JP2002256882A - Convection temperature difference motive power device - Google Patents

Convection temperature difference motive power device

Info

Publication number
JP2002256882A
JP2002256882A JP2001061371A JP2001061371A JP2002256882A JP 2002256882 A JP2002256882 A JP 2002256882A JP 2001061371 A JP2001061371 A JP 2001061371A JP 2001061371 A JP2001061371 A JP 2001061371A JP 2002256882 A JP2002256882 A JP 2002256882A
Authority
JP
Japan
Prior art keywords
rotating body
gas
main
temperature difference
main rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001061371A
Other languages
Japanese (ja)
Other versions
JP3914393B2 (en
Inventor
Toshihiro Abe
俊廣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001061371A priority Critical patent/JP3914393B2/en
Publication of JP2002256882A publication Critical patent/JP2002256882A/en
Application granted granted Critical
Publication of JP3914393B2 publication Critical patent/JP3914393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the rotation efficiency of a motive power device by reducing the portion of gas flow which blows out from a master rotor but does not contribute to its rotation resulting in a loss. SOLUTION: This motive power device is provided with a sealed outer shell 10, a master rotor 20 rotatably and pivotally supported by the outer shell 10, on one end of which a gas inlet 21 is formed and on the other end a gas outlet 22 formed, and a slave rotor 30 which is installed rotatably in relation to the outer shell 10 and master rotor 20 and a wall part of which is located therebetween. The gas is flowed through one flow path Ra which passes from the inlet 21 to the outlet 22 of the master rotor 20 through the inside thereof and the other flow path Rb from the outlet 22 to the inlet 21 through the outside thereof to impart a temperature difference to the gas, and thus the convection of gas is generated. The convection rotates the master and slave rotors 20 and 30 to obtain a motive power. Further, there is provided, at the other end of the rotor 20, a turbine 40 for imparting a turning force to the master rotor 20 by injecting the gas from the outlet 22 reversely against the outer rotation peripheral direction of the rotor 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然界にある例え
ば海水,雪,地下水,温泉や地熱等の熱エネルギー、工
業用の排熱エネルギー、あるいは廃棄物を燃焼させて得
られる熱エネルギー等の各種熱エネルギーから動力を得
ることのできる対流温度差原動装置に係り、特に、内部
で気体の対流を発生させこの対流により動力を発生させ
る対流温度差原動装置に関する。
The present invention relates to various types of natural energy such as thermal energy such as seawater, snow, groundwater, hot springs and geothermal energy, industrial waste heat energy, and thermal energy obtained by burning waste. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a convection temperature difference driving device capable of obtaining power from thermal energy, and more particularly to a convection temperature difference driving device that generates convection of gas inside and generates power by the convection.

【0002】[0002]

【従来の技術】従来、この種の対流温度差原動装置とし
ては、本願出願人の研究に係るものがあり、例えば、特
開平6−147098号公報,特開2000−3039
47号公報,特開2000−356181号公報等に掲
載されたものが知られている。この対流温度差原動装置
は、例えば、図11に示すように、密封された外郭1
と、外郭1内で回転可能に軸支され軸方向一端に軸方向
に開放した気体の供給口2が形成され他端に軸方向に開
放した気体の排出口3が形成された筒状の主回転体4
と、主回転体4に対して回転可能に設けられ壁部が外郭
1と主回転体4との間に位置するガス抜き孔5のある筒
状の従回転体6とを備え、主回転体4の供給口2から主
回転体4の内部を通って排出口3に至る一方流路Ra及
び主回転体4の排出口3から主回転体4の外側を通って
供給口2に至る他方流路Rbを通るように気体に温度差
を付与して気体の対流を生じさせ、この気体の対流によ
り主回転体4の供給口2及び排出口3に設けたファン7
により主回転体4を回転させて動力を得るとともに、従
回転体6を回転させて気流による摩擦を減少させて効率
よく動力を得るようにしている。そして、例えば、この
回転動力をギヤ装置8を介して発電機9を駆動して発電
する等している。
2. Description of the Related Art Heretofore, as a convection temperature difference prime mover of this type, there is one related to the research of the present applicant. For example, Japanese Patent Application Laid-Open Nos. 6-147098 and 2000-3039.
No. 47, JP-A-2000-356181 and the like are known. This convection temperature difference driving apparatus is, for example, as shown in FIG.
And a cylindrical main body rotatably supported in the outer shell 1 and having a gas supply port 2 open at one end in the axial direction and a gas discharge port 3 open at the other end in the axial direction. Rotating body 4
And a cylindrical auxiliary rotator 6 having a gas vent hole 5 provided rotatably with respect to the main rotator 4 and having a wall portion located between the outer shell 1 and the main rotator 4. The flow path Ra from the supply port 2 to the discharge port 3 through the inside of the main rotor 4 and the other flow from the discharge port 3 of the main rotor 4 to the supply port 2 through the outside of the main rotor 4. A convection of the gas is generated by applying a temperature difference to the gas so as to pass through the path Rb, and the convection of the gas causes the fan 7 provided at the supply port 2 and the discharge port 3 of the main rotating body 4 to be cooled.
By rotating the main rotator 4 to obtain power, the sub rotator 6 is rotated to reduce the friction due to the airflow so as to obtain power efficiently. Then, for example, the rotating power is generated by driving a generator 9 via a gear device 8.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来の対流温度差原動装置にあっては、主回転体4の他
端においてはファン7が軸方向に開放した排出口3に設
けられているので、ファン7から吹き出す気流が従回転
体6の端面に吹き付けられることになり、そのため、端
面に気体が衝突することから、それだけ、回転に寄与し
ない損失が多くなり、回転効率が悪くなっているという
問題があった。本発明は上記の問題点に鑑みて為された
もので、主回転体から吹き出す気流の回転に寄与しない
損失を少なくして、回転効率の向上を図った対流温度差
原動装置の提供を目的とする。
In such a conventional convection temperature difference driving apparatus, a fan 7 is provided at the other end of the main rotating body 4 at the discharge port 3 opened in the axial direction. As a result, the airflow blown from the fan 7 is blown to the end face of the sub-rotating body 6, so that the gas collides with the end face, so that the loss not contributing to rotation increases and the rotation efficiency deteriorates. There was a problem that there is. The present invention has been made in view of the above-described problems, and has as its object to provide a convection temperature difference driving apparatus in which loss that does not contribute to rotation of an airflow blown from a main rotating body is reduced and rotation efficiency is improved. I do.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るための本発明の技術的手段は、密封された外郭に回転
可能に軸支され軸方向一端に気体の供給口が形成され他
端に気体の排出口が形成された筒状の主回転体を備え、
該主回転体の供給口から該主回転体の内部を通って排出
口に至る一方流路及び該主回転体の排出口から該主回転
体の外側を通って供給口に至る他方流路を通るように気
体に温度差を付与して気体の対流を生じさせ、該気体の
対流により主回転体を回転させて動力を得る対流温度差
原動装置において、上記主回転体の他端に上記排出口か
らの気体を該主回転体の外側回転周方向に対し逆向きに
噴射させて該主回転体に回転力を付与するタービンを設
けた構成としている。これにより、主回転体の供給口か
ら主回転体の内部を通って排出口に至る一方流路及び主
回転体の排出口から主回転体の外側を通って供給口に至
る他方流路を通る気体の対流が生じると、この対流によ
りタービンを介して主回転体が回転させられる。このタ
ービンにおいては、気体が噴射口から主回転体の外側回
転周方向に対し逆向きに噴射させられ、主回転体が回転
させられる。この場合、気体が周方向に噴射されるの
で、従来のように回転に寄与しない損失が多くなってし
まう事態が抑制され、回転効率が大幅に向上させられ
る。
The technical means of the present invention for solving the above-mentioned problem is that a gas supply port is formed at one end in the axial direction and rotatably supported on a sealed outer shell. A cylindrical main rotating body having a gas outlet formed therein,
One flow path from the supply port of the main rotator to the discharge port through the inside of the main rotator and the other flow path from the discharge port of the main rotator to the supply port through the outside of the main rotator. In a convection temperature difference driving apparatus in which a convection of a gas is generated by applying a temperature difference to a gas so as to pass the gas and the convection of the gas rotates a main rotator to obtain power, the exhaust is provided at the other end of the main rotator. A turbine is provided that injects gas from the outlet in a direction opposite to the outer circumferential direction of the main rotating body to apply a rotational force to the main rotating body. Thereby, one flow path from the supply port of the main rotating body to the discharge port through the inside of the main rotating body and the other flow path from the discharge port of the main rotating body to the outside of the main rotating body to the supply port. When gas convection occurs, the convection causes the main rotor to rotate via the turbine. In this turbine, gas is injected from an injection port in a direction opposite to the outer circumferential direction of the main rotating body, and the main rotating body is rotated. In this case, since the gas is injected in the circumferential direction, a situation in which the loss that does not contribute to rotation as in the related art is increased is suppressed, and the rotation efficiency is greatly improved.

【0005】そして、必要に応じ、上記タービンを、上
記排出口に連通する流入口と、外周に開口する噴射口
と、該噴射口から気体を噴射させるように流入口から噴
射口まで気体をガイドするガイド通路とを備えて構成し
ている。タービンは、噴射口から気体を噴射させるよう
に流入口から噴射口まで気体をガイドするガイド通路を
備えているので、気体が回転体の外側回転周方向に対し
逆向きに確実に噴射させられる。また、必要に応じ、上
記噴射口を外周に沿って等角度関係で複数連設し、該各
噴射口毎に上記ガイド通路を設けた構成としている。噴
射口が外周に沿って等角度関係で複数連設されているの
で、気体が周方向に均等に噴射させられることになり、
それだけ、主回転体の回転が安定化させられる。更に、
必要に応じ、上記外郭の内周に、上記タービンの噴射口
から噴射された気体を受ける複数の受け板を周方向に沿
って列設した構成としている。これにより、タービンの
噴射口から噴射された気体は、外郭の複数の受け板に衝
突する。このため、受け板による反力が生じ、それだ
け、主回転体の回転力が増し回転効率が向上させられ
る。更にまた、必要に応じ、上記受け板を、該受け板が
受けた気体を上記主回転体の外側回転周方向に向けて流
進させる形状に形成し、上記主回転体の外周に該受け板
によって流進させられた気体を受ける複数の受け体を周
方向に沿って列設した構成にしている。これにより、受
け板によって流進させられた気体は、主回転体の外周に
列設された複数の受け体に受けられる。そのため、主回
転体は、受け板によって流進させられた気体によって、
外側回転周方向に力を受けることになり、それだけ、主
回転体の回転力が増し回転効率が向上させられる。ま
た、必要に応じ、上記主回転体の回転数の増加に伴って
噴射口を拡大し上記主回転体の回転数の減少に伴って噴
射口を縮小する噴射口可変機構を設けた構成としてい
る。主回転体の回転数の少ないときは、噴射口が縮小し
ており、主回転体の回転数の増加に伴う遠心力の増加に
よって噴射口が拡大していくので、主回転体の回転数の
低いときに気体の流速が均一にさせられ、そのため、立
ち上がりが早くまた確実に行なわれ、その後の回転が円
滑に行なわれる。
[0005] If necessary, the turbine is connected to the inlet port communicating with the discharge port, the injection port opened to the outer periphery, and the gas is guided from the inlet port to the injection port so that the gas is injected from the injection port. And a guide passage. Since the turbine is provided with the guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port, the gas is reliably injected in a direction opposite to the outer circumferential direction of the rotating body. Further, if necessary, a plurality of the above-mentioned injection ports are continuously provided in an equiangular relationship along the outer circumference, and the above-mentioned guide passage is provided for each of the above-mentioned injection ports. Since a plurality of injection ports are provided in an equiangular relationship along the outer circumference, the gas is injected uniformly in the circumferential direction,
As a result, the rotation of the main rotating body is stabilized. Furthermore,
If necessary, a plurality of receiving plates for receiving the gas injected from the injection port of the turbine are arranged in a row along the circumferential direction on the inner periphery of the outer shell. Thereby, the gas injected from the injection port of the turbine collides with the plurality of outer receiving plates. For this reason, a reaction force is generated by the receiving plate, and accordingly, the rotational force of the main rotating body is increased, and the rotational efficiency is improved. Further, if necessary, the receiving plate is formed in a shape for causing the gas received by the receiving plate to flow toward the outer circumferential direction of rotation of the main rotating body, and the receiving plate is formed on the outer periphery of the main rotating body. A plurality of receivers for receiving the gas flown by the nozzle are arranged in a row along the circumferential direction. Thus, the gas flowed by the receiving plate is received by a plurality of receiving members arranged in a row on the outer periphery of the main rotating body. For this reason, the main rotating body is
Since the force is received in the outer rotating circumferential direction, the rotating force of the main rotating body is increased and the rotating efficiency is improved accordingly. In addition, if necessary, a configuration is provided in which an injection port variable mechanism is provided that expands the injection port with an increase in the rotation speed of the main rotating body and reduces the injection port with a decrease in the rotation speed of the main rotation body. . When the rotation speed of the main rotating body is small, the injection port is reduced, and the injection port expands due to an increase in centrifugal force accompanying an increase in the rotation speed of the main rotating body. When the flow rate is low, the gas flow rate is made uniform, so that the rise is quick and reliable, and the subsequent rotation is performed smoothly.

【0006】また、このような課題を解決するための本
発明の技術的手段は、密封された外郭と、該外郭に回転
可能に軸支され軸方向一端に気体の供給口が形成され他
端に気体の排出口が形成された筒状の主回転体と、上記
外郭及び主回転体に対して回転可能に設けられ壁部が外
郭と主回転体との間に位置する筒状の従回転体とを備
え、該主回転体の供給口から該主回転体の内部を通って
排出口に至る一方流路及び該主回転体の排出口から該主
回転体の外側を通って供給口に至る他方流路を通るよう
に気体に温度差を付与して気体の対流を生じさせ、該気
体の対流により上記主回転体及び従回転体を回転させて
動力を得る対流温度差原動装置において、上記主回転体
の他端に上記排出口からの気体を該主回転体の外側回転
周方向に対し逆向きに噴射させて該主回転体に回転力を
付与するタービンを設けた構成としている。これによ
り、主回転体の供給口から主回転体の内部を通って排出
口に至る一方流路及び主回転体の排出口から主回転体の
外側を通って供給口に至る他方流路を通る気体の対流が
生じると、この対流によりタービンを介して主回転体及
び従回転体が回転させられる。このタービンにおいて
は、気体が噴射口から主回転体の外側回転周方向に対し
逆向きに噴射させられ、主回転体が回転させられる。こ
の場合、気体が周方向に噴射されるので、従来のように
従回転体の端面に気体が衝突して回転に寄与しない損失
が多くなってしまう事態が抑制され、回転効率が大幅に
向上させられる。
The technical means of the present invention for solving such a problem includes a sealed outer shell, a rotatable shaft supported on the outer shell, a gas supply port formed at one end in the axial direction, and another end. A cylindrical main rotating body having a gas discharge port formed therein, and a cylindrical sub-rotation provided rotatably with respect to the outer shell and the main rotating body and having a wall portion located between the outer shell and the main rotating body. A flow path from the supply port of the main rotating body to the discharge port through the inside of the main rotating body, and from the discharge port of the main rotating body to the supply port through the outside of the main rotating body. In a convection temperature difference driving device, a temperature difference is given to a gas so as to pass through the other flow path to generate convection of the gas, and the main rotator and the sub rotator are rotated by the convection of the gas to obtain power. At the other end of the main rotator, gas from the discharge port is directed in a direction opposite to the outer circumferential direction of the main rotator. By injection has a configuration in which a turbine that imparts rotational force to the main rotor. Thereby, one flow path from the supply port of the main rotating body to the discharge port through the inside of the main rotating body and the other flow path from the discharge port of the main rotating body to the outside of the main rotating body to the supply port. When gas convection occurs, the convection causes the main rotor and the sub-rotator to rotate via the turbine. In this turbine, gas is injected from an injection port in a direction opposite to the outer circumferential direction of the main rotating body, and the main rotating body is rotated. In this case, since the gas is injected in the circumferential direction, a situation in which the gas collides with the end face of the sub-rotator and the loss that does not contribute to rotation is increased as in the related art is suppressed, and the rotation efficiency is greatly improved. Can be

【0007】そして、必要に応じ、上記タービンを、上
記排出口に連通する流入口と、外周に開口する噴射口
と、該噴射口から気体を噴射させるように流入口から噴
射口まで気体をガイドするガイド通路とを備えて構成し
ている。タービンは、噴射口から気体を噴射させるよう
に流入口から噴射口まで気体をガイドするガイド通路を
備えているので、気体が回転体の外側回転周方向に対し
逆向きに確実に噴射させられる。また、必要に応じ、上
記噴射口を外周に沿って等角度関係で複数連設し、該各
噴射口毎に上記ガイド通路を設けた構成としている。噴
射口が外周に沿って等角度関係で複数連設されているの
で、気体が周方向に均等に噴射させられることになり、
それだけ、主回転体の回転が安定化させられる。更に、
必要に応じ、上記従回転体の内周に、上記タービンの噴
射口から噴射された気体を受ける複数の受け板を周方向
に沿って列設した構成としている。これにより、タービ
ンの噴射口から噴射された気体は、外郭の複数の受け板
に衝突する。このため、受け板による反力が生じ、それ
だけ、主回転体の回転力が増し回転効率が向上させられ
る。更にまた、上記受け板を、該受け板が受けた気体を
上記主回転体の外側回転周方向に向けて流進させる形状
に形成し、上記主回転体の外周に該受け板によって流進
させられた気体を受ける複数の受け体を周方向に沿って
列設した構成としている。これにより、受け板によって
流進させられた気体は、主回転体の外周に列設された複
数の受け体に受けられる。そのため、主回転体は、受け
板によって流進させられた気体によって、外側回転周方
向に力を受けることになり、それだけ、主回転体の回転
力が増し回転効率が向上させられる。また、必要に応
じ、上記主回転体の回転数の増加に伴って噴射口を拡大
し上記主回転体の回転数の減少に伴って噴射口を縮小す
る噴射口可変機構を設けた構成としている。主回転体の
回転数の少ないときは、噴射口が縮小しており、主回転
体の回転数の増加に伴う遠心力の増加によって噴射口が
拡大していくので、主回転体の回転数の低いときに気体
の流速が均一にさせられ、そのため、立ち上がりが早く
また確実に行なわれ、その後の回転が円滑に行なわれ
る。
[0007] If necessary, the turbine may be connected to the inflow port communicating with the discharge port, the injection port opened to the outer periphery, and the gas may be guided from the inflow port to the injection port so that the gas is injected from the injection port. And a guide passage. Since the turbine is provided with the guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port, the gas is reliably injected in a direction opposite to the outer circumferential direction of the rotating body. Further, if necessary, a plurality of the above-mentioned injection ports are continuously provided in an equiangular relationship along the outer circumference, and the above-mentioned guide passage is provided for each of the above-mentioned injection ports. Since a plurality of injection ports are provided in an equiangular relationship along the outer circumference, the gas is injected uniformly in the circumferential direction,
As a result, the rotation of the main rotating body is stabilized. Furthermore,
If necessary, a plurality of receiving plates for receiving gas injected from the injection port of the turbine are arranged in a row along the circumferential direction on the inner periphery of the driven rotor. Thereby, the gas injected from the injection port of the turbine collides with the plurality of outer receiving plates. For this reason, a reaction force is generated by the receiving plate, and accordingly, the rotational force of the main rotating body is increased, and the rotational efficiency is improved. Furthermore, the receiving plate is formed in a shape in which the gas received by the receiving plate is made to flow toward the outer circumferential direction of rotation of the main rotating body, and the gas is caused to flow around the outer periphery of the main rotating body by the receiving plate. A plurality of receivers for receiving the gas are arranged in a row along the circumferential direction. Thus, the gas flowed by the receiving plate is received by a plurality of receiving members arranged in a row on the outer periphery of the main rotating body. Therefore, the main rotating body receives a force in the outer circumferential direction by the gas flowed by the receiving plate, and accordingly, the rotating force of the main rotating body is increased, and the rotation efficiency is improved. In addition, if necessary, a configuration is provided in which an injection port variable mechanism is provided that expands the injection port with an increase in the rotation speed of the main rotating body and reduces the injection port with a decrease in the rotation speed of the main rotation body. . When the rotation speed of the main rotating body is small, the injection port is reduced, and the injection port expands due to an increase in centrifugal force accompanying an increase in the rotation speed of the main rotating body. When the flow rate is low, the gas flow rate is made uniform, so that the rise is quick and reliable, and the subsequent rotation is performed smoothly.

【0008】また、必要に応じ、上記主回転体及び従回
転体を、一端側回転体と他端側回転体とに分割し、か
つ、該一端側回転体と他端側回転体との分割端部同士が
軸方向に直交する方向に相対変移可能になるように分割
した構成としている。回転によって一端側回転体と他端
側回転体とが横方向に振れても、互いに相対変移するの
で、この振れが吸収され、そのため、回転が円滑に行な
われる。この場合、上記一端側回転体及び他端側回転体
のいずれか一方をいずれか他方に対して小径に形成する
とともに、該一端側回転体と他端側回転体との分割端部
に互いに重畳する重畳部を設け、該一端側回転体及び他
端側回転体の重畳部間にクッション部材を介装したこと
が有効である。一端側回転体と他端側回転体との分割端
部の重畳部間にクッション部材が介装されているので、
分割端部同士が衝止することなく振れが吸収され、その
ため、回転がより一層円滑に行なわれる。
If necessary, the main rotating body and the subordinate rotating body are divided into one end rotating body and the other rotating body, and the one rotating body and the other rotating body are divided. The end portions are divided so as to be relatively displaceable in a direction orthogonal to the axial direction. Even if the one-end rotator and the other-end rotator oscillate in the lateral direction due to the rotation, they are relatively displaced from each other. In this case, one of the one-end rotator and the other-end rotator is formed to have a smaller diameter than the other, and is overlapped with the divided end of the one-end rotator and the other-end rotator. It is effective that a superimposed portion is provided, and a cushion member is interposed between the superimposed portions of the one end side rotating body and the other end side rotating body. Since the cushion member is interposed between the overlapping portions of the divided ends of the one-end rotating body and the other-end rotating body,
The run-out is absorbed without stopping the divided ends, so that the rotation is performed more smoothly.

【0009】そしてまた、必要に応じ、上記外郭に一端
が閉塞され他端に開放口を有した管状の支軸を設け、該
支軸に対して上記主回転体及び従回転体の一端及び他端
を軸支し、該支軸の主回転体に臨む管壁に液体が吐出さ
れる多数の吐出口を形成し、上記支軸の開放口に接続さ
れる注入口を有するとともに上記外郭に回収口を有し上
記注入口から支軸内を通って吐出口から主回転体内に噴
出されて該主回転体内の気体を冷却した後上記タービン
を通ってくる液体を上記回収口から再び上記注入口に導
く液体の液体循環管路を設け、該液体循環管路の途中に
該液体を冷却する冷却部を設け、上記外郭の一端に吹出
口を有し他端に戻り口を有した上記気体が循環可能な気
体循環管路を設け、該気体循環管路の途中に循環する気
体を加温する加温部を設け、上記従回転体の内壁に上記
吹出口からの気体を一端側入口から他端側出口に流す通
風路を設け、該通風路の他端側出口から流出した高温の
気体が他方流路を通るとともに、上記一方通路を通り該
一方通路で上記液体によって冷却されてタービンに至る
ようにした構成としている。従回転体において、その内
壁に吹出口からの気体を一端側入口から他端側出口に流
す通風路が設けられているので、高温の気体を他方流路
の下側から吹き出すようにすることができ、そのため、
上昇気流を生じさせ易くできるので、気体の対流のエネ
ルギーを大きくすることができる。この場合、上記通風
路を上記従回転体の内壁に沿って多数列設したことが有
効である。従回転体内周に亘って上昇気流を生じさせる
ことができ、それだけ、均一化されるので、回転が安定
化させられる。また、この場合、上記通風路の上記主回
転体側の壁部を山形状に形成し、上記従回転体の内壁に
沿って該山形状の壁部が連続するように形成したことが
有効である。通風路の壁部が山形状に形成されているの
で、通風路内側を通る気体と他方流路の気体との熱交換
が容易に行なわれ、他方流路の気体を確実に高温状態で
上昇させることができる。
[0009] If necessary, a tubular support shaft having one end closed and an open port at the other end is provided in the outer shell, and one end of the main rotating body and the subordinate rotating body and other ends are provided with respect to the supporting shaft. The end is pivotally supported, and a plurality of discharge ports for discharging liquid are formed on a pipe wall facing the main rotating body of the support shaft. The discharge port has an inlet connected to an open port of the support shaft and is collected in the outer shell. The inlet has a port, passes through the support shaft, is discharged from the discharge port into the main rotating body, cools the gas in the main rotating body, and then passes the liquid flowing through the turbine to the collecting port again from the recovery port. A liquid circulation pipe for a liquid leading to the liquid circulation pipe is provided, a cooling unit for cooling the liquid is provided in the middle of the liquid circulation pipe, and the gas having an outlet at one end of the outer shell and a return port at the other end is provided. A circulating gas circulation line is provided, and a gas circulating in the gas circulation line is heated. A ventilation passage for allowing gas from the outlet to flow from the one-side inlet to the other-side outlet on the inner wall of the driven rotor, and the high-temperature gas flowing out from the other-side outlet of the ventilation passage to the other passage. , While passing through the one passage and being cooled by the liquid in the one passage to reach the turbine. In the slave rotor, an air passage is provided on the inner wall thereof for flowing gas from the outlet from the one-side inlet to the other-side outlet, so that high-temperature gas can be blown out from the lower side of the other flow path. Yes, so
Since an updraft can be easily generated, the convective energy of the gas can be increased. In this case, it is effective that a large number of the ventilation passages are arranged along the inner wall of the slave rotor. An ascending airflow can be generated over the circumference of the sub-rotating body, and as a result, the rotation is stabilized because it is made uniform. In this case, it is effective that the wall portion of the ventilation path on the side of the main rotating body is formed in a mountain shape, and the wall portion of the mountain shape is formed continuously along the inner wall of the slave rotating body. . Since the wall portion of the ventilation path is formed in a mountain shape, heat exchange between the gas passing through the ventilation path and the gas in the other flow path is easily performed, and the gas in the other flow path is reliably raised at a high temperature. be able to.

【0010】また、必要に応じ、上記支軸に形成された
液体の吐出口を液体が上記主回転体の回転方向に向けて
吐出噴射される形状に形成し、上記主回転体の内壁に上
記吐出口から吐出噴射される液体を受ける複数の受け部
材を周方向に沿って列設した構成としている。支軸に形
成された液体の吐出口から、液体がシャワー状に吐出噴
射されるが、吐出口は主回転体の回転方向に向けて吐出
噴射される形状に形成されており、主回転体の内壁に設
けた受け部材に吐出口から吐出噴射される液体が受けら
れるので、主回転体は、回転方向に力を受けることにな
り、それだけ、主回転体の回転力が増し回転効率が向上
させられる。更に、必要に応じ、上記主回転体の供給口
を、供給される気体が該主回転体の回転方向に向けて流
進される形状に形成し、上記主回転体の内壁に上記供給
口から供給される気体を受ける複数の受け部材を周方向
に沿って列設した構成としている。供給口が主回転体の
回転方向に向けて流進される形状に形成されており、主
回転体の内壁に設けた受け部材に吹き出された気体が受
けられるので、主回転体は、回転方向に力を受けること
になり、この点でも、主回転体の回転力が増し回転効率
が向上させられる。
If necessary, a liquid discharge port formed in the support shaft is formed in a shape in which the liquid is discharged and ejected in the rotation direction of the main rotating body, and the liquid is formed on an inner wall of the main rotating body. A plurality of receiving members for receiving the liquid ejected and ejected from the ejection port are arranged in a row along the circumferential direction. The liquid is ejected and ejected in a shower form from the ejection port of the liquid formed on the support shaft, and the ejection port is formed in a shape to be ejected and ejected in the rotation direction of the main rotating body. Since the liquid ejected and ejected from the ejection port is received by the receiving member provided on the inner wall, the main rotating body receives a force in the rotating direction, and accordingly, the rotating force of the main rotating body is increased, and the rotation efficiency is improved. Can be Further, if necessary, the supply port of the main rotator is formed into a shape in which the supplied gas flows in the rotation direction of the main rotator, and the supply port is formed on the inner wall of the main rotator from the supply port. A plurality of receiving members for receiving the supplied gas are arranged in a row along the circumferential direction. The supply port is formed in a shape to flow in the direction of rotation of the main rotator, and the gas blown out to the receiving member provided on the inner wall of the main rotator is received. In this respect, the rotational force of the main rotating body is increased and the rotational efficiency is improved.

【0011】更にまた、必要に応じ、上記液体を潤滑能
力のあるオイルで構成し、上記主回転体の主回転軸の軸
受部及び上記従回転体の従回転軸の軸受部に該液体を潤
滑油として供給するオイル通路を設けた構成としてい
る。主回転体の主回転軸の軸受部及び従回転体の従回転
軸の軸受部にオイル通路を通して液体が潤滑油として供
給されるので、回転が円滑に行なわれる。また、必要に
応じ、上記主回転体の一端及び他端の少なくともいずれ
か一方に、上記支軸に回転可能に挿通される管状の主回
転軸を設け、上記従回転体に該主回転軸に回転可能に挿
通される管状の従回転軸を設け、上記主回転軸及び従回
転軸の両方から動力を得る動力取得機構を設けた構成と
している。主回転体及び従回転体の両方から動力が得ら
れるので、エネルギーの変換効率が極めて良くなる。こ
の場合、必要に応じ、上記動力取得機構を、上記主回転
軸に設けられる主ギアと、上記従回転軸に設けられる従
ギアと、該主ギア及び従ギアを連動させる連動ギア機構
と、上記主ギア,従ギア及び連動ギア機構の少なくとも
いずれか1つに連係して駆動される発電機とを備えて構
成している。動力を電力として得ることができる。
Further, if necessary, the liquid is composed of an oil having lubricating ability, and the liquid is lubricated to a bearing portion of a main rotating shaft of the main rotating body and a bearing portion of a sub-rotating shaft of the slave rotating body. An oil passage for supplying oil is provided. Since the liquid is supplied as lubricating oil through the oil passage to the bearing of the main rotating shaft of the main rotating body and the bearing of the slave rotating shaft of the slave rotating body, the rotation is smoothly performed. Further, if necessary, at least one of one end and the other end of the main rotating body is provided with a tubular main rotating shaft rotatably inserted through the support shaft, and the slave rotating body is provided with the main rotating shaft. A rotatable tubular auxiliary rotary shaft is provided, and a power acquisition mechanism for obtaining power from both the main rotary shaft and the auxiliary rotary shaft is provided. Since power is obtained from both the main rotating body and the sub-rotating body, the energy conversion efficiency is extremely improved. In this case, if necessary, the power acquisition mechanism may include a main gear provided on the main rotation shaft, a sub gear provided on the sub rotation shaft, an interlocking gear mechanism for interlocking the main gear and the sub gear, And a generator driven in association with at least one of the main gear, the slave gear, and the interlocking gear mechanism. Power can be obtained as electric power.

【0012】また、必要に応じ、上記主回転体及び従回
転体の始回転時に、該始回転を補助するスタート手段を
設けた構成としている。スタート手段によって、主回転
体及び従回転体が始動させられるので、立ち上がりが早
くまた確実に行なわれ、その後の回転が円滑に行なわれ
る。更に、必要に応じ、上記主回転体及び従回転体の始
回転時に、該始回転を補助するスタート手段を設け、該
スタート手段を、上記従回転体の一端もしくは他端の少
なくともいずれか一方に設けられ上記液体の噴射により
該従回転体を回転させる回転ファンと、上記液体循環管
路から分岐した分岐管から供給された液体を高圧状態で
蓄液する蓄液タンクと、上記外郭に設けられ蓄液タンク
の液体を始回転時に上記回転ファンに向けて噴射する噴
射ノズルとを備えて構成している。冷却用の液体を用い
るので、利用効率が良い。この場合、上記蓄液タンクを
上記外郭の外側周囲に付帯させたことが有効である。外
郭を補強でき回転体の遠心力に対する耐力を増すことが
できる。
Further, if necessary, a start means for assisting the main rotation and the sub-rotational body at the time of the initial rotation is provided. Since the main rotating body and the slave rotating body are started by the start means, the rising is quickly and reliably performed, and the subsequent rotation is smoothly performed. Further, if necessary, at the time of the initial rotation of the main rotating body and the slave rotating body, a start means for assisting the starting rotation is provided, and the starting means is provided at at least one of one end or the other end of the slave rotating body. A rotating fan that is provided to rotate the slave rotor by ejecting the liquid, a liquid storage tank that stores liquid supplied from a branch pipe branched from the liquid circulation pipeline in a high pressure state, and a liquid storage tank that is provided in the outer shell. And an injection nozzle for injecting the liquid in the liquid storage tank toward the rotating fan during the initial rotation. Since the cooling liquid is used, utilization efficiency is high. In this case, it is effective that the liquid storage tank is attached to the outer periphery of the outer shell. The outer shell can be reinforced and the strength of the rotating body against centrifugal force can be increased.

【0013】[0013]

【発明の実施の形態】以下、添付図面に基づいて、本発
明の実施の形態に係る対流温度差原動装置について詳細
に説明する。図1乃至図6に示すように、本発明の実施
の形態に係る対流温度差原動装置の基本的構成は、密封
された円筒状の外郭10と、外郭10の中心軸に沿って
設けられた支軸11と、支軸11に回転可能に軸支され
軸方向一端に気体の供給口21が形成され他端中央に気
体の排出口22が形成された円筒状の主回転体20と、
外郭10及び主回転体20に対して回転可能に設けられ
壁部が外郭10と主回転体20との間に位置する円筒状
の従回転体30とを備え、主回転体20の供給口21か
ら主回転体20の内部を通って排出口22に至る一方流
路Ra及び主回転体20の排出口22から主回転体20
の外側を通って供給口21に至る他方流路Rbを通るよ
うに気体に温度差を付与して気体の対流を生じさせ、気
体の対流により主回転体20及び従回転体30を回転さ
せて動力取得機構80により動力を得るものである。こ
こで、気体としては、二酸化炭素(CO2 )が用いられ
る。また、後で詳述するが、気体に温度差を付与するた
めに液体が用いられる。液体は、潤滑能力のあるオイル
で構成されている。そして、主回転体20の他端に、排
出口22からの気体を主回転体20の外側回転周方向
(Fa)に対し逆向き(Fb)に噴射させて主回転体2
0に回転力を付与するタービン40を設けた構成として
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a convection temperature difference driving apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. As shown in FIGS. 1 to 6, a basic configuration of a convection temperature difference driving apparatus according to an embodiment of the present invention is provided along a sealed cylindrical outer shell 10 and a central axis of the outer shell 10. A support shaft 11, a cylindrical main rotating body 20 rotatably supported by the support shaft 11, having a gas supply port 21 formed at one axial end, and a gas discharge port 22 formed at the center of the other end;
A cylindrical sub-rotating body 30 provided rotatably with respect to the outer shell 10 and the main rotating body 20 and having a wall positioned between the outer shell 10 and the main rotating body 20; Flow path Ra and the outlet 22 of the main rotor 20 from the main rotor 20 to the outlet 22 through the inside of the main rotor 20.
The temperature difference is given to the gas so as to pass through the other flow path Rb that reaches the supply port 21 through the outside of the main body, so that convection of the gas is generated, and the main rotator 20 and the sub rotator 30 are rotated by the convection of the gas. Power is obtained by the power obtaining mechanism 80. Here, carbon dioxide (CO 2 ) is used as the gas. As will be described in detail later, a liquid is used to impart a temperature difference to a gas. The liquid is composed of oil having lubricating ability. Then, the other end of the main rotating body 20 is caused to inject gas from the discharge port 22 in the opposite direction (Fb) with respect to the outer circumferential direction (Fa) of the main rotating body 20 so that the main rotating body 2
The configuration is such that a turbine 40 that applies a rotational force to zero is provided.

【0014】詳しくは、主回転体20及び従回転体30
は、支軸11に対して一端及び他端が軸支されている。
即ち、主回転体20の一端及び他端の両方に、支軸11
に回転可能に挿通される管状の主回転軸23が設けられ
ており、従回転体30の一端及び他端の両方に、主回転
軸23に回転可能に挿通される管状の従回転軸31が設
けられている。図2に示すように、主回転体20の一端
の主回転軸23は、支軸11に回転可能に挿通され、外
郭10に設けた支持台16にスラストベアリング24を
介して吊下されるように支持されている。また、従回転
体30の一端の従回転軸31は、主回転軸23に回転可
能に挿通され、外郭10に設けた支持台16にスラスト
ベアリング32を介して吊下されるように支持されてい
る。図3に示すように、主回転体20の他端の主回転軸
23は、外郭10内に設けた他端側の隔壁12を貫通し
て設けられ、隔壁12より一端側で、支軸11にベアリ
ング25を介して回転可能に設けられ、隔壁12の下側
の下端が外郭10に設けた土台13にベアリング26を
介して支持されている。また、従回転体30の他端の従
回転軸31は、主回転軸23に回転可能に挿通され、外
郭10内に設けた隔壁12にベアリング33を介して支
持されている。
More specifically, the main rotator 20 and the sub rotator 30
Has one end and the other end pivotally supported by the support shaft 11.
That is, both the one end and the other end of the main rotating body 20
The main rotating shaft 23 is rotatably inserted into the main rotating shaft 23. Both the one end and the other end of the sub-rotating body 30 are provided with a tubular auxiliary rotating shaft 31 rotatably inserted through the main rotating shaft 23. Is provided. As shown in FIG. 2, the main rotating shaft 23 at one end of the main rotating body 20 is rotatably inserted through the support shaft 11, and is suspended from the support base 16 provided on the outer shell 10 via the thrust bearing 24. It is supported by. Further, the auxiliary rotary shaft 31 at one end of the auxiliary rotary body 30 is rotatably inserted through the main rotary shaft 23, and is supported by the support 16 provided on the outer shell 10 so as to be suspended via a thrust bearing 32. I have. As shown in FIG. 3, the main rotating shaft 23 at the other end of the main rotating body 20 is provided so as to penetrate the partition 12 at the other end provided in the outer shell 10. The lower end of the lower side of the partition wall 12 is supported via a bearing 26 on a base 13 provided on the outer shell 10. The slave rotation shaft 31 at the other end of the slave rotation body 30 is rotatably inserted through the main rotation shaft 23, and is supported by the partition wall 12 provided in the outer shell 10 via a bearing 33.

【0015】また、主回転体20及び従回転体30は、
一端側回転体20a,30aと他端側回転体20b,3
0bとに分割形成されており、一端側回転体20a,3
0aと他端側回転体20b,30bとの分割端部は、分
割端部同士が軸方向に直交する方向に相対変移可能、か
つ、相対回転可能に連結されている。詳しくは、一端側
回転体20a,30aは、他端側回転体20b,30b
に対して小径に形成され、一端側回転体20a,30a
と他端側回転体20b,30bとの分割端部に互いに重
畳する重畳部27,37が設けられ、この一端側回転体
20a,30a及び他端側回転体20b,30bの重畳
部27,37間にクッション部材28,38が介装され
ている。クッション部材28,38は、多条のリング状
Vベルトで形成され、他端側回転体20b,30bに接
着されている。
The main rotator 20 and the sub rotator 30 are
One end side rotating bodies 20a, 30a and the other end side rotating bodies 20b, 3
0b, and one end side rotating bodies 20a, 20b
The divided ends of Oa and the other end-side rotating bodies 20b and 30b are connected so that the divided ends can be relatively displaced in a direction orthogonal to the axial direction and can be relatively rotated. Specifically, the one end rotators 20a and 30a are connected to the other end rotators 20b and 30b.
, The one end side rotating bodies 20a, 30a
The overlapped portions 27 and 37 that overlap each other are provided at the divided ends of the first and second rotating bodies 20b and 30b, and the overlapping portions 27 and 37 of the first rotating bodies 20a and 30a and the other rotating bodies 20b and 30b are provided. Cushion members 28 and 38 are interposed between them. The cushion members 28 and 38 are formed of multiple ring-shaped V-belts, and are adhered to the other end side rotating bodies 20b and 30b.

【0016】タービン40は、図4乃至図6に示すよう
に、排出口22に連通する流入口41と、外周に開口す
る流入口41よりも開口の小さい噴射口42と、噴射口
42から気体を主回転体20の外側回転周方向(Fa)
に対し逆向き(Fb)に噴射させるように流入口41か
ら噴射口42まで気体をガイドするガイド通路43とを
備えて構成されている。噴射口42は、外周に沿って等
角度関係で複数連設されており、各噴射口42毎に流入
口41及びガイド通路43が設けられている。ガイド通
路43は、上板44と、下板45と、上板44及び下板
45間に設けられた一対の仕切り板46とで形成されて
いる。また、タービン40には、図4に示すように、噴
射口可変機構50が設けられている。噴射口可変機構5
0は、主回転体20の回転数の増加に伴って噴射口42
を拡大し主回転体20の回転数の減少に伴って噴射口4
2を縮小するものである。詳しくは、一端がガイド通路
43を構成する一方の仕切り板46の一方にヒンジ52
を介して接続され他端が噴射口42に臨んで揺動可能に
設けられた揺動板51と、揺動板51を他方の仕切り板
46側に常時付勢するスプリング53と、他方の仕切り
板46に設けられ揺動板51を当接させて最小の開口を
確保するストッパ54とを備え、主回転体20の回転数
の増加に伴う遠心力の増加によって気体の圧力が高くな
ることに応じて、揺動板51がスプリング53の付勢力
に抗して一方の仕切り板46側に揺動し、これにより、
噴射口42を拡大させるようにし、主回転体20の回転
数の減少に伴う遠心力の減少によって気体の圧力が低く
なることに応じて、揺動板51がスプリング53の付勢
力により他方の仕切り板46側に揺動し、これにより、
噴射口42を縮小させるようにし、主回転体20の回転
数の低いときに気体の流速ができるだけ均一になるよう
にしている。また、従回転体30の他端側回転体30b
の内周には、タービン40の噴射口42から噴射された
気体を受ける複数の受け板55が周方向に沿って等角度
関係で列設されている。この受け板55は、受け板55
が受けた気体を主回転体20の外側回転周方向(Fa)
に向けて流進させる湾曲形状に形成されている。一方、
主回転体20の他端側回転体20bの外周には、受け板
55によって流進させられた気体を受ける複数の受け体
56が周方向に沿って等角度関係で列設されている。受
け体56の列は、図5に示すように、波形形状に形成さ
れている。
As shown in FIGS. 4 to 6, the turbine 40 has an inlet 41 communicating with the outlet 22, an inlet 42 having an opening smaller than the inlet 41 opened on the outer periphery, and a gas Is the outer circumferential direction of rotation of the main rotating body 20 (Fa).
And a guide passage 43 for guiding the gas from the inflow port 41 to the injection port 42 so as to inject in the opposite direction (Fb). A plurality of injection ports 42 are provided in an equiangular relationship along the outer circumference, and an inflow port 41 and a guide passage 43 are provided for each injection port 42. The guide passage 43 includes an upper plate 44, a lower plate 45, and a pair of partition plates 46 provided between the upper plate 44 and the lower plate 45. Further, the turbine 40 is provided with an injection port variable mechanism 50 as shown in FIG. Injection port variable mechanism 5
0 indicates that the injection port 42 is increased with the rotation speed of the main rotating body 20.
And the injection port 4 is increased with a decrease in the rotation speed of the main rotating body 20.
2 is reduced. More specifically, one end of one partition plate 46 forming the guide passage 43 is provided with a hinge 52.
A swinging plate 51 which is connected via the other end and is swingably provided with the other end facing the injection port 42; a spring 53 which constantly biases the swinging plate 51 toward the other partition plate 46; A stopper 54 provided on the plate 46 to secure the smallest opening by bringing the rocking plate 51 into contact with the plate 46, so that the gas pressure increases due to an increase in centrifugal force accompanying an increase in the rotation speed of the main rotating body 20. In response, the swing plate 51 swings toward the one partition plate 46 against the urging force of the spring 53, and thereby,
The injection port 42 is enlarged, and in response to the decrease in the gas pressure due to the decrease in the centrifugal force due to the decrease in the rotation speed of the main rotating body 20, the rocking plate 51 is moved by the biasing force of the spring 53 to the other partition. Swings to the plate 46 side,
The injection port 42 is reduced so that the gas flow velocity is as uniform as possible when the rotation speed of the main rotating body 20 is low. Also, the other end side rotator 30b of the slave rotator 30
A plurality of receiving plates 55 for receiving the gas injected from the injection ports 42 of the turbine 40 are arranged in an equiangular relationship along the circumferential direction. The receiving plate 55 is
Gas received by the main rotating body 20 in the outer circumferential direction (Fa)
It is formed in a curved shape to flow toward. on the other hand,
A plurality of receiving bodies 56 for receiving the gas flowed by the receiving plate 55 are arranged in an equiangular relationship along the circumferential direction on the outer periphery of the other rotating body 20b of the main rotating body 20. The rows of the receivers 56 are formed in a corrugated shape as shown in FIG.

【0017】支軸11は、一端が閉塞され他端に開放口
14を有した管状に形成されており、支軸11の主回転
体20に臨む管壁には、液体をシャワー状に吐出する多
数の吐出口15が形成されている。この吐出口15は、
図5に示すように、液体(オイル)が主回転体20の回
転方向(Fa)に向けて吐出噴射される形状に形成され
ている。一方、主回転体20の一端側回転体20aの内
壁には、吐出口15から吐出噴射される液体を受ける複
数の受け部材57が周方向に沿って列設されている。受
け部材57は、山形状に形成され、主回転体20の内壁
に沿って連続して設けられている。また、主回転体20
の供給口21は、図3に示すように、主回転体20の一
端で支軸11の周囲に複数開設されており、供給される
気体が主回転体20の回転方向(Fa)に向けて流進さ
れる形状に形成されている。そして、主回転体20の一
端側回転体20aの内壁に列設した上記受け部材57
が、供給口21から供給される気体を受け得るようにな
っている。
The support shaft 11 is formed in a tubular shape having one end closed and an open port 14 at the other end, and discharges a liquid in a shower shape onto a pipe wall facing the main rotating body 20 of the support shaft 11. A large number of discharge ports 15 are formed. This discharge port 15 is
As shown in FIG. 5, the liquid (oil) is formed in a shape to be ejected and ejected in the rotation direction (Fa) of the main rotating body 20. On the other hand, a plurality of receiving members 57 for receiving the liquid ejected and ejected from the ejection port 15 are arranged along the circumferential direction on the inner wall of the one-end rotating body 20 a of the main rotating body 20. The receiving member 57 is formed in a mountain shape, and is provided continuously along the inner wall of the main rotating body 20. The main rotating body 20
As shown in FIG. 3, a plurality of supply ports 21 are provided around the support shaft 11 at one end of the main rotating body 20, and supplied gas is directed toward the rotation direction (Fa) of the main rotating body 20. It is formed in a shape to be flown. The receiving members 57 arranged on the inner wall of the one end side rotating body 20a of the main rotating body 20
Can receive the gas supplied from the supply port 21.

【0018】更に、この対流温度差原動装置において
は、液体循環管路60が設けられている。液体循環管路
60は、支軸11の開放口14に接続される注入口61
を有するとともに外郭10の隔壁12直上に回収口62
を有し、注入口61から支軸11内を通って吐出口15
から主回転体20内に噴出されて主回転体20内の気体
を冷却した後、タービン40を通って隔壁12に至る液
体を回収口62から再び注入口61に導くものである。
そして、この液体循環管路60の途中には、液体を冷却
する冷却部63が設けられている。冷却部63は、例え
ば、水等の冷却媒体で液体を冷却する熱交換機で構成さ
れている。
Further, in this convection temperature difference driving apparatus, a liquid circulation line 60 is provided. The liquid circulation line 60 is provided with an inlet 61 connected to the opening 14 of the support shaft 11.
And a recovery port 62 immediately above the partition 12 of the outer shell 10.
From the inlet 61 to the outlet 15
After cooling the gas in the main rotating body 20 by jetting into the main rotating body 20, the liquid that reaches the partition 12 through the turbine 40 is guided again from the recovery port 62 to the injection port 61.
In the middle of the liquid circulation pipe 60, a cooling unit 63 for cooling the liquid is provided. The cooling unit 63 is configured by, for example, a heat exchanger that cools the liquid with a cooling medium such as water.

【0019】更にまた、外郭10の一端に吹出口71を
有し他端に戻り口72を有した気体が循環可能な気体循
環管路70が設けられている。そして、気体循環管路7
0の途中には、循環する気体を加温する加温部73が設
けられている。加温部73は、例えば、温水等の加温媒
体で気体を加温する熱交換機で構成されている。また、
従回転体30の一端側回転体30aの内壁には、吹出口
71からの気体を一端側入口74から他端側出口75に
流す通風路76が多数列設されている。通風路76の主
回転体20側の壁部は、山形状に形成されており、従回
転体30の内壁に沿って山形状の壁部が連続するように
形成されている。これにより、通風路76の他端側出口
75から流出した高温の気体が他方流路Rbを通るとと
もに、主回転体20の一方流路Raを通り一方流路Ra
で液体によって冷却されてタービン40に至るようにし
ている。
Further, a gas circulation pipe 70 having an outlet 71 at one end of the outer shell 10 and a return port 72 at the other end is provided for circulating gas. And the gas circulation line 7
A heating unit 73 for heating the circulating gas is provided in the middle of 0. The heating unit 73 is configured by, for example, a heat exchanger that heats a gas with a heating medium such as hot water. Also,
On the inner wall of the one end rotator 30 a of the sub rotator 30, a large number of ventilation paths 76 for flowing the gas from the outlet 71 from the one end inlet 74 to the other end outlet 75 are provided. The wall of the ventilation passage 76 on the main rotating body 20 side is formed in a mountain shape, and the mountain-shaped wall is formed along the inner wall of the slave rotating body 30 so as to be continuous. Accordingly, the high-temperature gas flowing out of the other end outlet 75 of the ventilation passage 76 passes through the other passage Rb, and also passes through the one passage Ra of the main rotating body 20 and the one passage Ra.
To be cooled by the liquid to reach the turbine 40.

【0020】動力取得機構80は、主回転軸23及び従
回転軸31の両方から動力を得るもので、主回転軸23
に設けられる主ギア81と、従回転軸31に設けられる
従ギア82と、主ギア81及び従ギア82を連動させる
連動ギア機構83と、主ギア81,従ギア82及び連動
ギア機構83の少なくともいずれか1つ(実施の形態で
は従ギア82)に噛合する受けギア84を介して連係し
て駆動される発電機85とを備えて構成されている。連
動ギア機構83は、主ギア81に噛合する第一ギア83
aと、従ギア82に噛合する第二ギア83bと、第一ギ
ア83a及び第二ギア83bを同軸で連結する回転軸8
3cとから構成されている。回転軸83cは、上記の土
台13に軸支されている。発電機85は、土台13に支
持されている。
The power obtaining mechanism 80 obtains power from both the main rotary shaft 23 and the slave rotary shaft 31.
Of the main gear 81, the sub gear 82, and the interlocking gear mechanism 83, and an interlocking gear mechanism 83 that interlocks the main gear 81 and the sub gear 82. A generator 85 is provided which is driven in conjunction with a receiving gear 84 which meshes with any one of them (the slave gear 82 in the embodiment). The interlocking gear mechanism 83 includes a first gear 83 that meshes with the main gear 81.
a, a second gear 83b meshing with the slave gear 82, and a rotating shaft 8 coaxially connecting the first gear 83a and the second gear 83b.
3c. The rotation shaft 83c is supported by the base 13 described above. The generator 85 is supported by the base 13.

【0021】また、この対流温度差原動装置において
は、主回転体20及び従回転体30の始回転時に、始回
転を補助するスタート手段90が設けられている。この
スタート手段90は、図2に示すように、従回転体30
の他端外側で隔壁12に沿うように設けられ液体の噴射
により従回転体30を回転させる回転ファン91と、液
体循環管路60から分岐した分岐管92aから供給され
た液体を高圧状態で蓄液する蓄液タンク92と、外郭1
0に設けられ蓄液タンク92の液体を始回転時に回転フ
ァン91に向けて噴射する噴射ノズル93とを備えて構
成されている。蓄液タンク92は、外郭10の外側周囲
に付帯させられている。そのため、外郭10が補強さ
れ、回転体の遠心力に対する、耐力が強化される。94
は電磁弁で、噴射ノズル93の開閉を行なう。95は高
圧ポンプで、始回転前に、蓄液タンク92に液体を送給
する。蓄液タンク92内には、二酸化炭素が充填されて
おり、液体の送給により収縮し電磁弁94の開時に膨張
して液体を噴射ノズル93から噴射させる。
The convection temperature difference driving apparatus is provided with a start means 90 for assisting the initial rotation of the main rotator 20 and the sub rotator 30 during the initial rotation. The start means 90 is, as shown in FIG.
A rotary fan 91 provided along the partition wall 12 at the outside of the other end to rotate the driven rotor 30 by jetting liquid, and a liquid supplied from a branch pipe 92a branched from the liquid circulation line 60 is stored in a high pressure state. The liquid storage tank 92 that liquefies, and the outer shell 1
And an injection nozzle 93 that is provided at 0 and injects the liquid in the liquid storage tank 92 toward the rotating fan 91 at the time of the initial rotation. The liquid storage tank 92 is attached to the outer periphery of the outer shell 10. Therefore, the outer shell 10 is reinforced, and the strength of the rotating body against the centrifugal force is enhanced. 94
Is an electromagnetic valve for opening and closing the injection nozzle 93. A high-pressure pump 95 feeds a liquid to a liquid storage tank 92 before the first rotation. The liquid storage tank 92 is filled with carbon dioxide, contracts by the supply of the liquid, expands when the solenoid valve 94 is opened, and causes the liquid to be injected from the injection nozzle 93.

【0022】更に、主回転体20の主回転軸23の軸受
部及び従回転体30の従回転軸31の軸受部に液体を潤
滑油として供給するオイル通路96が設けられている。
オイル通路96は、支軸11内に設けられており、支軸
11の一端部に開口してスラストベアリング24,32
に液体を吐出する径路と、主回転体20の他端の主回転
軸23に開口する径路とを備える。また、従回転体30
の他端の従回転軸31においては、隔壁12に設けたベ
アリング33に液体が供給される。この潤滑用液体は、
外郭10下端に溜められ、回収管97で液体循環管路6
0に回収される。
Further, an oil passage 96 for supplying a liquid as lubricating oil is provided to the bearing of the main rotating shaft 23 of the main rotating body 20 and the bearing of the subsidiary rotating shaft 31 of the subsidiary rotating body 30.
The oil passage 96 is provided in the support shaft 11, and opens at one end of the support shaft 11 to open the thrust bearings 24, 32.
And a path that opens to the main rotation shaft 23 at the other end of the main rotating body 20. In addition, the slave rotor 30
The liquid is supplied to the bearing 33 provided on the partition wall 12 on the sub-rotation shaft 31 at the other end. This lubricating liquid is
The liquid is collected at the lower end of the outer shell 10,
Collected to 0.

【0023】従って、本発明の実施の形態に係る対流温
度差原動装置によって、発電するときは、以下のように
なる。先ず、始動時においては、スタート手段90を駆
動する。これは、予め、液体循環管路60から分岐した
分岐管92aから蓄液タンク92に液体を高圧状態で蓄
液しておく。そして、電磁弁94を開にし噴射ノズル9
3から蓄液タンク92の液体を回転ファン91に向けて
噴射する。これにより、回転ファン91が回転し始め従
回転体30が回転させられるとともに、主回転体20も
同方向に回転し始める。この場合、スタート手段90に
よって、主回転体20及び従回転体30が始動させられ
るので、立ち上がりが早くまた確実に行なわれ、その後
の回転が円滑に行なわれる。
Therefore, when power is generated by the convection temperature difference driving apparatus according to the embodiment of the present invention, the following operation is performed. First, at the time of starting, the start means 90 is driven. In this case, the liquid is stored in the storage tank 92 from the branch pipe 92a branched from the liquid circulation pipe 60 in a high pressure state in advance. Then, the solenoid valve 94 is opened and the injection nozzle 9 is opened.
From 3, the liquid in the liquid storage tank 92 is jetted toward the rotating fan 91. As a result, the rotating fan 91 starts to rotate, the sub rotator 30 is rotated, and the main rotator 20 also starts to rotate in the same direction. In this case, since the main rotator 20 and the sub rotator 30 are started by the start means 90, the start-up is performed quickly and reliably, and the subsequent rotation is performed smoothly.

【0024】この状態で、液体が支軸11の注入口61
から支軸11内を通って吐出口15から主回転体20内
に噴出され、主回転体20内の気体を冷却した後、ター
ビン40を通って回収口62から液体循環管路60を通
り再び注入口61に導かれる。この液体循環管路60の
途中では、気体の冷却により加温された液体が冷却部6
3により再び冷却される。一方、吹出口71から気体が
流入し、一端側回転体20a,30aの内壁の通風路7
6の一端側入口74から流入し他端側出口75から流出
し、この流出した高温の気体が他方流路Rbを通るとと
もに、主回転体20の一方流路Raを通り一方流路Ra
で液体によって冷却されてタービン40に至る。それか
ら、戻り口72から気体循環管路70を通って再び吹出
口71に導かれる。この気体循環管路70の途中では、
冷却された気体が加温部73により加温される。
In this state, the liquid is supplied to the injection port 61 of the support shaft 11.
From the discharge port 15 into the main rotating body 20 through the support shaft 11 to cool the gas in the main rotating body 20, pass through the turbine 40, pass through the recovery port 62, pass through the liquid circulation line 60, and again It is guided to the inlet 61. In the middle of the liquid circulation line 60, the liquid heated by the cooling of the gas is cooled by the cooling unit 6.
3 again cools. On the other hand, gas flows in from the outlet 71, and the ventilation path 7 on the inner wall of the one end side rotating bodies 20a, 30a.
6 flows out from one end side inlet 74 and flows out from the other end side outlet 75, and the outflowing high-temperature gas passes through the other flow path Rb and also passes through the one flow path Ra of the main rotating body 20 and the one flow path Ra
Is cooled by the liquid to reach the turbine 40. Then, the air is returned from the return port 72 to the outlet 71 through the gas circulation line 70. In the middle of this gas circulation line 70,
The cooled gas is heated by the heating unit 73.

【0025】これにより、主回転体20の供給口21か
ら主回転体20の内部を通って排出口22に至る一方流
路Ra及び主回転体20の排出口22から主回転体20
の外側を通って供給口21に至る他方流路Rbを通る気
体の対流を生じ、この対流によりタービン40を介して
主回転体20及び従回転体30が同方向に回転させられ
る。このタービン40においては、気体が噴射口42か
ら主回転体20の外側回転周方向(Fa)に対し逆向き
(Fb)に噴射させれ、主回転体20が回転させられ
る。この場合、気体が回転に寄与する周方向に噴射され
るので、従来のように従回転体の端面に気体が衝突して
回転に寄与しない損失が多くなってしまう事態が抑制さ
れ、回転効率が大幅に向上させられる。また、タービン
40は、噴射口42から気体を噴射させるように流入口
41から噴射口42まで気体をガイドするガイド通路4
3を備えているので、気体が回転体の外側回転周方向に
対し逆向きに確実に噴射させられる。更に、噴射口42
が外周に沿って等角度関係で複数連設されているので、
気体が周方向に均等に噴射させられることになり、それ
だけ、主回転体20の回転が安定化させられる。更にま
た、タービン40には噴射口可変機構50が設けられて
いるので、主回転体20の回転数の少ないときは、噴射
口42が縮小しており、主回転体20の回転数の増加に
伴う遠心力の増加によって噴射口42が拡大していくの
で、主回転体20の回転数の低いときに気体の流速が均
一にさせられ、そのため、立ち上がりが早くまた確実に
行なわれ、その後の回転が円滑に行なわれる。
As a result, the flow path Ra from the supply port 21 of the main rotating body 20 to the discharge port 22 through the interior of the main rotating body 20 and the discharge port 22 of the main rotating body 20
Convection of the gas passing through the other flow path Rb that reaches the supply port 21 through the outside of the main rotor 20 and the main rotator 20 and the sub rotator 30 are rotated in the same direction via the turbine 40 by the convection. In the turbine 40, gas is injected from the injection port 42 in a direction (Fb) opposite to the outer circumferential direction (Fa) of the main rotating body 20, and the main rotating body 20 is rotated. In this case, since the gas is injected in the circumferential direction contributing to rotation, the situation where the gas collides with the end face of the sub-rotating body and loss that does not contribute to rotation increases as in the related art is suppressed, and the rotation efficiency is reduced. It can be greatly improved. Further, the turbine 40 has a guide passage 4 that guides gas from the inflow port 41 to the injection port 42 so as to inject the gas from the injection port 42.
3, the gas is reliably injected in the direction opposite to the outer circumferential direction of the rotating body. Further, the injection port 42
Are arranged in an equiangular relationship along the outer circumference,
The gas is evenly injected in the circumferential direction, so that the rotation of the main rotating body 20 is stabilized. Further, since the turbine 40 is provided with the injection port variable mechanism 50, when the rotation speed of the main rotating body 20 is low, the injection port 42 is reduced, and the rotation speed of the main rotation body 20 is increased. Since the injection port 42 expands due to the accompanying increase in centrifugal force, the flow velocity of the gas is made uniform when the rotation speed of the main rotating body 20 is low. Is performed smoothly.

【0026】そして、タービン40の噴射口42から噴
射された気体は、従回転体30の複数の受け板55に衝
突する。このため、受け板55による反力が生じ、それ
だけ、主回転体20の回転力が増し回転効率が向上させ
られる。また、受け板55は、受けた気体を主回転体2
0の外側回転周方向(Fa)に向けて流進させる形状に
形成されており、受け板55によって流進させられた気
体は、主回転体20の外周に列設された複数の受け体5
6に受けられる。これにより、主回転体20は、受け板
55によって流進させられた気体によって、外側回転周
方向(Fa)に力を受けることになり、それだけ、主回
転体20の回転力が増し回転効率が向上させられる。
Then, the gas injected from the injection port 42 of the turbine 40 collides with the plurality of receiving plates 55 of the sub-rotator 30. For this reason, a reaction force is generated by the receiving plate 55, and accordingly, the rotational force of the main rotating body 20 is increased, and the rotational efficiency is improved. Further, the receiving plate 55 transfers the received gas to the main rotating body 2.
0 is formed in a shape to flow in the outer rotational circumferential direction (Fa), and the gas flowed by the receiving plate 55 is supplied to the plurality of receiving bodies 5 arranged in a row on the outer periphery of the main rotating body 20.
6 received. Accordingly, the main rotating body 20 receives a force in the outer rotational circumferential direction (Fa) by the gas flowed by the receiving plate 55, and accordingly, the rotating force of the main rotating body 20 increases, and the rotation efficiency increases. Can be improved.

【0027】更に、この主回転体20及び従回転体30
は、一端側回転体20a,30aと他端側回転体20
b,30bとに分割され、しかも、一端側回転体20
a,30aと他端側回転体20b,30bとの分割端部
同士が軸方向に直交する方向に相対変移可能になるよう
に分割されているので、回転によって一端側回転体20
a,30aと他端側回転体20b,30bとが横方向に
振れても、互いに相対変移するので、この振れが吸収さ
れ、そのため、回転が円滑に行なわれる。しかも、一端
側回転体20a,30aと他端側回転体20b,30b
との分割端部の重畳部27,37間にクッション部材2
8,38が介装されているので、分割端部同士が衝止す
ることなく振れが吸収され、そのため、回転がより一層
円滑に行なわれる。また、従回転体30において、その
内壁に吹出口71からの気体を一端側入口74から他端
側出口75に流す通風路76が設けられているので、高
温の気体を他方流路Rbの下側から吹き出すようにする
ことができ、そのため、上昇気流を生じさせ易くできる
ので、気体の対流のエネルギーを大きくすることができ
る。また、通風路76は従回転体30の内壁に沿って多
数列設されているので、従回転体30内周に亘って上昇
気流を生じさせることができ、それだけ、均一化される
ので、回転が安定化させられる。更に、通風路76の壁
部が山形状に形成されているので、通風路76内側を通
る気体と他方流路Rbの気体との熱交換が容易に行なわ
れ、他方流路Rbの気体を確実に高温状態で上昇させる
ことができる。
Further, the main rotator 20 and the sub rotator 30
Are one end rotators 20a and 30a and the other end rotator 20a.
b, 30b, and one end side rotating body 20
a, 30a and the other end-side rotator 20b, 30b are divided so that they can be relatively displaced in a direction orthogonal to the axial direction.
Even if the a and 30a and the other end side rotators 20b and 30b oscillate in the lateral direction, they relatively displace each other, so that this oscillation is absorbed, and therefore, the rotation is performed smoothly. In addition, the one end rotators 20a and 30a and the other end rotators 20b and 30b
Between the overlapping portions 27 and 37 at the divided end portion of the cushion member 2
With the interposition of the 8, 38, the run-out is absorbed without the split ends colliding with each other, so that the rotation is performed more smoothly. Further, in the sub-rotational body 30, the ventilation path 76 that allows the gas from the outlet 71 to flow from the one-side inlet 74 to the other-side outlet 75 is provided on the inner wall thereof, so that the high-temperature gas flows under the other flow path Rb. Since the air can be blown out from the side, an updraft can be easily generated, so that the energy of the convection of the gas can be increased. Further, since the ventilation passages 76 are arranged in a large number along the inner wall of the slave rotor 30, an upward airflow can be generated over the inner periphery of the slave rotor 30, and the airflow is uniformized accordingly, so that the rotation Is stabilized. Further, since the wall portion of the ventilation passage 76 is formed in a mountain shape, heat exchange between the gas passing through the inside of the ventilation passage 76 and the gas in the other flow passage Rb is easily performed, and the gas in the other flow passage Rb is reliably removed. At high temperature.

【0028】更に、支軸11に形成された液体の吐出口
15から、液体がシャワー状に吐出噴射されるが、吐出
口15は主回転体20の回転方向に向けて吐出噴射され
る形状に形成されており、主回転体20の内壁に設けた
受け部材57に吐出口15から吐出噴射される液体が受
けられるので、主回転体20は、回転方向に力を受ける
ことになり、それだけ、主回転体20の回転力が増し回
転効率が向上させられる。更にまた、主回転体20の供
給口21から気体が一方流路Raに吹き出されるが、供
給口21が主回転体20の回転方向に向けて流進される
形状に形成されており、主回転体20の内壁に設けた受
け部材57に吹き出された気体が受けられるので、主回
転体20は、回転方向に力を受けることになり、この点
でも、主回転体20の回転力が増し回転効率が向上させ
られる。
Further, the liquid is ejected and ejected in the form of a shower from the liquid ejection port 15 formed on the support shaft 11, and the ejection port 15 is shaped so as to be ejected and ejected in the rotation direction of the main rotating body 20. Since the liquid ejected from the ejection port 15 is received by the receiving member 57 provided on the inner wall of the main rotator 20, the main rotator 20 receives a force in the rotation direction. The rotational force of the main rotating body 20 increases, and the rotational efficiency is improved. Furthermore, the gas is blown out from the supply port 21 of the main rotating body 20 to the one flow path Ra, but the supply port 21 is formed in a shape to be flown in the rotation direction of the main rotating body 20, Since the gas blown out to the receiving member 57 provided on the inner wall of the rotator 20 is received, the main rotator 20 receives a force in the rotational direction. At this point, the rotational force of the main rotator 20 increases. The rotation efficiency is improved.

【0029】動力取得機構80においては、主回転体2
0及び従回転体30が同方向に回転するので、この両方
から動力が得られる。即ち、主回転体20の回転が連動
ギア機構83を介して従回転体30の主ギア81に伝達
され、従回転体30自体も主ギア81を回転せしめるの
で、この主ギア81の回転が発電機85に伝達され、こ
の発電機85により発電される。この場合、主回転体2
0及び従回転体30の両方から動力が得られるので、エ
ネルギーの変換効率が極めて良くなる。また、主回転体
20及び従回転体30の回転においては、主回転体20
の主回転軸23の軸受部及び従回転体30の従回転軸3
1の軸受部にオイル通路96を通して液体が潤滑油とし
て供給されるので、回転が円滑に行なわれる。
In the power acquisition mechanism 80, the main rotating body 2
Since the 0 and the sub-rotating bodies 30 rotate in the same direction, power is obtained from both of them. That is, the rotation of the main rotating body 20 is transmitted to the main gear 81 of the sub-rotating body 30 via the interlocking gear mechanism 83, and the sub-rotating body 30 itself also rotates the main gear 81. The power is transmitted to the power generator 85 and the power is generated by the power generator 85. In this case, the main rotating body 2
Since power is obtained from both the zero and the sub-rotational body 30, the energy conversion efficiency is extremely improved. In the rotation of the main rotator 20 and the sub rotator 30, the main rotator 20
Of the main rotary shaft 23 and the sub rotary shaft 3 of the sub rotary body 30
Since the liquid is supplied to the first bearing portion through the oil passage 96 as lubricating oil, the rotation is performed smoothly.

【0030】図7には、本発明の実施の形態に係る対流
温度差原動装置において、主回転体20及び従回転体3
0を夫々分割した一端側回転体20a,30aと他端側
回転体20b,30bとの分割端部の構造の別の例を示
す。これは、各分割端部の重畳部27,37同士に互い
に逆向きのフランジ27a,27b,37a,37bを
設けて該フランジ同士を対峙させたものである。これに
よれば、シャワー状に噴射された液体がフランジ27
a,27b,37a,37bのある部位に浸透するの
で、回転によって一端側回転体20a,30aと他端側
回転体20b,30bとが横方向に振れても、介在した
液体によって隔てられることから、分割端部同士が衝止
することなく振れが吸収され、そのため、回転が円滑に
行なわれる。
FIG. 7 shows a convection temperature difference driving apparatus according to an embodiment of the present invention.
Another example of the structure of the divided end portions of the one end rotating bodies 20a, 30a and the other end rotating bodies 20b, 30b, each of which is divided into 0, is shown. In this configuration, flanges 27a, 27b, 37a, and 37b that are opposite to each other are provided in the overlapping portions 27 and 37 at the respective divided ends so that the flanges face each other. According to this, the liquid jetted in the form of a shower is applied to the flange 27.
a, 27b, 37a, and 37b, so that even if one end side rotating bodies 20a, 30a and the other end side rotating bodies 20b, 30b swing laterally due to rotation, they are separated by the interposed liquid. In addition, the run-out is absorbed without collision between the divided ends, so that the rotation is smoothly performed.

【0031】図8には、本発明の実施の形態に係る対流
温度差原動装置において、スタート手段90の別の例を
示している。これは、動力取得機構80において、連動
ギア機構83の第一ギア83a及び第二ギア83bを同
軸で連結する回転軸83cに始動時に駆動される電動モ
ータ99を設け、この電動モータ99を駆動することで
始動時の回転を容易にしている。尚、発電機85は受け
ギア84を介して主ギア81に噛合し、これから動力を
得ている。図9には、本発明の実施の形態に係る対流温
度差原動装置の変形例を示している。これは、本装置を
横置きにするとともに、一端側の主回転軸23を延設し
て、この主回転軸23からも動力を得るようにしてい
る。図9では、プロペラ100を回転させている。この
ように、動力はどのように取出しても良く、また、装置
の設置は、軸が垂直あるいは水平を問わずどのような向
きに設置しても良い。
FIG. 8 shows another example of the start means 90 in the convection temperature difference driving apparatus according to the embodiment of the present invention. That is, in the power acquisition mechanism 80, an electric motor 99 driven at the time of starting is provided on a rotating shaft 83c coaxially connecting the first gear 83a and the second gear 83b of the interlocking gear mechanism 83, and the electric motor 99 is driven. This facilitates rotation at the start. The generator 85 meshes with the main gear 81 via the receiving gear 84, and obtains power from this. FIG. 9 shows a modification of the convection temperature difference driving apparatus according to the embodiment of the present invention. In this configuration, the apparatus is placed horizontally, and a main rotating shaft 23 at one end is extended so that power is also obtained from the main rotating shaft 23. In FIG. 9, the propeller 100 is being rotated. As described above, the power may be taken out in any manner, and the apparatus may be installed in any direction regardless of whether the axis is vertical or horizontal.

【0032】図10には、本発明の別の実施の形態に係
る対流温度差原動装置の概略を示している。これは、上
記実施の形態と異なって、従回転体30がなく、外郭1
0に隣接して主回転体20のみを設けている。そして、
タービン40及び受け体56の構成は上記と同様であ
り、一方、タービン40の噴射口42から噴射された気
体を受ける複数の受け板55は、外郭10の内周に周方
向に沿って列設されている。また、85は主回転軸23
から動力を得る発電機、99は始動時に駆動される電動
モータである。従って、この対流温度差原動装置におい
ても、気体がタービン40の噴射口42から主回転体2
0の外側回転周方向に対し逆向きに噴射させられ、主回
転体20が回転させられる。この場合、気体が回転に寄
与する周方向に噴射されるので、従来のように回転に寄
与しない損失が多くなってしまう事態が抑制され、回転
効率が大幅に向上させられる。そして、タービン40の
噴射口42から噴射された気体は、外郭10の複数の受
け板55に衝突する。このため、受け板55による反力
が生じ、それだけ、主回転体20の回転力が増し回転効
率が向上させられる。また、受け板55は、受けた気体
を主回転体20の外側回転周方向(Fa)に向けて流進
させる形状に形成されており、受け板55によって流進
させられた気体は、主回転体20の外周に列設された複
数の受け体56に受けられる。これにより、主回転体2
0は、受け板55によって流進させられた気体によっ
て、外側回転周方向(Fa)に力を受けることになり、
それだけ、主回転体20の回転力が増し回転効率が向上
させられる。
FIG. 10 schematically shows a convection temperature difference driving apparatus according to another embodiment of the present invention. This is different from the above-described embodiment in that there is no slave rotor 30 and the outer shell 1
Only the main rotating body 20 is provided adjacent to zero. And
The configurations of the turbine 40 and the receiving body 56 are the same as described above. On the other hand, a plurality of receiving plates 55 that receive the gas injected from the injection port 42 of the turbine 40 are arranged in a row along the circumferential direction on the inner periphery of the outer shell 10. Have been. 85 is the main rotating shaft 23
A generator 99 that obtains power from the motor is an electric motor driven at the time of starting. Therefore, also in this convection temperature difference driving apparatus, gas is supplied from the injection port 42 of the turbine 40 to the main rotating body 2.
The main rotator 20 is rotated by being injected in a direction opposite to the outer circumferential direction of 0. In this case, since the gas is injected in the circumferential direction that contributes to the rotation, the situation where the loss that does not contribute to the rotation as in the related art increases is suppressed, and the rotation efficiency is greatly improved. Then, the gas injected from the injection port 42 of the turbine 40 collides with the plurality of receiving plates 55 of the outer shell 10. For this reason, a reaction force is generated by the receiving plate 55, and accordingly, the rotational force of the main rotating body 20 is increased, and the rotational efficiency is improved. Further, the receiving plate 55 is formed in a shape for causing the received gas to flow toward the outer circumferential direction (Fa) of the main rotating body 20. It is received by a plurality of receiving bodies 56 arranged in a row on the outer periphery of the body 20. Thereby, the main rotating body 2
0 receives a force in the outer rotational circumferential direction (Fa) by the gas flowed by the receiving plate 55,
As a result, the rotational force of the main rotating body 20 increases, and the rotational efficiency is improved.

【0033】尚、上記実施の形態において、液体として
オイルを用いたが、必ずしもこれに限定されるものでは
なく、例えば、主回転体20内で気化する液化ガスで構
成しても良く、適宜変更して良い。
In the above embodiment, oil is used as the liquid. However, the present invention is not limited to this. For example, the liquid may be composed of a liquefied gas which is vaporized in the main rotating body 20. You can

【0034】[0034]

【発明の効果】以上説明したように、本発明の対流温度
差原動装置によれば、主回転体の他端に排出口からの気
体を主回転体の外側回転周方向に対し逆向きに噴射させ
て主回転体に回転力を付与するタービンを設けたので、
タービンにおいては、気体が噴射口から主回転体の外側
回転周方向に対し逆向きに噴射させれ、主回転体が回転
させられる。この場合、気体が周方向に噴射されるの
で、従来のように回転に寄与しない損失が多くなってし
まう事態を抑制することができ、回転効率を大幅に向上
させることができる。そして、タービンを、排出口に連
通する流入口と、外周に開口する噴射口と、噴射口から
気体を噴射させるように流入口から噴射口まで気体をガ
イドするガイド通路とを備えて構成した場合には、気体
はガイド通路でガイドされるので、気体を回転体の外側
回転周方向に対し逆向きに確実に噴射させることができ
る。また、噴射口を外周に沿って等角度関係で複数連設
し、各噴射口毎にガイド通路を設けた場合には、噴射口
が外周に沿って等角度関係で複数連設されているので、
気体が周方向に均等に噴射させられることになり、それ
だけ、主回転体の回転を安定化することができる。
As described above, according to the convection temperature difference driving apparatus of the present invention, gas is discharged from the discharge port to the other end of the main rotating body in a direction opposite to the outer circumferential direction of the main rotating body. Because the turbine that gives the rotating force to the main rotating body is provided,
In the turbine, gas is injected from an injection port in a direction opposite to the outer circumferential direction of the main rotating body, and the main rotating body is rotated. In this case, since the gas is injected in the circumferential direction, it is possible to suppress an increase in loss that does not contribute to rotation as in the related art, and it is possible to greatly improve rotation efficiency. And when the turbine is provided with an inlet communicating with the outlet, an outlet opening on the outer periphery, and a guide passage for guiding gas from the inlet to the injector so as to eject gas from the injector. In this case, since the gas is guided by the guide passage, the gas can be reliably injected in the direction opposite to the outer circumferential direction of the rotating body. Further, when a plurality of injection ports are connected in an equiangular relationship along the outer circumference and a guide passage is provided for each injection port, a plurality of the injection ports are provided in an equiangular relation along the outer circumference. ,
The gas is uniformly injected in the circumferential direction, so that the rotation of the main rotating body can be stabilized.

【0035】更に、タービンの噴射口から噴射された気
体を受ける複数の受け板を設けた場合には、タービンの
噴射口から噴射された気体は複数の受け板に衝突するの
で、受け板による反力が生じ、それだけ、主回転体の回
転力が増し回転効率を向上させることができる。更にま
た、受け板を受け板が受けた気体を主回転体の外側回転
周方向に向けて流進させる形状に形成し、主回転体の外
周に受け板によって流進させられた気体を受ける複数の
受け体を周方向に沿って列設した場合には、主回転体
は、受け板によって流進させられた気体によって、外側
回転周方向に力を受けることになり、それだけ、主回転
体の回転力が増し回転効率を向上させることができる。
また、主回転体の回転数の増加に伴って噴射口を拡大し
主回転体の回転数の減少に伴って噴射口を縮小する噴射
口可変機構を設けた場合には、主回転体の回転数の少な
いときは、噴射口が縮小しており、主回転体の回転数の
増加に伴う遠心力の増加によって噴射口が拡大していく
ので、主回転体の回転数の低いときに気体の流速が均一
にさせられ、そのため、立ち上がりが早くまた確実に行
なわれ、その後の回転を円滑に行なわせることができ
る。
Further, when a plurality of receiving plates for receiving the gas injected from the injection port of the turbine are provided, the gas injected from the injection port of the turbine collides with the plurality of receiving plates. As a result, the rotational force of the main rotating body is increased, and the rotational efficiency can be improved. Still further, the receiving plate is formed in a shape for causing the gas received by the receiving plate to flow toward the outer circumferential direction of rotation of the main rotating body, and receives a plurality of gases which are flown by the receiving plate around the outer periphery of the main rotating body. When the receivers are arranged in a row along the circumferential direction, the main rotating body receives a force in the outer rotating circumferential direction by the gas flowed by the receiving plate. The rotational force is increased, and the rotational efficiency can be improved.
In addition, when an injection port variable mechanism that enlarges the injection port with an increase in the rotation speed of the main rotating body and reduces the injection port with a decrease in the rotation number of the main rotation body is provided, the rotation of the main rotation body is increased. When the number is small, the injection port is smaller and the centrifugal force increases with the rotation speed of the main rotating body. The flow velocity is made uniform, so that the rising is performed quickly and reliably, and the subsequent rotation can be performed smoothly.

【0036】そしてまた、外郭及び主回転体に対して回
転可能に設けられ壁部が外郭と主回転体との間に位置す
る筒状の従回転体を備えたものにおいて、主回転体及び
従回転体を、一端側回転体と他端側回転体とに分割し、
かつ、一端側回転体と他端側回転体との分割端部同士が
軸方向に直交する方向に相対変移可能になるように分割
した構成とした場合には、回転によって一端側回転体と
他端側回転体とが横方向に振れても、互いに相対変移す
るので、この振れが吸収され、そのため、回転を円滑に
行なわせることができる。この際、一端側回転体及び他
端側回転体のいずれか一方をいずれか他方に対して小径
に形成するとともに、一端側回転体と他端側回転体との
分割端部に互いに重畳する重畳部を設け、一端側回転体
及び他端側回転体の重畳部間にクッション部材を介装し
た場合には、クッション部材によって分割端部同士が衝
止することなく振れが吸収され、そのため、回転をより
一層円滑に行なわせることができる。
[0036] Further, in the case where a cylindrical sub-rotator is provided rotatably with respect to the outer shell and the main rotor and the wall portion is located between the outer shell and the main rotor, the main rotor and the sub-rotator are provided. The rotating body is divided into one end side rotating body and the other end side rotating body,
In addition, in a case where the divided end portions of the one-end rotator and the other-end rotator are divided so as to be relatively displaceable in a direction orthogonal to the axial direction, the one-end rotator and the other end are rotated. Even if the end-side rotator swings in the lateral direction, the rotator shifts relative to each other, so that the sway is absorbed, and therefore, the rotation can be performed smoothly. At this time, either one of the one-end rotating body and the other-end rotating body is formed to have a smaller diameter than the other one, and is overlapped on the divided end of the one-end rotating body and the other-end rotating body. In the case where a cushion member is interposed between the overlapping portions of the one-end rotating body and the other-end rotating body, the cushion member absorbs the run-out without colliding the divided ends, so that the rotation Can be performed more smoothly.

【0037】また、外郭に一端が閉塞され他端に開放口
を有した管状の支軸を設け、支軸に対して主回転体及び
従回転体の一端及び他端を軸支し、支軸の主回転体に臨
む管壁に液体が吐出される多数の吐出口を形成し、支軸
の開放口に接続される注入口を有するとともに外郭に回
収口を有し注入口から支軸内を通って吐出口から主回転
体内に噴出されて主回転体内の気体を冷却した後タービ
ンを通ってくる液体を回収口から再び注入口に導く液体
の液体循環管路を設け、液体循環管路の途中に液体を冷
却する冷却部を設け、外郭の一端に吹出口を有し他端に
戻り口を有した気体が循環可能な気体循環管路を設け、
気体循環管路の途中に循環する気体を加温する加温部を
設け、従回転体の内壁に吹出口からの気体を一端側入口
から他端側出口に流す通風路を設け、通風路の他端側出
口から流出した高温の気体が他方流路を通るとともに、
一方通路を通り一方通路で液体によって冷却されてター
ビンに至るようにした構成とした場合には、従回転体に
おいて、その内壁に吹出口からの気体を一端側入口から
他端側出口に流す通風路が設けられているので、高温の
気体を他方流路の下側から吹き出すようにすることがで
き、そのため、上昇気流を生じさせ易くできるので、気
体の対流のエネルギーを大きくすることができる。この
場合、通風路を従回転体の内壁に沿って多数列設すれ
ば、従回転体内周に亘って上昇気流を生じさせることが
でき、それだけ、均一化されるので、回転を安定化させ
ることができる。また、通風路の主回転体側の壁部を山
形状に形成し、従回転体の内壁に沿って山形状の壁部が
連続するように形成すれば、通風路の壁部が山形状に形
成されているので、通風路内側を通る気体と他方流路の
気体との熱交換が容易に行なわれ、他方流路の気体を確
実に高温状態で上昇させることができる。
A tubular support shaft having one end closed at the outer shell and having an opening at the other end is provided, and one end and the other end of the main rotating body and the subordinate rotating body are supported on the supporting shaft. A large number of discharge ports for discharging the liquid are formed on the pipe wall facing the main rotating body of the main shaft, and have an inlet connected to the opening of the support shaft, and also have a recovery port on the outer shell. A liquid circulation line is provided for the liquid which is ejected from the discharge port into the main rotating body, cools the gas in the main rotating body, and then guides the liquid flowing through the turbine from the recovery port to the inlet again. A cooling unit that cools the liquid is provided on the way, a gas circulation pipe that can circulate a gas having an outlet at one end of the outer shell and a return port at the other end is provided,
A heating section for heating the circulating gas is provided in the middle of the gas circulation pipeline, and a ventilation path is provided on the inner wall of the sub-rotating body to flow the gas from the outlet from the one-side inlet to the other-side outlet. The high-temperature gas flowing out from the outlet on the other end passes through the other flow path,
In the case of a configuration in which the gas passes through one passage and is cooled by the liquid in one passage to reach the turbine, the ventilation from the outlet to the inner wall of the sub-rotating body flows from the inlet on one end to the outlet on the other end. Since the path is provided, the high-temperature gas can be blown out from the lower side of the other flow path, so that an updraft can be easily generated, so that the energy of the convection of the gas can be increased. In this case, if a large number of ventilation paths are provided along the inner wall of the driven rotor, an ascending airflow can be generated over the periphery of the driven rotor, and the airflow can be made uniform, so that the rotation can be stabilized. Can be. In addition, if the wall of the main rotating body side of the ventilation path is formed in a mountain shape, and the mountain-shaped wall is formed so as to be continuous along the inner wall of the slave rotating body, the wall of the ventilation path is formed in a mountain shape. Therefore, heat exchange between the gas passing through the ventilation path and the gas in the other flow path is easily performed, and the gas in the other flow path can be reliably raised at a high temperature.

【0038】また、支軸に形成された液体の吐出口を液
体が上記主回転体の回転方向に向けて吐出噴射される形
状に形成し、主回転体の内壁に吐出口から吐出噴射され
る液体を受ける複数の受け部材を周方向に沿って列設し
た構成とした場合には、主回転体の内壁に設けた受け部
材に吐出口から吐出噴射される液体が受けられるので、
主回転体は、回転方向に力を受けることになり、それだ
け、主回転体の回転力を増し回転効率を向上させること
ができる。更に、主回転体の供給口を、供給される気体
が主回転体の回転方向に向けて流進される形状に形成
し、主回転体の内壁に供給口から供給される気体を受け
る複数の受け部材を周方向に沿って列設した構成とした
場合には、主回転体の内壁に設けた受け部材に吹き出さ
れた気体が受けられるので、主回転体は、回転方向に力
を受けることになり、この点でも、主回転体の回転力を
増し回転効率を向上させることができる。
Further, the discharge port of the liquid formed on the support shaft is formed in a shape in which the liquid is discharged and jetted in the rotation direction of the main rotating body, and the liquid is jetted from the discharge port to the inner wall of the main rotary body. When a plurality of receiving members for receiving the liquid are arranged in a row along the circumferential direction, the liquid ejected from the ejection port is received on the receiving member provided on the inner wall of the main rotating body.
The main rotating body receives a force in the rotating direction, and accordingly, the rotating force of the main rotating body can be increased and the rotation efficiency can be improved. Further, the supply port of the main rotating body is formed in a shape in which the supplied gas flows toward the rotation direction of the main rotating body, and a plurality of gas receiving ports supplied to the inner wall of the main rotating body from the supply port. When the receiving members are arranged in a row along the circumferential direction, the gas blown out to the receiving member provided on the inner wall of the main rotating body can be received, so that the main rotating body receives a force in the rotating direction. Also in this respect, the rotational force of the main rotating body can be increased and the rotational efficiency can be improved.

【0039】更にまた、液体を潤滑能力のあるオイルで
構成し、主回転体の主回転軸の軸受部及び従回転体の従
回転軸の軸受部に液体を潤滑油として供給するオイル通
路を設けた場合には、主回転体の主回転軸の軸受部及び
従回転体の従回転軸の軸受部にオイル通路を通して液体
が潤滑油として供給されるので、回転を円滑に行なわせ
ることができる。また、主回転体の一端及び他端の少な
くともいずれか一方に、支軸に回転可能に挿通される管
状の主回転軸を設け、従回転体に該主回転軸に回転可能
に挿通される管状の従回転軸を設け、主回転軸及び従回
転軸の両方から動力を得る動力取得機構を設けた場合に
は、主回転体及び従回転体の両方から動力が得られるの
で、エネルギーの変換効率を向上させることができる。
この場合、動力取得機構を、主回転軸に設けられる主ギ
アと、従回転軸に設けられる従ギアと、主ギア及び従ギ
アを連動させる連動ギア機構と、主ギア,従ギア及び連
動ギア機構の少なくともいずれか1つに連係して駆動さ
れる発電機とを備えて構成した場合には、動力を電力と
して得ることができる。
Further, the liquid is composed of oil having lubricating ability, and an oil passage for supplying the liquid as lubricating oil is provided to the bearing of the main rotating shaft of the main rotating body and the bearing of the slave rotating shaft of the slave rotating body. In such a case, the liquid is supplied as lubricating oil through the oil passage to the bearing of the main rotating shaft of the main rotating body and the bearing of the slave rotating shaft of the slave rotating body, so that the rotation can be performed smoothly. In addition, at least one of one end and the other end of the main rotating body, a tubular main rotating shaft that is rotatably inserted into the support shaft is provided, and a tubular body that is rotatably inserted into the main rotating shaft through the subordinate rotating body. In the case where the auxiliary rotation shaft is provided and a power acquisition mechanism that obtains power from both the main rotation shaft and the auxiliary rotation shaft is provided, the power can be obtained from both the main rotation body and the auxiliary rotation shaft, so that the energy conversion efficiency is improved. Can be improved.
In this case, the power acquisition mechanism includes a main gear provided on the main rotation shaft, a sub gear provided on the sub rotation shaft, an interlocking gear mechanism for interlocking the main gear and the sub gear, a main gear, a sub gear, and an interlocking gear mechanism. And a generator driven in association with at least one of the above, power can be obtained as electric power.

【0040】また、主回転体及び従回転体の始回転時
に、始回転を補助するスタート手段を設けた場合には、
スタート手段によって、主回転体及び従回転体が始動さ
せられるので、立ち上がりが早くまた確実に行なわれ、
その後の回転を円滑に行なわせることができる。更に、
このスタート手段を、従回転体の一端もしくは他端の少
なくともいずれか一方に設けられ液体の噴射により従回
転体を回転させる回転ファンと、液体循環管路から分岐
した分岐管から供給された液体を高圧状態で蓄液する蓄
液タンクと、外郭に設けられ蓄液タンクの液体を始回転
時に回転ファンに向けて噴射する噴射ノズルとを備えて
構成した場合には、冷却用の液体を用いるので、利用効
率を良くすることができる。この場合、蓄液タンクを外
郭の外側周囲に付帯させた場合には、外郭を補強でき回
転体の遠心力に対する耐力を増すことができる。
In the case where start means for assisting the initial rotation is provided at the time of the initial rotation of the main rotating body and the subordinate rotating body,
Since the main rotating body and the sub-rotating body are started by the start means, the rising is quickly and reliably performed,
The subsequent rotation can be performed smoothly. Furthermore,
The start means includes a rotating fan provided at at least one of the one end and the other end of the slave rotor for rotating the slave rotor by jetting liquid, and a liquid supplied from a branch pipe branched from the liquid circulation line. In the case where a liquid storage tank that stores liquid under high pressure and an injection nozzle that is provided on the outer shell and that injects the liquid in the liquid storage tank toward the rotating fan at the time of the initial rotation are provided, the cooling liquid is used. , Utilization efficiency can be improved. In this case, when the liquid storage tank is attached to the outer periphery of the outer shell, the outer shell can be reinforced and the proof strength against the centrifugal force of the rotating body can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る対流温度差原動装置
を模式的に示す図である。
FIG. 1 is a diagram schematically showing a convection temperature difference driving apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る対流温度差原動装置
を示す断面図である。
FIG. 2 is a sectional view showing a convection temperature difference driving apparatus according to the embodiment of the present invention.

【図3】本発明の実施の形態に係る対流温度差原動装置
を示す要部断面図である。
FIG. 3 is a cross-sectional view of a main part showing the convection temperature difference driving apparatus according to the embodiment of the present invention.

【図4】本発明の実施の形態に係る対流温度差原動装置
のタービンを示す図であり、(a)は平面図、(b)は
側面図である。
4A and 4B are diagrams showing a turbine of a convection temperature difference driving apparatus according to the embodiment of the present invention, wherein FIG. 4A is a plan view and FIG. 4B is a side view.

【図5】本発明の実施の形態に係る対流温度差原動装置
のタービンの上部の状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state of an upper part of a turbine of the convection temperature difference driving apparatus according to the embodiment of the present invention.

【図6】本発明の実施の形態に係る対流温度差原動装置
のタービンの基本構成を示す斜視図である。
FIG. 6 is a perspective view showing a basic configuration of a turbine of the convection temperature difference driving apparatus according to the embodiment of the present invention.

【図7】本発明の実施の形態に係る対流温度差原動装置
の主回転体及び従回転体における一端側回転体と他端側
回転体との分割端部の構造の別の例を示す図である。
FIG. 7 is a diagram showing another example of the structure of the divided ends of the one end rotator and the other end rotator of the main rotator and the sub rotator of the convection temperature difference driving apparatus according to the embodiment of the present invention. It is.

【図8】本発明の実施の形態に係る対流温度差原動装置
のスタート手段の別の例を示す図1相当図である。
FIG. 8 is a diagram corresponding to FIG. 1 showing another example of the start means of the convection temperature difference driving apparatus according to the embodiment of the present invention.

【図9】本発明の実施の形態に係る対流温度差原動装置
の変形例を示す要部断面図である。
FIG. 9 is a cross-sectional view of a main part showing a modification of the convection temperature difference driving apparatus according to the embodiment of the present invention.

【図10】本発明の別の実施の形態に係る対流温度差原
動装置を模式的に示す図である。
FIG. 10 is a diagram schematically showing a convection temperature difference driving apparatus according to another embodiment of the present invention.

【図11】従来の対流温度差原動装置の一例を模式的に
示す図である。
FIG. 11 is a diagram schematically illustrating an example of a conventional convection temperature difference driving apparatus.

【符号の説明】[Explanation of symbols]

Ra 一方流路 Rb 他方流路 10 外郭 11 支軸 12 隔壁 13 土台 14 開放口 15 吐出口 16 支持台 20 主回転体 20a 一端側回転体 20b 他端側回転体 21 供給口 22 排出口 23 主回転軸 24 スラストベアリング 25 ベアリング 26 ベアリング 27 重畳部 28 クッション部材 30 従回転体 30a 一端側回転体 30b 他端側回転体 31 従回転軸 32 スラストベアリング 33 ベアリング 37 重畳部 38 クッション部材 40 タービン 41 流入口 42 噴射口 43 ガイド通路 44 上板 45 下板 46 仕切り板 50 噴射口可変機構 51 揺動板 52 ヒンジ 53 スプリング 54 ストッパ 55 受け板 56 受け体 57 受け部材 60 液体循環管路 61 注入口 62 回収口 63 冷却部 70 気体循環管路 71 吹出口 72 戻り口 73 加温部 74 一端側入口 75 他端側出口 76 通風路 80 動力取得機構 81 主ギア 82 従ギア 83 連動ギア機構 90 スタート手段 91 回転ファン 92 蓄液タンク 93 噴射ノズル 94 電磁弁 95 高圧ポンプ 96 オイル通路 99 電動モータ 100 プロペラ Ra One flow path Rb The other flow path 10 Outer shell 11 Support shaft 12 Partition wall 13 Base 14 Open port 15 Discharge port 16 Support base 20 Main rotating body 20a One end side rotating body 20b The other end side rotating body 21 Supply port 22 Discharge port 23 Main rotation Shaft 24 Thrust bearing 25 Bearing 26 Bearing 27 Overlapping part 28 Cushion member 30 Subordinate rotating body 30a One end side rotating body 30b Other end side rotating body 31 Secondary rotating shaft 32 Thrust bearing 33 Bearing 37 Overlapping part 38 Cushion member 40 Turbine 41 Inlet 42 Injection port 43 Guide passage 44 Upper plate 45 Lower plate 46 Partition plate 50 Injection port variable mechanism 51 Swing plate 52 Hinge 53 Spring 54 Stopper 55 Receiving plate 56 Receiving body 57 Receiving member 60 Liquid circulation conduit 61 Injection port 62 Recovery port 63 Cooling unit 70 Gas circulation line 7 Outlet 72 Return port 73 Heating section 74 One end side entrance 75 Other end side exit 76 Ventilation path 80 Power acquisition mechanism 81 Main gear 82 Subordinate gear 83 Interlocking gear mechanism 90 Start means 91 Rotary fan 92 Liquid storage tank 93 Injection nozzle 94 Electromagnetic Valve 95 High-pressure pump 96 Oil passage 99 Electric motor 100 Propeller

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 密封された外郭に回転可能に軸支され軸
方向一端に気体の供給口が形成され他端に気体の排出口
が形成された筒状の主回転体を備え、該主回転体の供給
口から該主回転体の内部を通って排出口に至る一方流路
及び該主回転体の排出口から該主回転体の外側を通って
供給口に至る他方流路を通るように気体に温度差を付与
して気体の対流を生じさせ、該気体の対流により主回転
体を回転させて動力を得る対流温度差原動装置におい
て、 上記主回転体の他端に上記排出口からの気体を該主回転
体の外側回転周方向に対し逆向きに噴射させて該主回転
体に回転力を付与するタービンを設けたことを特徴とす
る対流温度差原動装置。
A cylindrical main rotating body rotatably supported by a sealed outer shell and having a gas supply port formed at one axial end and a gas discharge port formed at the other end; Through one flow path from the supply port of the body to the discharge port through the inside of the main rotating body and the other flow path from the discharge port of the main rotating body to the supply port through the outside of the main rotating body. In a convection temperature difference driving device for generating a convection of a gas by giving a temperature difference to the gas and rotating the main rotating body by the convection of the gas to obtain power, the other end of the main rotating body is connected to the other end of the main rotating body from the discharge port. A convection temperature difference driving apparatus, comprising: a turbine for injecting gas in a direction opposite to the outer circumferential direction of the main rotating body to apply a rotating force to the main rotating body.
【請求項2】 上記タービンを、上記排出口に連通する
流入口と、外周に開口する噴射口と、該噴射口から気体
を噴射させるように流入口から噴射口まで気体をガイド
するガイド通路とを備えて構成したことを特徴とする請
求項1記載の対流温度差原動装置。
2. An inflow port communicating with the discharge port of the turbine, an injection port opening on an outer periphery, and a guide passage for guiding gas from the inflow port to the injection port so as to inject gas from the injection port. The convection temperature difference driving apparatus according to claim 1, characterized by comprising:
【請求項3】 上記噴射口を外周に沿って等角度関係で
複数連設し、該各噴射口毎に上記ガイド通路を設けたこ
とを特徴とする請求項2記載の対流温度差原動装置。
3. The convection temperature difference driving apparatus according to claim 2, wherein a plurality of the injection ports are connected in an equiangular relationship along the outer circumference, and the guide passage is provided for each of the injection ports.
【請求項4】 上記外郭の内周に、上記タービンの噴射
口から噴射された気体を受ける複数の受け板を周方向に
沿って列設したことを特徴とする請求項1,2または3
記載の対流温度差原動装置。
4. A plurality of receiving plates for receiving gas injected from an injection port of the turbine are arranged along the circumferential direction on the inner periphery of the outer shell.
A convection temperature difference drive as described.
【請求項5】 上記受け板を、該受け板が受けた気体を
上記主回転体の外側回転周方向に向けて流進させる形状
に形成し、上記主回転体の外周に該受け板によって流進
させられた気体を受ける複数の受け体を周方向に沿って
列設したことを特徴とする請求項4記載の対流温度差原
動装置。
5. The receiving plate is formed in a shape for causing gas received by the receiving plate to flow toward the outer circumferential direction of rotation of the main rotating body, and the gas flows around the outer periphery of the main rotating body by the receiving plate. 5. The convection temperature difference driving apparatus according to claim 4, wherein a plurality of receivers for receiving the advanced gas are arranged in a row along a circumferential direction.
【請求項6】 上記主回転体の回転数の増加に伴って噴
射口を拡大し上記主回転体の回転数の減少に伴って噴射
口を縮小する噴射口可変機構を設けたことを特徴とする
請求項2,3,4または5記載の対流温度差原動装置。
6. An injection port variable mechanism for expanding an injection port with an increase in the rotation speed of the main rotating body and reducing the injection port with a decrease in the rotation number of the main rotation body. The convection temperature difference driving apparatus according to claim 2, 3, 4, or 5.
【請求項7】 密封された外郭と、該外郭に回転可能に
軸支され軸方向一端に気体の供給口が形成され他端に気
体の排出口が形成された筒状の主回転体と、上記外郭及
び主回転体に対して回転可能に設けられ壁部が外郭と主
回転体との間に位置する筒状の従回転体とを備え、該主
回転体の供給口から該主回転体の内部を通って排出口に
至る一方流路及び該主回転体の排出口から該主回転体の
外側を通って供給口に至る他方流路を通るように気体に
温度差を付与して気体の対流を生じさせ、該気体の対流
により上記主回転体及び従回転体を回転させて動力を得
る対流温度差原動装置において、 上記主回転体の他端に上記排出口からの気体を該主回転
体の外側回転周方向に対し逆向きに噴射させて該主回転
体に回転力を付与するタービンを設けたことを特徴とす
る対流温度差原動装置。
7. A sealed outer shell, a cylindrical main rotating body rotatably supported by the outer shell and having a gas supply port formed at one axial end and a gas discharge port formed at the other end. A cylindrical auxiliary rotator provided rotatably with respect to the outer shell and the main rotator, and a wall portion positioned between the outer shell and the main rotator; The gas is given a temperature difference so as to pass through one of the flow paths through the inside of the main body to the discharge port and the other flow path from the discharge port of the main rotary body to the supply port through the outside of the main rotary body to the supply port. A convection temperature difference driving device that generates power by rotating the main rotator and the sub rotator by convection of the gas, wherein the gas from the discharge port is supplied to the other end of the main rotator. A turbine is provided that injects the fuel in a direction opposite to the outer circumferential direction of the rotating body to impart a rotating force to the main rotating body. Convection temperature difference driving apparatus according to claim and.
【請求項8】 上記タービンを、上記排出口に連通する
流入口と、外周に開口する噴射口と、該噴射口から気体
を噴射させるように流入口から噴射口まで気体をガイド
するガイド通路とを備えて構成したことを特徴とする請
求項7記載の対流温度差原動装置。
8. An inflow port communicating with the discharge port, an injection port opened to the outer periphery, and a guide passage for guiding gas from the inflow port to the injection port so that the gas is injected from the injection port. The convection temperature difference driving apparatus according to claim 7, characterized by comprising:
【請求項9】 上記噴射口を外周に沿って等角度関係で
複数連設し、該各噴射口毎に上記ガイド通路を設けたこ
とを特徴とする請求項8記載の対流温度差原動装置。
9. The convection temperature difference driving apparatus according to claim 8, wherein a plurality of the injection ports are connected in series at an equal angular relationship along an outer periphery, and the guide passage is provided for each of the injection ports.
【請求項10】 上記従回転体の内周に、上記タービン
の噴射口から噴射された気体を受ける複数の受け板を周
方向に沿って列設したことを特徴とする請求項7,8ま
たは9記載の対流温度差原動装置。
10. A plurality of receiving plates for receiving gas injected from an injection port of the turbine are arranged in the inner periphery of the driven rotor along the circumferential direction. 9. The convection temperature difference driving apparatus according to 9.
【請求項11】 上記受け板を、該受け板が受けた気体
を上記主回転体の外側回転周方向に向けて流進させる形
状に形成し、上記主回転体の外周に該受け板によって流
進させられた気体を受ける複数の受け体を周方向に沿っ
て列設したことを特徴とする請求項10記載の対流温度
差原動装置。
11. The receiving plate is formed in a shape for causing gas received by the receiving plate to flow toward the outer circumferential direction of rotation of the main rotating body, and flows around the outer periphery of the main rotating body by the receiving plate. 11. The convection temperature difference driving apparatus according to claim 10, wherein a plurality of receivers for receiving the advanced gas are arranged in a row along a circumferential direction.
【請求項12】 上記主回転体の回転数の増加に伴って
噴射口を拡大し上記主回転体の回転数の減少に伴って噴
射口を縮小する噴射口可変機構を設けたことを特徴とす
る請求項8,9,10または11記載の対流温度差原動
装置。
12. An injection port variable mechanism for expanding an injection port with an increase in the rotation speed of the main rotating body and reducing the injection port with a decrease in the rotation number of the main rotation body. The convection temperature difference driving apparatus according to claim 8, 9, 10 or 11.
【請求項13】 上記主回転体及び従回転体を、一端側
回転体と他端側回転体とに分割し、かつ、該一端側回転
体と他端側回転体との分割端部同士が軸方向に直交する
方向に相対変移可能になるように分割したことを特徴と
する請求項7,8,9,10,11または12記載の対
流温度差原動装置。
13. The main rotator and the sub rotator are divided into one end rotator and the other end rotator, and the divided ends of the one end rotator and the other end rotator are connected to each other. 13. The convection temperature difference driving apparatus according to claim 7, wherein the convection temperature difference driving apparatus is divided so as to be relatively displaceable in a direction orthogonal to the axial direction.
【請求項14】 上記一端側回転体及び他端側回転体の
いずれか一方をいずれか他方に対して小径に形成すると
ともに、該一端側回転体と他端側回転体との分割端部に
互いに重畳する重畳部を設け、該一端側回転体及び他端
側回転体の重畳部間にクッション部材を介装したことを
特徴とする請求項13記載の対流温度差原動装置。
14. One of the one end rotator and the other end rotator is formed to have a smaller diameter than either one of the other end rotator and the other end rotator. 14. The convection temperature difference driving apparatus according to claim 13, wherein a superimposing portion that overlaps with each other is provided, and a cushion member is interposed between the superimposing portions of the one end side rotating body and the other end side rotating body.
【請求項15】 上記外郭に一端が閉塞され他端に開放
口を有した管状の支軸を設け、該支軸に対して上記主回
転体及び従回転体の一端及び他端を軸支し、該支軸の主
回転体に臨む管壁に液体が吐出される多数の吐出口を形
成し、上記支軸の開放口に接続される注入口を有すると
ともに上記外郭に回収口を有し上記注入口から支軸内を
通って吐出口から主回転体内に噴出されて該主回転体内
の気体を冷却した後上記タービンを通ってくる液体を上
記回収口から再び上記注入口に導く液体の液体循環管路
を設け、該液体循環管路の途中に該液体を冷却する冷却
部を設け、 上記外郭の一端に吹出口を有し他端に戻り口を有した上
記気体が循環可能な気体循環管路を設け、該気体循環管
路の途中に循環する気体を加温する加温部を設け、 上記従回転体の内壁に上記吹出口からの気体を一端側入
口から他端側出口に流す通風路を設け、該通風路の他端
側出口から流出した高温の気体が他方流路を通るととも
に、上記一方通路を通り該一方通路で上記液体によって
冷却されてタービンに至るようにしたことを特徴とする
請求項7,8,9,10,11,12,13または14
記載の対流温度差原動装置。
15. A tubular support shaft having one end closed and the other end having an open port is provided in the outer shell, and one end and the other end of the main rotating body and the subordinate rotating body are supported by the supporting shaft. Forming a plurality of discharge ports for discharging liquid on a pipe wall facing the main rotating body of the support shaft, having an inlet connected to an open port of the support shaft, and having a recovery port on the outer shell; A liquid liquid that is ejected into the main rotating body from the discharge port through the support shaft from the inlet and cools the gas in the main rotating body, and then guides the liquid flowing through the turbine from the recovery port to the inlet again. A gas circulation system in which a circulation section is provided, a cooling section for cooling the liquid is provided in the middle of the liquid circulation path, and the gas having an outlet at one end of the outer shell and a return port at the other end is circulated. A pipe, and a heating section for heating gas circulating in the middle of the gas circulation pipe; An air passage is provided on the inner wall of the air passage for flowing gas from the outlet to the one end inlet to the other end outlet, and the high-temperature gas flowing out from the other end outlet of the air passage passes through the other passage, and the one passage 15. The cooling device according to claim 7, wherein said one passage is cooled by said liquid to reach a turbine.
A convection temperature difference drive as described.
【請求項16】 上記通風路を上記従回転体の内壁に沿
って多数列設したことを特徴とする請求項15記載の対
流温度差原動装置。
16. The convection temperature difference driving apparatus according to claim 15, wherein a large number of said ventilation passages are arranged along the inner wall of said slave rotor.
【請求項17】 上記通風路の上記主回転体側の壁部を
山形状に形成し、上記従回転体の内壁に沿って該山形状
の壁部が連続するように形成したことを特徴とする請求
項16記載の対流温度差原動装置。
17. A wall portion of the ventilation passage on the side of the main rotating body is formed in a mountain shape, and the wall portion of the mountain shape is formed to be continuous along an inner wall of the sub-rotating body. The convection temperature difference driving apparatus according to claim 16.
【請求項18】 上記支軸に形成された液体の吐出口を
液体が上記主回転体の回転方向に向けて吐出噴射される
形状に形成し、上記主回転体の内壁に上記吐出口から吐
出噴射される液体を受ける複数の受け部材を周方向に沿
って列設したことを特徴とする請求項15,16または
17記載の対流温度差原動装置。
18. A liquid discharge port formed on the support shaft is formed in a shape in which liquid is discharged and ejected in a rotation direction of the main rotating body, and the liquid is discharged from the discharge port to an inner wall of the main rotating body. 18. The convection temperature difference driving apparatus according to claim 15, wherein a plurality of receiving members for receiving the liquid to be ejected are arranged in a row along a circumferential direction.
【請求項19】 上記主回転体の供給口を、供給される
気体が該主回転体の回転方向に向けて流進される形状に
形成し、上記主回転体の内壁に上記供給口から供給され
る気体を受ける複数の受け部材を周方向に沿って列設し
たことを特徴とする請求項15,16,17または18
記載の対流温度差原動装置。
19. The supply port of the main rotator is formed so that the supplied gas flows in the rotation direction of the main rotator, and is supplied to the inner wall of the main rotator from the supply port. A plurality of receiving members for receiving the gas to be supplied are arranged in a row along the circumferential direction.
A convection temperature difference drive as described.
【請求項20】 上記液体を潤滑能力のあるオイルで構
成し、上記主回転体の主回転軸の軸受部及び上記従回転
体の従回転軸の軸受部に該液体を潤滑油として供給する
オイル通路を設けたことを特徴とする請求項15,1
6,17,18または19記載の対流温度差原動装置。
20. An oil comprising the liquid as lubricating oil and supplying the liquid as a lubricating oil to a bearing of a main rotating shaft of the main rotating body and a bearing of a slave rotating shaft of the slave rotating body. The passage is provided, wherein the passage is provided.
20. The convection temperature difference driving apparatus according to 6, 17, 18 or 19.
【請求項21】 上記主回転体の一端及び他端の少なく
ともいずれか一方に、上記支軸に回転可能に挿通される
管状の主回転軸を設け、上記従回転体に該主回転軸に回
転可能に挿通される管状の従回転軸を設け、上記主回転
軸及び従回転軸の両方から動力を得る動力取得機構を設
けたことを特徴とする請求項7,8,9,10,11,
12,13,14,15,16,17,18,19また
は20記載の対流温度差原動装置。
21. A tubular main rotating shaft rotatably inserted through the support shaft is provided at at least one of one end and the other end of the main rotating body, and the slave rotating body is rotated by the main rotating shaft. A power acquisition mechanism for obtaining power from both the main rotation shaft and the sub rotation shaft is provided, and a tubular auxiliary rotation shaft that is inserted therethrough is provided.
The convection temperature difference driving apparatus according to 12, 13, 14, 15, 15, 16, 17, 18, 19 or 20.
【請求項22】 上記動力取得機構を、上記主回転軸に
設けられる主ギアと、上記従回転軸に設けられる従ギア
と、該主ギア及び従ギアを連動させる連動ギア機構と、
上記主ギア,従ギア及び連動ギア機構の少なくともいず
れか1つに連係して駆動される発電機とを備えて構成し
たことを特徴とする請求項21記載の対流温度差原動装
置。
22. A power acquisition mechanism comprising: a main gear provided on the main rotation shaft; a sub gear provided on the sub rotation shaft; an interlocking gear mechanism for interlocking the main gear and the sub gear;
22. The convection temperature difference driving apparatus according to claim 21, further comprising a generator driven in association with at least one of the main gear, the slave gear, and the interlocking gear mechanism.
【請求項23】 上記主回転体及び従回転体の始回転時
に、該始回転を補助するスタート手段を設けたことを特
徴とする請求項7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21また
は22記載の対流温度差原動装置。
23. The apparatus according to claim 7, further comprising a start means for assisting the main rotator and the sub rotator during the initial rotation.
14. The convection temperature difference driving apparatus according to 14, 15, 16, 17, 18, 19, 20, 21 or 22.
【請求項24】 上記主回転体及び従回転体の始回転時
に、該始回転を補助するスタート手段を設け、該スター
ト手段を、上記従回転体の一端もしくは他端の少なくと
もいずれか一方に設けられ上記液体の噴射により該従回
転体を回転させる回転ファンと、上記液体循環管路から
分岐した分岐管から供給された液体を高圧状態で蓄液す
る蓄液タンクと、上記外郭に設けられ蓄液タンクの液体
を始回転時に上記回転ファンに向けて噴射する噴射ノズ
ルとを備えて構成したことを特徴とする請求項15,1
6,17,18,19または20記載の対流温度差原動
装置。
24. A start means for assisting the initial rotation of the main rotating body and the sub-rotating body at the time of starting rotation, and the starting means is provided at at least one of one end and the other end of the sub-rotating body. A rotary fan for rotating the driven rotor by injection of the liquid, a liquid storage tank for storing the liquid supplied from the branch pipe branched from the liquid circulation line at a high pressure, and a storage tank provided in the outer shell. An injection nozzle for injecting the liquid in the liquid tank toward the rotating fan at the time of initial rotation is provided.
The convection temperature difference driving apparatus according to 6, 17, 18, 19 or 20.
【請求項25】 上記蓄液タンクを上記外郭の外側周囲
に付帯させたことを特徴とする請求項24記載の対流温
度差原動装置。
25. The convection temperature difference driving apparatus according to claim 24, wherein the liquid storage tank is attached to an outer periphery of the outer shell.
JP2001061371A 2001-03-06 2001-03-06 Convection temperature difference prime mover Expired - Fee Related JP3914393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001061371A JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001061371A JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Publications (2)

Publication Number Publication Date
JP2002256882A true JP2002256882A (en) 2002-09-11
JP3914393B2 JP3914393B2 (en) 2007-05-16

Family

ID=18920675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061371A Expired - Fee Related JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Country Status (1)

Country Link
JP (1) JP3914393B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070497A1 (en) * 2004-12-28 2006-07-06 Toshihiro Abe Convection temperature difference prime motive power device
WO2007010612A1 (en) * 2005-07-22 2007-01-25 Toshihiro Abe Power generating apparatus
JP2008516147A (en) 2004-10-12 2008-05-15 シルバー,ガイ Power generation method and system using Stirling engine principle
JP2011506824A (en) * 2007-12-17 2011-03-03 フィチェラ,ジェームズ,マイケル Thrust generator
WO2011040828A1 (en) * 2009-10-02 2011-04-07 Andrzej Rychert Pressure-thermal drive
KR20120021300A (en) * 2009-04-08 2012-03-08 요아브 코헨 Installation designed to convert environmental thermal energy into useful energy
JP6042963B1 (en) * 2015-12-04 2016-12-14 阿部 俊廣 Temperature difference energy converter
JP7153978B1 (en) * 2021-12-13 2022-10-17 株式会社サイネットカンパニー Coaxial circulation power generator and coaxial circulation power generation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516147A (en) 2004-10-12 2008-05-15 シルバー,ガイ Power generation method and system using Stirling engine principle
WO2006070497A1 (en) * 2004-12-28 2006-07-06 Toshihiro Abe Convection temperature difference prime motive power device
JPWO2006070497A1 (en) * 2004-12-28 2008-06-12 阿部 俊廣 Convection temperature difference prime mover
WO2007010612A1 (en) * 2005-07-22 2007-01-25 Toshihiro Abe Power generating apparatus
JP2011506824A (en) * 2007-12-17 2011-03-03 フィチェラ,ジェームズ,マイケル Thrust generator
KR20120021300A (en) * 2009-04-08 2012-03-08 요아브 코헨 Installation designed to convert environmental thermal energy into useful energy
JP2012523519A (en) * 2009-04-08 2012-10-04 ヨアヴ・コーエン A device designed to convert environmental thermal energy into useful energy
KR101639034B1 (en) 2009-04-08 2016-07-12 요아브 코헨 Installation designed to convert environmental thermal energy into useful energy
WO2011040828A1 (en) * 2009-10-02 2011-04-07 Andrzej Rychert Pressure-thermal drive
JP6042963B1 (en) * 2015-12-04 2016-12-14 阿部 俊廣 Temperature difference energy converter
WO2017094615A1 (en) * 2015-12-04 2017-06-08 阿部 俊廣 Temperature-difference energy conversion device
JP7153978B1 (en) * 2021-12-13 2022-10-17 株式会社サイネットカンパニー Coaxial circulation power generator and coaxial circulation power generation method
WO2023112085A1 (en) * 2021-12-13 2023-06-22 株式会社 サイネット カンパニー Coaxial circulation-type power generation device and coaxial circulation-type power generation method

Also Published As

Publication number Publication date
JP3914393B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP5301460B2 (en) Rotating device
EP1427926B1 (en) Rotary heat engine
RU2477379C2 (en) Method of gas turbine engine cooling (versions), method of controlling gas turbine engine, gas turbine engine and its rotor
JP2002256882A (en) Convection temperature difference motive power device
JP5769332B2 (en) Scroll expander
CN103052797A (en) Wind power generation apparatus
CN110637193B (en) Method and apparatus for heating and purifying fluids
KR101451644B1 (en) Hydraulic turbine for eco-friendly cooling tower and eco-friendly cooling tower having the same
KR100990927B1 (en) Disc type fluid heating device
KR20070044622A (en) A genesis equipment of thermal energy from friction heat
US20070151246A1 (en) Thermal combustion engine which converts thermal energy into mechanical energy and use thereof
JP2008057363A (en) Steam turbine
KR20130095362A (en) Boiler using fluid friction and heating equipment having the same
JP2011516818A (en) Apparatus and method for transporting heat
CN114182563A (en) Paper web heating system and drying method thereof
JP2000161016A (en) Hybrid gas turbine engine and propulsion unit
JPH06147098A (en) Convection type temperature gradient prime mover
JP2017138027A (en) Absorption type heat pump device
JP4604274B2 (en) Hydrogen-oxygen generator with water heater
EP2625391A2 (en) Steam engine
JP2000356181A (en) Super efficient double rotating method and its device for convection temperature difference prime mover
JP5376316B2 (en) Turbine for external combustion engine
JP2013181571A (en) Magnetic coupling
JP2000110513A (en) High efficiency propulsive system
JP2005207348A (en) Power generating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees