JP3914393B2 - Convection temperature difference prime mover - Google Patents

Convection temperature difference prime mover Download PDF

Info

Publication number
JP3914393B2
JP3914393B2 JP2001061371A JP2001061371A JP3914393B2 JP 3914393 B2 JP3914393 B2 JP 3914393B2 JP 2001061371 A JP2001061371 A JP 2001061371A JP 2001061371 A JP2001061371 A JP 2001061371A JP 3914393 B2 JP3914393 B2 JP 3914393B2
Authority
JP
Japan
Prior art keywords
gas
main
rotating body
port
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001061371A
Other languages
Japanese (ja)
Other versions
JP2002256882A (en
Inventor
俊廣 阿部
Original Assignee
俊廣 阿部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊廣 阿部 filed Critical 俊廣 阿部
Priority to JP2001061371A priority Critical patent/JP3914393B2/en
Publication of JP2002256882A publication Critical patent/JP2002256882A/en
Application granted granted Critical
Publication of JP3914393B2 publication Critical patent/JP3914393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自然界にある例えば海水,雪,地下水,温泉や地熱等の熱エネルギー、工業用の排熱エネルギー、あるいは廃棄物を燃焼させて得られる熱エネルギー等の各種熱エネルギーから動力を得ることのできる対流温度差原動装置に係り、特に、内部で気体の対流を発生させこの対流により動力を発生させる対流温度差原動装置に関する。
【0002】
【従来の技術】
従来、この種の対流温度差原動装置としては、本願出願人の研究に係るものがあり、例えば、特開平6−147098号公報,特開2000−303947号公報,特開2000−356181号公報等に掲載されたものが知られている。この対流温度差原動装置は、例えば、図11に示すように、密封された外郭1と、外郭1内で回転可能に軸支され軸方向一端に軸方向に開放した気体の供給口2が形成され他端に軸方向に開放した気体の排出口3が形成された筒状の主回転体4と、主回転体4に対して回転可能に設けられ壁部が外郭1と主回転体4との間に位置するガス抜き孔5のある筒状の従回転体6とを備え、主回転体4の供給口2から主回転体4の内部を通って排出口3に至る一方流路Ra及び主回転体4の排出口3から主回転体4の外側を通って供給口2に至る他方流路Rbを通るように気体に温度差を付与して気体の対流を生じさせ、この気体の対流により主回転体4の供給口2及び排出口3に設けたファン7により主回転体4を回転させて動力を得るとともに、従回転体6を回転させて気流による摩擦を減少させて効率よく動力を得るようにしている。そして、例えば、この回転動力をギヤ装置8を介して発電機9を駆動して発電する等している。
【0003】
【発明が解決しようとする課題】
ところで、このような従来の対流温度差原動装置にあっては、主回転体4の他端においてはファン7が軸方向に開放した排出口3に設けられているので、ファン7から吹き出す気流が従回転体6の端面に吹き付けられることになり、そのため、端面に気体が衝突することから、それだけ、回転に寄与しない損失が多くなり、回転効率が悪くなっているという問題があった。
本発明は上記の問題点に鑑みて為されたもので、主回転体から吹き出す気流の回転に寄与しない損失を少なくして、回転効率の向上を図った対流温度差原動装置の提供を目的とする。
【0004】
【課題を解決するための手段】
このような課題を解決するための本発明の技術的手段は、密封された外郭に回転可能に軸支され軸方向一端に気体の供給口が形成され他端に気体の排出口が形成された筒状の主回転体を備え、該主回転体の供給口から該主回転体の内部を通って排出口に至る一方流路及び該主回転体の排出口から該主回転体の外側を通って供給口に至る他方流路を通るように気体に温度差を付与して気体の対流を生じさせ、該気体の対流により主回転体を回転させて動力を得る対流温度差原動装置において、上記主回転体の他端に上記排出口からの気体を該主回転体の外側回転周方向に対し逆向きに噴射させて該主回転体に回転力を付与するタービンを設けた構成としている。
これにより、主回転体の供給口から主回転体の内部を通って排出口に至る一方流路及び主回転体の排出口から主回転体の外側を通って供給口に至る他方流路を通る気体の対流が生じると、この対流によりタービンを介して主回転体が回転させられる。
このタービンにおいては、気体が噴射口から主回転体の外側回転周方向に対し逆向きに噴射させられ、主回転体が回転させられる。この場合、気体が周方向に噴射されるので、従来のように回転に寄与しない損失が多くなってしまう事態が抑制され、回転効率が大幅に向上させられる。
【0005】
そして、必要に応じ、上記タービンを、上記排出口に連通する流入口と、外周に開口する噴射口と、該噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路とを備えて構成している。タービンは、噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路を備えているので、気体が回転体の外側回転周方向に対し逆向きに確実に噴射させられる。
また、必要に応じ、上記噴射口を外周に沿って等角度関係で複数連設し、該各噴射口毎に上記ガイド通路を設けた構成としている。噴射口が外周に沿って等角度関係で複数連設されているので、気体が周方向に均等に噴射させられることになり、それだけ、主回転体の回転が安定化させられる。
更に、必要に応じ、上記外郭の内周に、上記タービンの噴射口から噴射された気体を受ける複数の受け板を周方向に沿って列設した構成としている。これにより、タービンの噴射口から噴射された気体は、外郭の複数の受け板に衝突する。
更にまた、必要に応じ、上記受け板を、該受け板が受けた気体を上記主回転体の外側回転周方向に向けて流進させる形状に形成し、上記主回転体の外周に該受け板によって流進させられた気体を受ける複数の受け体を周方向に沿って列設した構成にしている。これにより、受け板によって流進させられた気体は、主回転体の外周に列設された複数の受け体に受けられる。そのため、主回転体は、受け板によって流進させられた気体によって、外側回転周方向に力を受けることになり、それだけ、主回転体の回転力が増し回転効率が向上させられる。
また、必要に応じ、上記主回転体の回転数の増加に伴って噴射口を拡大し上記主回転体の回転数の減少に伴って噴射口を縮小する噴射口可変機構を設けた構成としている。主回転体の回転数の少ないときは、噴射口が縮小しており、主回転体の回転数の増加に伴う遠心力の増加によって噴射口が拡大していくので、主回転体の回転数の低いときに気体の流速が均一にさせられ、そのため、立ち上がりが早くまた確実に行なわれ、その後の回転が円滑に行なわれる。
【0006】
また、このような課題を解決するための本発明の技術的手段は、密封された外郭と、該外郭に回転可能に軸支され軸方向一端に気体の供給口が形成され他端に気体の排出口が形成された筒状の主回転体と、上記外郭及び主回転体に対して回転可能に設けられ壁部が外郭と主回転体との間に位置する筒状の従回転体とを備え、該主回転体の供給口から該主回転体の内部を通って排出口に至る一方流路及び該主回転体の排出口から該主回転体の外側を通って供給口に至る他方流路を通るように気体に温度差を付与して気体の対流を生じさせ、該気体の対流により上記主回転体及び従回転体を回転させて動力を得る対流温度差原動装置において、上記主回転体の他端に上記排出口からの気体を該主回転体の外側回転周方向に対し逆向きに噴射させて該主回転体に回転力を付与するタービンを設けた構成としている。
これにより、主回転体の供給口から主回転体の内部を通って排出口に至る一方流路及び主回転体の排出口から主回転体の外側を通って供給口に至る他方流路を通る気体の対流が生じると、この対流によりタービンを介して主回転体及び従回転体が回転させられる。
このタービンにおいては、気体が噴射口から主回転体の外側回転周方向に対し逆向きに噴射させられ、主回転体が回転させられる。この場合、気体が周方向に噴射されるので、従来のように従回転体の端面に気体が衝突して回転に寄与しない損失が多くなってしまう事態が抑制され、回転効率が大幅に向上させられる。
【0007】
そして、必要に応じ、上記タービンを、上記排出口に連通する流入口と、外周に開口する噴射口と、該噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路とを備えて構成している。タービンは、噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路を備えているので、気体が回転体の外側回転周方向に対し逆向きに確実に噴射させられる。
また、必要に応じ、上記噴射口を外周に沿って等角度関係で複数連設し、該各噴射口毎に上記ガイド通路を設けた構成としている。噴射口が外周に沿って等角度関係で複数連設されているので、気体が周方向に均等に噴射させられることになり、それだけ、主回転体の回転が安定化させられる。
更に、必要に応じ、上記従回転体の内周に、上記タービンの噴射口から噴射された気体を受ける複数の受け板を周方向に沿って列設した構成としている。これにより、タービンの噴射口から噴射された気体は、外郭の複数の受け板に衝突する。
更にまた、上記受け板を、該受け板が受けた気体を上記主回転体の外側回転周方向に向けて流進させる形状に形成し、上記主回転体の外周に該受け板によって流進させられた気体を受ける複数の受け体を周方向に沿って列設した構成としている。これにより、受け板によって流進させられた気体は、主回転体の外周に列設された複数の受け体に受けられる。そのため、主回転体は、受け板によって流進させられた気体によって、外側回転周方向に力を受けることになり、それだけ、主回転体の回転力が増し回転効率が向上させられる。
また、必要に応じ、上記主回転体の回転数の増加に伴って噴射口を拡大し上記主回転体の回転数の減少に伴って噴射口を縮小する噴射口可変機構を設けた構成としている。主回転体の回転数の少ないときは、噴射口が縮小しており、主回転体の回転数の増加に伴う遠心力の増加によって噴射口が拡大していくので、主回転体の回転数の低いときに気体の流速が均一にさせられ、そのため、立ち上がりが早くまた確実に行なわれ、その後の回転が円滑に行なわれる。
【0008】
また、必要に応じ、上記主回転体及び従回転体を、一端側回転体と他端側回転体とに分割し、かつ、該一端側回転体と他端側回転体との分割端部同士が軸方向に直交する方向に相対変移可能になるように分割した構成としている。回転によって一端側回転体と他端側回転体とが横方向に振れても、互いに相対変移するので、この振れが吸収され、そのため、回転が円滑に行なわれる。
この場合、上記一端側回転体及び他端側回転体のいずれか一方をいずれか他方に対して小径に形成するとともに、該一端側回転体と他端側回転体との分割端部に互いに重畳する重畳部を設け、該一端側回転体及び他端側回転体の重畳部間にクッション部材を介装したことが有効である。一端側回転体と他端側回転体との分割端部の重畳部間にクッション部材が介装されているので、分割端部同士が衝止することなく振れが吸収され、そのため、回転がより一層円滑に行なわれる。
【0009】
そしてまた、必要に応じ、上記外郭に一端が閉塞され他端に開放口を有した管状の支軸を設け、該支軸に対して上記主回転体及び従回転体の一端及び他端を軸支し、該支軸の主回転体に臨む管壁に液体が吐出される多数の吐出口を形成し、上記支軸の開放口に接続される注入口を有するとともに上記外郭に回収口を有し上記注入口から支軸内を通って吐出口から主回転体内に噴出されて該主回転体内の気体を冷却した後上記タービンを通ってくる液体を上記回収口から再び上記注入口に導く液体の液体循環管路を設け、該液体循環管路の途中に該液体を冷却する冷却部を設け、上記外郭の一端に吹出口を有し他端に戻り口を有した上記気体が循環可能な気体循環管路を設け、該気体循環管路の途中に循環する気体を加温する加温部を設け、上記従回転体の内壁に上記吹出口からの気体を一端側入口から他端側出口に流す通風路を設け、該通風路の他端側出口から流出した高温の気体が他方流路を通るとともに、上記一方通路を通り該一方通路で上記液体によって冷却されてタービンに至るようにした構成としている。従回転体において、その内壁に吹出口からの気体を一端側入口から他端側出口に流す通風路が設けられているので、高温の気体を他方流路の下側から吹き出すようにすることができ、そのため、上昇気流を生じさせ易くできるので、気体の対流のエネルギーを大きくすることができる。
この場合、上記通風路を上記従回転体の内壁に沿って多数列設したことが有効である。従回転体内周に亘って上昇気流を生じさせることができ、それだけ、均一化されるので、回転が安定化させられる。
また、この場合、上記通風路の上記主回転体側の壁部を山形状に形成し、上記従回転体の内壁に沿って該山形状の壁部が連続するように形成したことが有効である。通風路の壁部が山形状に形成されているので、通風路内側を通る気体と他方流路の気体との熱交換が容易に行なわれ、他方流路の気体を確実に高温状態で上昇させることができる。
【0010】
また、必要に応じ、上記支軸に形成された液体の吐出口を液体が上記主回転体の回転方向に向けて吐出噴射される形状に形成し、上記主回転体の内壁に上記吐出口から吐出噴射される液体を受ける複数の受け部材を周方向に沿って列設した構成としている。支軸に形成された液体の吐出口から、液体がシャワー状に吐出噴射されるが、吐出口は主回転体の回転方向に向けて吐出噴射される形状に形成されており、主回転体の内壁に設けた受け部材に吐出口から吐出噴射される液体が受けられるので、主回転体は、回転方向に力を受けることになり、それだけ、主回転体の回転力が増し回転効率が向上させられる。
更に、必要に応じ、上記主回転体の供給口を、供給される気体が該主回転体の回転方向に向けて流進される形状に形成し、上記主回転体の内壁に上記供給口から供給される気体を受ける複数の受け部材を周方向に沿って列設した構成としている。供給口が主回転体の回転方向に向けて流進される形状に形成されており、主回転体の内壁に設けた受け部材に吹き出された気体が受けられるので、主回転体は、回転方向に力を受けることになり、この点でも、主回転体の回転力が増し回転効率が向上させられる。
【0011】
更にまた、必要に応じ、上記液体を潤滑能力のあるオイルで構成し、上記主回転体の主回転軸の軸受部及び上記従回転体の従回転軸の軸受部に該液体を潤滑油として供給するオイル通路を設けた構成としている。主回転体の主回転軸の軸受部及び従回転体の従回転軸の軸受部にオイル通路を通して液体が潤滑油として供給されるので、回転が円滑に行なわれる。
また、必要に応じ、上記主回転体の一端及び他端の少なくともいずれか一方に、上記支軸に回転可能に挿通される管状の主回転軸を設け、上記従回転体に該主回転軸に回転可能に挿通される管状の従回転軸を設け、上記主回転軸及び従回転軸の両方から動力を得る動力取得機構を設けた構成としている。主回転体及び従回転体の両方から動力が得られるので、エネルギーの変換効率が極めて良くなる。
この場合、必要に応じ、上記動力取得機構を、上記主回転軸に設けられる主ギアと、上記従回転軸に設けられる従ギアと、該主ギア及び従ギアを連動させる連動ギア機構と、上記主ギア,従ギア及び連動ギア機構の少なくともいずれか1つに連係して駆動される発電機とを備えて構成している。動力を電力として得ることができる。
【0012】
また、必要に応じ、上記主回転体及び従回転体の始回転時に、該始回転を補助するスタート手段を設けた構成としている。スタート手段によって、主回転体及び従回転体が始動させられるので、立ち上がりが早くまた確実に行なわれ、その後の回転が円滑に行なわれる。
更に、必要に応じ、上記主回転体及び従回転体の始回転時に、該始回転を補助するスタート手段を設け、該スタート手段を、上記従回転体の一端もしくは他端の少なくともいずれか一方に設けられ上記液体の噴射により該従回転体を回転させる回転ファンと、上記液体循環管路から分岐した分岐管から供給された液体を高圧状態で蓄液する蓄液タンクと、上記外郭に設けられ蓄液タンクの液体を始回転時に上記回転ファンに向けて噴射する噴射ノズルとを備えて構成している。冷却用の液体を用いるので、利用効率が良い。
この場合、上記蓄液タンクを上記外郭の外側周囲に付帯させたことが有効である。外郭を補強でき回転体の遠心力に対する耐力を増すことができる。
【0013】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の実施の形態に係る対流温度差原動装置について詳細に説明する。
図1乃至図6に示すように、本発明の実施の形態に係る対流温度差原動装置の基本的構成は、密封された円筒状の外郭10と、外郭10の中心軸に沿って設けられた支軸11と、支軸11に回転可能に軸支され軸方向一端に気体の供給口21が形成され他端中央に気体の排出口22が形成された円筒状の主回転体20と、外郭10及び主回転体20に対して回転可能に設けられ壁部が外郭10と主回転体20との間に位置する円筒状の従回転体30とを備え、主回転体20の供給口21から主回転体20の内部を通って排出口22に至る一方流路Ra及び主回転体20の排出口22から主回転体20の外側を通って供給口21に至る他方流路Rbを通るように気体に温度差を付与して気体の対流を生じさせ、気体の対流により主回転体20及び従回転体30を回転させて動力取得機構80により動力を得るものである。
ここで、気体としては、二酸化炭素(CO2 )が用いられる。また、後で詳述するが、気体に温度差を付与するために液体が用いられる。液体は、潤滑能力のあるオイルで構成されている。
そして、主回転体20の他端に、排出口22からの気体を主回転体20の外側回転周方向(Fa)に対し逆向き(Fb)に噴射させて主回転体20に回転力を付与するタービン40を設けた構成としている。
【0014】
詳しくは、主回転体20及び従回転体30は、支軸11に対して一端及び他端が軸支されている。即ち、主回転体20の一端及び他端の両方に、支軸11に回転可能に挿通される管状の主回転軸23が設けられており、従回転体30の一端及び他端の両方に、主回転軸23に回転可能に挿通される管状の従回転軸31が設けられている。
図2に示すように、主回転体20の一端の主回転軸23は、支軸11に回転可能に挿通され、外郭10に設けた支持台16にスラストベアリング24を介して吊下されるように支持されている。また、従回転体30の一端の従回転軸31は、主回転軸23に回転可能に挿通され、外郭10に設けた支持台16にスラストベアリング32を介して吊下されるように支持されている。
図3に示すように、主回転体20の他端の主回転軸23は、外郭10内に設けた他端側の隔壁12を貫通して設けられ、隔壁12より一端側で、支軸11にベアリング25を介して回転可能に設けられ、隔壁12の下側の下端が外郭10に設けた土台13にベアリング26を介して支持されている。また、従回転体30の他端の従回転軸31は、主回転軸23に回転可能に挿通され、外郭10内に設けた隔壁12にベアリング33を介して支持されている。
【0015】
また、主回転体20及び従回転体30は、一端側回転体20a,30aと他端側回転体20b,30bとに分割形成されており、一端側回転体20a,30aと他端側回転体20b,30bとの分割端部は、分割端部同士が軸方向に直交する方向に相対変移可能、かつ、相対回転可能に連結されている。
詳しくは、一端側回転体20a,30aは、他端側回転体20b,30bに対して小径に形成され、一端側回転体20a,30aと他端側回転体20b,30bとの分割端部に互いに重畳する重畳部27,37が設けられ、この一端側回転体20a,30a及び他端側回転体20b,30bの重畳部27,37間にクッション部材28,38が介装されている。クッション部材28,38は、多条のリング状Vベルトで形成され、他端側回転体20b,30bに接着されている。
【0016】
タービン40は、図4乃至図6に示すように、排出口22に連通する流入口41と、外周に開口する流入口41よりも開口の小さい噴射口42と、噴射口42から気体を主回転体20の外側回転周方向(Fa)に対し逆向き(Fb)に噴射させるように流入口41から噴射口42まで気体をガイドするガイド通路43とを備えて構成されている。噴射口42は、外周に沿って等角度関係で複数連設されており、各噴射口42毎に流入口41及びガイド通路43が設けられている。ガイド通路43は、上板44と、下板45と、上板44及び下板45間に設けられた一対の仕切り板46とで形成されている。
また、タービン40には、図4に示すように、噴射口可変機構50が設けられている。噴射口可変機構50は、主回転体20の回転数の増加に伴って噴射口42を拡大し主回転体20の回転数の減少に伴って噴射口42を縮小するものである。詳しくは、一端がガイド通路43を構成する一方の仕切り板46の一方にヒンジ52を介して接続され他端が噴射口42に臨んで揺動可能に設けられた揺動板51と、揺動板51を他方の仕切り板46側に常時付勢するスプリング53と、他方の仕切り板46に設けられ揺動板51を当接させて最小の開口を確保するストッパ54とを備え、主回転体20の回転数の増加に伴う遠心力の増加によって気体の圧力が高くなることに応じて、揺動板51がスプリング53の付勢力に抗して一方の仕切り板46側に揺動し、これにより、噴射口42を拡大させるようにし、主回転体20の回転数の減少に伴う遠心力の減少によって気体の圧力が低くなることに応じて、揺動板51がスプリング53の付勢力により他方の仕切り板46側に揺動し、これにより、噴射口42を縮小させるようにし、主回転体20の回転数の低いときに気体の流速ができるだけ均一になるようにしている。また、従回転体30の他端側回転体30bの内周には、タービン40の噴射口42から噴射された気体を受ける複数の受け板55が周方向に沿って等角度関係で列設されている。この受け板55は、受け板55が受けた気体を主回転体20の外側回転周方向(Fa)に向けて流進させる湾曲形状に形成されている。一方、主回転体20の他端側回転体20bの外周には、受け板55によって流進させられた気体を受ける複数の受け体56が周方向に沿って等角度関係で列設されている。受け体56の列は、図5に示すように、波形形状に形成されている。
【0017】
支軸11は、一端が閉塞され他端に開放口14を有した管状に形成されており、支軸11の主回転体20に臨む管壁には、液体をシャワー状に吐出する多数の吐出口15が形成されている。この吐出口15は、図5に示すように、液体(オイル)が主回転体20の回転方向(Fa)に向けて吐出噴射される形状に形成されている。一方、主回転体20の一端側回転体20aの内壁には、吐出口15から吐出噴射される液体を受ける複数の受け部材57が周方向に沿って列設されている。受け部材57は、山形状に形成され、主回転体20の内壁に沿って連続して設けられている。
また、主回転体20の供給口21は、図3に示すように、主回転体20の一端で支軸11の周囲に複数開設されており、供給される気体が主回転体20の回転方向(Fa)に向けて流進される形状に形成されている。そして、主回転体20の一端側回転体20aの内壁に列設した上記受け部材57が、供給口21から供給される気体を受け得るようになっている。
【0018】
更に、この対流温度差原動装置においては、液体循環管路60が設けられている。液体循環管路60は、支軸11の開放口14に接続される注入口61を有するとともに外郭10の隔壁12直上に回収口62を有し、注入口61から支軸11内を通って吐出口15から主回転体20内に噴出されて主回転体20内の気体を冷却した後、タービン40を通って隔壁12に至る液体を回収口62から再び注入口61に導くものである。
そして、この液体循環管路60の途中には、液体を冷却する冷却部63が設けられている。冷却部63は、例えば、水等の冷却媒体で液体を冷却する熱交換機で構成されている。
【0019】
更にまた、外郭10の一端に吹出口71を有し他端に戻り口72を有した気体が循環可能な気体循環管路70が設けられている。
そして、気体循環管路70の途中には、循環する気体を加温する加温部73が設けられている。加温部73は、例えば、温水等の加温媒体で気体を加温する熱交換機で構成されている。
また、従回転体30の一端側回転体30aの内壁には、吹出口71からの気体を一端側入口74から他端側出口75に流す通風路76が多数列設されている。通風路76の主回転体20側の壁部は、山形状に形成されており、従回転体30の内壁に沿って山形状の壁部が連続するように形成されている。
これにより、通風路76の他端側出口75から流出した高温の気体が他方流路Rbを通るとともに、主回転体20の一方流路Raを通り一方流路Raで液体によって冷却されてタービン40に至るようにしている。
【0020】
動力取得機構80は、主回転軸23及び従回転軸31の両方から動力を得るもので、主回転軸23に設けられる主ギア81と、従回転軸31に設けられる従ギア82と、主ギア81及び従ギア82を連動させる連動ギア機構83と、主ギア81,従ギア82及び連動ギア機構83の少なくともいずれか1つ(実施の形態では従ギア82)に噛合する受けギア84を介して連係して駆動される発電機85とを備えて構成されている。連動ギア機構83は、主ギア81に噛合する第一ギア83aと、従ギア82に噛合する第二ギア83bと、第一ギア83a及び第二ギア83bを同軸で連結する回転軸83cとから構成されている。回転軸83cは、上記の土台13に軸支されている。発電機85は、土台13に支持されている。
【0021】
また、この対流温度差原動装置においては、主回転体20及び従回転体30の始回転時に、始回転を補助するスタート手段90が設けられている。このスタート手段90は、図2に示すように、従回転体30の他端外側で隔壁12に沿うように設けられ液体の噴射により従回転体30を回転させる回転ファン91と、液体循環管路60から分岐した分岐管92aから供給された液体を高圧状態で蓄液する蓄液タンク92と、外郭10に設けられ蓄液タンク92の液体を始回転時に回転ファン91に向けて噴射する噴射ノズル93とを備えて構成されている。蓄液タンク92は、外郭10の外側周囲に付帯させられている。そのため、外郭10が補強され、回転体の遠心力に対する、耐力が強化される。94は電磁弁で、噴射ノズル93の開閉を行なう。95は高圧ポンプで、始回転前に、蓄液タンク92に液体を送給する。蓄液タンク92内には、二酸化炭素が充填されており、液体の送給により収縮し電磁弁94の開時に膨張して液体を噴射ノズル93から噴射させる。
【0022】
更に、主回転体20の主回転軸23の軸受部及び従回転体30の従回転軸31の軸受部に液体を潤滑油として供給するオイル通路96が設けられている。オイル通路96は、支軸11内に設けられており、支軸11の一端部に開口してスラストベアリング24,32に液体を吐出する径路と、主回転体20の他端の主回転軸23に開口する径路とを備える。また、従回転体30の他端の従回転軸31においては、隔壁12に設けたベアリング33に液体が供給される。この潤滑用液体は、外郭10下端に溜められ、回収管97で液体循環管路60に回収される。
【0023】
従って、本発明の実施の形態に係る対流温度差原動装置によって、発電するときは、以下のようになる。
先ず、始動時においては、スタート手段90を駆動する。これは、予め、液体循環管路60から分岐した分岐管92aから蓄液タンク92に液体を高圧状態で蓄液しておく。そして、電磁弁94を開にし噴射ノズル93から蓄液タンク92の液体を回転ファン91に向けて噴射する。これにより、回転ファン91が回転し始め従回転体30が回転させられるとともに、主回転体20も同方向に回転し始める。
この場合、スタート手段90によって、主回転体20及び従回転体30が始動させられるので、立ち上がりが早くまた確実に行なわれ、その後の回転が円滑に行なわれる。
【0024】
この状態で、液体が支軸11の注入口61から支軸11内を通って吐出口15から主回転体20内に噴出され、主回転体20内の気体を冷却した後、タービン40を通って回収口62から液体循環管路60を通り再び注入口61に導かれる。この液体循環管路60の途中では、気体の冷却により加温された液体が冷却部63により再び冷却される。
一方、吹出口71から気体が流入し、一端側回転体20a,30aの内壁の通風路76の一端側入口74から流入し他端側出口75から流出し、この流出した高温の気体が他方流路Rbを通るとともに、主回転体20の一方流路Raを通り一方流路Raで液体によって冷却されてタービン40に至る。それから、戻り口72から気体循環管路70を通って再び吹出口71に導かれる。この気体循環管路70の途中では、冷却された気体が加温部73により加温される。
【0025】
これにより、主回転体20の供給口21から主回転体20の内部を通って排出口22に至る一方流路Ra及び主回転体20の排出口22から主回転体20の外側を通って供給口21に至る他方流路Rbを通る気体の対流を生じ、この対流によりタービン40を介して主回転体20及び従回転体30が同方向に回転させられる。
このタービン40においては、気体が噴射口42から主回転体20の外側回転周方向(Fa)に対し逆向き(Fb)に噴射させれ、主回転体20が回転させられる。この場合、気体が回転に寄与する周方向に噴射されるので、従来のように従回転体の端面に気体が衝突して回転に寄与しない損失が多くなってしまう事態が抑制され、回転効率が大幅に向上させられる。
また、タービン40は、噴射口42から気体を噴射させるように流入口41から噴射口42まで気体をガイドするガイド通路43を備えているので、気体が回転体の外側回転周方向に対し逆向きに確実に噴射させられる。
更に、噴射口42が外周に沿って等角度関係で複数連設されているので、気体が周方向に均等に噴射させられることになり、それだけ、主回転体20の回転が安定化させられる。
更にまた、タービン40には噴射口可変機構50が設けられているので、主回転体20の回転数の少ないときは、噴射口42が縮小しており、主回転体20の回転数の増加に伴う遠心力の増加によって噴射口42が拡大していくので、主回転体20の回転数の低いときに気体の流速が均一にさせられ、そのため、立ち上がりが早くまた確実に行なわれ、その後の回転が円滑に行なわれる。
【0026】
そして、タービン40の噴射口42から噴射された気体は、従回転体30の複数の受け板55に衝突する。
また、受け板55は、受けた気体を主回転体20の外側回転周方向(Fa)に向けて流進させる形状に形成されており、受け板55によって流進させられた気体は、主回転体20の外周に列設された複数の受け体56に受けられる。これにより、主回転体20は、受け板55によって流進させられた気体によって、外側回転周方向(Fa)に力を受けることになり、それだけ、主回転体20の回転力が増し回転効率が向上させられる。
【0027】
更に、この主回転体20及び従回転体30は、一端側回転体20a,30aと他端側回転体20b,30bとに分割され、しかも、一端側回転体20a,30aと他端側回転体20b,30bとの分割端部同士が軸方向に直交する方向に相対変移可能になるように分割されているので、回転によって一端側回転体20a,30aと他端側回転体20b,30bとが横方向に振れても、互いに相対変移するので、この振れが吸収され、そのため、回転が円滑に行なわれる。しかも、一端側回転体20a,30aと他端側回転体20b,30bとの分割端部の重畳部27,37間にクッション部材28,38が介装されているので、分割端部同士が衝止することなく振れが吸収され、そのため、回転がより一層円滑に行なわれる。
また、従回転体30において、その内壁に吹出口71からの気体を一端側入口74から他端側出口75に流す通風路76が設けられているので、高温の気体を他方流路Rbの下側から吹き出すようにすることができ、そのため、上昇気流を生じさせ易くできるので、気体の対流のエネルギーを大きくすることができる。また、通風路76は従回転体30の内壁に沿って多数列設されているので、従回転体30内周に亘って上昇気流を生じさせることができ、それだけ、均一化されるので、回転が安定化させられる。更に、通風路76の壁部が山形状に形成されているので、通風路76内側を通る気体と他方流路Rbの気体との熱交換が容易に行なわれ、他方流路Rbの気体を確実に高温状態で上昇させることができる。
【0028】
更に、支軸11に形成された液体の吐出口15から、液体がシャワー状に吐出噴射されるが、吐出口15は主回転体20の回転方向に向けて吐出噴射される形状に形成されており、主回転体20の内壁に設けた受け部材57に吐出口15から吐出噴射される液体が受けられるので、主回転体20は、回転方向に力を受けることになり、それだけ、主回転体20の回転力が増し回転効率が向上させられる。
更にまた、主回転体20の供給口21から気体が一方流路Raに吹き出されるが、供給口21が主回転体20の回転方向に向けて流進される形状に形成されており、主回転体20の内壁に設けた受け部材57に吹き出された気体が受けられるので、主回転体20は、回転方向に力を受けることになり、この点でも、主回転体20の回転力が増し回転効率が向上させられる。
【0029】
動力取得機構80においては、主回転体20及び従回転体30が同方向に回転するので、この両方から動力が得られる。即ち、主回転体20の回転が連動ギア機構83を介して従回転体30の主ギア81に伝達され、従回転体30自体も主ギア81を回転せしめるので、この主ギア81の回転が発電機85に伝達され、この発電機85により発電される。この場合、主回転体20及び従回転体30の両方から動力が得られるので、エネルギーの変換効率が極めて良くなる。
また、主回転体20及び従回転体30の回転においては、主回転体20の主回転軸23の軸受部及び従回転体30の従回転軸31の軸受部にオイル通路96を通して液体が潤滑油として供給されるので、回転が円滑に行なわれる。
【0030】
図7には、本発明の実施の形態に係る対流温度差原動装置において、主回転体20及び従回転体30を夫々分割した一端側回転体20a,30aと他端側回転体20b,30bとの分割端部の構造の別の例を示す。これは、各分割端部の重畳部27,37同士に互いに逆向きのフランジ27a,27b,37a,37bを設けて該フランジ同士を対峙させたものである。これによれば、シャワー状に噴射された液体がフランジ27a,27b,37a,37bのある部位に浸透するので、回転によって一端側回転体20a,30aと他端側回転体20b,30bとが横方向に振れても、介在した液体によって隔てられることから、分割端部同士が衝止することなく振れが吸収され、そのため、回転が円滑に行なわれる。
【0031】
図8には、本発明の実施の形態に係る対流温度差原動装置において、スタート手段90の別の例を示している。これは、動力取得機構80において、連動ギア機構83の第一ギア83a及び第二ギア83bを同軸で連結する回転軸83cに始動時に駆動される電動モータ99を設け、この電動モータ99を駆動することで始動時の回転を容易にしている。尚、発電機85は受けギア84を介して主ギア81に噛合し、これから動力を得ている。
図9には、本発明の実施の形態に係る対流温度差原動装置の変形例を示している。これは、本装置を横置きにするとともに、一端側の主回転軸23を延設して、この主回転軸23からも動力を得るようにしている。図9では、プロペラ100を回転させている。このように、動力はどのように取出しても良く、また、装置の設置は、軸が垂直あるいは水平を問わずどのような向きに設置しても良い。
【0032】
図10には、本発明の別の実施の形態に係る対流温度差原動装置の概略を示している。これは、上記実施の形態と異なって、従回転体30がなく、外郭10に隣接して主回転体20のみを設けている。そして、タービン40及び受け体56の構成は上記と同様であり、一方、タービン40の噴射口42から噴射された気体を受ける複数の受け板55は、外郭10の内周に周方向に沿って列設されている。また、85は主回転軸23から動力を得る発電機、99は始動時に駆動される電動モータである。
従って、この対流温度差原動装置においても、気体がタービン40の噴射口42から主回転体20の外側回転周方向に対し逆向きに噴射させられ、主回転体20が回転させられる。この場合、気体が回転に寄与する周方向に噴射されるので、従来のように回転に寄与しない損失が多くなってしまう事態が抑制され、回転効率が大幅に向上させられる。
そして、タービン40の噴射口42から噴射された気体は、外郭10の複数の受け板55に衝突する。
また、受け板55は、受けた気体を主回転体20の外側回転周方向(Fa)に向けて流進させる形状に形成されており、受け板55によって流進させられた気体は、主回転体20の外周に列設された複数の受け体56に受けられる。これにより、主回転体20は、受け板55によって流進させられた気体によって、外側回転周方向(Fa)に力を受けることになり、それだけ、主回転体20の回転力が増し回転効率が向上させられる。
【0033】
尚、上記実施の形態において、液体としてオイルを用いたが、必ずしもこれに限定されるものではなく、例えば、主回転体20内で気化する液化ガスで構成しても良く、適宜変更して良い。
【0034】
【発明の効果】
以上説明したように、本発明の対流温度差原動装置によれば、主回転体の他端に排出口からの気体を主回転体の外側回転周方向に対し逆向きに噴射させて主回転体に回転力を付与するタービンを設けたので、タービンにおいては、気体が噴射口から主回転体の外側回転周方向に対し逆向きに噴射させれ、主回転体が回転させられる。この場合、気体が周方向に噴射されるので、従来のように回転に寄与しない損失が多くなってしまう事態を抑制することができ、回転効率を大幅に向上させることができる。
そして、タービンを、排出口に連通する流入口と、外周に開口する噴射口と、噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路とを備えて構成した場合には、気体はガイド通路でガイドされるので、気体を回転体の外側回転周方向に対し逆向きに確実に噴射させることができる。
また、噴射口を外周に沿って等角度関係で複数連設し、各噴射口毎にガイド通路を設けた場合には、噴射口が外周に沿って等角度関係で複数連設されているので、気体が周方向に均等に噴射させられることになり、それだけ、主回転体の回転を安定化することができる。
【0035】
更に、タービンの噴射口から噴射された気体を受ける複数の受け板を設け、この受け板を受け板が受けた気体を主回転体の外側回転周方向に向けて流進させる形状に形成し、主回転体の外周に受け板によって流進させられた気体を受ける複数の受け体を周方向に沿って列設した場合には、主回転体は、受け板によって流進させられた気体によって、外側回転周方向に力を受けることになり、それだけ、主回転体の回転力が増し回転効率を向上させることができる。
また、主回転体の回転数の増加に伴って噴射口を拡大し主回転体の回転数の減少に伴って噴射口を縮小する噴射口可変機構を設けた場合には、主回転体の回転数の少ないときは、噴射口が縮小しており、主回転体の回転数の増加に伴う遠心力の増加によって噴射口が拡大していくので、主回転体の回転数の低いときに気体の流速が均一にさせられ、そのため、立ち上がりが早くまた確実に行なわれ、その後の回転を円滑に行なわせることができる。
【0036】
そしてまた、外郭及び主回転体に対して回転可能に設けられ壁部が外郭と主回転体との間に位置する筒状の従回転体を備えたものにおいて、主回転体及び従回転体を、一端側回転体と他端側回転体とに分割し、かつ、一端側回転体と他端側回転体との分割端部同士が軸方向に直交する方向に相対変移可能になるように分割した構成とした場合には、回転によって一端側回転体と他端側回転体とが横方向に振れても、互いに相対変移するので、この振れが吸収され、そのため、回転を円滑に行なわせることができる。
この際、一端側回転体及び他端側回転体のいずれか一方をいずれか他方に対して小径に形成するとともに、一端側回転体と他端側回転体との分割端部に互いに重畳する重畳部を設け、一端側回転体及び他端側回転体の重畳部間にクッション部材を介装した場合には、クッション部材によって分割端部同士が衝止することなく振れが吸収され、そのため、回転をより一層円滑に行なわせることができる。
【0037】
また、外郭に一端が閉塞され他端に開放口を有した管状の支軸を設け、支軸に対して主回転体及び従回転体の一端及び他端を軸支し、支軸の主回転体に臨む管壁に液体が吐出される多数の吐出口を形成し、支軸の開放口に接続される注入口を有するとともに外郭に回収口を有し注入口から支軸内を通って吐出口から主回転体内に噴出されて主回転体内の気体を冷却した後タービンを通ってくる液体を回収口から再び注入口に導く液体の液体循環管路を設け、液体循環管路の途中に液体を冷却する冷却部を設け、外郭の一端に吹出口を有し他端に戻り口を有した気体が循環可能な気体循環管路を設け、気体循環管路の途中に循環する気体を加温する加温部を設け、従回転体の内壁に吹出口からの気体を一端側入口から他端側出口に流す通風路を設け、通風路の他端側出口から流出した高温の気体が他方流路を通るとともに、一方通路を通り一方通路で液体によって冷却されてタービンに至るようにした構成とした場合には、従回転体において、その内壁に吹出口からの気体を一端側入口から他端側出口に流す通風路が設けられているので、高温の気体を他方流路の下側から吹き出すようにすることができ、そのため、上昇気流を生じさせ易くできるので、気体の対流のエネルギーを大きくすることができる。
この場合、通風路を従回転体の内壁に沿って多数列設すれば、従回転体内周に亘って上昇気流を生じさせることができ、それだけ、均一化されるので、回転を安定化させることができる。
また、通風路の主回転体側の壁部を山形状に形成し、従回転体の内壁に沿って山形状の壁部が連続するように形成すれば、通風路の壁部が山形状に形成されているので、通風路内側を通る気体と他方流路の気体との熱交換が容易に行なわれ、他方流路の気体を確実に高温状態で上昇させることができる。
【0038】
また、支軸に形成された液体の吐出口を液体が上記主回転体の回転方向に向けて吐出噴射される形状に形成し、主回転体の内壁に吐出口から吐出噴射される液体を受ける複数の受け部材を周方向に沿って列設した構成とした場合には、主回転体の内壁に設けた受け部材に吐出口から吐出噴射される液体が受けられるので、主回転体は、回転方向に力を受けることになり、それだけ、主回転体の回転力を増し回転効率を向上させることができる。
更に、主回転体の供給口を、供給される気体が主回転体の回転方向に向けて流進される形状に形成し、主回転体の内壁に供給口から供給される気体を受ける複数の受け部材を周方向に沿って列設した構成とした場合には、主回転体の内壁に設けた受け部材に吹き出された気体が受けられるので、主回転体は、回転方向に力を受けることになり、この点でも、主回転体の回転力を増し回転効率を向上させることができる。
【0039】
更にまた、液体を潤滑能力のあるオイルで構成し、主回転体の主回転軸の軸受部及び従回転体の従回転軸の軸受部に液体を潤滑油として供給するオイル通路を設けた場合には、主回転体の主回転軸の軸受部及び従回転体の従回転軸の軸受部にオイル通路を通して液体が潤滑油として供給されるので、回転を円滑に行なわせることができる。
また、主回転体の一端及び他端の少なくともいずれか一方に、支軸に回転可能に挿通される管状の主回転軸を設け、従回転体に該主回転軸に回転可能に挿通される管状の従回転軸を設け、主回転軸及び従回転軸の両方から動力を得る動力取得機構を設けた場合には、主回転体及び従回転体の両方から動力が得られるので、エネルギーの変換効率を向上させることができる。
この場合、動力取得機構を、主回転軸に設けられる主ギアと、従回転軸に設けられる従ギアと、主ギア及び従ギアを連動させる連動ギア機構と、主ギア,従ギア及び連動ギア機構の少なくともいずれか1つに連係して駆動される発電機とを備えて構成した場合には、動力を電力として得ることができる。
【0040】
また、主回転体及び従回転体の始回転時に、始回転を補助するスタート手段を設けた場合には、スタート手段によって、主回転体及び従回転体が始動させられるので、立ち上がりが早くまた確実に行なわれ、その後の回転を円滑に行なわせることができる。
更に、このスタート手段を、従回転体の一端もしくは他端の少なくともいずれか一方に設けられ液体の噴射により従回転体を回転させる回転ファンと、液体循環管路から分岐した分岐管から供給された液体を高圧状態で蓄液する蓄液タンクと、外郭に設けられ蓄液タンクの液体を始回転時に回転ファンに向けて噴射する噴射ノズルとを備えて構成した場合には、冷却用の液体を用いるので、利用効率を良くすることができる。
この場合、蓄液タンクを外郭の外側周囲に付帯させた場合には、外郭を補強でき回転体の遠心力に対する耐力を増すことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る対流温度差原動装置を模式的に示す図である。
【図2】本発明の実施の形態に係る対流温度差原動装置を示す断面図である。
【図3】本発明の実施の形態に係る対流温度差原動装置を示す要部断面図である。
【図4】本発明の実施の形態に係る対流温度差原動装置のタービンを示す図であり、(a)は平面図、(b)は側面図である。
【図5】本発明の実施の形態に係る対流温度差原動装置のタービンの上部の状態を示す断面図である。
【図6】本発明の実施の形態に係る対流温度差原動装置のタービンの基本構成を示す斜視図である。
【図7】本発明の実施の形態に係る対流温度差原動装置の主回転体及び従回転体における一端側回転体と他端側回転体との分割端部の構造の別の例を示す図である。
【図8】本発明の実施の形態に係る対流温度差原動装置のスタート手段の別の例を示す図1相当図である。
【図9】本発明の実施の形態に係る対流温度差原動装置の変形例を示す要部断面図である。
【図10】本発明の別の実施の形態に係る対流温度差原動装置を模式的に示す図である。
【図11】従来の対流温度差原動装置の一例を模式的に示す図である。
【符号の説明】
Ra 一方流路
Rb 他方流路
10 外郭
11 支軸
12 隔壁
13 土台
14 開放口
15 吐出口
16 支持台
20 主回転体
20a 一端側回転体
20b 他端側回転体
21 供給口
22 排出口
23 主回転軸
24 スラストベアリング
25 ベアリング
26 ベアリング
27 重畳部
28 クッション部材
30 従回転体
30a 一端側回転体
30b 他端側回転体
31 従回転軸
32 スラストベアリング
33 ベアリング
37 重畳部
38 クッション部材
40 タービン
41 流入口
42 噴射口
43 ガイド通路
44 上板
45 下板
46 仕切り板
50 噴射口可変機構
51 揺動板
52 ヒンジ
53 スプリング
54 ストッパ
55 受け板
56 受け体
57 受け部材
60 液体循環管路
61 注入口
62 回収口
63 冷却部
70 気体循環管路
71 吹出口
72 戻り口
73 加温部
74 一端側入口
75 他端側出口
76 通風路
80 動力取得機構
81 主ギア
82 従ギア
83 連動ギア機構
90 スタート手段
91 回転ファン
92 蓄液タンク
93 噴射ノズル
94 電磁弁
95 高圧ポンプ
96 オイル通路
99 電動モータ
100 プロペラ
[0001]
BACKGROUND OF THE INVENTION
The present invention obtains power from various kinds of thermal energy such as seawater, snow, groundwater, thermal energy such as hot springs and geothermal heat, industrial waste heat energy, or thermal energy obtained by burning waste. In particular, the present invention relates to a convection temperature difference prime mover that generates gas convection and generates power by this convection.
[0002]
[Prior art]
Conventionally, as this type of convection temperature difference prime mover, there are those related to the research of the applicant of the present application, for example, Japanese Patent Laid-Open Nos. 6-147098, 2000-303947, 2000-356181, etc. The ones published in are known. For example, as shown in FIG. 11, the convection temperature difference prime mover includes a sealed outer shell 1 and a gas supply port 2 that is rotatably supported in the outer shell 1 and is opened axially at one end in the axial direction. A cylindrical main rotor 4 having a gas discharge port 3 that is opened in the axial direction at the other end, and a wall portion that is rotatably provided with respect to the main rotor 4 and the outer shell 1 and the main rotor 4. And a cylindrical follower rotor 6 having a gas vent hole 5 positioned between them, one flow path Ra extending from the supply port 2 of the main rotor 4 through the inside of the main rotor 4 to the discharge port 3 and A temperature difference is imparted to the gas so as to pass through the other flow path Rb from the discharge port 3 of the main rotor 4 to the supply port 2 through the outside of the main rotor 4, thereby generating gas convection. The main rotor 4 is rotated by the fan 7 provided at the supply port 2 and the outlet 3 of the main rotor 4 to obtain power, The rotary body 6 is rotated to reduce the friction caused by air flow so as to obtain the efficient power. For example, the rotational power is generated by driving the generator 9 via the gear device 8.
[0003]
[Problems to be solved by the invention]
By the way, in such a conventional convection temperature difference prime mover, since the fan 7 is provided in the discharge port 3 opened in the axial direction at the other end of the main rotating body 4, the air flow blown out from the fan 7 is generated. As a result, the gas collides with the end face, and therefore, there is a problem that the loss that does not contribute to the rotation increases and the rotation efficiency deteriorates.
The present invention has been made in view of the above problems, and aims to provide a convection temperature difference prime mover that improves loss efficiency by reducing loss that does not contribute to rotation of the airflow blown from the main rotating body. To do.
[0004]
[Means for Solving the Problems]
The technical means of the present invention for solving such a problem is such that a gas supply port is formed at one end in the axial direction and a gas discharge port is formed at the other end, rotatably supported by a sealed outer shell. A cylindrical main rotor, one flow path from the supply port of the main rotor through the inside of the main rotor to the outlet, and the outside of the main rotor from the outlet of the main rotor. In the convection temperature difference prime mover for obtaining a power by giving a temperature difference to the gas so as to pass through the other flow path leading to the supply port and generating a convection of the gas and rotating the main rotor by the convection of the gas, A turbine is provided at the other end of the main rotator to inject gas from the discharge port in the direction opposite to the outer circumferential direction of the main rotator to apply a rotational force to the main rotator.
Thereby, it passes through the one flow path from the supply port of the main rotor through the inside of the main rotor to the discharge port and the other flow path from the discharge port of the main rotor through the outside of the main rotor to the supply port. When gas convection occurs, the main rotor is rotated by the convection through the turbine.
In this turbine, gas is injected from the injection port in the direction opposite to the outer circumferential direction of the main rotor, and the main rotor is rotated. In this case, since the gas is injected in the circumferential direction, a situation in which the loss that does not contribute to the rotation increases as in the conventional case is suppressed, and the rotation efficiency is greatly improved.
[0005]
  And, if necessary, the turbine has an inflow port communicating with the discharge port, an injection port that opens to the outer periphery, and a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port. And comprising. Since the turbine includes a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port, the gas is reliably injected in the opposite direction to the outer circumferential direction of the rotating body.
  In addition, if necessary, a plurality of the injection ports are provided in an equiangular relationship along the outer periphery, and the guide passage is provided for each of the injection ports. Since a plurality of injection ports are provided in an equiangular relationship along the outer periphery, the gas is uniformly injected in the circumferential direction, and the rotation of the main rotating body is stabilized accordingly.
  Furthermore, it is set as the structure which arranged the some receiving plate which receives the gas injected from the injection port of the said turbine along the circumferential direction in the inner periphery of the said outer shell as needed. As a result, the gas injected from the turbine injection port collides with a plurality of outer plates.The
  MoreFurther, if necessary, the receiving plate is formed in a shape that causes the gas received by the receiving plate to flow toward the outer circumferential direction of the main rotor, and the outer periphery of the main rotor is formed by the receiving plate. It is set as the structure which arranged the some receiving body which receives the gas which flowed along along the circumferential direction. As a result, the gas flowed by the receiving plate is received by a plurality of receiving bodies arranged on the outer periphery of the main rotating body. Therefore, the main rotating body receives a force in the outer circumferential direction by the gas flowed by the receiving plate, and accordingly, the rotating force of the main rotating body is increased and the rotation efficiency is improved.
  In addition, if necessary, a configuration is provided in which an injection port variable mechanism is provided that expands the injection port as the rotation speed of the main rotating body increases and reduces the injection port as the rotation speed of the main rotation body decreases. . When the number of rotations of the main rotor is small, the injection port is reduced, and the injection port expands due to an increase in centrifugal force accompanying an increase in the number of rotations of the main rotor. When the gas flow rate is low, the gas flow rate is made uniform, so that the start-up is performed quickly and reliably, and the subsequent rotation is performed smoothly.
[0006]
Further, the technical means of the present invention for solving such a problem includes a sealed outer shell, a gas supply port formed at one end in the axial direction, and a gas supply port formed at one end in the axial direction. A cylindrical main rotor having a discharge port, and a cylindrical slave rotor that is provided so as to be rotatable with respect to the outer shell and the main rotor, and whose wall portion is located between the outer shell and the main rotor. A flow path from the supply port of the main rotating body to the discharge port through the inside of the main rotation body and the other flow from the discharge port of the main rotation body to the supply port through the outside of the main rotation body In the convection temperature difference prime mover for generating a convection of a gas by giving a temperature difference to the gas so as to pass through the path, and rotating the main rotating body and the secondary rotating body by the convection of the gas to obtain power, the main rotation The other end of the body is made to inject the gas from the discharge port in the direction opposite to the outer circumferential direction of the main rotor. Has a configuration in which a turbine that imparts rotational force to the main rotor.
Thereby, it passes through the one flow path from the supply port of the main rotor through the inside of the main rotor to the discharge port and the other flow path from the discharge port of the main rotor through the outside of the main rotor to the supply port. When gas convection occurs, the main rotor and the sub-rotator are rotated by the convection through the turbine.
In this turbine, gas is injected from the injection port in the direction opposite to the outer circumferential direction of the main rotor, and the main rotor is rotated. In this case, since the gas is injected in the circumferential direction, the situation where the gas collides with the end face of the follower and increases the loss that does not contribute to the rotation as in the past is suppressed, and the rotation efficiency is greatly improved. It is done.
[0007]
  And, if necessary, the turbine has an inflow port communicating with the discharge port, an injection port that opens to the outer periphery, and a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port. And comprising. Since the turbine includes a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port, the gas is reliably injected in the opposite direction to the outer circumferential direction of the rotating body.
  In addition, if necessary, a plurality of the injection ports are provided in an equiangular relationship along the outer periphery, and the guide passage is provided for each of the injection ports. Since a plurality of injection ports are provided in an equiangular relationship along the outer periphery, the gas is uniformly injected in the circumferential direction, and the rotation of the main rotating body is stabilized accordingly.
  Furthermore, it is set as the structure which arranged the some receiving plate which receives the gas injected from the injection port of the said turbine along the circumferential direction in the inner periphery of the said secondary rotor as needed. As a result, the gas injected from the turbine injection port collides with a plurality of outer plates.The
  MoreFurther, the receiving plate is formed in a shape that causes the gas received by the receiving plate to flow toward the outer circumferential direction of the main rotor, and is caused to flow around the outer periphery of the main rotor by the receiving plate. A plurality of receivers that receive the gas are arranged along the circumferential direction. As a result, the gas flowed by the receiving plate is received by a plurality of receiving bodies arranged on the outer periphery of the main rotating body. Therefore, the main rotating body receives a force in the outer circumferential direction by the gas flowed by the receiving plate, and accordingly, the rotating force of the main rotating body is increased and the rotation efficiency is improved.
  In addition, if necessary, a configuration is provided in which an injection port variable mechanism is provided that expands the injection port as the rotation speed of the main rotating body increases and reduces the injection port as the rotation speed of the main rotation body decreases. . When the number of rotations of the main rotor is small, the injection port is reduced, and the injection port expands due to an increase in centrifugal force accompanying an increase in the number of rotations of the main rotor. When the gas flow rate is low, the gas flow rate is made uniform, so that the start-up is performed quickly and reliably, and the subsequent rotation is performed smoothly.
[0008]
Further, if necessary, the main rotating body and the secondary rotating body are divided into one end side rotating body and the other end side rotating body, and the split end portions of the one end side rotating body and the other end side rotating body are separated from each other. Is divided so that relative displacement is possible in a direction perpendicular to the axial direction. Even if the one-end-side rotator and the other-end-side rotator are swung in the lateral direction due to the rotation, they are displaced relative to each other.
In this case, one of the one-end-side rotator and the other-end-side rotator is formed with a smaller diameter with respect to the other, and the one-end-side rotator and the other-end-side rotator are overlapped with each other. It is effective that a superimposing portion is provided and a cushion member is interposed between the overlapping portions of the one end side rotating body and the other end side rotating body. Since the cushion member is interposed between the overlapping portions of the split end portions of the one end side rotating body and the other end side rotating body, the vibration is absorbed without the split end portions blocking each other. It is performed more smoothly.
[0009]
If necessary, a tubular support shaft having one end closed on the outer shell and an open port on the other end is provided, and one end and the other end of the main rotating body and the subrotating body are pivoted with respect to the support shaft. A plurality of discharge ports for discharging liquid are formed on the tube wall facing the main rotating body of the support shaft, and an injection port connected to the open port of the support shaft is provided and a recovery port is provided in the outer shell. Then, the liquid that is jetted from the inlet through the support shaft and discharged from the outlet into the main rotor, cools the gas in the main rotor, and then passes the liquid that passes through the turbine from the recovery port to the inlet again. The liquid circulation pipe is provided, a cooling part for cooling the liquid is provided in the middle of the liquid circulation pipe, and the gas having a blowout port at one end of the outer shell and a return port at the other end can be circulated. A gas circulation line is provided, and a heating part for heating the gas circulating in the middle of the gas circulation line is provided. An air passage is provided on the inner wall of the driven rotor to allow the gas from the blowout port to flow from the one end side inlet to the other end side outlet, and the high temperature gas flowing out from the other end side outlet of the ventilating passage passes through the other flow path, The configuration is such that it passes through the one passage and is cooled by the liquid in the one passage to reach the turbine. In the sub-rotary body, an air passage is provided on the inner wall of the gas flow from the blowout port from the one end side inlet to the other end side outlet, so that the high temperature gas is blown out from the lower side of the other channel. Therefore, ascending airflow can be easily generated, so that the energy of gas convection can be increased.
In this case, it is effective that a large number of the ventilation paths are arranged along the inner wall of the subrotator. An ascending airflow can be generated over the circumference of the slave rotating body, and as it is made uniform, the rotation is stabilized.
Further, in this case, it is effective that the wall portion on the main rotor side of the ventilation path is formed in a mountain shape, and the mountain-shaped wall portion is formed continuously along the inner wall of the slave rotor. . Since the wall portion of the ventilation path is formed in a mountain shape, heat exchange between the gas passing through the inside of the ventilation path and the gas in the other flow path is easily performed, and the gas in the other flow path is reliably raised in a high temperature state. be able to.
[0010]
Further, if necessary, a liquid discharge port formed on the support shaft is formed into a shape in which liquid is discharged and ejected in the rotation direction of the main rotor, and the inner wall of the main rotor is formed from the discharge port. A plurality of receiving members that receive liquid ejected and ejected are arranged along the circumferential direction. The liquid is ejected and ejected in the form of a shower from the liquid ejection port formed on the support shaft, and the ejection port is formed in a shape that is ejected and ejected toward the rotation direction of the main rotor. Since the liquid ejected and ejected from the ejection port is received by the receiving member provided on the inner wall, the main rotating body receives a force in the rotating direction, and accordingly, the rotating force of the main rotating body is increased and the rotation efficiency is improved. It is done.
Further, if necessary, the supply port of the main rotating body is formed in a shape in which the supplied gas flows in the rotation direction of the main rotating body, and the inner wall of the main rotating body is connected to the supply port from the supply port. It is set as the structure which arranged the some receiving member which receives the supplied gas along the circumferential direction. Since the supply port is formed in a shape that flows toward the rotation direction of the main rotor, and the gas blown to the receiving member provided on the inner wall of the main rotor is received, the main rotor is rotated in the rotation direction. Also in this respect, the rotational force of the main rotating body is increased and the rotational efficiency is improved.
[0011]
Furthermore, if necessary, the liquid is composed of oil having a lubricating ability, and the liquid is supplied as a lubricating oil to the bearing portion of the main rotating shaft of the main rotor and the bearing portion of the sub rotating shaft of the slave rotor. An oil passage is provided. Since the liquid is supplied as the lubricating oil through the oil passage to the bearing portion of the main rotating shaft of the main rotating body and the bearing portion of the driven rotating shaft of the sub rotating body, the rotation is performed smoothly.
Further, if necessary, at least one of the one end and the other end of the main rotating body is provided with a tubular main rotating shaft that is rotatably inserted into the support shaft, and the slave rotating body is provided with the main rotating shaft. A tubular slave rotating shaft that is rotatably inserted is provided, and a power acquisition mechanism that obtains power from both the main rotating shaft and the slave rotating shaft is provided. Since power is obtained from both the main rotator and the slave rotator, the energy conversion efficiency is extremely improved.
In this case, if necessary, the power acquisition mechanism includes a main gear provided on the main rotation shaft, a slave gear provided on the slave rotation shaft, an interlocking gear mechanism that links the main gear and the slave gear, and And a generator driven in linkage with at least one of a main gear, a sub-gear, and an interlocking gear mechanism. Power can be obtained as electric power.
[0012]
Further, if necessary, a start means for assisting the initial rotation at the initial rotation of the main rotating body and the subsidiary rotating body is provided. Since the main rotating body and the sub-rotating body are started by the start means, the start-up is performed quickly and reliably, and the subsequent rotation is performed smoothly.
Further, if necessary, a starting means for assisting the initial rotation at the time of the initial rotation of the main rotating body and the sub-rotating body is provided, and the starting means is provided on at least one of the one end and the other end of the sub-rotating body. A rotating fan that rotates the follower rotating body by jetting the liquid, a liquid storage tank that stores liquid supplied from a branch pipe branched from the liquid circulation pipe in a high-pressure state, and the outer shell. And an injection nozzle that injects the liquid in the liquid storage tank toward the rotating fan at the time of initial rotation. Since the liquid for cooling is used, the utilization efficiency is good.
In this case, it is effective to attach the liquid storage tank to the outer periphery of the outer shell. The outer shell can be reinforced, and the resistance to centrifugal force of the rotating body can be increased.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, based on an accompanying drawing, a convection temperature difference prime mover concerning an embodiment of the invention is explained in detail.
As shown in FIGS. 1 to 6, the basic configuration of the convection temperature difference prime mover according to the embodiment of the present invention is provided along a sealed cylindrical outer shell 10 and a central axis of the outer shell 10. A cylindrical main rotor 20 having a gas supply port 21 formed at one end in the axial direction and a gas discharge port 22 formed at the center of the other end; 10 and a main rotating body 20, which is provided so as to be rotatable with respect to the main rotating body 20 and whose wall portion is located between the outer shell 10 and the main rotating body 20. It passes through the other flow path Rb from the discharge port 22 of the main rotator 20 through the outside of the main rotator 20 to the supply port 21 through the inside of the main rotator 20 to the discharge port 22. A temperature difference is imparted to the gas to cause gas convection, and the main rotor 20 and the gas are convected by the gas convection. By rotating the sub rotating body 30 is intended to obtain the power by the power acquisition mechanism 80.
Here, as the gas, carbon dioxide (CO2 ) Is used. Further, as will be described in detail later, a liquid is used to give a temperature difference to the gas. The liquid is composed of oil having a lubricating ability.
Then, a gas from the discharge port 22 is jetted in the opposite direction (Fb) to the outer circumferential direction (Fa) of the main rotator 20 at the other end of the main rotator 20 to impart a rotational force to the main rotator 20. The turbine 40 is configured to be provided.
[0014]
Specifically, one end and the other end of the main rotating body 20 and the secondary rotating body 30 are axially supported with respect to the support shaft 11. That is, a tubular main rotating shaft 23 that is rotatably inserted into the support shaft 11 is provided at both one end and the other end of the main rotating body 20, and both the one end and the other end of the sub rotating body 30 are provided. A tubular secondary rotating shaft 31 that is rotatably inserted into the main rotating shaft 23 is provided.
As shown in FIG. 2, the main rotating shaft 23 at one end of the main rotating body 20 is rotatably inserted into the support shaft 11 and is suspended from a support 16 provided on the outer shell 10 via a thrust bearing 24. It is supported by. Further, the secondary rotating shaft 31 at one end of the secondary rotating body 30 is rotatably inserted into the main rotating shaft 23 and supported so as to be suspended from the support base 16 provided on the outer shell 10 via the thrust bearing 32. Yes.
As shown in FIG. 3, the main rotating shaft 23 at the other end of the main rotating body 20 is provided through the partition wall 12 on the other end side provided in the outer shell 10. The lower end of the partition wall 12 is rotatably supported by a base 13 provided in the outer shell 10 via a bearing 26. The slave rotary shaft 31 at the other end of the slave rotary body 30 is rotatably inserted into the main rotary shaft 23 and supported by a partition wall 12 provided in the outer shell 10 via a bearing 33.
[0015]
The main rotating body 20 and the secondary rotating body 30 are divided into one-end-side rotating bodies 20a, 30a and other-end-side rotating bodies 20b, 30b, and the one-end-side rotating bodies 20a, 30a and the other-end-side rotating body are divided. The split end portions 20b and 30b are connected so that the split end portions can be relatively shifted in a direction orthogonal to the axial direction and can be relatively rotated.
Specifically, the one-end-side rotators 20a and 30a are formed to have a smaller diameter than the other-end-side rotators 20b and 30b, and are formed at the divided end portions of the one-end-side rotators 20a and 30a and the other-end-side rotators 20b and 30b. Superimposing portions 27 and 37 that overlap each other are provided, and cushion members 28 and 38 are interposed between the overlapping portions 27 and 37 of the one end side rotating bodies 20a and 30a and the other end side rotating bodies 20b and 30b. The cushion members 28 and 38 are formed by a multi-ring ring-shaped V-belt, and are bonded to the other end side rotating bodies 20b and 30b.
[0016]
As shown in FIGS. 4 to 6, the turbine 40 mainly rotates the gas from the inlet 41 that communicates with the outlet 22, the inlet 42 that is smaller than the inlet 41 that opens to the outer periphery, and the inlet 42. It comprises a guide passage 43 that guides gas from the inlet 41 to the outlet 42 so as to inject in the opposite direction (Fb) to the outer circumferential direction (Fa) of the body 20. A plurality of injection ports 42 are connected in an equiangular relationship along the outer periphery, and an inlet 41 and a guide passage 43 are provided for each of the injection ports 42. The guide passage 43 is formed by an upper plate 44, a lower plate 45, and a pair of partition plates 46 provided between the upper plate 44 and the lower plate 45.
Further, as shown in FIG. 4, the turbine 40 is provided with an injection port variable mechanism 50. The ejection port variable mechanism 50 expands the ejection port 42 as the rotational speed of the main rotor 20 increases, and contracts the ejection port 42 as the rotational speed of the main rotor 20 decreases. Specifically, a swinging plate 51 having one end connected to one of the partition plates 46 constituting the guide passage 43 via a hinge 52 and the other end facing the injection port 42 so as to be swingable. A spring 53 that constantly urges the plate 51 toward the other partition plate 46; and a stopper 54 that is provided on the other partition plate 46 and contacts the swing plate 51 to ensure a minimum opening. As the gas pressure increases due to an increase in centrifugal force accompanying an increase in the number of rotations 20, the swing plate 51 swings toward the one partition plate 46 against the biasing force of the spring 53. Thus, the ejection port 42 is expanded, and the rocking plate 51 is moved by the urging force of the spring 53 in response to the decrease in the gas pressure due to the decrease in the centrifugal force accompanying the decrease in the rotation speed of the main rotor 20. Swing to the partition plate 46 side of the Accordingly, the gas flow rate is set to be as uniform as possible when so as to reduce the injection port 42, a low rotational speed of the main rotor 20. In addition, a plurality of receiving plates 55 that receive gas injected from the injection port 42 of the turbine 40 are arranged in an equiangular relationship along the circumferential direction on the inner periphery of the other end side rotating body 30b of the secondary rotating body 30. ing. The receiving plate 55 is formed in a curved shape that causes the gas received by the receiving plate 55 to flow toward the outer circumferential direction (Fa) of the main rotor 20. On the other hand, on the outer periphery of the other end side rotating body 20b of the main rotating body 20, a plurality of receiving bodies 56 that receive the gas flowed by the receiving plate 55 are arranged in an equiangular relationship along the circumferential direction. . As shown in FIG. 5, the rows of the receiving bodies 56 are formed in a waveform shape.
[0017]
The support shaft 11 is formed in a tubular shape having one end closed and an open port 14 at the other end. The tube wall facing the main rotor 20 of the support shaft 11 has a large number of discharges for discharging liquid in a shower shape. An outlet 15 is formed. As shown in FIG. 5, the discharge port 15 is formed in a shape in which liquid (oil) is discharged and ejected in the rotation direction (Fa) of the main rotating body 20. On the other hand, a plurality of receiving members 57 that receive liquid ejected and ejected from the ejection port 15 are arranged in the circumferential direction on the inner wall of the one-end-side rotator 20a of the main rotator 20. The receiving member 57 is formed in a mountain shape and is provided continuously along the inner wall of the main rotating body 20.
Further, as shown in FIG. 3, a plurality of supply ports 21 of the main rotator 20 are provided around the support shaft 11 at one end of the main rotator 20, and the supplied gas is in the rotation direction of the main rotator 20. It is formed in a shape that flows toward (Fa). And the said receiving member 57 arranged in the inner wall of the one end side rotary body 20a of the main rotary body 20 can receive the gas supplied from the supply port 21 now.
[0018]
Furthermore, in this convection temperature difference prime mover, a liquid circulation line 60 is provided. The liquid circulation pipe 60 has an inlet 61 connected to the opening 14 of the support shaft 11 and a recovery port 62 directly above the partition wall 12 of the outer shell 10, and discharges from the inlet 61 through the support shaft 11. After cooling the gas in the main rotator 20 from the outlet 15 into the main rotator 20, the liquid reaching the partition wall 12 through the turbine 40 is guided again from the recovery port 62 to the injection port 61.
A cooling unit 63 that cools the liquid is provided in the middle of the liquid circulation conduit 60. The cooling unit 63 is composed of a heat exchanger that cools the liquid with a cooling medium such as water.
[0019]
Furthermore, a gas circulation conduit 70 capable of circulating a gas having a blowout port 71 at one end of the outer shell 10 and a return port 72 at the other end is provided.
A heating unit 73 is provided in the middle of the gas circulation pipe 70 to heat the circulating gas. The heating unit 73 is configured by a heat exchanger that heats a gas with a heating medium such as warm water, for example.
The inner wall of the one-end-side rotator 30a of the sub-rotor 30 is provided with a large number of air passages 76 that allow the gas from the blower outlet 71 to flow from the one-end inlet 74 to the other-end outlet 75. The wall portion on the main rotor 20 side of the ventilation path 76 is formed in a mountain shape, and is formed so that the mountain wall portion continues along the inner wall of the sub-rotator 30.
Accordingly, the high-temperature gas flowing out from the other end side outlet 75 of the ventilation path 76 passes through the other flow path Rb, passes through the one flow path Ra of the main rotor 20, and is cooled by the liquid in the one flow path Ra, thereby being turbine 40. To reach.
[0020]
The power acquisition mechanism 80 obtains power from both the main rotary shaft 23 and the secondary rotary shaft 31, and a main gear 81 provided on the main rotary shaft 23, a secondary gear 82 provided on the secondary rotary shaft 31, and a main gear. Through a receiving gear 84 that meshes with at least one of the main gear 81, the slave gear 82, and the interlocking gear mechanism 83 (the slave gear 82 in the embodiment). And a generator 85 that is driven in cooperation. The interlocking gear mechanism 83 includes a first gear 83a that meshes with the main gear 81, a second gear 83b that meshes with the slave gear 82, and a rotating shaft 83c that coaxially connects the first gear 83a and the second gear 83b. Has been. The rotating shaft 83c is pivotally supported on the base 13. The generator 85 is supported by the base 13.
[0021]
Further, in this convection temperature difference prime mover, start means 90 is provided to assist the initial rotation when the main rotor 20 and the sub-rotator 30 are initially rotated. As shown in FIG. 2, the start means 90 includes a rotary fan 91 provided along the partition wall 12 on the outer side of the other end of the secondary rotor 30, and rotates the secondary rotor 30 by jetting liquid. A liquid storage tank 92 that stores liquid supplied from a branch pipe 92a branched from 60 in a high-pressure state, and an injection nozzle that is provided in the outer shell 10 and injects the liquid in the liquid storage tank 92 toward the rotary fan 91 at the initial rotation. 93. The liquid storage tank 92 is attached to the outer periphery of the outer shell 10. Therefore, the outer shell 10 is reinforced, and the proof strength against the centrifugal force of the rotating body is enhanced. An electromagnetic valve 94 opens and closes the injection nozzle 93. Reference numeral 95 denotes a high-pressure pump that feeds the liquid to the liquid storage tank 92 before the initial rotation. The liquid storage tank 92 is filled with carbon dioxide, contracts by supplying liquid, expands when the electromagnetic valve 94 is opened, and injects liquid from the injection nozzle 93.
[0022]
Further, an oil passage 96 is provided for supplying liquid as lubricating oil to the bearing portion of the main rotating shaft 23 of the main rotating body 20 and the bearing portion of the driven rotating shaft 31 of the sub rotating body 30. The oil passage 96 is provided in the support shaft 11. The oil passage 96 opens at one end of the support shaft 11 and discharges the liquid to the thrust bearings 24 and 32. The main rotation shaft 23 at the other end of the main rotor 20. And a path opened to the surface. In addition, the liquid is supplied to the bearing 33 provided in the partition wall 12 in the secondary rotary shaft 31 at the other end of the secondary rotor 30. The lubricating liquid is stored at the lower end of the outer shell 10 and is collected in the liquid circulation line 60 by the collection pipe 97.
[0023]
Therefore, when power is generated by the convection temperature difference prime mover according to the embodiment of the present invention, it is as follows.
First, at the start, the start means 90 is driven. This preliminarily stores liquid in a high-pressure state from the branch pipe 92 a branched from the liquid circulation pipe 60 to the liquid storage tank 92. Then, the electromagnetic valve 94 is opened and the liquid in the liquid storage tank 92 is sprayed from the spray nozzle 93 toward the rotary fan 91. As a result, the rotary fan 91 starts to rotate, the secondary rotor 30 rotates, and the main rotor 20 also starts to rotate in the same direction.
In this case, since the main rotating body 20 and the subordinate rotating body 30 are started by the start means 90, the start-up is performed quickly and reliably, and the subsequent rotation is performed smoothly.
[0024]
In this state, liquid is ejected from the inlet 61 of the support shaft 11 through the support shaft 11 and from the discharge port 15 into the main rotor 20, and after cooling the gas in the main rotor 20, the liquid passes through the turbine 40. Then, the liquid is led from the recovery port 62 through the liquid circulation line 60 to the injection port 61 again. In the middle of the liquid circulation pipe 60, the liquid heated by the cooling of the gas is cooled again by the cooling unit 63.
On the other hand, gas flows in from the blower outlet 71, flows in from the one end side inlet 74 of the ventilation path 76 on the inner wall of the one end side rotating bodies 20a, 30a, and flows out from the other end side outlet 75. While passing through the path Rb, it passes through the one flow path Ra of the main rotor 20 and is cooled by the liquid in the one flow path Ra to reach the turbine 40. Then, the air is led from the return port 72 through the gas circulation line 70 to the air outlet 71 again. In the middle of the gas circulation pipe 70, the cooled gas is heated by the heating unit 73.
[0025]
As a result, the supply port 21 of the main rotating body 20 passes through the inside of the main rotating body 20 to the discharge port 22, and is supplied from the flow path Ra and the discharge port 22 of the main rotating body 20 through the outside of the main rotating body 20. Convection of gas passing through the other flow path Rb leading to the port 21 is generated, and the main rotor 20 and the subrotator 30 are rotated in the same direction via the turbine 40 by this convection.
In this turbine 40, gas is injected from the injection port 42 in the reverse direction (Fb) with respect to the outer circumferential direction (Fa) of the main rotor 20, and the main rotor 20 is rotated. In this case, since the gas is injected in the circumferential direction that contributes to the rotation, the situation where the gas collides with the end face of the follower and increases the loss that does not contribute to the rotation as in the past is suppressed, and the rotation efficiency is improved. Greatly improved.
Moreover, since the turbine 40 includes the guide passage 43 that guides the gas from the inlet 41 to the injection port 42 so that the gas is injected from the injection port 42, the gas is in the opposite direction to the outer circumferential direction of the rotating body. Is surely injected.
Further, since a plurality of the injection ports 42 are connected in an equiangular relationship along the outer periphery, the gas is uniformly injected in the circumferential direction, and the rotation of the main rotor 20 is stabilized accordingly.
Furthermore, since the injection port variable mechanism 50 is provided in the turbine 40, when the rotation speed of the main rotor 20 is small, the injection port 42 is reduced, and the rotation speed of the main rotor 20 is increased. Since the injection port 42 expands due to the accompanying increase in centrifugal force, the flow velocity of the gas is made uniform when the rotational speed of the main rotating body 20 is low. Is performed smoothly.
[0026]
  The gas injected from the injection port 42 of the turbine 40 collides with the plurality of receiving plates 55 of the driven rotor 30.The
  Also,The receiving plate 55 is formed in a shape that causes the received gas to flow toward the outer circumferential direction (Fa) of the main rotating body 20, and the gas flowed by the receiving plate 55 is the main rotating body 20. Are received by a plurality of receiving bodies 56 arranged in a row on the outer periphery. As a result, the main rotating body 20 receives a force in the outer circumferential direction (Fa) by the gas flowed by the receiving plate 55, and accordingly, the rotating force of the main rotating body 20 increases and the rotation efficiency increases. Can be improved.
[0027]
Further, the main rotary body 20 and the secondary rotary body 30 are divided into one-end-side rotary bodies 20a, 30a and other-end-side rotary bodies 20b, 30b, and the one-end-side rotary bodies 20a, 30a and the other-end-side rotary body. Since the split ends of 20b and 30b are split so as to be relatively displaceable in a direction orthogonal to the axial direction, one end side rotating bodies 20a and 30a and the other end side rotating bodies 20b and 30b are rotated by rotation. Even if it shakes in the lateral direction, it changes relative to each other, so that this shake is absorbed, so that the rotation is performed smoothly. In addition, since the cushion members 28 and 38 are interposed between the overlapping portions 27 and 37 of the split end portions of the one end side rotating bodies 20a and 30a and the other end side rotating bodies 20b and 30b, the split end portions are opposed to each other. The vibration is absorbed without stopping, so that the rotation is performed more smoothly.
Further, in the secondary rotor 30, an air passage 76 is provided on the inner wall of the secondary rotor 30 so that the gas from the outlet 71 flows from the one end side inlet 74 to the other end side outlet 75. Since it can be made to blow out from the side, and it can make it easy to produce an updraft, the energy of the convection of gas can be enlarged. Further, since the air passages 76 are arranged in a large number along the inner wall of the secondary rotor 30, it is possible to generate an updraft over the inner circumference of the secondary rotor 30 and to equalize the air flow. Is stabilized. Further, since the wall portion of the ventilation path 76 is formed in a mountain shape, heat exchange between the gas passing through the inside of the ventilation path 76 and the gas in the other flow path Rb is easily performed, and the gas in the other flow path Rb is surely secured. Can be raised at high temperatures.
[0028]
Furthermore, the liquid is ejected and ejected in a shower-like manner from the liquid ejection port 15 formed on the support shaft 11, and the ejection port 15 is formed in a shape that is ejected and ejected in the rotation direction of the main rotor 20. Since the liquid ejected and ejected from the discharge port 15 is received by the receiving member 57 provided on the inner wall of the main rotator 20, the main rotator 20 receives a force in the rotation direction. The rotational force of 20 is increased and the rotation efficiency is improved.
Furthermore, the gas is blown out from the supply port 21 of the main rotor 20 to the one flow path Ra, but the supply port 21 is formed in a shape that flows toward the rotation direction of the main rotor 20. Since the gas blown to the receiving member 57 provided on the inner wall of the rotator 20 is received, the main rotator 20 receives a force in the rotation direction. In this respect as well, the rotation force of the main rotator 20 increases. Rotational efficiency is improved.
[0029]
In the power acquisition mechanism 80, since the main rotating body 20 and the secondary rotating body 30 rotate in the same direction, power is obtained from both. That is, the rotation of the main rotor 20 is transmitted to the main gear 81 of the slave rotor 30 via the interlocking gear mechanism 83, and the slave rotor 30 itself also rotates the master gear 81. Is transmitted to the machine 85, and is generated by the generator 85. In this case, since power is obtained from both the main rotor 20 and the sub-rotor 30, the energy conversion efficiency is extremely improved.
Further, in the rotation of the main rotor 20 and the sub-rotor 30, the liquid passes through the oil passage 96 to the bearing portion of the main rotary shaft 23 of the main rotor 20 and the bearing portion of the sub-rotary shaft 31 of the sub-rotator 30. Therefore, rotation is performed smoothly.
[0030]
In FIG. 7, in the convection temperature difference prime mover according to the embodiment of the present invention, one end side rotating body 20a, 30a and the other end side rotating body 20b, 30b obtained by dividing the main rotating body 20 and the sub rotating body 30, respectively. Another example of the structure of the split end portion of FIG. In this configuration, flanges 27a, 27b, 37a, and 37b opposite to each other are provided on the overlapping portions 27 and 37 of the respective divided end portions so that the flanges face each other. According to this, since the liquid jetted in the shower shape penetrates into a portion where the flanges 27a, 27b, 37a, and 37b are present, the one-end-side rotating bodies 20a and 30a and the other-end-side rotating bodies 20b and 30b are laterally rotated by rotation. Even if it vibrates in the direction, it is separated by the intervening liquid, so that the vibration is absorbed without the divided end portions blocking each other, so that the rotation is smoothly performed.
[0031]
FIG. 8 shows another example of the start means 90 in the convection temperature difference prime mover according to the embodiment of the present invention. This is because, in the power acquisition mechanism 80, an electric motor 99 that is driven at the time of starting is provided on a rotary shaft 83c that coaxially connects the first gear 83a and the second gear 83b of the interlocking gear mechanism 83, and this electric motor 99 is driven. This facilitates the rotation at the start. The generator 85 meshes with the main gear 81 via the receiving gear 84 to obtain power from this.
FIG. 9 shows a modification of the convection temperature difference prime mover according to the embodiment of the present invention. In this configuration, the apparatus is placed horizontally, and the main rotating shaft 23 on one end side is extended to obtain power from the main rotating shaft 23. In FIG. 9, the propeller 100 is rotated. Thus, the power may be taken out in any way, and the apparatus may be installed in any orientation regardless of whether the axis is vertical or horizontal.
[0032]
  FIG. 10 shows an outline of a convection temperature difference prime mover according to another embodiment of the present invention. This differs from the above embodiment in that there is no secondary rotor 30 and only the main rotor 20 is provided adjacent to the outer shell 10. And the structure of the turbine 40 and the receiving body 56 is the same as the above, On the other hand, the some receiving plate 55 which receives the gas injected from the injection port 42 of the turbine 40 is along the inner peripheral surface of the outer shell 10 along the circumferential direction. It is lined up. Reference numeral 85 denotes a generator that obtains power from the main rotary shaft 23, and 99 denotes an electric motor that is driven at the time of starting.
  Therefore, also in this convection temperature difference prime mover, gas is injected from the injection port 42 of the turbine 40 in the direction opposite to the outer circumferential direction of the main rotor 20, and the main rotor 20 is rotated. In this case, since the gas is injected in the circumferential direction that contributes to the rotation, the situation in which the loss that does not contribute to the rotation increases as in the conventional case is suppressed, and the rotation efficiency is greatly improved.
  The gas injected from the injection port 42 of the turbine 40 collides with the plurality of receiving plates 55 of the outer shell 10.The
  Also,The receiving plate 55 is formed in a shape that causes the received gas to flow toward the outer circumferential direction (Fa) of the main rotating body 20, and the gas flowed by the receiving plate 55 is the main rotating body 20. Are received by a plurality of receiving bodies 56 arranged in a row on the outer periphery. As a result, the main rotating body 20 receives a force in the outer circumferential direction (Fa) by the gas flowed by the receiving plate 55, and accordingly, the rotating force of the main rotating body 20 increases and the rotation efficiency increases. Can be improved.
[0033]
In the above embodiment, oil is used as the liquid. However, the present invention is not necessarily limited to this. For example, the liquid may be composed of a liquefied gas that is vaporized in the main rotor 20, or may be changed as appropriate. .
[0034]
【The invention's effect】
As described above, according to the convection temperature difference prime mover of the present invention, the main rotor is configured by injecting the gas from the discharge port to the other end of the main rotor in the direction opposite to the outer circumferential direction of the main rotor. Since the turbine for applying the rotational force is provided, gas is injected from the injection port in the opposite direction to the outer circumferential direction of the main rotor, and the main rotor is rotated. In this case, since the gas is injected in the circumferential direction, it is possible to suppress a situation in which loss that does not contribute to rotation increases as in the conventional case, and the rotation efficiency can be greatly improved.
When the turbine is configured to include an inflow port communicating with the discharge port, an injection port that opens to the outer periphery, and a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port In this case, since the gas is guided by the guide passage, the gas can be reliably injected in the direction opposite to the outer circumferential direction of the rotating body.
In addition, when a plurality of injection ports are provided in an equiangular relationship along the outer periphery and a guide passage is provided for each injection port, a plurality of injection ports are provided in an equiangular relationship along the outer periphery. The gas will be injected evenly in the circumferential direction, and the rotation of the main rotor can be stabilized accordingly.
[0035]
  Furthermore, a plurality of receiving plates for receiving the gas injected from the turbine injection portProvidedA plurality of receivers that are formed in a shape that causes the gas received by the receiving plate to flow toward the outer circumferential direction of the main rotor, and that receives the gas flowed by the receiving plate on the outer periphery of the main rotor. Are arranged along the circumferential direction, the main rotating body receives a force in the outer rotating circumferential direction by the gas flown by the receiving plate, and accordingly, the rotational force of the main rotating body is reduced. Increased rotation efficiency can be improved.
  In addition, when an injection port variable mechanism is provided that expands the injection port as the rotation speed of the main rotor increases and reduces the injection port as the rotation speed of the main rotation body decreases, the rotation of the main rotation body When the number is small, the injection port is contracted, and the injection port expands due to the increase in centrifugal force accompanying the increase in the number of rotations of the main rotor. The flow velocity is made uniform, so that the rising can be performed quickly and reliably, and the subsequent rotation can be performed smoothly.
[0036]
Further, in the case where the wall portion is provided with a cylindrical follower rotating body that is rotatably provided to the outer shell and the main rotor, the main rotor and the slave rotor are provided. , Divided into one end side rotating body and the other end side rotating body, and divided so that the split end portions of the one end side rotating body and the other end side rotating body can be relatively displaced in the direction orthogonal to the axial direction. In the case of the above configuration, even if the one end side rotating body and the other end side rotating body swing in the lateral direction due to the rotation, the relative displacement is absorbed, so that the swing is absorbed, so that the rotation can be performed smoothly. Can do.
At this time, either one of the one-end-side rotating body and the other-end-side rotating body is formed to have a smaller diameter with respect to the other, and the overlapping is performed on the divided end portions of the one-end-side rotating body and the other-end-side rotating body. When the cushion member is interposed between the overlapping parts of the one-end-side rotator and the other-end-side rotator, the vibration is absorbed by the cushion member without causing a collision between the split ends. Can be performed more smoothly.
[0037]
In addition, a tubular support shaft having one end closed on the outer shell and an open port on the other end is provided, and one end and the other end of the main rotating body and the secondary rotating body are supported on the support shaft, and the main rotation of the support shaft A large number of discharge ports for discharging liquid are formed on the tube wall facing the body, and there are injection ports connected to the opening of the support shaft and a recovery port on the outer shell. A liquid circulation conduit for liquid that is jetted from the outlet into the main rotor and cools the gas in the main rotor and then guides the liquid that passes through the turbine from the recovery port to the inlet again, and the liquid is provided in the middle of the liquid circulation channel. A cooling unit is provided to cool the gas, and a gas circulation line that can circulate the gas with a blowout port at one end of the outer shell and a return port at the other end is provided to heat the gas circulating in the middle of the gas circulation line. A ventilation path is provided to allow the gas from the blowout port to flow from the one end side inlet to the other end side outlet on the inner wall of the sub-rotator. In the case where the high-temperature gas flowing out from the outlet on the other end side of the ventilation passage passes through the other passage and is cooled by the liquid in one passage and then reaches the turbine, the secondary rotation is performed. In the body, a ventilation path is provided on the inner wall to flow the gas from the blowout port from the one end side inlet to the other end side outlet, so that high temperature gas can be blown out from the lower side of the other flow path, Therefore, it is possible to easily generate an updraft, so that the energy of gas convection can be increased.
In this case, if a large number of air passages are provided along the inner wall of the driven rotor, an ascending airflow can be generated over the circumference of the driven rotor, and the amount of air can be made uniform. Can do.
Also, if the wall on the main rotor side of the ventilation path is formed in a mountain shape and the mountain wall is formed so as to continue along the inner wall of the secondary rotor, the wall of the ventilation path is formed in a mountain shape. Therefore, heat exchange between the gas passing through the inside of the ventilation path and the gas in the other flow path is easily performed, and the gas in the other flow path can be reliably raised in a high temperature state.
[0038]
Further, the liquid discharge port formed on the support shaft is formed in a shape in which the liquid is discharged and ejected toward the rotation direction of the main rotor, and receives the liquid discharged and ejected from the discharge port on the inner wall of the main rotor. When a plurality of receiving members are arranged in the circumferential direction, the liquid ejected and ejected from the discharge port can be received by the receiving member provided on the inner wall of the main rotating body. As a result, the rotational force of the main rotating body can be increased and the rotational efficiency can be improved.
Furthermore, the supply port of the main rotor is formed in a shape in which the supplied gas flows in the direction of rotation of the main rotor, and a plurality of gas that is supplied from the supply port to the inner wall of the main rotor is received. When the receiving members are arranged in the circumferential direction, the gas blown to the receiving member provided on the inner wall of the main rotating body can be received, so that the main rotating body receives a force in the rotating direction. In this respect, the rotational force of the main rotor can be increased and the rotational efficiency can be improved.
[0039]
Furthermore, when the liquid is composed of oil having a lubricating ability and an oil passage for supplying liquid as lubricating oil to the bearing portion of the main rotating shaft of the main rotating body and the bearing portion of the sub rotating shaft of the sub rotating body is provided. Since the liquid is supplied as lubricating oil through the oil passage to the bearing portion of the main rotating shaft of the main rotating body and the bearing portion of the driven rotating shaft of the sub rotating body, the rotation can be performed smoothly.
Further, at least one of the one end and the other end of the main rotating body is provided with a tubular main rotating shaft that is rotatably inserted into the support shaft, and a tubular member that is rotatably inserted into the main rotating shaft through the main rotating shaft. If the power acquisition mechanism that obtains power from both the main rotation shaft and the sub rotation shaft is provided, power can be obtained from both the main rotation body and the sub rotation body. Can be improved.
In this case, the power acquisition mechanism includes a main gear provided on the main rotation shaft, a sub-gear provided on the sub-rotation shaft, an interlocking gear mechanism that interlocks the main gear and the sub-gear, and a main gear, sub-gear and interlocking gear mechanism. In the case of being configured to include a generator that is driven in linkage with at least one of the above, power can be obtained as electric power.
[0040]
In addition, when a start means for assisting the initial rotation is provided during the initial rotation of the main rotor and the sub-rotator, the main rotor and the sub-rotator are started by the start means. The subsequent rotation can be performed smoothly.
Furthermore, the start means is supplied from a rotary fan that is provided at at least one of the one end and the other end of the subrotator and rotates the subrotator by jetting the liquid, and a branch pipe branched from the liquid circulation conduit. When a liquid storage tank that stores liquid in a high-pressure state and an injection nozzle that is provided on the outer shell and injects the liquid in the liquid storage tank toward the rotary fan at the time of initial rotation, the cooling liquid is used. Since it uses, utilization efficiency can be improved.
In this case, when the liquid storage tank is attached to the outer periphery of the outer shell, the outer shell can be reinforced and the resistance against the centrifugal force of the rotating body can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a convection temperature difference prime mover according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a convection temperature difference prime mover according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part showing a convection temperature difference prime mover according to an embodiment of the present invention.
4A and 4B are diagrams showing a turbine of the convection temperature difference prime mover according to the embodiment of the present invention, where FIG. 4A is a plan view and FIG. 4B is a side view.
FIG. 5 is a cross-sectional view showing the state of the upper part of the turbine of the convection temperature difference prime mover according to the embodiment of the present invention.
FIG. 6 is a perspective view showing a basic configuration of a turbine of the convection temperature difference prime mover according to the embodiment of the present invention.
FIG. 7 is a view showing another example of the structure of the divided end portion of the one end side rotating body and the other end side rotating body in the main rotating body and the sub rotating body of the convection temperature difference prime mover according to the embodiment of the present invention. It is.
FIG. 8 is a view corresponding to FIG. 1 and showing another example of the start means of the convection temperature difference prime mover according to the embodiment of the present invention.
FIG. 9 is a cross-sectional view of a principal part showing a modification of the convection temperature difference prime mover according to the embodiment of the present invention.
FIG. 10 is a diagram schematically showing a convection temperature difference prime mover according to another embodiment of the present invention.
FIG. 11 is a diagram schematically showing an example of a conventional convection temperature difference prime mover.
[Explanation of symbols]
Ra one flow path
Rb Other channel
10 outline
11 Support shaft
12 Bulkhead
13 foundation
14 Open mouth
15 Discharge port
16 Support stand
20 Main rotating body
20a Rotating body at one end
20b Rotating body at the other end
21 Supply port
22 Discharge port
23 Main rotation axis
24 Thrust bearing
25 Bearing
26 Bearing
27 Superimposition part
28 Cushion material
30 secondary rotating body
30a Rotating body at one end
30b Rotating body at the other end
31 Secondary shaft
32 Thrust bearing
33 Bearing
37 Superimposition part
38 Cushion member
40 turbine
41 Inlet
42 injection port
43 Guide passage
44 Upper plate
45 Lower plate
46 Partition
50 Injection port variable mechanism
51 Swing plate
52 Hinge
53 Spring
54 Stopper
55 Back plate
56 Receiver
57 Receiving member
60 Liquid circulation line
61 Inlet
62 Collection port
63 Cooling unit
70 Gas circulation line
71 Air outlet
72 Return
73 Heating part
74 One end entrance
75 Outlet at the other end
76 Ventilation path
80 Power acquisition mechanism
81 Main gear
82 Secondary gear
83 Interlocking gear mechanism
90 Start means
91 Rotating fan
92 Liquid storage tank
93 Injection nozzle
94 Solenoid valve
95 High pressure pump
96 Oil passage
99 Electric motor
100 propeller

Claims (21)

密封された外郭に回転可能に軸支され軸方向一端に気体の供給口が形成され他端に気体の排出口が形成された筒状の主回転体を備え、該主回転体の供給口から該主回転体の内部を通って排出口に至る一方流路及び該主回転体の排出口から該主回転体の外側を通って供給口に至る他方流路を通るように気体に温度差を付与して気体の対流を生じさせ、該気体の対流により主回転体を回転させて動力を得る対流温度差原動装置において、
上記主回転体の他端に上記排出口からの気体を該主回転体の外側回転周方向に対し逆向きに噴射させて該主回転体に回転力を付与するタービンを設け、
上記外郭の内周に、上記タービンの噴射口から噴射された気体を受ける複数の受け板を周方向に沿って列設し、
上記受け板を、該受け板が受けた気体を上記主回転体の外側回転周方向に向けて流進させる形状に形成し、上記主回転体の外周に該受け板によって流進させられた気体を受ける複数の受け体を周方向に沿って列設したことを特徴とする対流温度差原動装置。
A cylindrical main rotor having a gas supply port formed at one end in the axial direction and a gas discharge port formed at the other end is rotatably supported by a sealed outer shell. A temperature difference is made in the gas so as to pass through the one flow path leading to the discharge port through the inside of the main rotor and the other flow path extending from the discharge port of the main rotor to the supply port through the outside of the main rotor. In the convection temperature difference prime mover for generating gas convection and rotating the main rotor by the gas convection to obtain power,
Setting a turbine gas from the discharge port to the other end of the main rotating body is sprayed in a direction opposite to the outer circumferential direction of rotation of the main rotating body for imparting a rotational force to the main rotating body,
On the inner periphery of the outer shell, a plurality of receiving plates that receive the gas injected from the injection port of the turbine are arranged along the circumferential direction,
The receiving plate is formed in a shape that causes the gas received by the receiving plate to flow toward the outer circumferential direction of the main rotor, and the gas is flowed to the outer periphery of the main rotor by the receiving plate. A convection temperature difference prime mover characterized in that a plurality of receiving bodies for receiving the convection are arranged in the circumferential direction .
上記タービンを、上記排出口に連通する流入口と、外周に開口する噴射口と、該噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路とを備えて構成したことを特徴とする請求項1記載の対流温度差原動装置。  The turbine is configured to include an inflow port communicating with the discharge port, an injection port that opens to the outer periphery, and a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port. The convection temperature difference prime mover according to claim 1. 上記噴射口を外周に沿って等角度関係で複数連設し、該各噴射口毎に上記ガイド通路を設けたことを特徴とする請求項2記載の対流温度差原動装置。  The convection temperature difference prime mover according to claim 2, wherein a plurality of the injection ports are provided in an equiangular relationship along the outer periphery, and the guide passage is provided for each of the injection ports. 上記主回転体の回転数の増加に伴って噴射口を拡大し上記主回転体の回転数の減少に伴って噴射口を縮小する噴射口可変機構を設けたことを特徴とする請求項2または3記載の対流温度差原動装置。The injection port variable mechanism which expands an injection port with the increase in the rotation speed of the said main rotary body, and reduces an injection port with the decrease in the rotation speed of the said main rotation body is provided, or characterized by the above-mentioned. 3. The convection temperature difference prime mover according to 3 . 密封された外郭と、該外郭に回転可能に軸支され軸方向一端に気体の供給口が形成され他端に気体の排出口が形成された筒状の主回転体と、上記外郭及び主回転体に対して回転可能に設けられ壁部が外郭と主回転体との間に位置する筒状の従回転体とを備え、該主回転体の供給口から該主回転体の内部を通って排出口に至る一方流路及び該主回転体の排出口から該主回転体の外側を通って供給口に至る他方流路を通るように気体に温度差を付与して気体の対流を生じさせ、該気体の対流により上記主回転体及び従回転体を回転させて動力を得る対流温度差原動装置において、
上記主回転体の他端に上記排出口からの気体を該主回転体の外側回転周方向に対し逆向きに噴射させて該主回転体に回転力を付与するタービンを設け、
上記従回転体の内周に、上記タービンの噴射口から噴射された気体を受ける複数の受け板を周方向に沿って列設し、
上記受け板を、該受け板が受けた気体を上記主回転体の外側回転周方向に向けて流進させる形状に形成し、上記主回転体の外周に該受け板によって流進させられた気体を受ける複数の受け体を周方向に沿って列設したことを特徴とする対流温度差原動装置。
A sealed outer shell, a cylindrical main rotor having a gas supply port formed at one end in the axial direction and a gas discharge port formed at the other end rotatably supported by the outer shell, and the outer shell and the main rotation. A cylindrical secondary rotating body provided rotatably with respect to the body and having a wall portion positioned between the outer shell and the main rotating body, passing through the inside of the main rotating body from the supply port of the main rotating body A temperature difference is imparted to the gas so as to cause convection of the gas so as to pass through the one flow path to the discharge port and the other flow path from the discharge port of the main rotor to the supply port through the outside of the main rotor. In the convection temperature difference prime mover for obtaining power by rotating the main rotating body and the sub-rotating body by the convection of the gas,
Setting a turbine gas from the discharge port to the other end of the main rotating body is sprayed in a direction opposite to the outer circumferential direction of rotation of the main rotating body for imparting a rotational force to the main rotating body,
A plurality of receiving plates for receiving the gas injected from the turbine injection port are arranged along the circumferential direction on the inner periphery of the slave rotor,
The receiving plate is formed in a shape that causes the gas received by the receiving plate to flow toward the outer circumferential direction of the main rotor, and the gas is flowed to the outer periphery of the main rotor by the receiving plate. A convection temperature difference prime mover characterized in that a plurality of receiving bodies for receiving the convection are arranged in the circumferential direction .
上記タービンを、上記排出口に連通する流入口と、外周に開口する噴射口と、該噴射口から気体を噴射させるように流入口から噴射口まで気体をガイドするガイド通路とを備えて構成したことを特徴とする請求項5記載の対流温度差原動装置。The turbine is configured to include an inflow port communicating with the discharge port, an injection port that opens to the outer periphery, and a guide passage that guides the gas from the inflow port to the injection port so that the gas is injected from the injection port. The convection temperature difference prime mover according to claim 5 . 上記噴射口を外周に沿って等角度関係で複数連設し、該各噴射口毎に上記ガイド通路を設けたことを特徴とする請求項6記載の対流温度差原動装置。The convection temperature difference prime mover according to claim 6 , wherein a plurality of the injection ports are provided in an equiangular relationship along the outer periphery, and the guide passage is provided for each of the injection ports. 上記主回転体の回転数の増加に伴って噴射口を拡大し上記主回転体の回転数の減少に伴って噴射口を縮小する噴射口可変機構を設けたことを特徴とする請求項6または7記載の対流温度差原動装置。 Claim 6 or, characterized in that a jet orifice varying mechanism to reduce the main rotary body with an increase in the rotational speed of the expanding jet port injection port with decreasing rotational speed of the main rotating body 7. The convection temperature difference prime mover according to item 7 . 上記主回転体及び従回転体を、一端側回転体と他端側回転体とに分割し、かつ、該一端側回転体と他端側回転体との分割端部同士が軸方向に直交する方向に相対変移可能になるように分割したことを特徴とする請求項5,6,7または8記載の対流温度差原動装置。The main rotating body and the secondary rotating body are divided into one end side rotating body and the other end side rotating body, and the divided end portions of the one end side rotating body and the other end side rotating body are orthogonal to each other in the axial direction. 9. The convection temperature difference prime mover according to claim 5 , wherein the convection temperature difference prime mover is divided so as to be capable of relative displacement in the direction. 上記一端側回転体及び他端側回転体のいずれか一方をいずれか他方に対して小径に形成するとともに、該一端側回転体と他端側回転体との分割端部に互いに重畳する重畳部を設け、該一端側回転体及び他端側回転体の重畳部間にクッション部材を介装したことを特徴とする請求項9記載の対流温度差原動装置。One of the one-end-side rotator and the other-end-side rotator is formed with a small diameter with respect to the other, and the overlapping portion overlaps the divided end portion of the one-end-side rotator and the other-end-side rotator The convection temperature difference prime mover according to claim 9 , wherein a cushion member is interposed between overlapping portions of the one end side rotating body and the other end side rotating body. 上記外郭に一端が閉塞され他端に開放口を有した管状の支軸を設け、該支軸に対して上記主回転体及び従回転体の一端及び他端を軸支し、該支軸の主回転体に臨む管壁に液体が吐出される多数の吐出口を形成し、上記支軸の開放口に接続される注入口を有するとともに上記外郭に回収口を有し上記注入口から支軸内を通って吐出口から主回転体内に噴出されて該主回転体内の気体を冷却した後上記タービンを通ってくる液体を上記回収口から再び上記注入口に導く液体の液体循環管路を設け、該液体循環管路の途中に該液体を冷却する冷却部を設け、
上記外郭の一端に吹出口を有し他端に戻り口を有した上記気体が循環可能な気体循環管路を設け、該気体循環管路の途中に循環する気体を加温する加温部を設け、
上記従回転体の内壁に上記吹出口からの気体を一端側入口から他端側出口に流す通風路を設け、該通風路の他端側出口から流出した高温の気体が他方流路を通るとともに、上記一方通路を通り該一方通路で上記液体によって冷却されてタービンに至るようにしたことを特徴とする請求項5,6,7,8,9または10記載の対流温度差原動装置。
A tubular support shaft having one end closed on the outer shell and an open port on the other end is provided, and one end and the other end of the main rotating body and the secondary rotating body are supported on the support shaft. A plurality of discharge ports through which liquid is discharged is formed on the tube wall facing the main rotating body, and has an injection port connected to the open port of the support shaft and a recovery port in the outer shell, and the support shaft from the injection port. There is provided a liquid circulation line for the liquid that is jetted from the discharge port into the main rotor through the inside and cools the gas in the main rotor, and then guides the liquid passing through the turbine from the recovery port to the injection port again. , A cooling unit for cooling the liquid is provided in the middle of the liquid circulation conduit,
A gas circulation pipe capable of circulating the gas having a blowout port at one end of the outer shell and a return port at the other end is provided, and a heating unit for heating the gas circulating in the gas circulation pipe is provided. Provided,
A ventilation path is provided on the inner wall of the secondary rotor to allow the gas from the blowout port to flow from the one end side inlet to the other end side outlet, and the hot gas flowing out from the other end side outlet of the ventilation path passes through the other channel. The convection temperature difference prime mover according to claim 5, 6, 7, 8, 9 or 10 , wherein the convection temperature difference prime mover passes through the one passage and is cooled by the liquid in the one passage to reach the turbine.
上記通風路を上記従回転体の内壁に沿って多数列設したことを特徴とする請求項11記載の対流温度差原動装置。The convection temperature difference prime mover according to claim 11 , wherein a plurality of the ventilation paths are arranged along the inner wall of the secondary rotor. 上記通風路の上記主回転体側の壁部を山形状に形成し、上記従回転体の内壁に沿って該山形状の壁部が連続するように形成したことを特徴とする請求項12記載の対流温度差原動装置。The walls of the main rotor side of the ventilation passage is formed in a mountain shape, according to claim 12, wherein the formed as a wall portion of該山shape along the inner wall of the sub rotating body is continuous Convection temperature difference prime mover. 上記支軸に形成された液体の吐出口を液体が上記主回転体の回転方向に向けて吐出噴射される形状に形成し、上記主回転体の内壁に上記吐出口から吐出噴射される液体を受ける複数の受け部材を周方向に沿って列設したことを特徴とする請求項11,12または13記載の対流温度差原動装置。The liquid discharge port formed on the support shaft is formed in a shape in which liquid is discharged and ejected in the rotation direction of the main rotor, and the liquid discharged and ejected from the discharge port on the inner wall of the main rotor. The convection temperature difference prime mover according to claim 11 , wherein a plurality of receiving members are arranged along the circumferential direction. 上記主回転体の供給口を、供給される気体が該主回転体の回転方向に向けて流進される形状に形成し、上記主回転体の内壁に上記供給口から供給される気体を受ける複数の受け部材を周方向に沿って列設したことを特徴とする請求項11,12,13または14記載の対流温度差原動装置。The supply port of the main rotor is formed in a shape in which the supplied gas flows in the direction of rotation of the main rotor, and the gas supplied from the supply port is received on the inner wall of the main rotor. The convection temperature difference prime mover according to claim 11, 12, 13, or 14, wherein a plurality of receiving members are arranged along the circumferential direction. 上記液体を潤滑能力のあるオイルで構成し、上記主回転体の主回転軸の軸受部及び上記従回転体の従回転軸の軸受部に該液体を潤滑油として供給するオイル通路を設けたことを特徴とする請求項11,12,13,14または15記載の対流温度差原動装置。The liquid is composed of oil having lubricating ability, and an oil passage is provided for supplying the liquid as lubricating oil to the bearing portion of the main rotating shaft of the main rotor and the bearing portion of the slave rotating shaft of the slave rotor. The convection temperature difference prime mover according to claim 11, 12, 13, 14, or 15 . 上記主回転体の一端及び他端の少なくともいずれか一方に、上記支軸に回転可能に挿通される管状の主回転軸を設け、上記従回転体に該主回転軸に回転可能に挿通される管状の従回転軸を設け、上記主回転軸及び従回転軸の両方から動力を得る動力取得機構を設けたことを特徴とする請求項5,6,7,8,9,10,11,12,13,14,15または16記載の対流温度差原動装置。At least one of the one end and the other end of the main rotating body is provided with a tubular main rotating shaft that is rotatably inserted into the support shaft, and is rotatably inserted into the main rotating shaft. claim the Supporting axis of rotation of the tubular is provided, characterized in that a power acquisition mechanism for obtaining power from both of the main rotary shaft and secondary rotary shaft 5,6,7,8,9,10,11,12 , 13, 14, 15 or 16 Convection temperature difference prime mover. 上記動力取得機構を、上記主回転軸に設けられる主ギアと、上記従回転軸に設けられる従ギアと、該主ギア及び従ギアを連動させる連動ギア機構と、上記主ギア,従ギア及び連動ギア機構の少なくともいずれか1つに連係して駆動される発電機とを備えて構成したことを特徴とする請求項17記載の対流温度差原動装置。The power acquisition mechanism includes a main gear provided on the main rotation shaft, a slave gear provided on the slave rotation shaft, an interlocking gear mechanism that interlocks the main gear and the slave gear, and the main gear, the slave gear, and the interlocking. The convection temperature difference prime mover according to claim 17, comprising a generator driven in linkage with at least one of the gear mechanisms. 上記主回転体及び従回転体の始回転時に、該始回転を補助するスタート手段を設けたことを特徴とする請求項5,6,7,8,9,10,11,12,13,14,15,16,17または18記載の対流温度差原動装置。The start means for assisting the initial rotation at the time of the initial rotation of the main rotating body and the sub-rotating body is provided, 5, 6, 7, 8, 9, 10, 11, 12 , 13, 14 , 15, 16, 17 or 18 Convection temperature difference prime mover. 上記主回転体及び従回転体の始回転時に、該始回転を補助するスタート手段を設け、該スタート手段を、上記従回転体の一端もしくは他端の少なくともいずれか一方に設けられ上記液体の噴射により該従回転体を回転させる回転ファンと、上記液体循環管路から分岐した分岐管から供給された液体を高圧状態で蓄液する蓄液タンクと、上記外郭に設けられ蓄液タンクの液体を始回転時に上記回転ファンに向けて噴射する噴射ノズルとを備えて構成したことを特徴とする請求項11,12,13,14,15または 16記載の対流温度差原動装置。A start means for assisting the initial rotation at the time of the initial rotation of the main rotor and the sub-rotator is provided, and the start means is provided at at least one of one end or the other end of the sub-rotator and ejects the liquid. A rotating fan that rotates the follower rotor, a liquid storage tank that stores liquid supplied from a branch pipe branched from the liquid circulation pipe in a high pressure state, and a liquid storage tank that is provided in the outer shell. The convection temperature difference prime mover according to claim 11, 12, 13, 15, 15 or 16 , further comprising an injection nozzle that injects toward the rotary fan at the time of initial rotation. 上記蓄液タンクを上記外郭の外側周囲に付帯させたことを特徴とする請求項20記載の対流温度差原動装置。21. The convection temperature difference prime mover according to claim 20, wherein the liquid storage tank is attached to the outer periphery of the outer shell.
JP2001061371A 2001-03-06 2001-03-06 Convection temperature difference prime mover Expired - Fee Related JP3914393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001061371A JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001061371A JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Publications (2)

Publication Number Publication Date
JP2002256882A JP2002256882A (en) 2002-09-11
JP3914393B2 true JP3914393B2 (en) 2007-05-16

Family

ID=18920675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001061371A Expired - Fee Related JP3914393B2 (en) 2001-03-06 2001-03-06 Convection temperature difference prime mover

Country Status (1)

Country Link
JP (1) JP3914393B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005296024A1 (en) 2004-10-12 2006-04-27 Guy Silver Method and system for generation of power using stirling engine principles
JPWO2006070497A1 (en) * 2004-12-28 2008-06-12 阿部 俊廣 Convection temperature difference prime mover
WO2007010612A1 (en) * 2005-07-22 2007-01-25 Toshihiro Abe Power generating apparatus
US9038365B2 (en) * 2007-12-17 2015-05-26 James Michael Fichera Thrust generator
EP2241729A1 (en) * 2009-04-08 2010-10-20 Yoav Cohen Installation designed to convert environmental thermal energy into useful energy
PL389187A1 (en) * 2009-10-02 2011-04-11 Andrzej Rychert Pressure-thermal drive
JP6042963B1 (en) * 2015-12-04 2016-12-14 阿部 俊廣 Temperature difference energy converter
CA3241003A1 (en) * 2021-12-13 2023-06-22 Scinet Company Ltd. Coaxial circulation-type power generation device and coaxial circulation-type power generatation method

Also Published As

Publication number Publication date
JP2002256882A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP3914393B2 (en) Convection temperature difference prime mover
CN104838567B (en) The method of slewing, motor and cooling motor
EP1427926B1 (en) Rotary heat engine
JP5301460B2 (en) Rotating device
KR101200089B1 (en) voltex tube
RU2477379C2 (en) Method of gas turbine engine cooling (versions), method of controlling gas turbine engine, gas turbine engine and its rotor
US7318553B2 (en) Apparatus and method for heating fluids
CN110118506A (en) Heat-exchange device
CN104963774B (en) A kind of turbine
KR100990927B1 (en) Disc type fluid heating device
US20070151246A1 (en) Thermal combustion engine which converts thermal energy into mechanical energy and use thereof
CN109322765A (en) Based on the high thrust enclosed expansion cycles rocket engine for improving expansion deflection nozzle
CN102007362B (en) A device and method for transport heat
CN114182563A (en) Paper web heating system and drying method thereof
KR101646765B1 (en) Circulation rotary heating equipment
US8562333B2 (en) Rotational molding machine and method
WO2005003641A9 (en) Apparatus and method for heating fluids
WO2012047116A2 (en) Steam engine
CN114197237A (en) Heating system for moving paper web and drying method thereof
CN108988578B (en) A kind of virtual synchronous power generation board
KR200234367Y1 (en) Boiler to greatest regenarate capacity by the round type rotor
WO2007010612A1 (en) Power generating apparatus
CN102235179A (en) Jet thermal energy and nuclear energy conversion engine with rotary cylinder piston
JPWO2006070497A1 (en) Convection temperature difference prime mover
CA2729455A1 (en) Rotational molding machine and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees