、側壁11の周管31の下に開口を有して外部に至る酸素回収管181で構成されている。周管31の下側には、筒状で第1ファン41を囲繞するガイド板182が設けられており、このガイド板182に酸素が入り込む補助吸入口183が周方向に多数設けられている。   The apparatus S further includes an oxygen recovery passage 180 that recovers oxygen generated in the container 10 from above the upper end of the liquid wall H of the container 10. The oxygen recovery path 110 includes an oxygen recovery pipe 181 that has an opening below the peripheral pipe 31 of the side wall 11 and reaches the outside. A guide plate 182 that is cylindrical and surrounds the first fan 41 is provided below the peripheral tube 31, and a large number of auxiliary suction ports 183 through which oxygen enters the guide plate 182 are provided in the circumferential direction.

更に、本装置Sは、容器10の液体壁部Hの下端側から容器10内で生成される水素を回収する水素回収通路190を備えている。詳しくは、タービンTの上回転軸51の基端部であって仕切部材171の下側側部には水素が導入される導入口191が形成され、下回転軸52の中実の下端部より上側側部には水素の導出口192が形成されている。導出口192は軸受部材53で囲繞されており、軸受部材53には導出口192に連通し導出口192からの水素を外部に取り出す水素取出管193が接続されている。水素回収通路190は、導入口191から導出口192に至るタービンTの回転軸50内通路及び水素取出管193によって構成されている。   Furthermore, the apparatus S includes a hydrogen recovery passage 190 that recovers hydrogen generated in the container 10 from the lower end side of the liquid wall H of the container 10. Specifically, an inlet 191 for introducing hydrogen is formed in the lower end portion of the partition member 171 at the base end portion of the upper rotary shaft 51 of the turbine T, and from the solid lower end portion of the lower rotary shaft 52. A hydrogen outlet 192 is formed on the upper side. The outlet port 192 is surrounded by the bearing member 53, and a hydrogen extraction pipe 193 that communicates with the outlet port 192 and extracts hydrogen from the outlet port 192 to the outside is connected to the bearing member 53. The hydrogen recovery passage 190 is constituted by a passage in the rotating shaft 50 of the turbine T extending from the inlet 191 to the outlet 192 and a hydrogen outlet pipe 193.

従って、実施の形態に係る温度差エネルギー変換装置Sによれば、基本的には、モータ42及び発電機56をセルモータとして始動すると、ファン機構40により気体が取り入れられ、作動気体Gは、容器10内を上側から下側に向かって旋回させられながら圧縮して下降させられ、この旋回力によって容器10内部の水Wを回転させ、下開口21を開放したロート状の内表面を有した液体壁部Hに形成し、下開口21から導出されて、タービンTを回転させる。この過程において、作動気体Gは、旋回させられながら圧縮して下降させられると、圧力及び温度が上昇していき、高圧,高温になり、下開口21から導出されると、急膨張して冷気になり、タービンTを回転させる。タービンTにより発電機55による発電が行われる。この場合、高圧,高温の作動気体Gは、ロート状の液体壁部Hに接するので、液体の表面で熱交換が行われることになり、そのため、冷却効率が極めて良くなり、それだけ、下開口21から毎秒導出される混合気のロート状内外の比較総合比重を増加させ、それにより遠心力の勢いを増してタービンTの出力の向上及び発電機の出力の向上を図ることができる。そして、定常状態になったならば、発電機55による発電も行われ、モータ42の電源を発電機55,56の電源でまかなうことができるようになる。   Therefore, according to the temperature difference energy conversion device S according to the embodiment, basically, when the motor 42 and the generator 56 are started as a cell motor, gas is taken in by the fan mechanism 40 and the working gas G is stored in the container 10. A liquid wall having a funnel-shaped inner surface in which the water W inside the container 10 is rotated by this turning force and the lower opening 21 is opened by being swung from the upper side to the lower side. Formed in the portion H and led out from the lower opening 21, the turbine T is rotated. In this process, when the working gas G is compressed and lowered while being swirled, the pressure and temperature rise, become high pressure and high temperature, and when led out from the lower opening 21, the working gas G rapidly expands to cool air. And the turbine T is rotated. The turbine T generates power by the generator 55. In this case, since the high-pressure and high-temperature working gas G contacts the funnel-shaped liquid wall H, heat exchange is performed on the surface of the liquid. Therefore, the cooling efficiency is extremely improved, and the lower opening 21 is increased accordingly. Thus, the comparative specific gravity inside and outside the funnel of the air-fuel mixture derived every second can be increased, thereby increasing the momentum of centrifugal force and improving the output of the turbine T and the output of the generator. And if it will be in a steady state, the electric power generation by the generator 55 will also be performed and the power supply of the motor 42 can be covered with the power supplies of the generators 55 and 56 now.

以下、気体の経路と水の経路に分けて詳しく説明する。
<気体の経路>
ファン機構40が回転すると、外気は、ファン機構40の吸引力により複数の第1外気取入口71から外気が取り入れられる。取り入れられた外気は、第1洗浄部80に至り、水で洗浄される。この場合、第1洗浄槽81に多数の小孔84から外気を噴出して洗浄するので、洗浄効率が極めて良くなる。また、第1洗浄槽81はリング状に形成され、水は旋回させられるので、より一層洗浄効率が良くなる。第1洗浄部80で外気を洗浄するので、液体壁部Hの水を綺麗なものにすることができ、飲料水として取り出す場合に有効になる。
Hereinafter, the gas route and the water route will be described in detail.
<Gas path>
When the fan mechanism 40 rotates, the outside air is taken in from the plurality of first outside air intakes 71 by the suction force of the fan mechanism 40. The taken-in outside air reaches the first cleaning unit 80 and is cleaned with water. In this case, since the outside air is jetted into the first cleaning tank 81 from a large number of small holes 84 for cleaning, the cleaning efficiency is extremely improved. Further, since the first cleaning tank 81 is formed in a ring shape and the water is swirled, the cleaning efficiency is further improved. Since the outside air is washed by the first washing unit 80, the water in the liquid wall H can be made clean, which is effective when taken out as drinking water.

第1洗浄部80で洗浄された外気は、作動気体生成部70の分離通路74に流入し、これにより、作動気体出口72に至る外気は、遠心力により比重分離されて比重の大きい気体が気体出口77,78,79から排出され、比重の小さい気体が作動気体Gとして作動気体出口72に吸引されていく。螺旋の経路で比重分離するので、効率よく分離を行うことができる。即ち、気体出口は円盤体の上部に複数形成され、外周側から順に、主に二酸化炭素用の気体出口77,主に酸素用の気体出口78,主にアルゴン用の気体出口79として備えられている。これにより、ファン機構40の吸引力により容器10内に送給される作動気体Gは、主に窒素ガスとなって、容器10内に流出させられる。   The outside air cleaned by the first cleaning unit 80 flows into the separation passage 74 of the working gas generation unit 70, whereby the outside air reaching the working gas outlet 72 is separated by specific gravity by centrifugal force, and a gas having a large specific gravity is gas. A gas having a small specific gravity is discharged from the outlets 77, 78, and 79 and is sucked into the working gas outlet 72 as the working gas G. Since the specific gravity is separated by the spiral path, the separation can be performed efficiently. That is, a plurality of gas outlets are formed in the upper part of the disk body, and are provided as a gas outlet 77 mainly for carbon dioxide, a gas outlet 78 mainly for oxygen, and a gas outlet 79 mainly for argon in order from the outer peripheral side. Yes. As a result, the working gas G fed into the container 10 by the suction force of the fan mechanism 40 is mainly converted into nitrogen gas and flows out into the container 10.

ファン機構40においては、第1ファン41と第2ファン60との2つのファンにより、作動気体Gに遠心力を付与して旋回させて圧縮するので、確実に高圧,高温にすることができる。例えば、約30気圧の高圧,約8000℃もの高温になり、液体壁部Hの内表面においては液体壁部Hを構成する水を熱分解させる。この場合、液体壁部Hの内部は200℃〜300℃程度に上昇するが、相対的に、作動気体Gから熱を奪い作動気体Gを冷却することができる。容器10内の液体壁部Hの表面で水が熱分化すると、主に比重の重い酸素は液体壁部Hを上昇して酸素回収通路180に流入して回収される。一方、主に比重の軽い水素は、水素回収通路190に流入して回収される。   In the fan mechanism 40, since the working gas G is swirled and compressed by the two fans of the first fan 41 and the second fan 60, the pressure can be reliably increased to high pressure and high temperature. For example, a high pressure of about 30 atmospheres and a high temperature of about 8000 ° C. cause the water constituting the liquid wall H to be thermally decomposed on the inner surface of the liquid wall H. In this case, the inside of the liquid wall portion H rises to about 200 ° C. to 300 ° C., but the working gas G can be relatively deprived of heat to cool the working gas G. When water is thermally differentiated on the surface of the liquid wall H in the container 10, oxygen having a heavy specific gravity rises up the liquid wall H and flows into the oxygen recovery passage 180 and is recovered. On the other hand, mainly hydrogen having a low specific gravity flows into the hydrogen recovery passage 190 and is recovered.

そして、主に窒素からなる作動気体Gは、下開口21から吹き出され、急膨張してタービンTを回転せしめ、冷気となった排気ガスとして排気通路130に排気される。排気ガスは、容器10下部の排気通路130の始端部131を通る。この場合、排気通路130の始端部131は螺旋状に形成されているので、排気の遠心力を増すことができ、それだけ、タービンTの出力を増すことができる。また、容器10の下壁13側の強度を増すことができる。排気通路130の始端部131を通った排気ガスは、外気中水分取出し部160の排気通路130に送出される。   Then, the working gas G mainly composed of nitrogen is blown out from the lower opening 21 and rapidly expands to rotate the turbine T, and is exhausted into the exhaust passage 130 as exhaust gas that has become cold air. The exhaust gas passes through the start end 131 of the exhaust passage 130 below the container 10. In this case, since the start end 131 of the exhaust passage 130 is formed in a spiral shape, the centrifugal force of the exhaust can be increased, and the output of the turbine T can be increased accordingly. Further, the strength of the lower wall 13 side of the container 10 can be increased. The exhaust gas that has passed through the start end portion 131 of the exhaust passage 130 is sent to the exhaust passage 130 of the outside air moisture extraction portion 160.

一方、タービンTが回転すると吸引ファン142も回転するので、第2外気取入口141から外気が取り入れられる。第2外気取入口141から取り入れられた外気は、第2洗浄部150に入り、洗浄される。第2洗浄槽151に多数の小孔153から外気を噴出して洗浄するので、洗浄効率が極めて良くなる。そして、この外気は、外気中水分取出し部160の外気吸引通路140を通過して、外気吸引通路140の終端部144に至り、吸引ファン142に吸引されて外気排路147に送出され、外気中水分取出し部160を構成する排気通路130に合流する。この場合、吸引ファン142に吸引される際に凝縮した水が水分流出路148に流出させられ、水溜部149に至る。また、外気排気通路130及び水分流出路148は、螺旋状に形成されているので、遠心力を増すことができ、水分の分離を効率よく行うことができる。また、容器10の下壁13側の強度を増すことができる。   On the other hand, when the turbine T rotates, the suction fan 142 also rotates, so that outside air is taken in from the second outside air intake port 141. The outside air taken in from the second outside air inlet 141 enters the second washing unit 150 and is washed. Since the outside air is jetted into the second cleaning tank 151 from a large number of small holes 153 for cleaning, the cleaning efficiency is extremely improved. Then, the outside air passes through the outside air suction passage 140 of the outside air moisture extraction section 160, reaches the end portion 144 of the outside air suction passage 140, is sucked by the suction fan 142, and is sent to the outside air exhaust passage 147. It merges into the exhaust passage 130 constituting the moisture extraction section 160. In this case, water condensed when sucked by the suction fan 142 is caused to flow out to the water outflow path 148 and reach the water reservoir 149. Further, since the outside air exhaust passage 130 and the water outflow passage 148 are formed in a spiral shape, the centrifugal force can be increased and the water can be separated efficiently. Further, the strength of the lower wall 13 side of the container 10 can be increased.

また、外気中水分取出し部160においては、熱交換板161を介して排気通路130を通り外気が合流した排気と外気吸引通路140を通る外気との熱交換が行われる。これにより、熱交換板161により外気中の水分が凝縮して取り出される。この場合、熱交換板161は、排気通路130及び外気吸引通路140が交互に列設されるように蛇腹状に形成されているので、熱交換効率を向上させることができる。また、蛇腹状の熱交換板161によって、容器10の外周の強度を増すことができる。熱交換板161を伝って落下する外気中水分は、外気中水分貯留槽163に貯留され、水溜部149に至る。排気ガスと外気との熱交換を行うので、外気を水分の極めて少ない気体として利用することができる。上記の排気通路130の始端部131を通って排気される排気ガスと、これに合流した外気は、外気中水分取出し部160の排気通路130を通過して、側部ダクト135を通って排気口136から排気されていく。この排気ガスは、冷気であることから、例えば、冷房の用に供することができる。   In the outside air moisture extraction unit 160, heat exchange is performed between the exhaust gas that has passed through the exhaust passage 130 via the heat exchange plate 161 and the outside air that has passed through the outside air suction passage 140. Thereby, moisture in the outside air is condensed and taken out by the heat exchange plate 161. In this case, since the heat exchange plate 161 is formed in a bellows shape so that the exhaust passages 130 and the outside air suction passages 140 are alternately arranged, the heat exchange efficiency can be improved. Further, the strength of the outer periphery of the container 10 can be increased by the bellows-like heat exchange plate 161. The outside air moisture falling through the heat exchange plate 161 is stored in the outside air moisture storage tank 163 and reaches the water reservoir 149. Since the heat exchange between the exhaust gas and the outside air is performed, the outside air can be used as a gas with very little moisture. The exhaust gas exhausted through the start end portion 131 of the exhaust passage 130 and the outside air that has merged with the exhaust gas pass through the exhaust passage 130 of the moisture extractor 160 in the outside air, pass through the side duct 135, and the exhaust port. The air is exhausted from 136. Since the exhaust gas is cold, it can be used for cooling, for example.

また、本体2においては、一端側が容器10の内側(a)に開口し他端側が下壁13の下の下部空間16(b)に開口して容器10内の圧力と下部空間16との圧力を等しくするための連通管30が設けられているので、常時は、容器10内の圧力と下部空間16との圧力が等しく保たれ、下壁13は一定位置に位置させられる。万一、容器10内部の圧力が所定以上上昇し、所謂バックファイヤーが生じると、付勢手段のコイルスプリング33の付勢力に抗して下壁13の移動部26がフランジ25を摺動して下部空間16内に落ち込み、移動部26とフランジ25内周との間に形成された間隙から容器10内の圧力が逃げ、また、作動気体生成部70も開閉可能になっており、閉時に容器10内部の圧力が所定以上上昇したとき開になって圧力が逃げるので、安全を図ることができる。   Further, in the main body 2, one end side opens to the inner side (a) of the container 10, and the other end side opens to the lower space 16 (b) below the lower wall 13, so that the pressure in the container 10 and the pressure in the lower space 16 are increased. Therefore, the pressure in the container 10 and the pressure in the lower space 16 are always kept equal, and the lower wall 13 is positioned at a fixed position. Should the pressure inside the container 10 rise above a predetermined level and a so-called backfire occurs, the moving portion 26 of the lower wall 13 slides on the flange 25 against the biasing force of the coil spring 33 of the biasing means. It falls into the lower space 16, the pressure in the container 10 escapes from the gap formed between the moving part 26 and the inner periphery of the flange 25, and the working gas generating part 70 can be opened and closed. Since the pressure is released when the pressure inside 10 rises more than a predetermined value, the safety can be ensured.

そしてまた、上述したように、酸素回収通路により、酸素を回収し、水素回収通路により水素(軽水素)を回収することができるが、このことにより、重水素減少水の製造方法を提案することができる。例えば、図示しない焼却炉を用意し、回収した軽水素と酸素とを燃焼により結合させることにより、重水素減少水を精製出来るようになる。   In addition, as described above, oxygen can be recovered by the oxygen recovery passage, and hydrogen (light hydrogen) can be recovered by the hydrogen recovery passage. Thus, a method for producing deuterium-reduced water is proposed. Can do. For example, by preparing an incinerator (not shown) and combining the recovered light hydrogen and oxygen by combustion, deuterium-reduced water can be purified.

<水の経路>
液体壁部Hを構成する水Wは水供給部90により外部から供給される。また、液体壁部Hを構成する水Wは、容器10の下側(e)から循環水路91を経て第1ファン41の基盤45と上壁12との間(f)に供給されて循環させられる。水供給部90により水Wを供給することができ、また、循環水路91により水Wを循環させるので、それだけ冷却効率を向上させることができる。詳しくは、水供給制御部115の電磁バルブ118が開のときに、ギヤポンプ95が駆動されると、水供給管94から第1ファン41の基盤45と上壁12との間(f)へ水が供給される。この場合、内部圧により、第1ファン41が上壁12側に押されても、第1ファン41の基盤45と上壁12との間へ水が供給されるので、水が潤滑水の役目をし、第1ファン41に下側に押し下げる力が作用し、そのため、第1ファン41の回転を円滑に維持できるようになる。そして、第1ファン41の周囲から容器10内部へ水が供給される。
<Water path>
The water W constituting the liquid wall H is supplied from the outside by the water supply unit 90. Further, the water W constituting the liquid wall H is supplied from the lower side (e) of the container 10 through the circulation channel 91 to the space (f) between the base 45 of the first fan 41 and the upper wall 12 and circulates. It is done. Since the water W can be supplied by the water supply unit 90 and the water W is circulated by the circulation water passage 91, the cooling efficiency can be improved accordingly. Specifically, when the gear pump 95 is driven when the electromagnetic valve 118 of the water supply control unit 115 is open, the water is supplied from the water supply pipe 94 to the space between the base 45 of the first fan 41 and the upper wall 12 (f). Is supplied. In this case, even if the first fan 41 is pushed to the upper wall 12 side by the internal pressure, water is supplied between the base 45 of the first fan 41 and the upper wall 12, so that the water serves as a lubricating water. Thus, a downward pressing force acts on the first fan 41, so that the rotation of the first fan 41 can be maintained smoothly. Then, water is supplied from the periphery of the first fan 41 into the container 10.

また、上述したように、外気中水分取出し部160において、熱交換板161を伝って落下する外気中水分は、外気中水分貯留槽163に貯留され、水溜部149に至り、吸引ファン142に吸引される際に凝縮した水が水分流出路148に流出させられ、水溜部149に至る。この水溜部149の水は、噴出水流路170を通して上昇し、即ち、下部給水管174→主流路173→一時水槽175→上部給水管176を通して、上回転軸51の小孔172から噴射される。そのため、小孔172から噴射された水は、作動気体G内に分散し、冷却の用に供される。この場合、小孔172からの噴射によるので、冷却効率が高くなる。また、噴射された水は、液体壁部Hの表面に一体化して行き、一部は熱分解する。また、噴射される水は、第2外気取入口141から取り入れた外気からの水を含むので、外気中の水の利用効率が向上させられる。   Further, as described above, in the outside air moisture extraction unit 160, the outside air moisture falling through the heat exchange plate 161 is stored in the outside air moisture storage tank 163, reaches the water reservoir 149, and is sucked into the suction fan 142. The water condensed at the time is discharged to the water outflow path 148 and reaches the water reservoir 149. The water in the water reservoir 149 rises through the ejection water channel 170, that is, is ejected from the small hole 172 of the upper rotating shaft 51 through the lower water supply pipe 174 → the main channel 173 → the temporary water tank 175 → the upper water supply pipe 176. Therefore, the water sprayed from the small holes 172 is dispersed in the working gas G and is used for cooling. In this case, because of the injection from the small hole 172, the cooling efficiency is increased. Moreover, the jetted water is integrated with the surface of the liquid wall H, and a part of it is thermally decomposed. Moreover, since the water to be injected includes water from the outside air taken in from the second outside air inlet 141, the utilization efficiency of the water in the outside air is improved.

そして、容器10内の水Wは、ファン機構40による作動気体Gの旋回力によって回転させられ、下開口21を開放したロート状の内表面を有した液体壁部Hに形成される。この場合、液体壁部調整部100において、駆動部102により突出体101を側壁11の内面側から適宜突出させ、液体壁部Hのロート状の内表面の角度を調整する。即ち、この突出体101の突出量により、液体の回転抵抗が異なるので、液体壁部Hのロート状の内表面の角度を適正な角度に調整して、下開口21を確保し、下開口21からの作動気体Gの導出を円滑に行わせることができるようになる。   Then, the water W in the container 10 is rotated by the turning force of the working gas G by the fan mechanism 40, and is formed in the liquid wall portion H having a funnel-shaped inner surface with the lower opening 21 opened. In this case, in the liquid wall adjustment unit 100, the driving unit 102 causes the protrusion 101 to appropriately protrude from the inner surface side of the side wall 11 to adjust the angle of the funnel-shaped inner surface of the liquid wall H. That is, since the rotational resistance of the liquid varies depending on the protruding amount of the protruding body 101, the angle of the funnel-shaped inner surface of the liquid wall H is adjusted to an appropriate angle to ensure the lower opening 21 and the lower opening 21. As a result, the working gas G can be smoothly led out of the gas.

この液体壁部Hにおいて、その上端の水位が所定高さを超えたときは、超えた分の水が、回収路110に流出して回収され、回収水貯留槽112に飲料水として貯留される。この場合、水供給制御部115により、水量センサが水量大を検知したとき水供給部90からの水供給を停止し、水量センサが水量小を検知したとき水供給部90からの水供給を行わせる。具体的には、水量センサとしてのフロートスイッチ117が水位の上位を検知すると、水量大として水供給パイプ92に介装した電磁バルブ118を閉にして水供給部90のからの水供給を停止するとともに、流下管120に介装した電磁バルブ121を開にして、回収水貯留槽112から回収水貯留槽112へ水を流下させる。一方、フロートスイッチ117が水位の下位を検知すると、水量小として水供給パイプ92に介装した電磁バルブ118を開にして水供給部90のからの水供給を行い、流下管120に介装した電磁バルブ121を閉にする。温度上昇した水を回収して水位調整することができ、液体壁部Hを安定させることができる。また、回収路110から液体壁部Hの上側を構成する水が飲料水として回収されるが、液体壁部Hにおいては、これに生じる遠心力により、重水が下側に集約されることから、液体壁部Hの上側は重水素減少水になっており、回収された水はこの液体壁部Hの上側の水になるので、重水素減少水を飲料水とすることができ、極めて有用になる。   In the liquid wall portion H, when the water level at the upper end exceeds a predetermined height, the excess water flows out to the recovery passage 110 and is recovered and stored in the recovered water storage tank 112 as drinking water. . In this case, the water supply control unit 115 stops water supply from the water supply unit 90 when the water amount sensor detects that the water amount is high, and supplies water from the water supply unit 90 when the water amount sensor detects that the water amount is low. Make it. Specifically, when the float switch 117 serving as a water amount sensor detects the upper level of the water level, the electromagnetic valve 118 interposed in the water supply pipe 92 is closed to stop the water supply from the water supply unit 90 because the water amount is large. At the same time, the electromagnetic valve 121 interposed in the flow down pipe 120 is opened, and water flows down from the recovered water storage tank 112 to the recovered water storage tank 112. On the other hand, when the float switch 117 detects the lower level of the water level, the electromagnetic valve 118 interposed in the water supply pipe 92 is opened as the amount of water is small, and water is supplied from the water supply unit 90 and is inserted in the downflow pipe 120. The electromagnetic valve 121 is closed. The water whose temperature has risen can be recovered and the water level can be adjusted, and the liquid wall H can be stabilized. In addition, the water constituting the upper side of the liquid wall H from the recovery path 110 is recovered as drinking water, but in the liquid wall H, heavy water is concentrated on the lower side due to the centrifugal force generated in this, The upper side of the liquid wall H is deuterium reduced water, and the recovered water becomes the upper water of the liquid wall H, so the deuterium reduced water can be used as drinking water, which is extremely useful. Become.

更に、第1洗浄部80及び第2洗浄部150においては、液体壁部Hの下側を構成する水Wが水配給路82を通して配給される。水Wは、容器10内の下側(c)→水配給路82→第1洗浄槽81(d)→第1配水管85→第2洗浄槽151→第2配水管154→排水槽155の経路で流される。これにより、水配給路82から液体壁部Hの下側を構成する水が洗浄水として配給されるが、液体壁部Hにおいては、これに生じる遠心力により、重水が下側に集約されることから、洗浄水はこの重水の多い水を用いることになり、洗浄後は排水されるので、効率よく重水の多い水を排水することができる。   Further, in the first cleaning unit 80 and the second cleaning unit 150, the water W constituting the lower side of the liquid wall portion H is distributed through the water distribution path 82. The water W is in the lower side (c) of the container 10 → the water distribution path 82 → the first cleaning tank 81 (d) → the first distribution pipe 85 → the second cleaning tank 151 → the second distribution pipe 154 → the drain tank 155. It is carried by the route. Thereby, water constituting the lower side of the liquid wall portion H is distributed as washing water from the water distribution path 82, but in the liquid wall portion H, heavy water is concentrated on the lower side due to the centrifugal force generated thereby. For this reason, the water having a lot of heavy water is used as the washing water. Since the water is drained after the washing, the water having a lot of heavy water can be efficiently drained.

図8には、本発明の別の実施の形態に係る温度差エネルギー変換装置の原理図を示す。これは、気体及び液体を構成する媒体を、蒸発,凝縮を繰り返し行いうる例えば液体アンモニウム,フロン,二酸化炭素などの媒体で構成している。そして、外郭200を密閉空間にし、この外郭200の内部に、上記と同様に、筒状の側壁及び下壁を有し内部に冷却用の液体Wが入れられる容器10を備えている。外郭200の外側には外気と熱交換を行うフィン201が設けられ、容器10の外側には外郭200内部の気体と熱交換を行うフィン202が設けられる。容器10においては、上側に気体を取り入れる上開口20が設けられ、下壁の中央には容器10の中心軸Pを中心とした下開口21が設けられ、上側には上開口20から気体を取り入れ作動気体Gとして旋回させながら圧縮して降下させ凝縮した内部の液体Wを下開口21を開放したロート状の内表面を有した液体壁部Hに形成して作動気体Gを下開口21から導出させるファン機構40が設けられ、下開口21に臨み導出する作動気体Gにより回転させられるタービンTが設けられる。タービンTから導出される作動気体Gは、外郭200の閉空間に放出され、再び容器内に取り込まれ、凝縮→蒸発→凝縮を繰り返し、外気との熱交換により、エネルギーを生成することができる。   FIG. 8 shows a principle diagram of a temperature difference energy conversion device according to another embodiment of the present invention. In this method, the medium constituting the gas and the liquid is composed of a medium such as liquid ammonium, chlorofluorocarbon, carbon dioxide, etc. that can be repeatedly evaporated and condensed. And the outer shell 200 is made into a sealed space, and the container 10 is provided with a cylindrical side wall and a lower wall in the outer shell 200 and into which the cooling liquid W can be put. Fins 201 that exchange heat with the outside air are provided outside the outer shell 200, and fins 202 that exchange heat with the gas inside the outer shell 200 are provided outside the container 10. In the container 10, an upper opening 20 for taking in gas is provided on the upper side, a lower opening 21 around the central axis P of the container 10 is provided in the center of the lower wall, and gas is taken in from the upper opening 20 on the upper side. The working liquid G is led out from the lower opening 21 by forming the liquid W inside the funnel-shaped inner surface with the lower opening 21 opened by forming the inner liquid W compressed, lowered and condensed while swirling as the working gas G. A fan mechanism 40 is provided, and a turbine T that is rotated by the working gas G that faces the lower opening 21 and is led out is provided. The working gas G led out from the turbine T is discharged into the closed space of the outer shell 200, is taken into the container again, and energy can be generated by repeating condensation → evaporation → condensation and heat exchange with the outside air.

尚、上記実施の形態において、容器10やタービンT等の大きさ、形状、あるいは各部の材質などは、適宜に定めてよい。本発明は、上述した本発明の実施の形態に限定されず、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施の形態に多くの変更を加えることが容易であり、これらの多くの変更は本発明の範囲に含まれる。   In the above embodiment, the size and shape of the container 10 and the turbine T, etc., or the material of each part may be determined as appropriate. The present invention is not limited to the above-described embodiments of the present invention, and those skilled in the art will make many modifications to these illustrative embodiments without substantially departing from the novel teachings and advantages of the present invention. And many of these modifications are within the scope of the present invention.

S 温度差エネルギー変換装置
W 水(液体)
H 液体壁部
G 作動気体
1 基台
2 本体
8 発電機室
10 容器
P 中心軸
11 側壁
12 上壁
13 下壁
14 上部空間
15 上隔壁
16 下部空間
17 下隔壁
20 上開口
21 下開口
22 第1外筒
23 第2外筒
24 下開口管
25 フランジ
26 移動部
27 ストッパ
30 連通管
31 周管
32 連通口
33 コイルスプリング(付勢手段)
40 ファン機構
41 第1ファン
42 モータ
43 回転主軸
44 吸引口
45 基盤
46 第1回転羽根
47 吹出口
48 覆い板
49 覆い側板
T タービン
50 回転軸
51 上回転軸
52 下回転軸
53 軸受部
54 かさ歯車機構
55,56 発電機
57 オイル溜
60 第2ファン
61 スラストメカニカルシール
62 ラジアルメカニカルシール
63 支持部材
64 包容空間
65 包容部
66 第2回転羽根
70 作動気体生成部
71 第1外気取入口
72 作動気体出口
73 ダクト体
74 分離通路
75 通路入口
77,78,79 気体出口
80 第1洗浄部
81 第1洗浄槽
82 水配給路
85 第1配水管
86 水配給パイプ
90 水供給部
91 循環水路
92 水供給パイプ
93 循環パイプ
94 水供給管
95 ギヤポンプ
96 熱交換部
97 分岐管
98 溝
100 液体壁部調整部
101 突出体
102 駆動部
110 回収路
111 回収路パイプ
112 回収水貯留槽
113 第3外筒
115 水供給制御部
130 排気通路
131 始端部
132 入口
133 出口
135 側部ダクト
136 排気口
140 外気吸引通路
141 第2外気取入口
142 吸引ファン
143 上部ダクト
144 終端部
145 流下パイプ
146 接続パイプ
147 外気排路
148 水分流出路
149 水溜部
150 第2洗浄部
151 第2洗浄槽
152 底壁
154 第2配水管
155 排水槽
160 外気中水分取出し部
161 熱交換板
162 外気中水分貯留槽
170 噴出水流路
171 仕切部材
172 小孔
173 主流路
174 下部給水管
175 一時水槽
176 上部給水管
177 補強板
180 酸素回収通路
181 酸素回収管
190 水素回収通路
191 導入口
192 導出口
193 水素取出管
S Temperature difference energy converter W Water (liquid)
H Liquid wall G Working gas 1 Base 2 Main body 8 Generator chamber 10 Container P Central shaft 11 Side wall 12 Upper wall 13 Lower wall 14 Upper space 15 Upper partition 16 Lower space 17 Lower partition 20 Upper opening 21 Lower opening 22 First Outer cylinder 23 Second outer cylinder 24 Lower opening pipe 25 Flange 26 Moving portion 27 Stopper 30 Communication pipe 31 Circumferential pipe 32 Communication port 33 Coil spring (biasing means)
40 fan mechanism 41 first fan 42 motor 43 rotation main shaft 44 suction port 45 base 46 first rotation blade 47 outlet 48 cover plate 49 cover side plate T turbine 50 rotation shaft 51 upper rotation shaft 52 lower rotation shaft 53 bearing portion 54 bevel gear Mechanisms 55 and 56 Generator 57 Oil reservoir 60 Second fan 61 Thrust mechanical seal 62 Radial mechanical seal 63 Support member 64 Containment space 65 Containment portion
66 Second rotary blade 70 Working gas generating part 71 First outside air inlet 72 Working gas outlet 73 Duct body 74 Separation passage 75 Passage inlet 77, 78, 79 Gas outlet 80 First cleaning part 81 First cleaning tank 82 Water distribution path 85 First water distribution pipe 86 Water distribution pipe 90 Water supply part 91 Circulation water path 92 Water supply pipe 93 Circulation pipe 94 Water supply pipe 95 Gear pump 96 Heat exchange part 97 Branch pipe 98 Groove 100 Liquid wall part adjustment part 101 Projection body 102 Drive part 110 Recovery path 111 Recovery path pipe 112 Recovery water storage tank 113 Third outer cylinder 115 Water supply control unit 130 Exhaust passage 131 Start end 132 Inlet 133 Outlet 135 Side duct 136 Exhaust port 140 Outside air intake passage 141 Second outside air intake 142 Suction fan 143 Upper duct 144 Terminal portion 145 Downflow pipe 146 Connection pipe 147 Outside air exhaust path 14 Water outflow passage 149 Water reservoir 150 Second cleaning section 151 Second cleaning tank 152 Bottom wall 154 Second water distribution pipe 155 Drain tank 160 Outside air moisture extraction section 161 Heat exchange plate 162 Outside air moisture storage tank 170 Spout water passage 171 Partition member 172 Small hole 173 Main flow path 174 Lower water supply pipe 175 Temporary water tank 176 Upper water supply pipe 177 Reinforcement plate 180 Oxygen recovery path 181 Oxygen recovery pipe 190 Hydrogen recovery path 191 Inlet 192 Outlet 193 Hydrogen outlet pipe

Claims (25)

筒状の側壁及び下壁を有し内部に冷却用の液体が入れられる容器を備え、該容器の上側に気体を取り入れる上開口を設け、上記容器の下壁の中央に該容器の中心軸を中心とした下開口を設け、上記容器の上側に、上記上開口から気体を取り入れその一部若しくは全部を作動気体として旋回させながら圧縮して降下させ上記内部の液体を上記下開口を開放したロート状の内表面を有した液体壁部に形成して該作動気体を上記下開口から導出させるファン機構を設け、上記容器の中心軸と同軸の軸線を有して上記下開口に臨み導出する作動気体により回転させられるタービンを設けたことを特徴とする温度差エネルギー変換装置。   A container having a cylindrical side wall and a lower wall, in which a cooling liquid is placed, is provided with an upper opening for taking in gas above the container, and a central axis of the container is provided at the center of the lower wall of the container. A funnel in which a lower opening is provided at the center, and a gas is taken in from the upper opening on the upper side of the container, and a part or all of the gas is compressed and lowered while swirling as a working gas, and the liquid inside is opened in the funnel An operation is provided in which a fan mechanism is formed on a liquid wall portion having a cylindrical inner surface to lead out the working gas from the lower opening, and has an axis coaxial with the central axis of the container and faces the lower opening. A temperature difference energy conversion device comprising a turbine rotated by gas. 上記液体壁部のロート状の内表面の角度を調整可能な液体壁部調整部を備えたことを特徴とする請求項1記載の温度差エネルギー変換装置。   2. The temperature difference energy conversion device according to claim 1, further comprising a liquid wall adjustment unit capable of adjusting an angle of the funnel-shaped inner surface of the liquid wall. 上記液体壁部調整部を、上記側壁に該側壁の内面側から中心軸に対して進退動可能に設けられ、進退動量によって上記液体壁部のロート状の内表面の角度を調整可能な突出体と、該突出体を駆動する駆動部とを備えて構成したことを特徴とする請求項2記載の温度差エネルギー変換装置。   The liquid wall adjustment portion is provided on the side wall so as to be movable back and forth with respect to the central axis from the inner surface side of the side wall. The temperature difference energy conversion device according to claim 2, further comprising a drive unit that drives the protrusion. 上記取り入れられる気体は大気からなる外気で構成され、上記液体は水で構成されることを特徴とする請求項1乃至3何れかに記載の温度差エネルギー変換装置。   The temperature difference energy conversion device according to any one of claims 1 to 3, wherein the gas to be taken in is composed of outside air composed of the atmosphere, and the liquid is composed of water. 上記液体壁部を構成する水を外部から供給する水供給部と、上記液体壁部を構成する水を循環させる循環水路とを設けたことを特徴とする請求項4記載の温度差エネルギー変換装置。   5. The temperature difference energy conversion device according to claim 4, further comprising: a water supply unit for supplying water constituting the liquid wall portion from the outside; and a circulation channel for circulating the water constituting the liquid wall portion. . 上記容器の上部に上記液体壁部の上端の水位が所定高さを超えたとき該超えた分の水を流出させて回収する回収路を設け、該回収路を通って回収された水を貯留する回収水貯留槽を設けたことを特徴とする請求項5記載の温度差エネルギー変換装置。   Provided in the upper part of the container is a recovery path for draining and recovering the excess water when the water level at the upper end of the liquid wall exceeds a predetermined height, and storing the recovered water through the recovery path The temperature difference energy conversion device according to claim 5, further comprising a recovered water storage tank. 上記回収路からの水の流出量の大小を検知する水量センサを設け、該水量センサが水量大を検知したとき上記水供給部からの水供給を停止し、該水量センサが水量小を検知したとき上記水供給部からの水供給を行わせる水供給制御部を備えたことを特徴とする請求項6記載の温度差エネルギー変換装置。   A water amount sensor that detects the amount of water outflow from the recovery path is provided. When the water amount sensor detects a large amount of water, the water supply from the water supply unit is stopped, and the water amount sensor detects a small amount of water. The temperature difference energy conversion device according to claim 6, further comprising a water supply control unit configured to supply water from the water supply unit. 上記容器の上側に上壁を設け、上記上開口を上記上壁の中央に上記容器の中心軸を中心として設け、上記ファン機構を、上記上壁に回転可能に設けられ上記容器の中心軸を中心に回転する第1ファンと、上記上壁に設けられ上記第1ファンを回転させるモータと、上記タービンから延び容器の中心軸を軸線とする上回転軸によって該タービンと同期して回転させられる第2ファンとを備えて構成し、
上記第1ファンを、中央に上記上開口に対応する吸引口を有し上記上壁に近接して対峙する基盤と、該基盤に等角度関係で複数列設され吸引口からの作動気体を遠心方向に送出する第1回転羽根と、上記上回転軸が回転可能に貫通し上記基盤に対向して上記第1回転羽根を覆うとともに外周に作動気体の吹出口を形成する覆い板とを備えて構成し、
上記第2ファンを、上記第1ファンの第1回転羽根の内側であって上記吸引口に対峙し上記吸引口からの作動気体を遠心方向に送出する複数の第2回転羽根を備えて構成したことを特徴とする請求項4乃至7何れかに記載の温度差エネルギー変換装置。
An upper wall is provided on the upper side of the container, the upper opening is provided at the center of the upper wall with the central axis of the container as a center, and the fan mechanism is rotatably provided on the upper wall and has a central axis of the container. A first fan that rotates about the center, a motor that is provided on the upper wall and rotates the first fan, and an upper rotating shaft that extends from the turbine and that has the central axis of the container as an axis, is rotated in synchronization with the turbine. Comprising a second fan,
The first fan has a suction port corresponding to the upper opening in the center, and a base that faces the upper wall close to the first fan, and a plurality of lines are equiangularly arranged on the base, and the working gas from the suction port is centrifuged. A first rotating blade that feeds in a direction, and a cover plate that penetrates the upper rotating shaft so as to be rotatable, covers the first rotating blade so as to face the base, and forms a working gas outlet on the outer periphery. Configure
The second fan is configured to include a plurality of second rotary blades inside the first rotary blades of the first fan, facing the suction port, and sending working gas from the suction port in a centrifugal direction. The temperature difference energy converter according to any one of claims 4 to 7,
上記液体壁部を構成する水を外部から供給する水供給部と、上記液体壁部を構成する水を循環させる循環水路とを設け、該循環水路を、上記第1ファンの基盤と上記上壁との間へ水を供給する水供給管を備えて構成したことを特徴とする請求項8記載の温度差エネルギー変換装置。   A water supply part for supplying water constituting the liquid wall part from the outside and a circulation water channel for circulating the water constituting the liquid wall part are provided, and the circulation water channel is connected to the base of the first fan and the upper wall. The temperature difference energy conversion device according to claim 8, comprising a water supply pipe for supplying water between the two. 上記水供給部を、上記水供給管を通して水を供給する構成にしたことを特徴とする請求項9記載の温度差エネルギー変換装置。   The temperature difference energy converter according to claim 9, wherein the water supply unit is configured to supply water through the water supply pipe. 上記容器の上側に、上記ファン機構の吸引力により外気を取り入れて作動気体として該ファン機構に送給する作動気体生成部を設け、該作動気体生成部を、外周に設けられた外気取入口と、内側に設けられ上記上開口に連通する作動気体出口と、上記外気取入口と作動気体出口との間に設けられ外気を比重分離して比重の小さい側の気体を作動気体とする分離通路とを備えて構成したことを特徴とする請求項4乃至10何れかに記載の温度差エネルギー変換装置。   Provided on the upper side of the container is a working gas generation part that takes in outside air by the suction force of the fan mechanism and supplies it as working gas to the fan mechanism, and the working gas generation part is provided with an outside air inlet provided on the outer periphery. A working gas outlet provided inside and communicating with the upper opening; and a separation passage provided between the outside air inlet and the working gas outlet, wherein the outside air is separated by specific gravity and the gas having a smaller specific gravity is used as the working gas. The temperature difference energy conversion device according to any one of claims 4 to 10, wherein the temperature difference energy conversion device is provided. 上記分離通路を、外気が入り込む通路入口と上記作動気体出口との間に設けられ上記容器の中心軸を中心とする螺旋状の第1螺旋通路と、該第1螺旋通路の上側に設けられ該第1螺旋通路の上記作動気体出口側に連通するとともに外周側に比重の大きい気体の気体出口を有した上記容器の中心軸を中心とする螺旋状の第2螺旋通路とを備えて構成したことを特徴とする請求項11記載の温度差エネルギー変換装置。   The separation passage is provided between a passage inlet through which outside air enters and the working gas outlet, and is provided with a spiral first spiral passage centered on the central axis of the container, and provided above the first spiral passage. The first spiral passage is configured to be provided with a spiral second spiral passage centering on the central axis of the container having a gas outlet of a gas having a large specific gravity on the outer peripheral side while communicating with the working gas outlet side of the first spiral passage. The temperature difference energy conversion device according to claim 11. 上記作動気体生成部を開閉可能にし、閉時に上記容器内部の圧力が所定以上上昇したとき開になって圧力を逃がすことを可能にしたことを特徴とする請求項11または12記載の温度差エネルギー変換装置。   The temperature difference energy according to claim 11 or 12, characterized in that the working gas generating part can be opened and closed, and when the pressure inside the container rises by a predetermined level or more when closed, the pressure can be released. Conversion device. 上記外気取入口と作動気体出口との間に、外気を水で洗浄する洗浄部を設けたことを特徴とする請求項11乃至13何れかに記載の温度差エネルギー変換装置。   The temperature difference energy conversion device according to any one of claims 11 to 13, wherein a cleaning section for cleaning the outside air with water is provided between the outside air inlet and the working gas outlet. 上記洗浄部を、水が貯留される洗浄槽と、該洗浄槽に上記液体壁部の下側を構成する水を配給する水配給路とを備えて構成し、該洗浄槽の底壁に取り入れられた外気を洗浄槽内に吹き込む多数の小孔を形成し、該洗浄槽に汚れた水を排水する配水管を連携させたことを特徴とする請求項14記載の温度差エネルギー変換装置。   The cleaning section includes a cleaning tank in which water is stored, and a water distribution path that distributes water constituting the lower side of the liquid wall to the cleaning tank, and is taken into the bottom wall of the cleaning tank The temperature difference energy conversion apparatus according to claim 14, wherein a plurality of small holes for blowing the outside air into the cleaning tank are formed, and a water pipe for draining dirty water is linked to the cleaning tank. 上記タービンを通過した作動気体が排気ガスとして排気される排気通路を設け、外気を取り入れる第2外気取入口を設け、該第2外気取入口から上記タービンの動力により回転させられる吸引ファンによって外気を吸引する外気吸引通路を設け、上記排気通路の一部と上記外気吸引通路の一部とを熱交換板を介して並設し、該熱交換板により外気中の水分を凝縮して取り出す外気中水分取出し部を設けたことを特徴とする請求項4乃至15何れかに記載の温度差エネルギー変換装置。   An exhaust passage through which the working gas that has passed through the turbine is exhausted as exhaust gas is provided, and a second outside air intake for taking in outside air is provided, and the outside air is sucked from the second outside air intake by a suction fan that is rotated by the power of the turbine. An outside air suction passage for suction is provided, and a part of the exhaust passage and a part of the outside air suction passage are arranged side by side through a heat exchange plate, and the moisture in the outside air is condensed and taken out by the heat exchange plate. The temperature difference energy conversion device according to any one of claims 4 to 15, further comprising a moisture extraction unit. 上記外気吸引通路の第2外気取入口側に、外気を水で洗浄する第2洗浄部を設けたことを特徴とする請求項16記載の温度差エネルギー変換装置。   The temperature difference energy conversion device according to claim 16, wherein a second cleaning unit for cleaning the outside air with water is provided on the second outside air intake side of the outside air suction passage. 上記第2洗浄部を、水が貯留される第2洗浄槽と、該第2洗浄槽に上記液体壁部の下側を構成する水を配給する水配給路とを備えて構成し、該第2洗浄槽の底壁に取り入れられた外気を該第2洗浄槽内に吹き込む多数の小孔を形成し、該第2洗浄槽に汚れた水を排水する配水管を連携させたことを特徴とする請求項17記載の温度差エネルギー変換装置。   The second cleaning section includes a second cleaning tank in which water is stored, and a water distribution path that distributes water constituting the lower side of the liquid wall section to the second cleaning tank, (2) A large number of small holes for blowing outside air taken into the bottom wall of the washing tank into the second washing tank are formed, and a water distribution pipe for draining dirty water is linked to the second washing tank. The temperature difference energy conversion device according to claim 17. 上記外気中水分取出し部を、上記排気通路及び外気吸引通路が上記容器の中心軸に平行になるように上記容器の外周に設け、上記熱交換板を上記排気通路及び外気吸引通路が交互に列設されるように蛇腹状に形成し、該外気中水分取出し部の下側に上記熱交換板を伝って落下する外気中水分の外気中水分貯留槽を設けたことを特徴とする請求項16乃至18何れかに記載の温度差エネルギー変換装置。   The outside air moisture extraction portion is provided on the outer periphery of the container so that the exhaust passage and the outside air suction passage are parallel to the central axis of the container, and the heat exchange plate is alternately arranged in the exhaust passage and the outside air suction passage. 17. An outside air moisture storage tank for the outside air moisture falling along the heat exchange plate is provided below the outside air moisture take-out portion so as to be provided. The temperature difference energy converter in any one of thru | or 18. 上記容器の下側の排気通路を螺旋状に形成したことを特徴とする請求項19記載の温度差エネルギー変換装置。   20. The temperature difference energy conversion device according to claim 19, wherein the exhaust passage on the lower side of the container is formed in a spiral shape. 上記吸引ファンを上記タービンの下側において該タービンの下側回転軸に設け、上記容器の下側に上記吸引ファンに至る上記外気吸引通路の終端部を設け、該終端部の下側に上記吸引ファンからの外気の排気が送出され上記外気中水分取出し部を構成する排気通路に合流する外気排気通路を設け、該外気排気通路の下側に外気の排気から凝縮した水が流出させられる水分流出路を設けたことを特徴とする請求項16乃至20何れかに記載の温度差エネルギー変換装置。   The suction fan is provided on the lower rotating shaft of the turbine below the turbine, the terminal part of the outside air suction passage reaching the suction fan is provided below the container, and the suction is provided below the terminal part. An outside air exhaust passage is provided to which the outside air exhaust from the fan is sent and merges with the exhaust passage constituting the outside air moisture extraction section, and the water outflow from which water condensed from the outside air exhaust is discharged below the outside air exhaust passage. The temperature difference energy conversion device according to any one of claims 16 to 20, wherein a path is provided. 上記外気排気通路及び水分流出路を螺旋状に形成したことを特徴とする請求項21記載の温度差エネルギー変換装置。   The temperature difference energy conversion device according to claim 21, wherein the outside air exhaust passage and the moisture outflow passage are formed in a spiral shape. 上記タービンの上側に該タービンから延び容器の中心軸を軸線とする上回転軸を設け、該上回転軸を管状に形成するとともに管壁に軸方向に沿って多数の小孔を開設し、上記外気中水分取出し部を、上記排気通路及び外気吸引通路が上記容器の中心軸に平行になるように上記容器の外周に設け、上記熱交換板を上記排気通路及び外気吸引通路が交互に列設されるように蛇腹状に形成し、該外気中水分取出し部の下側に上記熱交換板を伝って落下する外気中水分の外気中水分貯留槽を設け、該外気中水分貯留槽に貯留される水及び上記水分流出路からの水を上記上回転軸内に送給して小孔から容器内に噴出させる噴出水流路を設けたことを特徴とする請求項21または22記載の温度差エネルギー変換装置。 The rotary shaft is provided on which the axis of the central axis of the container extending from the turbine to the upper side of the turbine, opened a number of small holes along the axial direction in the pipe wall and forming a tubular said on the rotation axis, the An outside air moisture extraction section is provided on the outer periphery of the container so that the exhaust passage and the outside air suction passage are parallel to the central axis of the container, and the heat exchange plate is alternately arranged in the exhaust passage and the outside air suction passage. It formed in a bellows as the outside air in the water reservoir of the outside air in the water to fall down along the heat exchange plate to the lower side in the outer air moisture extraction section provided, stored in the open air during the water reservoir that water and the temperature difference energy according to claim 21 or 22 further characterized in that the water from the water outlet passage provided with a jet water flow path for ejecting the container from the feed to small holes in the upper rotating shaft Conversion device. 上記容器の上記液体壁部の上端より上から上記容器内で生成される酸素を回収する酸素回収通路と、上記容器の上記液体壁部の下端側から上記容器内で生成される水素を回収する水素回収通路とを設けたことを特徴とする請求項4乃至23何れかに記載の温度差エネルギー変換装置。   An oxygen recovery passage for recovering oxygen generated in the container from above the upper end of the liquid wall portion of the container, and hydrogen generated in the container from the lower end side of the liquid wall portion of the container The temperature difference energy converter according to any one of claims 4 to 23, further comprising a hydrogen recovery passage. 上記下壁の下側に、上記側壁に一体に設けられ上記下壁との間に下部空間を形成する隔壁を設け、上記下壁の少なくとも外周部を上記側壁の内側に設けたフランジに対して上下に摺動可能な移動部として構成し、該移動部の上端位置を規制するストッパを設け、一端側が上記容器内に開口し他端側が上記下部空間に開口し上記容器内の圧力と上記下部空間との圧力を等しくするための連通管を設け、上記移動部を上記ストッパに常時押圧する付勢手段を設け、上記容器内部の圧力が所定以上急上昇したとき、上記付勢手段の付勢力に抗して該移動部がフランジを摺動して下部空間内に落ち込み、該移動部とフランジ内周との間に形成された間隙から容器内の圧力を逃がすことを可能にしたことを特徴とする請求項4乃至24何れかに記載の温度差エネルギー変換装置。   A partition provided integrally with the side wall and forming a lower space with the lower wall is provided below the lower wall, and at least an outer peripheral portion of the lower wall is provided with respect to a flange provided on the inner side of the side wall. It is configured as a moving part that can slide up and down, and is provided with a stopper that regulates the upper end position of the moving part. One end side is opened in the container and the other end side is opened in the lower space. A communication pipe for equalizing the pressure with the space is provided, and an urging means for constantly pressing the moving portion against the stopper is provided. When the pressure inside the container rises more than a predetermined value, the urging force of the urging means On the contrary, the moving part slides on the flange and falls into the lower space, and the pressure in the container can be released from the gap formed between the moving part and the flange inner periphery. 25. A temperature according to any of claims 4 to 24. Difference energy converter.
JP2015237205A 2015-12-04 2015-12-04 Temperature difference energy converter Expired - Fee Related JP6042963B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015237205A JP6042963B1 (en) 2015-12-04 2015-12-04 Temperature difference energy converter
PCT/JP2016/084986 WO2017094615A1 (en) 2015-12-04 2016-11-25 Temperature-difference energy conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237205A JP6042963B1 (en) 2015-12-04 2015-12-04 Temperature difference energy converter

Publications (2)

Publication Number Publication Date
JP6042963B1 true JP6042963B1 (en) 2016-12-14
JP2017101637A JP2017101637A (en) 2017-06-08

Family

ID=57543888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237205A Expired - Fee Related JP6042963B1 (en) 2015-12-04 2015-12-04 Temperature difference energy converter

Country Status (2)

Country Link
JP (1) JP6042963B1 (en)
WO (1) WO2017094615A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2270119A (en) * 1992-08-28 1994-03-02 Johan Adam Enslin Thermodynamic apparatus.
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device
JP2011052609A (en) * 2009-09-02 2011-03-17 Toshihiro Abe Converter using temperature difference energy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2270119A (en) * 1992-08-28 1994-03-02 Johan Adam Enslin Thermodynamic apparatus.
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device
JP2011052609A (en) * 2009-09-02 2011-03-17 Toshihiro Abe Converter using temperature difference energy

Also Published As

Publication number Publication date
WO2017094615A1 (en) 2017-06-08
JP2017101637A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5369258B2 (en) Energy-saving freshwater production equipment
JP5654346B2 (en) Devices and methods for the production of hydrogen
CN101178283A (en) Seasoner sponging drying machine group
JP6042963B1 (en) Temperature difference energy converter
JP7356344B2 (en) Boiler plant and carbon dioxide removal method
CN111744831A (en) Self-cleaning photovoltaic board is used to pulsed new forms of energy
WO2010070703A1 (en) Steam generator
CN114452738B (en) Flue gas emission treatment device for thermal power plant
JP5196284B1 (en) A mechanical rotating power mechanical device with a generator device that has hot water storage and storage functions, using water as a fuel source and hydrogen gas and oxygen gas as circulating and regenerated fuel and utilizing all the combined energy.
JP5932950B1 (en) Temperature difference energy converter
CN208279578U (en) A kind of synthesis gas heat recovering device and gasification furnace
KR200488815Y1 (en) Distilled water producing device equipped Scale remover
JP7088734B2 (en) Reformer
JPWO2007020715A1 (en) Carbon dioxide recovery and combustion equipment
KR20190000926U (en) Scale remover
CN221349613U (en) Ceramic grinding wheel microwave heating and drying device
CN113446855B (en) Ceramic energy-saving kiln for efficiently recycling cooling waste heat
CN221055042U (en) Flue gas cooling dust pelletizing system
CN211537014U (en) Power boiler dust collector
JP2024527794A (en) Apparatus for producing high pressures and temperatures in gases
EP2625391A2 (en) Steam engine
CN117906138A (en) Boiler water supply cooling device for thermal power plant
CN219640658U (en) Cooling device for rotary kiln cylinder
CN113790086B (en) Cooling water system for steam turbine
CN207907209U (en) A kind of steam generator of dual-use with gasoline and electricity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6042963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees