JPWO2006070497A1 - Convection temperature difference prime mover - Google Patents

Convection temperature difference prime mover Download PDF

Info

Publication number
JPWO2006070497A1
JPWO2006070497A1 JP2006550596A JP2006550596A JPWO2006070497A1 JP WO2006070497 A1 JPWO2006070497 A1 JP WO2006070497A1 JP 2006550596 A JP2006550596 A JP 2006550596A JP 2006550596 A JP2006550596 A JP 2006550596A JP WO2006070497 A1 JPWO2006070497 A1 JP WO2006070497A1
Authority
JP
Japan
Prior art keywords
inner cylinder
gas
temperature difference
cylinder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006550596A
Other languages
Japanese (ja)
Inventor
阿部 俊廣
俊廣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2006070497A1 publication Critical patent/JPWO2006070497A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

対流温度差原動装置S1は、外郭1に回転可能に軸支され、軸方向一端に気体の供給口11が形成され、他端に気体の排出口12が形成された内筒10と、外郭1及び内筒10に対して回転可能に設けられる外筒20と、供給口11から流入した気体により内筒10に回転力を付与する動翼40と、内筒10の内部に冷却液体を散布するとともに冷却液体を循環させる冷却液体循環管路80と、内筒10と外筒20の間に加温液体を散布するとともに加温液体を循環させる加温液体循環管路90とを備え、気体が、供給口11から内筒10の内部を通って排出口12に至る一方流路Ra及び排出口12から内筒10の外側を通って供給口11に至る他方流路Rbを通るように、気体に温度差を付与して気体の対流を生じさせる。The convection temperature difference prime mover S1 is rotatably supported by the outer shell 1, and has an inner cylinder 10 in which a gas supply port 11 is formed at one end in the axial direction and a gas discharge port 12 is formed at the other end. The outer cylinder 20 provided to be rotatable with respect to the inner cylinder 10, the moving blade 40 that applies a rotational force to the inner cylinder 10 by the gas flowing in from the supply port 11, and the cooling liquid is sprayed inside the inner cylinder 10. And a cooling liquid circulation line 80 for circulating the cooling liquid, and a heating liquid circulation line 90 for spraying the heating liquid between the inner cylinder 10 and the outer cylinder 20 and circulating the heating liquid. The gas passes from the supply port 11 through the inside of the inner cylinder 10 to the discharge port 12 and through the other channel Rb from the discharge port 12 to the supply port 11 through the outside of the inner tube 10. A temperature difference is imparted to the gas to cause gas convection.

Description

本発明は、自然界にある例えば海水,雪,地下水や地熱等の熱エネルギー、工業用の廃熱エネルギー、あるいは廃棄物を燃焼させて得られる熱エネルギー等の各種熱エネルギーから動力を得ることのできる対流温度差原動装置に係り、特に、内部で気体の対流を発生させ、この対流により動力を発生させる対流温度差原動装置に関する。   The present invention can obtain power from various kinds of heat energy such as seawater, snow, groundwater, geothermal heat, industrial waste heat energy, or heat energy obtained by burning waste. The present invention relates to a convection temperature difference prime mover, and more particularly to a convection temperature difference prime mover that generates gas convection inside and generates power by this convection.

従来、この種の対流温度差原動装置としては、本願出願人の研究に係るものがある。例えば、特許文献1(特開2002−256882号公報)に記載された対流温度差原動装置が知られている。   Conventionally, as this type of convection temperature difference prime mover, there is one related to the research of the present applicant. For example, a convection temperature difference prime mover described in Patent Document 1 (Japanese Patent Laid-Open No. 2002-256882) is known.

この対流温度差原動装置Saは、図37に示すように、密封された円筒状の外郭200と、外郭の中心軸に沿って設けられた支軸201と、支軸201に回転可能に軸支され、軸方向一端に気体の供給口202aが形成され、他端中央に気体の排出口203が形成された内筒204と、外郭200及び内筒204に対して回転可能に設けられ、壁部が外郭200と内筒204との間に位置する外筒205とを備えている。対流温度差原動装置Saは、気体が、内筒204の供給口202aから内筒204の内部を通って排出口203に至る一方流路及び内筒204の排出口203から内筒204の外側を通って供給口202aに至る他方流路を通るように、気体に温度差を付与して気体の対流を生じさせる。対流温度差原動装置Saは、上記気体の対流により内筒204及び外筒205を回転させ、動力取得機構206aによって動力を得て発電する。
内筒204及び外筒205は、支軸201に対して一端及び他端が軸支されている。
また、内筒204及び外筒205は、一端側回転体204a,205aと他端側回転体204b,205bとに分割形成されている。一端側回転体204a,205aと他端側回転体204b,205bとの分割端部は、分割端部どうしが軸方向に直交する方向に相対変移可能、かつ、相対回転可能に連結されている。
内筒204の他端には、タービン206が設けられている。このタービン206は、排出口203からの気体を内筒204の外側に内筒204の回転方向に対し逆向きに噴射させて、内筒204に回転力を付与する、
As shown in FIG. 37, the convection temperature difference prime mover Sa includes a sealed cylindrical outer shell 200, a support shaft 201 provided along the central axis of the outer shell, and a shaft support rotatably on the support shaft 201. An inner cylinder 204 in which a gas supply port 202a is formed at one end in the axial direction and a gas discharge port 203 is formed in the center of the other end; Is provided with an outer cylinder 205 positioned between the outer shell 200 and the inner cylinder 204. In the convection temperature difference driving device Sa, the gas flows from the supply port 202a of the inner cylinder 204 to the discharge port 203 through the inside of the inner cylinder 204 and the outside of the inner cylinder 204 from the discharge port 203 of the inner cylinder 204. A temperature difference is imparted to the gas to cause convection of the gas so as to pass through the other channel that passes through the supply port 202a. The convection temperature difference prime mover Sa rotates the inner cylinder 204 and the outer cylinder 205 by the convection of the gas, and obtains power by the power acquisition mechanism 206a to generate electric power.
One end and the other end of the inner cylinder 204 and the outer cylinder 205 are pivotally supported with respect to the support shaft 201.
The inner cylinder 204 and the outer cylinder 205 are divided into one-end-side rotators 204a and 205a and other-end-side rotators 204b and 205b. The split end portions of the one-end-side rotators 204a and 205a and the other-end-side rotators 204b and 205b are coupled so that the split end portions can be relatively shifted in the direction perpendicular to the axial direction and can be relatively rotated.
A turbine 206 is provided at the other end of the inner cylinder 204. The turbine 206 injects the gas from the discharge port 203 to the outside of the inner cylinder 204 in the direction opposite to the rotation direction of the inner cylinder 204, thereby applying a rotational force to the inner cylinder 204.

また、この対流温度差原動装置Saには、液体循環管路207が設けられている。液体循環管路207は、支軸201の供給口202bに接続される注入口208を有し、さらに、外郭200に回収口209を有している。液体が、注入口208から支軸201内を通り、流出口210から内筒204内に噴出することにより、内筒204内の気体が冷却される。その後、液体循環管路207は、タービン206を通って隔壁211に至る液体を、回収口209から回収し、再び注入口208に導く。そして、この液体循環管路207の途中には、液体を冷却する冷却部212が設けられている。   The convection temperature difference prime mover Sa is provided with a liquid circulation line 207. The liquid circulation conduit 207 has an injection port 208 connected to the supply port 202 b of the support shaft 201, and further has a recovery port 209 in the outer shell 200. The liquid passes through the support shaft 201 from the inlet 208 and is jetted into the inner cylinder 204 from the outlet 210, whereby the gas in the inner cylinder 204 is cooled. Thereafter, the liquid circulation line 207 recovers the liquid that reaches the partition wall 211 through the turbine 206 from the recovery port 209 and guides it to the injection port 208 again. A cooling unit 212 that cools the liquid is provided in the middle of the liquid circulation conduit 207.

さらにまた、気体が循環可能な気体循環管路215が設けられている。この気体循環管路215は、外郭200の一端に吹出口213を有し、さらに、他端に戻り口214を有している。そして、気体循環管路215の途中には、循環する気体を加温する加温部216が設けられている。また、外筒205の一端側回転体205aの内壁には、吹出口213からの気体を一端側入口217aから他端側出口217bに流す通風路217が多数列設されている。これにより、通風路217の他端側出口217bから流出した高温の気体は、内筒204と外筒205の間の空間を通るとともに、内筒204の一方流路を通り、一方流路で液体によって冷却されてタービン206に至る。   Furthermore, a gas circulation conduit 215 through which gas can be circulated is provided. The gas circulation conduit 215 has a blower outlet 213 at one end of the outer shell 200 and further has a return port 214 at the other end. A heating unit 216 for heating the circulating gas is provided in the middle of the gas circulation conduit 215. In addition, on the inner wall of the one end side rotating body 205a of the outer cylinder 205, a large number of air passages 217 through which the gas from the blower outlet 213 flows from the one end side inlet 217a to the other end side outlet 217b are arranged. Thereby, the high-temperature gas flowing out from the other end side outlet 217b of the ventilation path 217 passes through the space between the inner cylinder 204 and the outer cylinder 205, passes through one flow path of the inner cylinder 204, and is liquid in the one flow path. Is cooled to reach the turbine 206.

この対流温度差原動装置Saが発電するとき、冷却液体は、支軸201の供給口202bから支軸201内に供給され、気体は、吹出口213から吹き出される。この際、冷却液体は、支軸201内を通過し、流出口210から内筒204内に流出し、タービン206を通って回収口209に導かれ、回収口209から液体循環管路207を通って再び注入口208に導かれる。また、気体は、一端側回転体205aの通風路217の一端側入口217aから流入し、他端側出口217bから流出する。この流出した高温の気体は、内筒204と外筒205との間の他方流路を通り、続いて、内筒204の一方流路を通り、一方流路で液体によって冷却されてタービン206に至る。それから、上記気体は、戻り口214から気体循環管路215を通って、再び吹出口213に導かれる。この気体循環管路215の途中では、冷却された気体が加温部216により加温される。
これにより、内筒204の供給口202aから内筒204の内部を通って排出口203に至る一方流路及び内筒204の排出口203から内筒204の外側を通って供給口202に至る他方流路を通る、気体の対流が生じる。そして、この対流によりタービン206を介して内筒204及び外筒205は、同方向に回転する。
このタービン206によって、気体は、内筒204の回転周方向に対し逆向きに噴射させれ、内筒204及び外筒205が回転する。そして、動力取得機構206aは、内筒204及び外筒205の両方から動力を得て発電する。
When the convection temperature difference prime mover Sa generates power, the cooling liquid is supplied into the support shaft 201 from the supply port 202b of the support shaft 201, and the gas is blown out from the air outlet 213. At this time, the cooling liquid passes through the support shaft 201, flows out from the outlet 210 into the inner cylinder 204, is guided to the recovery port 209 through the turbine 206, and passes through the liquid circulation line 207 from the recovery port 209. Then, it is guided to the inlet 208 again. Moreover, gas flows in from the one end side inlet 217a of the ventilation path 217 of the one end side rotary body 205a, and flows out from the other end side outlet 217b. The high temperature gas that has flowed out passes through the other flow path between the inner cylinder 204 and the outer cylinder 205, then passes through one flow path of the inner cylinder 204, and is cooled by the liquid in the one flow path to the turbine 206. It reaches. Then, the gas is led from the return port 214 through the gas circulation line 215 to the blowout port 213 again. In the middle of the gas circulation conduit 215, the cooled gas is heated by the heating unit 216.
As a result, the one flow path from the supply port 202a of the inner cylinder 204 through the inside of the inner cylinder 204 to the discharge port 203 and the other of the discharge path 203 from the inner cylinder 204 through the outside of the inner cylinder 204 to the supply port 202. Gas convection occurs through the flow path. Then, due to this convection, the inner cylinder 204 and the outer cylinder 205 rotate in the same direction via the turbine 206.
By this turbine 206, the gas is injected in the direction opposite to the rotational circumferential direction of the inner cylinder 204, and the inner cylinder 204 and the outer cylinder 205 rotate. The power acquisition mechanism 206a generates power by obtaining power from both the inner cylinder 204 and the outer cylinder 205.

特開2002−256882号公報JP 2002-256882 A

ところで、このような対流温度差原動装置Saは、内筒204及び外筒205を回転させるための気体を、いったん外筒205の外部にある気体循環管路215の加温部216で加温してから、通風路217で外筒205の下側から吹き出させる。このため、他方流路を流れる気体の経路が複雑になり、気体の対流のエネルギーにロスが生じ、内筒204及び外筒205に上記エネルギーを効率よく付与できないという問題があった。   By the way, such a convection temperature difference prime mover Sa heats the gas for rotating the inner cylinder 204 and the outer cylinder 205 once by the heating unit 216 of the gas circulation pipe 215 outside the outer cylinder 205. Then, the air is blown out from the lower side of the outer cylinder 205 through the ventilation path 217. For this reason, the path of the gas flowing through the other flow path becomes complicated, a loss occurs in the energy of the gas convection, and there is a problem that the energy cannot be efficiently applied to the inner cylinder 204 and the outer cylinder 205.

本発明は上記の問題点に鑑みてなされたもので、他方流路を通る気体を内筒と外筒の間の空間で加温できるようにして、気体の経路を簡単にし、気体からの対流のエネルギーを効率よく内筒及び外筒に付与できるようにした対流温度差原動装置を提供することを目的とする。   The present invention has been made in view of the above-described problems. The gas passing through the other channel can be heated in the space between the inner cylinder and the outer cylinder, the gas path is simplified, and convection from the gas is performed. It is an object of the present invention to provide a convection temperature difference prime mover that can efficiently apply the energy of 1 to the inner cylinder and the outer cylinder.

このような目的を達成するための本発明の対流温度差原動装置は、外郭と、該外郭に回転可能に軸支され、軸方向一端に気体の供給口が形成され、他端に気体の排出口が形成された内筒と、上記外郭及び内筒に対して回転可能に設けられ、壁部が外郭と内筒との間に位置する外筒とを備え、気体が、上記内筒の供給口から該内筒の内部を通って排出口に至る一方流路及び該内筒の排出口から該内筒の外側を通って供給口に至る他方流路を通るように、上記気体に温度差を付与して気体の対流を生じさせ、該気体の対流により上記内筒及び外筒を回転させて動力を得る対流温度差原動装置において、上記内筒に、上記供給口から流入した上記気体を受けて該内筒に回転力を付与する動翼を設け、上記内筒内に冷却液体を散布して、上記一方流路を通る気体を冷却し、かつ、該冷却液体を循環させる冷却液体循環管路を設け、該冷却液体循環管路の途中に、該冷却液体を冷却する冷却部を設け、上記内筒と外筒との間に加温液体を散布して、上記他方流路を通る気体を加温し、かつ、該加温液体を循環させる加温液体循環管路を設け、該加温液体循環管路の途中に、該加温液体を加温する加温部を設けた構成としてある。   In order to achieve such an object, the convective temperature difference prime mover of the present invention is supported by an outer shell and a rotatable shaft on the outer shell, a gas supply port is formed at one end in the axial direction, and a gas discharge port is formed at the other end. An inner cylinder in which an outlet is formed, an outer cylinder that is provided rotatably with respect to the outer shell and the inner cylinder, and a wall portion is located between the outer shell and the inner cylinder, and gas is supplied to the inner cylinder. The temperature difference between the gas so that it passes through one flow path from the opening to the discharge port through the inside of the inner cylinder and the other flow path from the discharge port of the inner cylinder to the supply port through the outside of the inner cylinder. In the convection temperature difference prime mover for obtaining power by rotating the inner cylinder and the outer cylinder by the gas convection, the gas flowing from the supply port is supplied to the inner cylinder. A rotor blade that receives and applies a rotational force to the inner cylinder, sprays a cooling liquid into the inner cylinder, and A cooling liquid circulation pipe for cooling the gas passing therethrough and circulating the cooling liquid is provided, and a cooling unit for cooling the cooling liquid is provided in the middle of the cooling liquid circulation pipe, and the inner cylinder and the outer cylinder A warming liquid is sprayed between the two channels to warm the gas passing through the other flow path, and a warming liquid circulation conduit for circulating the warming liquid is provided. Further, a heating unit for heating the heating liquid is provided.

この対流温度差原動装置によれば、冷却液体循環管路によって、内筒内に冷却液体が散布される。冷却液体は、一方流路を流通する気体を冷却し、この気体により加温される。そして、冷却液体循環管路の途中で、冷却部により再び冷却される。そのため、内筒内に散布される冷却液体は、再び温度が低い状態になり、一方流路の気体の冷却状態が良好になる。
また、加温液体循環管路によって、内筒と外筒との間に加温液体が散布される。加温液体は、他方流路の気体の加温し、この気体より冷却される。そして、加温液体循環管体の途中で、加温液体は加温部により再び加温させられる。そのため、内筒と外筒との間に散布される加温液体は、再び、温度が高い状態になり、他方流路の気体の加温状態が良好になる。
According to this convection temperature difference prime mover, the cooling liquid is sprayed into the inner cylinder by the cooling liquid circulation conduit. The cooling liquid cools the gas flowing through the one flow path and is heated by this gas. And it cools again by the cooling part in the middle of the cooling liquid circulation conduit. Therefore, the cooling liquid sprayed in the inner cylinder is again in a low temperature state, and the cooling state of the gas in the flow path is improved.
Further, the warming liquid is sprayed between the inner cylinder and the outer cylinder by the warming liquid circulation conduit. The warming liquid warms the gas in the other channel and is cooled by this gas. Then, in the middle of the heated liquid circulation tube, the heated liquid is heated again by the heating unit. Therefore, the warming liquid sprayed between the inner cylinder and the outer cylinder is again in a high temperature state, and the gas warming state of the other channel is improved.

これにより、内筒の供給口から内筒の内部を通って排出口に至る一方流路及び内筒の排出口から内筒の外側を通って供給口に至る他方流路を通る気体の対流が生じる。そして、この対流により、気体が内筒の動翼に作用し、内筒及び外筒が回転する。
この際、他方流路を流通する気体は、加温液体により外筒と内筒の間の空間で直接加温される。そのため、他方流路の気体は、外筒の外部に出ることなく加温されるので、気体の経路が簡単になる。これにより、気体の対流におけるエネルギーのロスが低減されるので、この対流のエネルギーが、回転力として内筒及び外筒に効率よく付与される。
As a result, gas convection flows through the one flow path from the supply port of the inner cylinder through the inside of the inner cylinder to the discharge port and the other flow path from the discharge port of the inner cylinder to the supply port through the outside of the inner cylinder. Arise. And by this convection, gas acts on the moving blade of an inner cylinder, and an inner cylinder and an outer cylinder rotate.
At this time, the gas flowing through the other flow path is directly heated in the space between the outer cylinder and the inner cylinder by the heating liquid. For this reason, the gas in the other channel is heated without going out of the outer cylinder, so that the gas path is simplified. Thereby, since the energy loss in the convection of gas is reduced, the energy of this convection is efficiently given to the inner cylinder and the outer cylinder as a rotational force.

また、本発明の対流温度差原動装置は、上記冷却液体循環管路が、一端側に、上記外郭に設けられた冷却液体の流入口を有し、他端側に、上記内筒に該冷却液体を散布する多数の流出口を有し、さらに、上記内筒と外筒の他端を回転可能にする一方支軸,上記一方支軸の流入口に接続される注入口,上記一方流路の気体を冷却した後上記内筒の排出口から流出した冷却流体を回収する回収口,及び,上記回収口から再び上記注入口に冷却液体を循環させる冷却液体循環管体を備え、上記加温液体循環管路が、一端側に、上記外郭に設けられ加温液体の流入口を有し、他端側に、流出口を有し、さらに、上記内筒と外筒の一端を軸支する他方支軸,上記内筒の外側を覆い、該内筒との間に上記他方支軸の流出口からの加温液体が流通可能な流通路を形成し、かつ、上記外筒に向けて加温液体を噴射する多数の噴射口が形成された筒体,上記他方支軸の流入口に接続される注入口,上記筒体の噴射口から噴射された加温液体を回収する回収口,及び,上記回収口から再び上記注入口に加温液体を循環させる加温液体循環管体を備えた構成としてある。
このようにすると、一方支軸が冷却液体循環管路の一部として兼用され、他方支軸が加温液体循環管路の一部として兼用されるので、これらの液体を噴出する専用の管路を別途設ける場合と比較して、構造が簡単になる。そのため、一方流路と他方流路における気体の対流に悪影響が発生せず、気体の対流におけるエネルギーのロスが低減され、この対流のエネルギーが、回転力として内筒及び外筒に効率よく付与される。
Further, in the convection temperature difference prime mover according to the present invention, the cooling liquid circulation conduit has a cooling liquid inlet provided in the outer shell on one end side, and the cooling pipe is connected to the inner cylinder on the other end side. A plurality of outlets for spraying a liquid, and the other end of the inner cylinder and the outer cylinder being rotatable, one support shaft, an inlet connected to the inlet of the one support shaft, and the one flow path A cooling port for recovering the cooling fluid flowing out from the discharge port of the inner cylinder after cooling the gas, and a cooling liquid circulation tube for circulating the cooling liquid from the recovery port to the inlet again. A liquid circulation pipe is provided at one end side of the outer shell and has an inflow port for the heated liquid, has an outflow port at the other end side, and further supports one end of the inner cylinder and the outer cylinder. A flow that covers the outside of the other support shaft and the inner cylinder, and allows the heated liquid to flow from the outlet of the other support shaft to and from the inner cylinder And a cylinder formed with a plurality of injection ports for injecting the heated liquid toward the outer cylinder, an injection port connected to the inlet of the other spindle, and an injection port of the cylinder A recovery port for recovering the jetted warming liquid and a warming liquid circulation tube for circulating the warming liquid from the recovery port to the inlet again are provided.
In this case, since one support shaft is also used as a part of the cooling liquid circulation conduit and the other support shaft is also used as a part of the warming liquid circulation conduit, a dedicated conduit for ejecting these liquids is used. Compared with the case where the is separately provided, the structure becomes simple. Therefore, there is no adverse effect on gas convection in the one channel and the other channel, energy loss in gas convection is reduced, and this convection energy is efficiently applied to the inner and outer cylinders as rotational force. The

また、本発明の対流温度差原動装置は、上記内筒に、上記一方支軸又は他方支軸に回転可能に挿通される管状の内筒回転軸を設け、上記外筒に、該内筒回転軸と同軸の管状の外筒回転軸を設け、上記内筒回転軸及び外筒回転軸の両方から動力を得る動力取得機構を設けた構成としてある。
このようにすると、動力取得機構により内筒と外筒の両方の回転力を動力として得ることができ、エネルギーの変換効率が極めて良くなる。
In the convection temperature difference driving device of the present invention, the inner cylinder is provided with a tubular inner cylinder rotation shaft that is rotatably inserted into the one support shaft or the other support shaft, and the outer cylinder is provided with the inner cylinder rotation shaft. A tubular outer cylinder rotating shaft coaxial with the shaft is provided, and a power acquisition mechanism for obtaining power from both the inner cylinder rotating shaft and the outer cylinder rotating shaft is provided.
If it does in this way, the rotational force of both an inner cylinder and an outer cylinder can be obtained as motive power by a motive power acquisition mechanism, and the conversion efficiency of energy will become very good.

また、本発明の対流温度差原動装置は、上記動力取得機構が、上記内筒回転軸に設けられる第一原動ギア,上記外筒回転軸に設けられる第二原動ギア,第一原動ギアに噛合する第一従動ギア,第二原動ギアに噛合する第二従動ギア,第一従動ギアと第二従動ギアが取り付けられるシャフト,及び,該シャフトに連係して駆動される発電機を備えた構成としてある。これにより、ギア機構という確実な機構によって、動力を電力として得ることができる。   In the convection temperature difference prime mover according to the present invention, the power acquisition mechanism meshes with a first prime gear provided on the inner cylinder rotary shaft, a second prime gear provided on the outer cylinder rotary shaft, and a first prime gear. A first driven gear, a second driven gear meshing with the second driving gear, a shaft to which the first driven gear and the second driven gear are attached, and a generator driven in conjunction with the shaft is there. Thereby, motive power can be obtained as electric power by a reliable mechanism called a gear mechanism.

また、本発明の対流温度差原動装置は、上記外筒の一端側の内周に、上記供給口に設けた動翼に気体を導くガイド翼を設け、上記動翼が、上記内筒の一端側に、該内筒の回転軸を中心に等角度関係で列設され、さらに、上記ガイド翼により導かれた気体を受ける面を有した複数のブレードを備え、上記ガイド翼が、上記動翼のブレードに対応させて等角度関係で列設された複数の導風板を備えた構成としてある。
このようにすると、ガイド翼は、他方流路の気体を導風板で受け、その流向を変更させる。そして、気体は、ブレードに流入し、動翼のブレードに衝止するとともに動翼の内周部に抜けて内筒の内部に流入する。そのため、動翼のブレードには、ガイド翼により圧縮されて遠心力が付与された気体が、ほぼ直角に衝止するので、動翼のブレードは気体の力を充分に受けることができる。したがって、気体のエネルギーを内筒の回転力に変換する変換効率が大幅に向上し、発電効率が向上する。また、この際、気体は、ブレード間でさらに圧縮されて、流速が極めて速くなるので、ブレードに衝止するエネルギーが高められ、対流のエネルギーが、回転力として内筒に効率よく付与される。
Further, the convection temperature difference prime mover of the present invention is provided with a guide vane for guiding gas to the moving blade provided at the supply port on the inner circumference of one end side of the outer cylinder, and the moving blade is one end of the inner cylinder. A plurality of blades arranged in an equiangular relationship around the rotation axis of the inner cylinder and having a surface for receiving the gas guided by the guide blades, the guide blades including the moving blades It is set as the structure provided with the several baffle plate arranged in an equiangular relationship corresponding to this blade.
If it does in this way, a guide blade will receive the gas of the other channel by a baffle plate, and will change the flow direction. Then, the gas flows into the blade, stops at the blade of the moving blade, escapes to the inner peripheral portion of the moving blade, and flows into the inner cylinder. Therefore, since the gas compressed by the guide blades and applied with the centrifugal force strikes the blade of the moving blade almost at right angles, the blade of the moving blade can sufficiently receive the gas force. Therefore, the conversion efficiency for converting gas energy into the rotational force of the inner cylinder is greatly improved, and the power generation efficiency is improved. Further, at this time, the gas is further compressed between the blades, and the flow velocity becomes extremely fast. Therefore, the energy for striking the blade is increased, and the convection energy is efficiently applied to the inner cylinder as a rotational force.

また、本発明の対流温度差原動装置は、上記導風板を、円周一方向に凹曲して形成し、該導風板の凹曲した面によって、上記供給口に流入する気体に遠心力を付与する構成としてある。
このようにすると、他方流路の気体は、各導風板の凹曲面に衝止し、遠心力が付与された状態で、気体の流向が変更される。そのため、動翼のブレードに衝止するエネルギーが高められ、対流のエネルギーが、回転力として内筒にさらに効率よく付与される。
Further, the convection temperature difference driving device according to the present invention is formed by bending the air guide plate in one circumferential direction, and a centrifugal force is applied to the gas flowing into the supply port by the concave surface of the air guide plate. Is provided.
If it does in this way, the gas of the other channel will stop on the concave curved surface of each baffle plate, and the flow direction of gas will be changed in the state where centrifugal force was given. For this reason, the energy for making contact with the blade of the rotor blade is increased, and the convection energy is more efficiently applied to the inner cylinder as a rotational force.

また、本発明の対流温度差原動装置は、上記内筒の他端の外方に、上記排出口から排出された気体を受けて該内筒に回転力を付与するとともに該排出口から排気された気体を上記他方流路の気体の流通方向に導く案内翼を設けた構成としてある。
このようにすると、一方流路を下降して排出口から排出された気体からも内筒に回転力を付与できるようになり、対流のエネルギーが、回転力として内筒にさらに効率よく付与される。また、案内翼が、排出口からの気体を他方流路の気体の流通方向に向けて導くので、気体が外筒の他端側に滞留しにくくなる。
Further, the convection temperature difference prime mover of the present invention receives the gas discharged from the discharge port on the outside of the other end of the inner tube, applies a rotational force to the inner tube, and is exhausted from the discharge port. The guide vanes for guiding the gas in the gas flow direction of the other channel are provided.
If it does in this way, it will become possible to give rotational force to an inner cylinder also from the gas which descended one flow path, and was discharged from the discharge port, and convection energy will be given to an inner cylinder more efficiently as rotational force. . Further, since the guide vanes guide the gas from the discharge port toward the gas flow direction of the other flow path, the gas is less likely to stay on the other end side of the outer cylinder.

また、本発明の対流温度差原動装置は、上記内筒の内部に、上記一方通路を通る気体及び冷却液体が通過可能な多孔質部材を設けた構成としてある。
このようにすると、多孔質部材によって、冷却液体が一方流路上に一時的に留まるので、一方流路を流通する気体との熱交換効率が向上する。
また、上記多孔質部材を、巻回されたシート状の金属製網とするとよい。このようにすると、冷却液体は、内筒の回転により遠心力が付与されて、網目を抜けて順次外側に移動し、内筒に至って内筒の内壁を流下する。これにより、多孔質部材の構造が簡単になる。
さらに、上記内筒の内周であって上記一方流路の供給口側に、滞留した気体を排出口側に押し込むフィンを設けたり、あるいは、上記一方支軸を、上記内筒と連係して回転可能とし、該一方支軸に、上記一方流路の供給口側に滞留した気体を排出口側に押し込むフィンを設けたりするとよい。このようにすると、供給口から流入し、内筒の一端側の内部に滞留しようとする気体が、フィンで排出口側に押し込まれるので、一方流路の気体の流れがスムーズになり、気体の対流状態が良好になる。
Moreover, the convection temperature difference prime mover according to the present invention has a configuration in which a porous member through which the gas passing through the one passage and the cooling liquid can pass is provided inside the inner cylinder.
If it does in this way, since a cooling liquid will stay temporarily on one flow path by a porous member, the heat exchange efficiency with the gas which distribute | circulates one flow path will improve.
The porous member may be a wound sheet-like metal net. If it does in this way, centrifugal force will be given by rotation of an inner cylinder, a cooling liquid will pass through a mesh, will move to an outside sequentially, will reach an inner cylinder, and will flow down the inner wall of an inner cylinder. This simplifies the structure of the porous member.
Further, a fin that pushes the retained gas into the discharge port side is provided on the supply port side of the one flow path on the inner periphery of the inner tube, or the one support shaft is linked to the inner tube. It is preferable that a fin that pushes the gas staying on the supply port side of the one flow path into the discharge port side may be provided on the one support shaft. In this way, the gas that flows in from the supply port and tries to stay in the one end side of the inner cylinder is pushed into the discharge port side by the fin, so that the gas flow in the one flow path becomes smooth, The convection state is improved.

上述したように、本発明の対流温度差原動装置は、内筒と外筒との間に加温液体を散布して、他方流路を通る気体を加温するとともに、加温液体を循環させる加温液体循環管路を設け、加温液体循環管路の途中に加温液体を加温する加温部を設けている。これにより、他方流路を流れる気体は、流出口から流出した加温液体により外筒と内筒の間の空間で直接加温される。そのため、他方流路の気体は、外筒の外部に出ることなく加温され、気体の経路が簡単となり、気体の対流におけるエネルギーのロスが低減され、この対流のエネルギーが、回転力として内筒及び外筒に効率よく付与される。   As described above, the convection temperature difference prime mover of the present invention scatters the warming liquid between the inner cylinder and the outer cylinder, warms the gas passing through the other channel, and circulates the warming liquid. A heating liquid circulation line is provided, and a heating unit for heating the heating liquid is provided in the middle of the heating liquid circulation line. Thereby, the gas flowing through the other flow path is directly heated in the space between the outer cylinder and the inner cylinder by the heated liquid flowing out from the outlet. Therefore, the gas in the other channel is heated without going out of the outer cylinder, the gas path is simplified, energy loss in the gas convection is reduced, and the energy of this convection is converted into the inner cylinder as a rotational force. And efficiently applied to the outer cylinder.

本発明の第一実施形態に係る対流温度差原動装置を示す図である。It is a figure which shows the convection temperature difference prime mover which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る対流温度差原動装置の主要部を示す図である。It is a figure which shows the principal part of the convection temperature difference prime mover which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る対流温度差原動装置の、下部の要部を示す拡大図である。It is an enlarged view which shows the principal part of the lower part of the convection temperature difference prime mover which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のA−A断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is AA sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のB−B断面図である。The convection temperature difference prime mover concerning a first embodiment of the present invention is shown, and is a BB sectional view of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のC−C断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is CC sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のD−D断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is DD sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のE−E断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is EE sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のF−F断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is FF sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のG−G断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is GG sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のH−H断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is HH sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のI−I断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is II sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のJ−J断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is JJ sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のK−K断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is KK sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のL−L断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is LL sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置を示し、図2のM−M断面図である。The convection temperature difference prime mover which concerns on 1st embodiment of this invention is shown, and it is MM sectional drawing of FIG. 本発明の第一実施形態に係る対流温度差原動装置が用いられるシステムを示す図である。It is a figure which shows the system by which the convection temperature difference prime mover which concerns on 1st embodiment of this invention is used. 本発明の第二実施形態に係る対流温度差原動装置を示す図である。It is a figure which shows the convection temperature difference prime mover which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る対流温度差原動装置の、下部の要部を示す拡大図である。It is an enlarged view which shows the principal part of the lower part of the convection temperature difference prime mover which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る対流温度差原動装置を示し、図18のN−N断面図である。FIG. 19 shows a convection temperature difference prime mover according to a second embodiment of the present invention, and is an NN sectional view of FIG. 18. 本発明の第二実施形態に係る対流温度差原動装置を示し、図18のO−O断面図である。FIG. 19 is a cross-sectional view taken along line OO in FIG. 18, showing a convection temperature difference prime mover according to a second embodiment of the present invention. 本発明の第三実施形態に係る対流温度差原動装置の要部拡大図である。It is a principal part enlarged view of the convection temperature difference prime mover which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る対流温度差原動装置を示す図である。It is a figure which shows the convection temperature difference prime mover which concerns on 4th embodiment of this invention. 本発明の第四実施形態に係る対流温度差原動装置を示し、図23のP−P断面図である。24 shows a convection temperature difference prime mover according to a fourth embodiment of the present invention, and is a cross-sectional view taken along the line PP in FIG. 23. FIG. 本発明の第四実施形態に係る対流温度差原動装置を示し、図23のQ−Q断面図である。It is a QQ sectional view of Drawing 23 showing a convection temperature difference prime mover concerning a fourth embodiment of the present invention. 本発明の第五実施形態に係る対流温度差原動装置を示す図である。It is a figure which shows the convection temperature difference prime mover which concerns on 5th embodiment of this invention. 本発明の第五実施形態に係る対流温度差原動装置を一部切り欠いて示す斜視図である。It is a perspective view showing a convection temperature difference prime mover according to a fifth embodiment of the present invention with a part cut away. 本発明の第五実施形態に係る対流温度差原動装置の、下部の要部を示す拡大図である。It is an enlarged view which shows the principal part of the lower part of the convection temperature difference prime mover which concerns on 5th embodiment of this invention. 本発明の第五実施形態に係る対流温度差原動装置を示し、図28のR−R断面図である。FIG. 29 shows a convection temperature difference prime mover according to a fifth embodiment of the present invention, and is an RR sectional view of FIG. 28. 本発明の第五実施形態に係る対流温度差原動装置の内筒を示し、図28のS−S断面図である。It is SS sectional drawing of FIG. 28 which shows the inner cylinder of the convection temperature difference prime mover which concerns on 5th embodiment of this invention. 本発明の第五実施形態に係る対流温度差原動装置の内筒を示し、図30のU−U断面図である。FIG. 31 is a cross-sectional view taken along the line U-U in FIG. 30, showing the inner cylinder of the convection temperature difference prime mover according to the fifth embodiment of the present invention. 本発明の第五実施形態に係る対流温度差原動装置を示し、図28のT−T断面図である。FIG. 29 shows a convection temperature difference prime mover according to a fifth embodiment of the present invention, and is a TT sectional view of FIG. 28. 本発明の第五実施形態に係る対流温度差原動装置のフィンを示す図である。It is a figure which shows the fin of the convection temperature difference prime mover which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る対流温度差原動装置を示す要部断面図である。It is principal part sectional drawing which shows the convection temperature difference prime mover which concerns on 6th embodiment of this invention. 本発明の第一実施形態に係る対流温度差原動装置を用いたシステムの応用例を示す図である。It is a figure showing an example of application of a system using a convection temperature difference prime mover concerning a first embodiment of the present invention. 本発明の各実施形態に係る対流温度差原動装置の内筒及び外筒の形状の応用例を示す図である。It is a figure which shows the application example of the shape of the inner cylinder and outer cylinder of the convection temperature difference prime mover which concern on each embodiment of this invention. 従来の対流温度差原動装置の一例を示す図である。It is a figure which shows an example of the conventional convection temperature difference prime mover.

符号の説明Explanation of symbols

S1,S2,S3,S4,S5 対流温度差原動装置
Ra 一方流路
Rb 他方流路
1 外郭
1a 土台
2 架台
3 側壁
4 天板
8 ギアポンプ
10 内筒
10a 筒体
11 供給口
12 排出口
13 内筒回転軸
20 外筒
23 外筒回転軸
24 吊下部材
25 凸条
30 動力取得機構
31 第一原動ギア
32 第二原動ギア
33 発電機
34 第一従動ギア
35 第二従動ギア
36 シャフト
37 ボールベアリング
40 動翼
41 ブレード
42 閉塞板
50 案内翼
51 案内板体
52 羽根部材
53 内面部材
54 外面部材
55 回収刃
56 盆状部材
60 多孔質部材
61 網
62 板体
65 フィン
70 ガイド翼
71 導風板
72 ガイド板
73 ボルト
74 ナット
80 冷却液体循環管路
80a 冷却液体循環管体
81 冷却部
82 一方支軸
83 流入口
84 流出口
85 注入口
86 回収口
88 孔
89 摺接部材
89a 溝
89b 溝
90 加温液体循環管路
90a 加温液体循環管体
91 加温部
92 他方支軸
93 流入口
94 流出口
95 注入口
96 回収口
97 送給管
98 孔
99 噴出口
100 孔
101 摺接部
102 一方通路
103 他方通路
104 隔壁
S1, S2, S3, S4, S5 Convection temperature difference prime mover Ra One channel Rb Other channel 1 Outer 1a Base 2 Base 3 Side wall 4 Top plate 8 Gear pump 10 Inner cylinder 10a Tube 11 Supply port 12 Discharge port 13 Inner tube Rotating shaft 20 Outer cylinder 23 Outer cylinder rotating shaft 24 Suspension member 25 Protrusion 30 Power acquisition mechanism 31 First driving gear 32 Second driving gear 33 Generator 34 First driven gear 35 Second driven gear 36 Shaft 37 Ball bearing 40 Moving blade 41 Blade 42 Closure plate 50 Guide blade 51 Guide plate body 52 Blade member 53 Inner surface member 54 Outer surface member 55 Recovery blade 56 Basin member 60 Porous member 61 Net 62 Plate body 65 Fin 70 Guide blade 71 Air guide plate 72 Guide Plate 73 Bolt 74 Nut 80 Cooling liquid circulation pipe line 80a Cooling liquid circulation pipe body 81 Cooling portion 82 One support shaft 83 Inlet 84 Outlet 85 Inlet 86 Collecting port 88 hole 89 sliding member 89a groove 89b groove 90 warming liquid circulation pipe 90a warming liquid circulation pipe body 91 warming part 92 other support shaft 93 inlet 94 outlet 95 inlet 96 recovery port 97 feeding pipe 98 Hole 99 Spout 100 Hole 101 Sliding contact portion 102 One passage 103 The other passage 104 Partition

[第一実施形態]
以下、添付図面にもとづいて、本発明の第一実施形態に係る対流温度差原動装置について詳細に説明する。
[First embodiment]
Hereinafter, based on an accompanying drawing, the convection temperature difference prime mover concerning a first embodiment of the present invention is explained in detail.

図1〜16に、対流温度差原動装置S1を示している。
この対流温度差原動装置S1は、円筒状の外郭1と、内筒10と、外筒20とを備えている。内筒10は、外郭1に回転可能に軸支され、さらに、軸方向一端に気体の供給口11が形成され、他端に気体の排出口12が形成されている。外筒20は、外郭1及び内筒10に対して回転可能に設けられ、さらに、その壁部が外郭1と内筒10との間に位置する。
また、対流温度差原動装置S1は、気体が、内筒10の供給口11から内筒10の内部を通って排出口12に至る一方流路Ra及び内筒10の排出口12から内筒10の外側を通って供給口11に至る他方流路Rbを通るように、気体に温度差を付与して、気体の対流を生じさせる。対流温度差原動装置S1は、気体の対流によって内筒10及び外筒20を回転させ、動力取得機構30から動力を得る。
ここで、気体として、例えば、二酸化炭素が用いられる。また、気体に温度差を付与するために、気体を加温する加温液体および気体を冷却する冷却液体が用いられる。この加温液体および冷却液体は、例えば、潤滑能力を有するオイルである。
The convection temperature difference prime mover S1 is shown in FIGS.
The convection temperature difference prime mover S <b> 1 includes a cylindrical outer shell 1, an inner tube 10, and an outer tube 20. The inner cylinder 10 is rotatably supported by the outer shell 1, and further, a gas supply port 11 is formed at one end in the axial direction, and a gas discharge port 12 is formed at the other end. The outer cylinder 20 is provided so as to be rotatable with respect to the outer shell 1 and the inner cylinder 10, and its wall portion is located between the outer shell 1 and the inner cylinder 10.
The convection temperature difference prime mover S <b> 1 is configured such that the gas passes from the supply port 11 of the inner cylinder 10 to the discharge port 12 through the inside of the inner tube 10 and from the discharge port 12 of the inner tube 10 to the inner tube 10. A temperature difference is given to the gas so as to pass through the other flow path Rb that reaches the supply port 11 through the outside of the gas, thereby causing convection of the gas. The convection temperature difference prime mover S <b> 1 rotates the inner cylinder 10 and the outer cylinder 20 by gas convection and obtains power from the power acquisition mechanism 30.
Here, for example, carbon dioxide is used as the gas. Moreover, in order to give a temperature difference to gas, the heating liquid which heats gas and the cooling liquid which cools gas are used. The heating liquid and the cooling liquid are, for example, oil having a lubricating ability.

詳しくは、図1〜3,図5〜7,図12〜15に示すように、内筒10の一端及び他端の少なくともいずれか一方に、後述の一方支軸82又は他方支軸92に回転可能に挿通される管状の内筒回転軸13が設けられている。また、外筒20に、内筒回転軸13に回転可能に挿通される管状の外筒回転軸23が設けられている。
本実施形態においては、内筒10は、一端及び他端の両方に内筒回転軸13が設けられている。すなわち、内筒10の一端に、他方支軸92に回転可能に挿通される管状の内筒回転軸13(13a)が設けられ、内筒10の他端に、一方支軸82に回転可能に挿通される管状の内筒回転軸13(13b)が設けられている。内筒10の一端側の内筒回転軸13(13a)は、他方支軸92に回転可能に挿通されている。また、内筒10の他端側の内筒回転軸13(13b)は、図3に示すように、内筒10の底部中央に設けた管状体14と、内筒10の軸方向一端側が管状体14の内側にスプライン歯車で連結された軸管体15とを備えている。
軸管体15は、外郭1の内部に設けた架台2の天板4に、貫通した状態で設けられている。架台2は、土台1aに立設される円筒状の側壁3と、側壁3の上端縁に設けられる天板4とを備えており、内部に冷却液体を溜めることができるようなっている。
内筒10は、外筒20の底部に載置された状態で、外筒20に支持される。本実施形態においては、内筒10は、例えば、その外周縁の周速が約100m/sで回転する。
Specifically, as shown in FIGS. 1 to 3, FIGS. 5 to 7, and FIGS. A tubular inner cylinder rotating shaft 13 that is inserted through is provided. The outer cylinder 20 is provided with a tubular outer cylinder rotating shaft 23 that is rotatably inserted into the inner cylinder rotating shaft 13.
In the present embodiment, the inner cylinder 10 is provided with an inner cylinder rotating shaft 13 at both one end and the other end. That is, a tubular inner cylinder rotating shaft 13 (13a) that is rotatably inserted into the other support shaft 92 is provided at one end of the inner cylinder 10, and the other end of the inner cylinder 10 is rotatable about the one support shaft 82. A tubular inner cylinder rotating shaft 13 (13b) to be inserted is provided. The inner cylinder rotation shaft 13 (13a) on one end side of the inner cylinder 10 is rotatably inserted into the other support shaft 92. Moreover, as shown in FIG. 3, the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 has a tubular body 14 provided at the center of the bottom of the inner cylinder 10 and one end in the axial direction of the inner cylinder 10 is tubular. A shaft tube body 15 connected to the inside of the body 14 by a spline gear is provided.
The shaft tube body 15 is provided in a state of penetrating the top plate 4 of the gantry 2 provided inside the outer shell 1. The gantry 2 includes a cylindrical side wall 3 erected on the base 1a and a top plate 4 provided at the upper end edge of the side wall 3 so that a cooling liquid can be stored therein.
The inner cylinder 10 is supported by the outer cylinder 20 while being placed on the bottom of the outer cylinder 20. In the present embodiment, for example, the inner cylinder 10 rotates at a peripheral speed of the outer peripheral edge of about 100 m / s.

また、外筒20には、その一端に他方支軸92に回転可能に挿通される外筒回転軸23(23a)と、他端に内筒10の他端側の内筒回転軸13(13b)に回転可能に挿通される外筒回転軸23(23b)とが設けられている。外筒20の一端側の外筒回転軸23(23a)は、外郭1の上部に設けた支持台5に支持される三角錐状の支持部材24を備えた構成としている。この支持部材24は、支持台5に設けたロート状の受け部6に回転可能に挿入されて支持され、外筒20全体は、受け部6に吊下して支持される。受け部6の内側であって支持台5と外郭1で囲まれる空間は、加温液体が満たされている。
また、外筒20の他端側の外筒回転軸23(23b)は、外筒10の底部中央に設けられ、内筒10の軸方向他端側の軸管体15に回転可能に挿通されている。本実施形態においては、外筒20は、例えば、その外周縁の周速が約50m/sで回転する。
Further, the outer cylinder 20 has an outer cylinder rotating shaft 23 (23a) that is rotatably inserted into the other support shaft 92 at one end, and an inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10 at the other end. ) And an outer cylinder rotating shaft 23 (23b) that is rotatably inserted. The outer cylinder rotation shaft 23 (23 a) on one end side of the outer cylinder 20 is configured to include a triangular pyramid-shaped support member 24 that is supported by the support base 5 provided at the upper part of the outer shell 1. The support member 24 is rotatably inserted into and supported by a funnel-shaped receiving portion 6 provided on the support base 5, and the entire outer cylinder 20 is supported by being suspended from the receiving portion 6. A space surrounded by the support 5 and the outer shell 1 inside the receiving portion 6 is filled with a heating liquid.
The outer cylinder rotating shaft 23 (23b) on the other end side of the outer cylinder 20 is provided at the center of the bottom of the outer cylinder 10, and is rotatably inserted into the shaft tube body 15 on the other axial end side of the inner cylinder 10. ing. In the present embodiment, the outer cylinder 20 rotates, for example, at a peripheral speed of the outer peripheral edge of about 50 m / s.

動力取得機構30は、内筒10の他端側の内筒回転軸13(13b)に設けられる第一原動ギア31と、外筒20の他端側の外筒回転軸23(23b)に外筒20の底壁を介して設けられる第二原動ギア32と、第一原動ギア31及び第二原動ギア32の少なくとものいずれか1つに連係して駆動される発電機33とを備えた構成としている。
詳しくは、動力取得機構30は、第一原動ギア31に噛合する第一従動ギア34と、第二原動ギア32に噛合する第二従動ギア35と、発電機33に接続されるシャフト36とを備え、このシャフト36の回転により発電機33を作動させる。第一原動ギア31及び第一従動ギア34は、外郭1の内部に設けた架台2の内部に位置させられている。
また第二原動ギア32及び第二従動ギア35は、架台2の外側に設けられている。さらに、シャフト36は、外郭1にボールベアリング37を介して回転可能に軸支されている。
The power acquisition mechanism 30 is connected to the first driving gear 31 provided on the inner cylinder rotation shaft 13 (13b) on the other end side of the inner cylinder 10 and the outer cylinder rotation shaft 23 (23b) on the other end side of the outer cylinder 20. A configuration comprising a second driving gear 32 provided via the bottom wall of the cylinder 20 and a generator 33 driven in linkage with at least one of the first driving gear 31 and the second driving gear 32. It is said.
Specifically, the power acquisition mechanism 30 includes a first driven gear 34 that meshes with the first driving gear 31, a second driven gear 35 that meshes with the second driving gear 32, and a shaft 36 connected to the generator 33. The generator 33 is operated by the rotation of the shaft 36. The first driving gear 31 and the first driven gear 34 are located inside the gantry 2 provided inside the outer shell 1.
The second driving gear 32 and the second driven gear 35 are provided on the outside of the gantry 2. Further, the shaft 36 is rotatably supported on the outer shell 1 via a ball bearing 37.

また、図1,2,5に示すように、内筒10の一端に、供給口11から流入した気体を受けて内筒10に回転力を付与する動翼40が設けられている。この動翼40は、内筒10の一端側において、内筒10の回転軸を中心に等角度関係で、軸方向にほぼ沿って列設され、後述のガイド翼70により導かれた気体を受ける面を有した複数のブレード41と、ブレード41群の内筒10の軸方向上側を閉塞する閉塞板42とを備えている。気体は、これらのブレード41の側方から流入し内筒10の下方へ流れる。   As shown in FIGS. 1, 2, and 5, at one end of the inner cylinder 10, a moving blade 40 that receives gas flowing from the supply port 11 and applies a rotational force to the inner cylinder 10 is provided. The rotor blades 40 are arranged on the one end side of the inner cylinder 10 along the axial direction in an equiangular relationship around the rotation axis of the inner cylinder 10 and receive gas guided by a guide blade 70 described later. A plurality of blades 41 having a surface and a closing plate 42 for closing the upper side in the axial direction of the inner cylinder 10 of the blade 41 group are provided. The gas flows from the side of these blades 41 and flows below the inner cylinder 10.

さらに、図13,14に示すように、内筒10の他端であってその外方に、案内翼50が設けられている。案内翼50は、排出口12から排出された気体を受けて、内筒10に回転力を付与するとともに、排出口12から排気された気体を他方流路Rbの気体の流通方向に導く。
この案内翼50は、排出口12からの気体を他方流路Rbの気体の流通方向に方向転換させる椀状の案内板体51と、この案内板体51の内部に複数設けられる羽根部材52とを備えている。案内板体51は、内側に内筒10の排出口12が位置するように、開口部の径が内筒10よりも大きく形成され、開口端部と内筒10の外壁との間に、気体の送出口を形成している。また、案内板体51の中央底部は、内筒10の他端側の内筒回転軸13(13b)に挿通され、内筒回転軸13(13b)に固定されている。羽根部材52は、案内板体51の底部に吹き付けられ、案内板体51の周方向外側に流れる、気体を受ける面を備え、動翼40が内筒10に付与する回転力と同じ向きの回転力を内筒10に付与する。
Further, as shown in FIGS. 13 and 14, a guide blade 50 is provided on the other end of the inner cylinder 10 and on the outer side thereof. The guide vane 50 receives the gas discharged from the discharge port 12 and applies a rotational force to the inner cylinder 10 and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb.
The guide blade 50 has a bowl-shaped guide plate body 51 that changes the direction of the gas from the discharge port 12 in the flow direction of the gas in the other flow path Rb, and a plurality of blade members 52 provided inside the guide plate body 51. It has. The guide plate 51 is formed such that the diameter of the opening is larger than that of the inner cylinder 10 so that the discharge port 12 of the inner cylinder 10 is located on the inner side, and a gas is formed between the opening end and the outer wall of the inner cylinder 10. It forms the outlet. Moreover, the center bottom part of the guide plate body 51 is inserted into the inner cylinder rotating shaft 13 (13b) on the other end side of the inner cylinder 10, and is fixed to the inner cylinder rotating shaft 13 (13b). The blade member 52 is blown to the bottom of the guide plate body 51 and includes a surface for receiving gas that flows to the outer side in the circumferential direction of the guide plate body 51. The blade member 52 rotates in the same direction as the rotational force applied to the inner cylinder 10 by the moving blade 40. A force is applied to the inner cylinder 10.

さらにまた、内筒10の内部に、一方通路Raを通る気体及び冷却液体が通過可能な多孔質部材60が設けられている。多孔質部材60は、巻回したシート状の金属製網61としてある。多孔質部材60は、網61を巻回した構成としてあるので、構造が簡単になる。また、網61の上下に、多数の通孔が形成された板体62が設けられている。
そしてまた、内筒10の内部であって一方流路Raの供給口11側に、滞留した気体を排出口12側に押し込むフィン65が設けられている。このフィン65は、後述の送給管97の下縁に垂下されて設けられ、円周一方向に凹曲されている。フィン65は、内筒10の回転により、内筒10内の気体に渦流を形成し、内筒10の上部に滞留した気体を下降しやすくする。
Furthermore, a porous member 60 through which gas and cooling liquid passing through the one passage Ra can pass is provided in the inner cylinder 10. The porous member 60 is a wound sheet-like metal net 61. Since the porous member 60 has a configuration in which the net 61 is wound, the structure is simplified. In addition, a plate body 62 having a large number of through holes is provided above and below the net 61.
Further, a fin 65 is provided inside the inner cylinder 10 and on the supply port 11 side of the one channel Ra to push the accumulated gas into the discharge port 12 side. The fin 65 is provided so as to be suspended from a lower edge of a later-described feed pipe 97, and is bent in one circumferential direction. The fin 65 forms a vortex in the gas in the inner cylinder 10 by the rotation of the inner cylinder 10, and makes it easy for the gas staying in the upper part of the inner cylinder 10 to descend.

また、外筒20の一端側の内周に、供給口11に気体を導く複数のガイド翼70が設けられている。このガイド翼70は、導風板71を備えている。導風板71は、動翼40の外周部を囲繞する部位に等角度関係で列設され、軸方向に沿う面を有している。導風板71は、円周一方向に凹曲され、凹曲した面により供給口11に流入する気体に遠心力を付与している。また、このガイド翼70は、椀状のガイド板72を備えている。ガイド板72は、外筒20の上壁に挿通されるボルト73とガイド板72に設けたナット74により、外筒20の上壁から吊り下げられている。   A plurality of guide vanes 70 that guide gas to the supply port 11 are provided on the inner periphery of one end side of the outer cylinder 20. The guide blade 70 includes an air guide plate 71. The air guide plate 71 is arranged in an equiangular relationship at a portion surrounding the outer peripheral portion of the rotor blade 40, and has a surface along the axial direction. The air guide plate 71 is recessed in one circumferential direction, and imparts centrifugal force to the gas flowing into the supply port 11 by the recessed surface. Further, the guide blade 70 includes a hook-shaped guide plate 72. The guide plate 72 is suspended from the upper wall of the outer cylinder 20 by a bolt 73 inserted into the upper wall of the outer cylinder 20 and a nut 74 provided on the guide plate 72.

また、対流温度差原動装置S1は、内筒10内に冷却液体を散布することにより、一方流路Raを通る気体を冷却し、かつ、冷却液体を循環させる、冷却液体循環管路80を備えている。また、冷却液体循環管路80の途中に、冷却液体を冷却する冷却部81が設けられている。
冷却液体循環管路80は、外郭1に設けられ、一端側に冷却液体の流入口83を有し、他端側に内筒10に冷却液体を散布する多数の流出口84を有している。また、冷却液体循環管路80は、内筒10および外筒20の他端を軸支する一方支軸82と、冷却液体循環管体80aとを備えている。冷却液体循環管体80aは、一方支軸82の流入口83に供給される冷却液体を注入する注入口85と、一方流路Raの気体を冷却した後、内筒10の排出口12から流出した冷却液体を回収する回収口86とを備え、回収口86から再び注入口85に冷却液体を循環させる。
Further, the convection temperature difference prime mover S1 includes a cooling liquid circulation pipe 80 that cools the gas passing through the one flow path Ra and circulates the cooling liquid by spraying the cooling liquid into the inner cylinder 10. ing. A cooling unit 81 that cools the cooling liquid is provided in the middle of the cooling liquid circulation line 80.
The cooling liquid circulation pipe 80 is provided in the outer shell 1 and has a cooling liquid inlet 83 on one end side and a plurality of outlets 84 for spraying the cooling liquid on the inner cylinder 10 on the other end side. . The cooling liquid circulation pipe 80 includes a support shaft 82 that pivotally supports the other ends of the inner cylinder 10 and the outer cylinder 20 and a cooling liquid circulation pipe body 80a. The cooling liquid circulation tube 80 a flows out from the inlet 85 for injecting the cooling liquid supplied to the inlet 83 of the one support shaft 82 and the outlet 12 of the inner cylinder 10 after cooling the gas in the one channel Ra. The recovery port 86 for recovering the cooled liquid is provided, and the cooling liquid is circulated from the recovery port 86 to the injection port 85 again.

一方支軸82は、一方の端が外郭1に接地した状態で直立している。一方支軸82の他方の端側の管壁に、複数の流入口83が設けられている。
また、一方支軸82は、内筒10の他端側の内筒回転軸13(13b)が挿通される位置に、この内筒回転軸13に一方支軸82内の冷却液体を供給する供給孔82aが設けられている。
冷却液体循環管体80aの注入口85は、架台2の内部の空間を介して、一方支軸82の流入口83に接続されている。また、冷却液体循環管体80aの回収口86は、外郭1に設けられている。この回収口86は、孔88および摺接部材89の溝89aを介して、冷却液体を回収している。孔88は、外筒20の他端部に外筒20の周方向に沿って複数列設されている。また、摺接部材89は、外筒20の一端部の表面に摺接するとともに、外郭1に複数列設された孔88を囲繞する。
冷却部81は、冷却液体循環管体80aの途中に設けられている。本実施形態においては、この冷却部81により冷却された冷却液体の温度は、約−50℃になる。
On the other hand, the support shaft 82 stands upright with one end in contact with the outer shell 1. A plurality of inflow ports 83 are provided on the tube wall on the other end side of the one support shaft 82.
The one support shaft 82 supplies the cooling liquid in the one support shaft 82 to the inner tube rotation shaft 13 at a position where the inner tube rotation shaft 13 (13b) on the other end side of the inner tube 10 is inserted. A hole 82a is provided.
The inlet 85 of the cooling liquid circulation tube 80 a is connected to the inlet 83 of the one support shaft 82 through the space inside the gantry 2. The recovery port 86 of the cooling liquid circulation tube 80 a is provided in the outer shell 1. The recovery port 86 recovers the cooling liquid through the hole 88 and the groove 89 a of the sliding contact member 89. A plurality of holes 88 are provided at the other end of the outer cylinder 20 along the circumferential direction of the outer cylinder 20. The sliding contact member 89 is in sliding contact with the surface of one end portion of the outer cylinder 20 and surrounds a plurality of holes 88 provided in the outer shell 1.
The cooling unit 81 is provided in the middle of the cooling liquid circulation tube 80a. In the present embodiment, the temperature of the cooling liquid cooled by the cooling unit 81 is about −50 ° C.

さらに、対流温度差原動装置S1は、内筒10と外筒20との間に加温液体を散布することにより、他方流路Rbを通る気体を加温し、かつ、加温液体を循環させる、加温液体循環管路90を備えている。また、加温液体循環管路90の途中に、加温液体を加温する加温部91が設けられている。
加温液体循環管路90は、他方支軸92と、筒体10aと、加温液体循環管体90aとを備えている。他方支軸92は、外郭1に設けられており、一端側に加温液体の流入口93を有し、他端側に流出口94を有しており、内筒10及び外筒20の一端を軸支する。筒体10aは、内筒10を覆っており、内筒10との間に、他方支軸92の流出口94からの加温液体が流通する流通路が形成され、かつ、外筒20に向けて液体が流出する多数の噴出口99が形成されている。加温液体循環管体90aは、他方支軸92の流入口93に接続される注入口95と、加温液体を回収する回収口96とを備え、回収口96から再び注入口95に加温液体を循環させる。上記加温液体は、注入口95から注入され、流通路を通って噴出口99から外筒20に向けて噴出し、他方流路Rbの気体を加温する。
筒体10aは、内筒10に対して、回転自在に設けられている。
Further, the convection temperature difference prime mover S1 heats the gas passing through the other flow path Rb and circulates the heated liquid by spraying the heated liquid between the inner cylinder 10 and the outer cylinder 20. , A heated liquid circulation line 90 is provided. Further, a heating unit 91 for heating the heated liquid is provided in the middle of the heated liquid circulation conduit 90.
The warming liquid circulation conduit 90 includes the other support shaft 92, a cylindrical body 10a, and a warming liquid circulation tube 90a. The other support shaft 92 is provided on the outer shell 1, has an inflow port 93 for a heated liquid at one end side, and has an outflow port 94 at the other end side, and one end of the inner cylinder 10 and the outer cylinder 20. Is supported. The cylindrical body 10 a covers the inner cylinder 10, and a flow passage through which the heated liquid flows from the outlet 94 of the other support shaft 92 is formed between the cylindrical body 10 a and the outer cylinder 20. Thus, a large number of jets 99 through which the liquid flows out are formed. The heated liquid circulation tube 90 a includes an injection port 95 connected to the inlet 93 of the other support shaft 92 and a recovery port 96 that recovers the heated liquid, and warms the recovery port 96 to the injection port 95 again. Circulate the liquid. The warming liquid is injected from the injection port 95, is ejected from the ejection port 99 toward the outer cylinder 20 through the flow passage, and warms the gas in the other flow path Rb.
The cylindrical body 10a is provided to be rotatable with respect to the inner cylinder 10.

他方支軸92は、一端に、加温液体循環管体90aの注入口95が接続される流入口93が形成されている。流出口94は、他方支軸92の他端に形成され、内筒10の一端側の内筒回転軸13(13a)の内部に位置している。また、内筒10の一端側の内筒回転軸13(13a)は、下端が閉塞されるとともに、その内部は、筒体10aの流通路に複数の送給管97を介して連通している。送給管97は、内筒10の周方向に等角度関係で列設されている。
筒体10aの噴出口99は、筒体10aの外周面全体に亘って設けられている。他方支軸92に、供給孔92aが設けられており、この供給孔92aは、内部を流れる加温液体を、受け部6の内側であって支持台5と外郭1で囲まれる空間に供給する。本実施形態においては、噴出口99から噴出する加温液体には、約10kg/cm〜100kg/cm(1MPa〜10MPa)の圧力がかけられている。
The other support shaft 92 is formed with an inlet 93 at one end to which the inlet 95 of the heated liquid circulation tube 90a is connected. The outlet 94 is formed at the other end of the other support shaft 92 and is located inside the inner cylinder rotating shaft 13 (13 a) on one end side of the inner cylinder 10. Further, the lower end of the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 is closed, and the inside thereof communicates with the flow path of the cylinder 10a via a plurality of feed pipes 97. . The feed pipes 97 are arranged in an equiangular relationship in the circumferential direction of the inner cylinder 10.
The jet outlet 99 of the cylinder 10a is provided over the whole outer peripheral surface of the cylinder 10a. The other support shaft 92 is provided with a supply hole 92 a, and this supply hole 92 a supplies the heated liquid flowing inside to the space surrounded by the support 5 and the outer shell 1 inside the receiving portion 6. . In the present embodiment, a pressure of about 10 kg / cm 2 to 100 kg / cm 2 ( 1 MPa to 10 MPa) is applied to the heated liquid ejected from the ejection port 99.

加温液体循環管体90aの回収口96は、外郭1に設けられている。この回収口96は、外筒20の冷却液体を回収する回収口86に連通する孔88の上側に、外筒20の周方向に沿って複数列設された孔98と、摺接部材89の溝89aの上側に設けた別の溝89bとを介して、加温液体を回収している。
冷却液体が流入する孔88と加温液体が流入する孔98の間には、外筒20の壁面に押し付けられて流れる冷却液体と加温液体とを仕切る凸条25が設けられている。
加温部91は、加温液体循環管体90aの途中に設けられている。本実施形態においては、この加温部91で加温された加温液体は、約200℃〜250℃になる。
また、図示しないが、冷却液体循環管路80及び加温液体循環管路90は、各回収口96から注入口95にこれらの液体を吸い上げるポンプを備えている。
A recovery port 96 of the heated liquid circulation tube 90 a is provided in the outer shell 1. The recovery port 96 has a plurality of holes 98 arranged along the circumferential direction of the outer cylinder 20 on the upper side of the hole 88 communicating with the recovery port 86 for recovering the cooling liquid of the outer cylinder 20, and the sliding contact member 89. The heated liquid is recovered through another groove 89b provided on the upper side of the groove 89a.
Between the hole 88 into which the cooling liquid flows and the hole 98 into which the warming liquid flows, a ridge 25 is provided that partitions the cooling liquid and the warming liquid that are pressed against the wall surface of the outer cylinder 20 and flows.
The warming part 91 is provided in the middle of the warming liquid circulation tube 90a. In this embodiment, the warming liquid warmed by the warming unit 91 is about 200 ° C to 250 ° C.
Although not shown, the cooling liquid circulation line 80 and the warming liquid circulation line 90 are provided with pumps for sucking up these liquids from the respective recovery ports 96 to the injection port 95.

また、対流温度差原動装置S1には、内筒回転軸13及び外筒回転軸23から漏れ出て外郭1内の土台1a上に溜まった潤滑油としての冷却液体及び加温液体を架台2内に送るギアポンプ8が設けられている。このギアポンプ8は、作動のためのプーリ8aを備え、このプーリ8aとシャフト36に設けたプーリ36aとに掛けられたベルトを介して、シャフト36の回転に連動して作動する。   Further, in the convection temperature difference driving device S1, the cooling liquid and the heating liquid as the lubricating oil leaking from the inner cylinder rotating shaft 13 and the outer cylinder rotating shaft 23 and accumulated on the base 1a in the outer shell 1 A gear pump 8 is provided. The gear pump 8 includes a pulley 8a for operation, and operates in conjunction with rotation of the shaft 36 via a belt hung on the pulley 8a and a pulley 36a provided on the shaft 36.

次に、この対流温度差原動装置S1を作動させるシステムの一例について説明する。
図17に示すように、このシステムにおいて、冷却液体循環管体80aは、冷却部81の上流側及び下流側に夫々設けられる逆止弁110と、冷却液体循環管体80a中の気泡を排出するガス抜き弁111とを備えている。加温液体循環管体90aは、加温部91の上流側に設けられる逆止弁112と、加温液体循環管体90a中の気泡を排出するガス抜き弁113とを備えている。また、冷却部81は、ラジエータからなっている。加温部91は、LPガス貯留槽91aからのLPガスを燃焼して加温液体を加温する。
Next, an example of a system for operating the convection temperature difference prime mover S1 will be described.
As shown in FIG. 17, in this system, the cooling liquid circulation pipe 80a discharges the air bubbles in the check liquid 110 provided on the upstream side and the downstream side of the cooling unit 81, respectively, and the cooling liquid circulation pipe 80a. And a gas vent valve 111. The warming liquid circulation tube 90a includes a check valve 112 provided on the upstream side of the warming unit 91, and a gas vent valve 113 that discharges bubbles in the warming liquid circulation tube 90a. The cooling unit 81 is a radiator. The heating unit 91 burns the LP gas from the LP gas storage tank 91a to heat the warming liquid.

さらに、このシステムには、冷却液体循環管体80aを流れる冷却液体と加温液体循環管体90aを流れる加温液体の流量を調整する流量調整機構120が設けられている。
この流量調整機構120は、冷却液体循環管体80aを流れる冷却液体及び加温液体循環管体90aを流れる加温液体から、両方の液体の一部を取り込んで、常時は、各管体80a,90aから取り込んだ液体とほぼ同量の液体を各管体80a,90aに流入する。これに対し、流量調整機構120は、冷却液体循環管体80a及び加温液体循環管体90aのいずれか一方を流れる液体の流量が、他方を流れる管体80a,90aの液体の流量よりも少なくなった場合、流量の少なくなった一方の管体80a,90aに、優先的に取り込んだ液体を流入させる。
詳しくは、流量調整機構120は、上流側分岐管121と、上流側分岐管122と、主管123と、下流側分岐管124と、下流側分岐管125とを備えている。上流側分岐管121は、冷却液体循環管体80aの回収口86と冷却部81よりも回収口86側の逆止弁110との間で、冷却液体を分岐する。上流側分岐管122は、加温液体循環管体90aの回収口96と加温部91よりも回収口96側の逆止弁112との間で、加温液体を分岐する。主管123は、上流側分岐管121,122が合流するとともに常時作動するポンプ123aを備えている。下流側分岐管124は、主管123から分岐して冷却液体循環管体80aに合流するとともに加温液体循環管体90aを流れる加温液体の流量にもとづいて開閉する。下流側分岐管125は、主管123から分岐して加温液体循環管体90aに合流するとともに冷却液体循環管体80aを流れる冷却液体の流量にもとづいて開閉する。
Further, this system is provided with a flow rate adjusting mechanism 120 that adjusts the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a.
This flow rate adjusting mechanism 120 takes in a part of both the liquid from the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a, and each pipe body 80a, The liquid of approximately the same amount as the liquid taken in from 90a flows into each tube 80a, 90a. In contrast, in the flow rate adjusting mechanism 120, the flow rate of the liquid flowing through one of the cooling liquid circulation tube 80a and the heated liquid circulation tube 90a is smaller than the flow rate of the liquid in the tubes 80a and 90a flowing through the other. In this case, the liquid taken up preferentially is caused to flow into one of the pipe bodies 80a and 90a having a reduced flow rate.
Specifically, the flow rate adjusting mechanism 120 includes an upstream branch pipe 121, an upstream branch pipe 122, a main pipe 123, a downstream branch pipe 124, and a downstream branch pipe 125. The upstream branch pipe 121 branches the cooling liquid between the recovery port 86 of the cooling liquid circulation pipe body 80 a and the check valve 110 closer to the recovery port 86 than the cooling unit 81. The upstream branch pipe 122 branches the heated liquid between the recovery port 96 of the heated liquid circulation tube 90 a and the check valve 112 on the recovery port 96 side of the heating unit 91. The main pipe 123 includes a pump 123a that always operates while the upstream branch pipes 121 and 122 merge. The downstream branch pipe 124 branches from the main pipe 123 and merges with the cooling liquid circulation pipe body 80a and opens and closes based on the flow rate of the warming liquid flowing through the warming liquid circulation pipe body 90a. The downstream branch pipe 125 branches from the main pipe 123 and merges with the heated liquid circulation pipe body 90a and opens and closes based on the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a.

各上流側分岐管121,122には、逆止弁119が設けられ、上流側分岐管121から冷却液体循環管体80a及び上流側分岐管122から加温液体循環管体側90aへの逆流を防止する。
また、冷却液体循環管体80aに接続される下流側分岐管124に、電磁弁127が備えられている。電磁弁127は、加温液体循環管体90aの加温部91と加温部91の上流側の逆止弁112との間に設けられ、加温液体循環管体90aを流れる加温液体の流量を計測する加温液体流量測定器126が測定した流量にもとづいて、開閉する。この電磁弁127は、常時は開状態であるが、加温液体流量測定器126で測定された加温液体の流量が一定量以下になると、スイッチ128がオンになり、電源150に接続されて作動し、下流側分岐管124を閉状態にする。
また、加温液体循環管体90aに接続される下流側分岐管125に、電磁弁130が備えられている。電磁弁130は、冷却液体循環管体80aの冷却部91と冷却部91よりも上流側の逆止弁110との間に設けられ、冷却液体循環管体80aを流れる冷却液体の流量を計測する冷却液体流量測定器129が測定した流量にもとづいて、開閉する。この電磁弁130は、常時は開状態であるが、冷却液体流量測定器129で測定された冷却液体の流量が一定量以下になると、スイッチ131がオンになり、電源150に接続されて作動し、下流側分岐管125を閉状態にする。
Each upstream branch pipe 121, 122 is provided with a check valve 119 to prevent backflow from the upstream branch pipe 121 to the cooling liquid circulation pipe body 80a and from the upstream branch pipe 122 to the warming liquid circulation pipe body side 90a. To do.
Further, an electromagnetic valve 127 is provided in the downstream branch pipe 124 connected to the cooling liquid circulation pipe body 80a. The electromagnetic valve 127 is provided between the warming portion 91 of the warming liquid circulation tube 90a and the check valve 112 on the upstream side of the warming portion 91, and the warming liquid flowing through the warming liquid circulation tube 90a. It opens and closes based on the flow rate measured by the heated liquid flow rate measuring device 126 that measures the flow rate. This solenoid valve 127 is normally open, but when the flow rate of the warming liquid measured by the warming liquid flow rate measuring device 126 becomes a certain amount or less, the switch 128 is turned on and connected to the power source 150. Operates and closes the downstream branch pipe 124.
In addition, an electromagnetic valve 130 is provided in the downstream branch pipe 125 connected to the heated liquid circulation pipe body 90a. The electromagnetic valve 130 is provided between the cooling part 91 of the cooling liquid circulation pipe body 80a and the check valve 110 upstream of the cooling part 91, and measures the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a. It opens and closes based on the flow rate measured by the cooling liquid flow rate measuring device 129. The electromagnetic valve 130 is normally open, but when the flow rate of the cooling liquid measured by the cooling liquid flow rate measuring device 129 is below a certain amount, the switch 131 is turned on and connected to the power source 150 to operate. The downstream branch pipe 125 is closed.

また、流量調整機構120は、受け部材135と、タンク136と、補給管137とを備えている。
受け部材135は、外筒20と摺接部材89の摺接部位から漏れた冷却液体及び加温液体を受ける。受け部材135は、外筒20の下部及び摺動部材89を覆うように、断面がほぼU字状に形成され、内部135aに冷却液体及び加温液体が溜められる。
タンク136は、受け部材135からの液体が溜められ、また、揮発する等して減少した液体を補充するための液体の補充口136aを備えている。タンク136は、回収管138を介して受け部材135の内部135aに連通している。
補給管137は、タンク136に溜められた液体が所定量を超えると、タンク136内の液体を主管123に補給する。補給管137は、上流側分岐管121,122の合流点とポンプ123aとの間に合流している。また、補給管137は、補給管137を開閉する電磁弁141と、主管137から液体が逆流しないようにするための逆止弁142とを備えている。電磁弁141は、タンク136内の液体の量を測定する液体量測定器139により、主管123と補給管137との合流点と、各上流側分岐管121,122の合流点との間に設けられた電磁弁140とともに開閉する。
The flow rate adjusting mechanism 120 includes a receiving member 135, a tank 136, and a supply pipe 137.
The receiving member 135 receives the cooling liquid and the heating liquid that have leaked from the sliding contact portion between the outer cylinder 20 and the sliding contact member 89. The receiving member 135 has a substantially U-shaped cross section so as to cover the lower portion of the outer cylinder 20 and the sliding member 89, and the cooling liquid and the warming liquid are stored in the interior 135a.
The tank 136 is provided with a liquid replenishing port 136a for accumulating liquid from the receiving member 135 and replenishing liquid that has decreased due to volatilization or the like. The tank 136 communicates with the interior 135 a of the receiving member 135 through the recovery pipe 138.
The supply pipe 137 supplies the liquid in the tank 136 to the main pipe 123 when the amount of liquid stored in the tank 136 exceeds a predetermined amount. The supply pipe 137 joins between the junction of the upstream branch pipes 121 and 122 and the pump 123a. The supply pipe 137 includes an electromagnetic valve 141 for opening and closing the supply pipe 137 and a check valve 142 for preventing liquid from flowing backward from the main pipe 137. The electromagnetic valve 141 is provided between the confluence of the main pipe 123 and the replenishment pipe 137 and the confluence of the upstream branch pipes 121 and 122 by the liquid amount measuring device 139 that measures the amount of liquid in the tank 136. It opens and closes together with the solenoid valve 140.

この電磁弁140及び電磁弁141の動作は次のようになる。
液体量測定器139がタンク136内の液体の量が所定量よりも少ないことを検知すると、スイッチ143により電源150が電磁弁141に接続され、電磁弁141が閉じ、電磁弁140は、電源150から切断され開く。この場合、上流側分岐管121,122からの液体が、ポンプ123aで吸引される。また、液体量測定器139がタンク136内の液体の量が所定量よりも多いことを検知すると、スイッチ143により電源150が電磁弁140に接続されて電磁弁140が閉じ、電磁弁141は、電源150から切断され開く。この場合、タンク136内の液体が、ポンプ123aで吸引される。
The operations of the electromagnetic valve 140 and the electromagnetic valve 141 are as follows.
When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is less than a predetermined amount, the power supply 150 is connected to the electromagnetic valve 141 by the switch 143, the electromagnetic valve 141 is closed, and the electromagnetic valve 140 is connected to the power supply 150. Disconnect and open. In this case, the liquid from the upstream branch pipes 121 and 122 is sucked by the pump 123a. Further, when the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is larger than a predetermined amount, the switch 143 connects the power source 150 to the electromagnetic valve 140 and the electromagnetic valve 140 is closed. It is disconnected from the power supply 150 and opened. In this case, the liquid in the tank 136 is sucked by the pump 123a.

さらに、冷却液体及び加温液体を流す前に、冷却液体循環管体80aを用いて、内筒10及び外筒20を回転させるための気体を外筒20内に供給するコンプレッサ145が設けられている。コンプレッサ145からの気体は、冷却部81の下流側に設けた逆止弁110により、冷却部81側に流入しない。
また、図17において、146は、冷却液体循環管体80aの内部を流れる冷却液体の圧力を計測する圧力計である。
Further, a compressor 145 is provided for supplying a gas for rotating the inner cylinder 10 and the outer cylinder 20 into the outer cylinder 20 by using the cooling liquid circulation pipe body 80a before flowing the cooling liquid and the heating liquid. Yes. The gas from the compressor 145 does not flow into the cooling unit 81 due to the check valve 110 provided on the downstream side of the cooling unit 81.
In FIG. 17, reference numeral 146 denotes a pressure gauge that measures the pressure of the cooling liquid flowing inside the cooling liquid circulation tube 80a.

したがって、このシステムによれば、第一実施形態に係る対流温度差原動装置S1は、以下のように作動する。
まず、コンプレッサ145により外筒20内に気体が入れられる。この状態で、冷却液体循環管路80により冷却液体が循環され、加温液体循環管路90により加温液体が循環される。
この際、冷却液体は、冷却液体循環管路80の冷却液体循環管体80aを経て注入口85から架台2に供給され、続いて、一方支軸82の流入口83から一方支軸82内を通過し、流出口84から内筒10内に流出する。その後、冷却液体は、内筒10内の一方流路Raの気体を冷却し、排出口12及び案内翼50を通って回収口86から冷却液体循環管体80aを通り、再び注入口85に導かれる。この冷却液体は、気体の冷却により加温されるが、冷却液体循環管体80aの途中で、冷却部81により再び冷却される。そのため、内筒10内に散布される冷却液体は、冷却されて温度が低い状態になり、一方流路Raの気体の冷却状態が良好になる。
Therefore, according to this system, the convection temperature difference prime mover S1 according to the first embodiment operates as follows.
First, gas is introduced into the outer cylinder 20 by the compressor 145. In this state, the cooling liquid is circulated by the cooling liquid circulation line 80, and the warming liquid is circulated by the heating liquid circulation line 90.
At this time, the cooling liquid is supplied to the gantry 2 from the inlet 85 through the cooling liquid circulation pipe body 80a of the cooling liquid circulation pipe 80, and subsequently, the inside of the one spindle 82 from the inlet 83 of the one spindle 82. It passes through and flows out from the outlet 84 into the inner cylinder 10. Thereafter, the cooling liquid cools the gas in one flow path Ra in the inner cylinder 10, passes through the discharge port 12 and the guide vane 50, passes through the cooling liquid circulation pipe body 80 a from the recovery port 86, and is led to the injection port 85 again. It is burned. The cooling liquid is heated by the cooling of the gas, but is cooled again by the cooling unit 81 in the middle of the cooling liquid circulation pipe body 80a. Therefore, the cooling liquid sprayed in the inner cylinder 10 is cooled to a low temperature state, and the cooling state of the gas in the flow path Ra is improved.

一方、加温液体は、加温液体循環管路90により、他方支軸92の流入口93から他方支軸92内,内筒10の一端側の内筒回転軸13(13a)内,送給管97及び流通路を通過し、噴出口99から内筒10外に噴出する。続いて、加温液体は、他方流路Rbの気体を加温した後、回収口86から加温液体循環管体90aを通り再び注入口95に導かれる。この加温液体は、他方流路Rbの気体の加温により冷却されるが、加温液体循環管体90aの途中で、加温部91により再び加温される。そのため、内筒10と外筒20との間に散布される加温液体は、再び温度が高い状態になり、他方流路Rbの気体の加温状態が良好になる。
この場合、他方流路Rbを流通する気体は、噴出口99から噴出した加温液体により外筒20と内筒10の間の空間で直接加温させられる。したがって、他方流路Rbの気体は、外筒20の外部に出ることなく加温されるので、他方流路Rbの構造が簡単になる。
また、一方支軸82を冷却液体循環管路80の一部として兼用し、他方支軸92を加温液体循環管路90の一部として兼用しているので、これらの液体が流出させられる専用の管路を別途設けた場合に比較して構造が簡単になる。そのため、一方流路Raと他方流路Rbに生じる気体の対流に、悪影響が発生しなくなり、気体の対流におけるエネルギーのロスが低減され、この対流のエネルギーが回転力として内筒10及び外筒20に効率よく付与される。
On the other hand, the warming liquid is fed from the inlet 93 of the other support shaft 92 into the other support shaft 92 and into the inner cylinder rotating shaft 13 (13a) on one end side of the inner cylinder 10 through the heating liquid circulation line 90. It passes through the tube 97 and the flow passage, and is ejected from the ejection port 99 to the outside of the inner cylinder 10. Subsequently, the warming liquid warms the gas in the other flow path Rb, and then is led from the recovery port 86 through the warming liquid circulation tube 90a to the injection port 95 again. The warming liquid is cooled by warming the gas in the other flow path Rb, but is warmed again by the warming portion 91 in the middle of the warming liquid circulation tube 90a. Therefore, the warming liquid sprayed between the inner cylinder 10 and the outer cylinder 20 is in a high temperature state again, and the warming state of the gas in the other flow path Rb is improved.
In this case, the gas flowing through the other flow path Rb is directly heated in the space between the outer cylinder 20 and the inner cylinder 10 by the heated liquid ejected from the ejection port 99. Therefore, the gas in the other flow path Rb is heated without going out of the outer cylinder 20, so that the structure of the other flow path Rb is simplified.
In addition, since the one support shaft 82 is also used as a part of the cooling liquid circulation conduit 80 and the other support shaft 92 is also used as a part of the warming liquid circulation conduit 90, a dedicated flow through which these liquids flow out. Compared with the case where a separate pipe line is provided, the structure is simplified. Therefore, there is no adverse effect on the convection of the gas generated in the one flow path Ra and the other flow path Rb, the energy loss in the convection of the gas is reduced, and the inner cylinder 10 and the outer cylinder 20 are used as the rotational force. Is efficiently applied.

また、この際、冷却液体循環管体80aを流れる冷却液体の流量が少なくなると、これを冷却液体流量測定器129が検知し、スイッチ131がオンになり、電磁弁130が閉じる。そのため、主管123の液体は、下流側分岐管124のみに流れ、冷却液体循環管体80aに流入する。一方、加温液体循環管体90aを流れる加温液体の流量が少なくなると、これを加温液体流量測定器126が検知し、スイッチ128がオンになり、電磁弁127が閉じる。そのため、主管123の液体が下流側分岐管125のみに流れ、加温液体循環管体90aに流入する。
すなわち、冷却液体循環管体80aを流れる冷却液体と加温液体循環管体90aを流れる加温液体の流量は、一定量以上に確保される。
At this time, when the flow rate of the cooling liquid flowing through the cooling liquid circulation pipe body 80a decreases, this is detected by the cooling liquid flow rate measuring device 129, the switch 131 is turned on, and the electromagnetic valve 130 is closed. Therefore, the liquid in the main pipe 123 flows only into the downstream branch pipe 124 and flows into the cooling liquid circulation pipe body 80a. On the other hand, when the flow rate of the warming liquid flowing through the warming liquid circulation pipe body 90a decreases, this is detected by the warming liquid flow rate measuring device 126, the switch 128 is turned on, and the electromagnetic valve 127 is closed. Therefore, the liquid in the main pipe 123 flows only into the downstream branch pipe 125 and flows into the heated liquid circulation pipe body 90a.
That is, the flow rates of the cooling liquid flowing through the cooling liquid circulation pipe body 80a and the warming liquid flowing through the heating liquid circulation pipe body 90a are ensured to be a certain amount or more.

また、タンク136内に溜まった液体が増えてくると、液体量測定器139がこれを検知する。この際、スイッチ143が電磁弁141側に電源150を接続し、電磁弁141を開くとともに、電磁弁140を閉じる。これにより、タンク136内の液体がポンプ123aで吸引され、冷却液体循環管体80a及び加温液体循環管体90aに流入する。そのため、液体が漏れて冷却液体循環管路80を流れる冷却液体及び加温液体循環管路90を流れる加温液体が少なくなっても、適時に補充することができる。   When the amount of liquid accumulated in the tank 136 increases, the liquid amount measuring device 139 detects this. At this time, the switch 143 connects the power supply 150 to the electromagnetic valve 141 side, opens the electromagnetic valve 141, and closes the electromagnetic valve 140. Thereby, the liquid in the tank 136 is sucked by the pump 123a and flows into the cooling liquid circulation pipe body 80a and the warming liquid circulation pipe body 90a. Therefore, even if the liquid leaks and the cooling liquid flowing through the cooling liquid circulation conduit 80 and the warming liquid flowing through the warming liquid circulation conduit 90 decrease, they can be replenished in a timely manner.

これにより、内筒10の供給口11から内筒10の内部を通って排出口12に至る一方流路Ra及び内筒10の排出口12から内筒10の外側を通って供給口11に至る他方流路Rbを通る気体の対流が生じる。この対流により、動翼40および案内翼50を介して、内筒10が回転する。
内筒10が回転すると、この回転力は、他端側の内筒回転軸13(13b),第一原動ギア31,第一従動ギア34,シャフト36,第二従動ギア35,第二原動ギア32及び外筒20の他端側の外筒回転軸23(23b)を介して、外筒20に伝わり、外筒20も内筒10の回転方向と同方向に回転する。
As a result, the flow path Ra from the supply port 11 of the inner cylinder 10 through the inside of the inner cylinder 10 to the discharge port 12 and the discharge port 12 of the inner cylinder 10 to the supply port 11 through the outside of the inner cylinder 10 are reached. On the other hand, convection of gas passing through the flow path Rb occurs. Due to this convection, the inner cylinder 10 rotates via the moving blade 40 and the guide blade 50.
When the inner cylinder 10 rotates, the rotational force is generated by the inner cylinder rotating shaft 13 (13b), the first driving gear 31, the first driven gear 34, the shaft 36, the second driven gear 35, and the second driving gear on the other end side. 32 and the outer cylinder 20 is transmitted to the outer cylinder 20 via the outer cylinder rotating shaft 23 (23b) on the other end side of the outer cylinder 20, and the outer cylinder 20 also rotates in the same direction as the rotation direction of the inner cylinder 10.

この際、他方流路Rbの構造が簡単になり、気体の対流におけるエネルギーのロスが低減されているので、この対流のエネルギーが回転力として内筒10及び外筒20に効率よく付与される。
また、この際、内筒10内で冷却されて降下し排出口12に至った一方流路Raの気体は、内筒10の他端に設けた排出口12から順次排出されて、案内翼50に至る。この案内翼50において、気体は、案内板体51に衝止して、案内板体51の周方向外側であって他方流路Rbの気体の流通方向に沿うように導かれるとともに、案内板体51の内部に設けた羽根部材52の面に衝止していき、内筒10を回転させる。
At this time, since the structure of the other flow path Rb is simplified and energy loss in gas convection is reduced, this convection energy is efficiently applied to the inner cylinder 10 and the outer cylinder 20 as a rotational force.
At this time, the gas in one flow path Ra that has cooled and lowered in the inner cylinder 10 and reached the discharge port 12 is sequentially discharged from the discharge port 12 provided at the other end of the inner tube 10, and the guide vanes 50. To. In this guide vane 50, the gas stops at the guide plate body 51, is guided so as to be along the gas flow direction of the other flow path Rb outside the guide plate body 51 in the circumferential direction, and the guide plate body The inner cylinder 10 is rotated by stopping against the surface of the blade member 52 provided in the interior 51.

また、案内翼50の羽根部材52に当接した気体は、他方流路Rbの気体の流通方向であって内筒10の回転方向と逆向きに送出され、外筒20と内筒10の間の空間に至る。
この際、排出口12からの気体は、他方流路Rbの流通方向に向かって吹き出され、外筒20内の下部に滞留しにくくなる。これにより、気体の対流が円滑に行なわれる。
このように、排出口12から排出された気体は、渦流になって上昇する。
Further, the gas in contact with the blade member 52 of the guide vane 50 is sent out in the opposite direction to the rotation direction of the inner cylinder 10 in the gas flow direction of the other flow path Rb, and between the outer cylinder 20 and the inner cylinder 10. To the space.
At this time, the gas from the discharge port 12 is blown out in the flow direction of the other flow path Rb and is less likely to stay in the lower part in the outer cylinder 20. Thereby, convection of gas is performed smoothly.
Thus, the gas discharged from the discharge port 12 rises as a vortex.

そして、他方流路Rbの気体は、加温液体の加温による膨張と渦流によって付与される遠心力により、圧縮された状態で外筒20上部のガイド翼70に至り、ガイド板72に衝止して、その流通方向が外筒20の周方向内側に向けられる。
この際、ガイド翼70において、気体は、導風板71の凹曲面に衝止する。そして、導風板71によって、流向がほぼ半径方向に変更する。ガイド翼70の各導風板71は、円周一方向に凹曲されているので、気体は、さらに遠心力が付与されて流向が変更する。そして、気体は、ブレード41の外周部の供給口11から流入し、動翼40のブレード41に衝止するとともに、動翼40の内周部に抜けて内筒10の内部に流入する。そのため、動翼40のブレード41に、ガイド翼70により圧縮されて遠心力が付与された気体が、ほぼ直角に衝止するので、動翼40のブレード41は、気体の力を充分に受けることができ、気体のエネルギーを内筒10の回転力に変換する変換効率が大幅に向上し、発電効率が向上する。また、この際、気体は、ブレード41間でさらに圧縮されて、流速が極めて速くなるので、ブレード41に衝止するエネルギーが高められ、対流のエネルギーが、内筒10の回転力として効率よく内筒10に付与される。
The gas in the other flow path Rb reaches the guide blades 70 at the upper part of the outer cylinder 20 in a compressed state by the centrifugal force applied by the expansion and vortex flow caused by the heating of the heated liquid, and stops at the guide plate 72. Then, the flow direction is directed inward in the circumferential direction of the outer cylinder 20.
At this time, the gas impinges on the concave curved surface of the air guide plate 71 in the guide blade 70. Then, the flow direction is changed substantially in the radial direction by the air guide plate 71. Since each air guide plate 71 of the guide blade 70 is bent in one circumferential direction, the gas is further subjected to centrifugal force to change the flow direction. Then, the gas flows in from the supply port 11 on the outer peripheral portion of the blade 41, strikes the blade 41 of the moving blade 40, escapes to the inner peripheral portion of the moving blade 40, and flows into the inner cylinder 10. Therefore, since the gas compressed by the guide blade 70 and applied with centrifugal force strikes the blade 41 of the moving blade 40 almost at right angles, the blade 41 of the moving blade 40 receives sufficient gas force. Therefore, the conversion efficiency for converting the gas energy into the rotational force of the inner cylinder 10 is greatly improved, and the power generation efficiency is improved. Further, at this time, the gas is further compressed between the blades 41 and the flow velocity becomes extremely fast, so that the energy for striking the blade 41 is increased, and the convection energy is efficiently transferred as the rotational force of the inner cylinder 10. It is given to the tube 10.

供給口11から動翼40のブレード41群を通過して内筒10内に入った気体は、その対流エネルギーが動翼40を介して内筒10の回転力に変換されるとともに、ある程度温度が高くなっている。したがって、上記気体は、内筒10の上部に滞留しようとする。しかし、この気体は、内筒10の回転とともに回転するフィン65により排出口12側に押し込まれる。すなわち、供給口11から入った気体は、ほとんど滞留すること無く排出口12側に移動するので、気体の対流状態が良好になる。
そして、この気体は、再び排出口12に至り上記と同様に他方流路Rbと一方流路Raを循環して、内筒10と外筒20とを回転させる。
The gas that has passed through the blade 41 group of the moving blade 40 from the supply port 11 and entered the inner cylinder 10 has its convection energy converted into the rotational force of the inner cylinder 10 via the moving blade 40, and has a certain temperature. It is high. Therefore, the gas tends to stay in the upper part of the inner cylinder 10. However, this gas is pushed into the discharge port 12 by the fin 65 that rotates with the rotation of the inner cylinder 10. That is, the gas that has entered from the supply port 11 moves toward the discharge port 12 with almost no stagnation, so that the convection state of the gas becomes good.
Then, this gas reaches the discharge port 12 again, circulates through the other flow path Rb and the one flow path Ra in the same manner as described above, and rotates the inner cylinder 10 and the outer cylinder 20.

内筒10が回転しているとき、内筒10内で、冷却液体は、多孔質部材60の網61に衝止し、回転した内筒10の遠心力で網61の網目から外側に移動し、内筒10の内面に至り、内筒10の内面を流下して、排出口12から内筒10の外部に排出される。この場合、冷却液体は、多孔質部材60の網61に一時的に留まるので、多孔質部材60が無い場合と比較して、一方流路Raの冷却液体に接触する時間が長くなり、一方流路Raを流通する気体との熱交換効率が向上し、一方流路Raを流通する気体がより冷却される。そのため、一方流路Raを流通する気体は、下降しやすくなり、気体の流速が極めて速くなる。   When the inner cylinder 10 is rotating, the cooling liquid strikes the mesh 61 of the porous member 60 within the inner cylinder 10 and moves outward from the mesh of the mesh 61 by the centrifugal force of the rotated inner cylinder 10. It reaches the inner surface of the inner cylinder 10, flows down the inner surface of the inner cylinder 10, and is discharged from the discharge port 12 to the outside of the inner cylinder 10. In this case, since the cooling liquid stays temporarily in the net 61 of the porous member 60, the time for contacting the cooling liquid in the one flow path Ra is longer than that in the case where the porous member 60 is not provided. The efficiency of heat exchange with the gas flowing through the path Ra is improved, while the gas flowing through the flow path Ra is further cooled. For this reason, the gas flowing through the one-side channel Ra is likely to descend, and the flow rate of the gas becomes extremely fast.

また、外筒20内では、冷却液体及び加温液体は、遠心力により外筒20の内壁に押し付けられて溜まっていくとともに、孔88,98から溝89a,89bを通って各回収口86,96から回収される。この際、凸条25により孔88と孔98の間が隔てられているので、冷却液体と加温液体とがほとんど混ざらなくなり、冷却液体と加温液体とを分けて回収することができる。そのため、回収した冷却液体の温度があまり上がらず、また、回収した加温液体の温度もあまり下がらないので、冷却部81による冷却液体の冷却及び加温部91による加温液体の加温を効率よく行なうことができる。   Further, in the outer cylinder 20, the cooling liquid and the warming liquid are pressed against the inner wall of the outer cylinder 20 by centrifugal force and accumulated, and from the holes 88 and 98 through the grooves 89 a and 89 b, the recovery ports 86 and 96. At this time, since the hole 88 and the hole 98 are separated by the protrusion 25, the cooling liquid and the heating liquid are hardly mixed, and the cooling liquid and the heating liquid can be collected separately. Therefore, the temperature of the recovered cooling liquid does not rise so much, and the temperature of the recovered warming liquid does not drop so much, so that the cooling liquid 81 is cooled efficiently and the heating liquid 91 is heated efficiently. Can be done well.

さらにまた、対流によって内筒10と外筒20が回転すると、動力取得機構30は、内筒10及び外筒20が同方向に回転するので、この両方から動力を得ることができる。すなわち、内筒10の回転力が、内筒10の他端側の内筒回転軸13(13b),第一原動ギア31,第一従動ギア34,シャフト36及び第二従動ギア35を介して、外筒20の第二原動ギア32に伝達され、外筒20自体も第二原動ギア32を回転させるので、この第一原動ギア31の回転が発電機33に伝達され、この発電機33により発電される。
また、内筒10及び外筒20は、内筒10の内筒回転軸13の軸受部及び外筒20の外筒回転軸23の軸受部に、冷却液体や加温液体が潤滑油として供給されるので、円滑に回転する。
Furthermore, when the inner cylinder 10 and the outer cylinder 20 are rotated by convection, the power acquisition mechanism 30 can obtain power from both because the inner cylinder 10 and the outer cylinder 20 rotate in the same direction. That is, the rotational force of the inner cylinder 10 is transmitted through the inner cylinder rotating shaft 13 (13b), the first driving gear 31, the first driven gear 34, the shaft 36, and the second driven gear 35 on the other end side of the inner cylinder 10. Since the outer cylinder 20 itself rotates the second driving gear 32, the rotation of the first driving gear 31 is transmitted to the generator 33, which is transmitted by the generator 33. Power is generated.
In addition, the inner cylinder 10 and the outer cylinder 20 are supplied with cooling liquid or warming liquid as lubricating oil to the bearing portion of the inner cylinder rotation shaft 13 of the inner cylinder 10 and the bearing portion of the outer cylinder rotation shaft 23 of the outer cylinder 20. Therefore, it rotates smoothly.

[第二実施形態]
図18〜21は、本発明の第二実施形態に係る対流温度差原動装置S2を示している。
この対流温度差原動装置S2は、上記の対流温度差原動装置S1とは異なり、内筒10と外筒20の相対回転により、冷却液体と加温液体とを回収する機構が設けられている。
[Second Embodiment]
18 to 21 show a convection temperature difference prime mover S2 according to the second embodiment of the present invention.
Unlike the convection temperature difference prime mover S1, the convection temperature difference prime mover S2 is provided with a mechanism for recovering the cooling liquid and the heated liquid by the relative rotation of the inner cylinder 10 and the outer cylinder 20.

詳しくは、案内翼50は、内筒回転軸13(13b)の周囲に設けられ、この内筒回転軸13(13b)から内筒10の外側に向かう凹曲面を有した案内板体51と、この案内板体51の内部に設けられる羽根部材52とを備えている。
また、案内翼50の案内板体51は、案内板体51の内面を形成する内面部材53と、内面部材53の外側に設けられ内面部材53との間に排出口からの冷却液体が流通し、冷却液体循環管体80aの回収口86に連通する空間が形成される外面部材54とを備えている。内面部材53の開口縁部には、内筒10の回転により生じた遠心力で、内面部材53の内側で軸方向外側に集まる冷却液体が流入する複数の孔100が、列設されている。
Specifically, the guide blade 50 is provided around the inner cylinder rotation shaft 13 (13b), and the guide plate body 51 has a concave curved surface that extends from the inner cylinder rotation shaft 13 (13b) toward the outer side of the inner cylinder 10. A blade member 52 provided inside the guide plate 51 is provided.
In addition, the guide plate body 51 of the guide blade 50 has a cooling liquid from the discharge port between the inner surface member 53 that forms the inner surface of the guide plate body 51 and the inner surface member 53 provided outside the inner surface member 53. And an outer surface member 54 in which a space communicating with the recovery port 86 of the cooling liquid circulation pipe body 80a is formed. A plurality of holes 100 through which cooling liquid that collects on the inner side of the inner surface member 53 in the axial direction by the centrifugal force generated by the rotation of the inner cylinder 10 flows is arranged in the opening edge portion of the inner surface member 53.

さらに、案内翼50の周囲には、外筒20内部の下部付近に、外筒20の軸方向外側に設けた凹部に溜まった加温液体をかき取る回収刃55と、回収刃55の下側に設けられ、外面部材54との間に回収刃55からの加温液体が流通し、加温液体循環管体90aの回収口96に連通する空間が形成される盆状の盆状部材56とが設けられている。
また、一方支軸82に挿通される内筒回転軸13(13b)の軸管体15は、上下に設けた摺接部101により一方支軸82に回転可能に摺接する。また、軸管体15は、一方支軸82との間に、冷却液体が流通する一方通路102及び加温液体が流通する他方通路103が形成されている。この内筒回転軸13(13b)は、内部が隔壁104で仕切られており、一方通路102と他方通路103とを隔てている。一方通路102は、冷却液体循環管体80aの一部となっており、上端側で内面部材53と外面部材54との間の空間に連通する回収口86に形成されている。また、他方通路103は、加温液体循環管体90aの一部となっており、上端側で外面部材54と盆状部材56との間の空間に連通する回収口96が設けられている。
また、筒体10aは、その上端が、ガイド翼70の導風板71に接合され、ガイド翼70とともに回転するようになっている。また、筒体10aの内周の上部及び下部は、内筒に対して摺動する。
他の構成は、第一実施形態の対流温度差原動装置S1とほぼ同様である。
Further, around the guide blade 50, a recovery blade 55 that scrapes off the warmed liquid collected in a recess provided on the outer side in the axial direction of the outer cylinder 20 near the lower portion inside the outer cylinder 20, and a lower side of the recovery blade 55 A basin-shaped basin member 56 in which a heated liquid from the recovery blade 55 circulates between the outer surface member 54 and a space communicating with the recovery port 96 of the heated liquid circulation tube 90a is formed. Is provided.
Further, the shaft tube body 15 of the inner cylinder rotation shaft 13 (13b) inserted through the one support shaft 82 is slidably contacted with the one support shaft 82 by a sliding contact portion 101 provided at the top and bottom. Further, the shaft tube body 15 is formed with one passage 102 through which the cooling liquid flows and the other passage 103 through which the heating liquid flows, between the one support shaft 82. The inner cylinder rotating shaft 13 (13 b) is internally partitioned by a partition wall 104, and separates the one passage 102 and the other passage 103. On the other hand, the passage 102 is a part of the cooling liquid circulation pipe body 80a, and is formed in the recovery port 86 communicating with the space between the inner surface member 53 and the outer surface member 54 on the upper end side. The other passage 103 is a part of the heated liquid circulation tube body 90a, and is provided with a recovery port 96 communicating with the space between the outer surface member 54 and the tray member 56 on the upper end side.
Further, the upper end of the cylindrical body 10 a is joined to the air guide plate 71 of the guide blade 70 and is rotated together with the guide blade 70. Moreover, the upper part and the lower part of the inner periphery of the cylinder 10a slide with respect to the inner cylinder.
Other configurations are substantially the same as the convection temperature difference prime mover S1 of the first embodiment.

この対流温度差原動装置S2を作動させる場合、上記の第一実施形態と同様にし、冷却液体循環管路80により冷却液体が循環され、加温液体循環管路90に加温液体が循環され、内筒10及び外筒20が回転する。
そして、内筒10及び外筒20が回転した状態では、一方支軸82の流出口84から流出した冷却液体は、内筒10の内壁を流下して案内板体51の内面部材53に落下し、遠心力で案内板体51の開口縁部に集まり、孔100から回収口86に至り冷却液体循環管体80aに回収される。また、筒体10aの流出口99から流出した加温液体は、外筒20の遠心力により凹部に溜まるとともに、回収刃55によりかき取られて回収口96から加温液体循環管体90aに回収される。この場合、冷却液体は、外筒20側に漏れ出ることなく回収されるので、より加温液体と混ざり難くなり、別々に回収できる。そのため、回収した冷却液体の温度があまり上がらず、また、回収した加温液体の温度もあまり下がらないので、冷却部81による冷却及び加温部91による加温を効率よく行なうことができる。
さらに、外筒20の回転により、ガイド翼70の導風板71を介して筒体10aも回転して噴出口99自体も回転するので、噴出口99からの加温液体も回転運動するようになる。そのため、加温液体と他方流路Rbの気体の回転がほぼ同じになり、流体摩擦が少なくなり、気体の対流が円滑に行なわれるので、対流によるエネルギーが、効率よく内筒10及び外筒20に回転力として付与される。
他の作用及び効果は上記の第一実施形態と同様である。
When operating this convection temperature difference prime mover S2, the cooling liquid is circulated through the cooling liquid circulation line 80 and the heating liquid is circulated through the heating liquid circulation line 90 in the same manner as in the first embodiment. The inner cylinder 10 and the outer cylinder 20 rotate.
Then, in a state where the inner cylinder 10 and the outer cylinder 20 are rotated, the cooling liquid flowing out from the outlet 84 of the one support shaft 82 flows down the inner wall of the inner cylinder 10 and falls to the inner surface member 53 of the guide plate body 51. The centrifugal force gathers at the opening edge of the guide plate 51, reaches the recovery port 86 from the hole 100, and is recovered in the cooling liquid circulation tube 80a. Further, the heated liquid flowing out from the outlet 99 of the cylinder 10a is accumulated in the recess by the centrifugal force of the outer cylinder 20, and is scraped off by the recovery blade 55 and recovered from the recovery port 96 to the heated liquid circulation tube 90a. Is done. In this case, since the cooling liquid is recovered without leaking to the outer cylinder 20 side, it becomes difficult to mix with the warming liquid and can be recovered separately. Therefore, the temperature of the recovered cooling liquid does not increase so much and the temperature of the recovered warming liquid does not decrease so much, so that the cooling by the cooling unit 81 and the heating by the heating unit 91 can be performed efficiently.
Furthermore, since the outer cylinder 20 rotates and the cylindrical body 10a also rotates through the air guide plate 71 of the guide blade 70 and the jet port 99 itself rotates, the heated liquid from the jet port 99 also rotates. Become. For this reason, the rotation of the gas in the warming liquid and the other flow path Rb becomes substantially the same, fluid friction is reduced, and gas convection is performed smoothly, so that the energy from the convection efficiently generates the inner cylinder 10 and the outer cylinder 20. Is applied as a rotational force.
Other operations and effects are the same as those in the first embodiment.

[第三実施形態]
次に、図22を用い、本発明の第三実施形態に係る対流温度差原動装置S3について説明する。
この対流温度差原動装置S3は、上記の第二実施形態に係る対流温度差原動装置S2とほぼ同様な構成としてあるが、これと異なり、冷却液体及び加温液体を同じ回収口86で回収し、冷却液体循環管体80aと加温液体循環管体90aの一部が兼用される構成としてある。
詳しくは、この対流温度差原動装置S3は、外面部材54がなく、冷却液体は、案内翼50の開口から外筒20側に流出する。
また、一方支軸82に同軸に挿通される軸管体15からなる回収管が設けられている。この回収管は、上部に、案内板体51の内面部材53と盆状部材56の間の空間に連通する回収口86が設けられ、下端側で冷却液体循環管体80a及び加温液体循環管体90aを共用する回収管体300に連通している。
他の構成は、上記の実施形態と同様である。
[Third embodiment]
Next, a convection temperature difference prime mover S3 according to a third embodiment of the present invention will be described using FIG.
The convection temperature difference prime mover S3 has substantially the same configuration as the convection temperature difference prime mover S2 according to the second embodiment, but unlike this, the cooling liquid and the heating liquid are collected at the same collection port 86. The cooling liquid circulation pipe body 80a and the heated liquid circulation pipe body 90a are partly used.
Specifically, this convection temperature difference prime mover S3 does not have the outer surface member 54, and the cooling liquid flows out from the opening of the guide vane 50 to the outer cylinder 20 side.
In addition, a recovery pipe made of the shaft tube body 15 inserted coaxially with the one support shaft 82 is provided. This recovery pipe is provided with a recovery port 86 communicating with the space between the inner surface member 53 of the guide plate body 51 and the tray-shaped member 56 at the upper part, and the cooling liquid circulation pipe body 80a and the heating liquid circulation pipe at the lower end side. The body 90a communicates with the collection tube 300 that shares the body 90a.
Other configurations are the same as those in the above embodiment.

この対流温度差原動装置S3を作動させる場合、上記の実施形態と同様にし、冷却液体循環管路80により冷却液体が循環され、加温液体循環管路90に加温液体が循環され、内筒10及び外筒20が回転する。
そして、内筒10及び外筒20が回転した状態では、一方支軸82の流出口84から流出した冷却液体は、内筒10の内壁を流下して案内板体51に落下し、遠心力で外筒20側に出て行く。そして、冷却液体は、筒体10aの流出口84から流出した加温液体とともに、外筒20の遠心力により凹部に溜まるとともに、回収刃55によりかき取られて回収口86から回収管体300に回収される。この場合、冷却液体と加温液体とを分けて回収しないので、それだけ構造が簡単になる。
他の作用及び効果は上記の実施形態と同様である。
When operating this convection temperature difference prime mover S3, the cooling liquid is circulated through the cooling liquid circulation line 80, the heating liquid is circulated through the heating liquid circulation line 90, and the inner cylinder as in the above embodiment. 10 and the outer cylinder 20 rotate.
Then, in a state where the inner cylinder 10 and the outer cylinder 20 are rotated, the cooling liquid that has flowed out from the outlet 84 of the one support shaft 82 flows down the inner wall of the inner cylinder 10 and falls onto the guide plate body 51, and is caused by centrifugal force. Go to the outer cylinder 20 side. The cooling liquid accumulates in the recess by the centrifugal force of the outer cylinder 20 together with the heated liquid flowing out from the outlet 84 of the cylinder 10a, and is scraped off by the recovery blade 55 to the recovery tube 300 from the recovery port 86. To be recovered. In this case, the cooling liquid and the heating liquid are not collected separately, so that the structure is simplified accordingly.
Other actions and effects are the same as in the above embodiment.

[第四実施形態]
また、図23〜25には、本発明の第四実施形態に係る対流温度差原動装置S4を示している。
この対流温度差原動装置S4は、第二実施形態に係る対流温度差原動装置S2とほぼ同様であるが、これと異なり、一方支軸82の下端が土台1aから切り離されるとともに、この下端が内筒10の他端側の内筒回転軸13(13b)の内側に、内筒回転軸13(13b)と同軸に溶接固定されている。そして、この一方支軸82は、内筒10と連係して回転可能になっている。また、この一方支軸82は、その下端の開口が、冷却液体の流入口83に形成されている。
[Fourth embodiment]
23 to 25 show a convection temperature difference prime mover S4 according to a fourth embodiment of the present invention.
The convection temperature difference prime mover S4 is substantially the same as the convection temperature difference prime mover S2 according to the second embodiment. However, unlike this, the lower end of the support shaft 82 is separated from the base 1a and the lower end is inward. The inner cylinder rotating shaft 13 (13b) on the other end side of the cylinder 10 is welded and fixed coaxially with the inner cylinder rotating shaft 13 (13b). The one support shaft 82 is rotatable in conjunction with the inner cylinder 10. In addition, the lower end of the one support shaft 82 is formed in the cooling liquid inflow port 83.

また、図23,24に示すように、ガイド翼70は、筒体10aと一体となっており、内筒10に対して回転可能である。外筒20は、ガイド翼70に、遊星歯車機構170を介して、動力を伝達可能にしている。
この遊星歯車機構170は、内筒10の回転速度V1と、ガイド翼70によって回転させられる筒体10aの回転速度V2と、外筒20の回転速度V3との関係が、V1>V2>V3となるように歯車の噛合関係が定められている。また、遊星歯車機構170のギア比は、外筒20の内周の周速と、筒体10aの外周の周速とがほぼ同じになるように設定されている。
また、図23に示すように、対流温度差原動装置S4には、外筒20の経年変化による異常を検知する検知機構が設けられている。この検知機構は、外筒20の肉厚を薄くした肉薄部175を有し、肉薄部175が、外筒20の経年変化により穴があいたとき、外郭内の気圧の上昇にともない外郭上部から漏れ出る気体を検知できるようにしている。
Further, as shown in FIGS. 23 and 24, the guide blade 70 is integrated with the cylindrical body 10a and is rotatable with respect to the inner cylinder 10. The outer cylinder 20 is capable of transmitting power to the guide blade 70 via the planetary gear mechanism 170.
In this planetary gear mechanism 170, the relationship among the rotation speed V1 of the inner cylinder 10, the rotation speed V2 of the cylinder 10a rotated by the guide blade 70, and the rotation speed V3 of the outer cylinder 20 is V1>V2> V3. The meshing relationship of the gears is determined so as to be. The gear ratio of the planetary gear mechanism 170 is set so that the inner peripheral speed of the outer cylinder 20 and the outer peripheral speed of the cylindrical body 10a are substantially the same.
Further, as shown in FIG. 23, the convection temperature difference prime mover S4 is provided with a detection mechanism for detecting an abnormality due to the secular change of the outer cylinder 20. This detection mechanism has a thin part 175 in which the thickness of the outer cylinder 20 is reduced. When the thin part 175 has a hole due to aging of the outer cylinder 20, it leaks from the upper part of the outer shell as the atmospheric pressure in the outer shell increases. The gas that comes out can be detected.

さらに、図25に示すように、上記の各実施形態に係る対流温度差原動装置S1,S2,S3と異なり、多くの導風板71が設けられるとともに、その凹曲した面が、先端にいくに従って曲率半径が漸次小さくなるように形成されている。また、ブレード41は、動翼40の平均径を直径とする円弧の曲率と同じに形成され、その傾斜角は回転速度の効率が最適になるように定められている。
他の構成は、第二実施形態の対流温度差原動装置S2とほぼ同じになっている。
Furthermore, as shown in FIG. 25, unlike the convection temperature difference prime movers S1, S2, and S3 according to the above-described embodiments, a large number of air guide plates 71 are provided, and the concavely curved surface goes to the tip. Accordingly, the radius of curvature gradually decreases. The blade 41 is formed to have the same curvature as an arc whose diameter is the average diameter of the rotor blade 40, and the inclination angle is determined so that the efficiency of the rotational speed is optimized.
The other structure is substantially the same as the convection temperature difference prime mover S2 of the second embodiment.

この対流温度差原動装置S4を作動させる場合、上記の実施形態と同様にし、冷却液体循環管路80により冷却液体が循環され、加温液体循環管路90に加温液体が循環され、内筒10及び外筒20が回転する。
この場合、内筒10及び外筒20が回転した状態においては、遊星歯車機構170により、外筒20の回転が低速になる。そのため、外筒20の外郭1内の気体に対しての摩擦抵抗が低減されるようになり、内筒10及び外筒20からの動力の出力効率が向上する。
また、遊星歯車機構170により、外筒20の内周の周速と、筒体10aの外周の周速がほぼ同じになるので、外筒20と筒体10aとの間にほとんど摩擦抵抗が生じなくなり、内筒10及び外筒20からの動力の出力効率が向上する。さらに、外筒20の内周の周速と、筒体10aの外周の周速がほぼ同じになるので、内筒10の外側の気体の発熱が抑制される。
When this convection temperature difference prime mover S4 is operated, the cooling liquid is circulated through the cooling liquid circulation pipe 80 and the heating liquid is circulated through the heating liquid circulation pipe 90 in the same manner as in the above embodiment. 10 and the outer cylinder 20 rotate.
In this case, when the inner cylinder 10 and the outer cylinder 20 are rotated, the planetary gear mechanism 170 causes the outer cylinder 20 to rotate at a low speed. Therefore, the frictional resistance against the gas in the outer shell 1 of the outer cylinder 20 is reduced, and the output efficiency of power from the inner cylinder 10 and the outer cylinder 20 is improved.
Further, the planetary gear mechanism 170 causes the inner peripheral speed of the outer cylinder 20 and the peripheral speed of the outer periphery of the cylindrical body 10a to be substantially the same, so that a frictional resistance is generated between the outer cylinder 20 and the cylindrical body 10a. The power output efficiency from the inner cylinder 10 and the outer cylinder 20 is improved. Furthermore, since the peripheral speed of the inner periphery of the outer cylinder 20 and the peripheral speed of the outer periphery of the cylinder 10a become substantially the same, the heat generation of the gas outside the inner cylinder 10 is suppressed.

さらにまた、ガイド翼70の導風板71は、凹曲した面の半径が小さいので、他方流路Rbを流通する気体に付与する折り返しの遠心力が強くなる。すなわち、ガイド翼70の導風板71でガイドされて供給口11に流入する気体を受ける動翼40のブレード41への動力の伝達が確実になり、内筒10が確実に回転する。
また、経年変化により肉薄部175に穴があくと、穴から外筒20の気体が外郭1内に漏れ出るとともに、外郭1内の気圧が上昇して、外郭1からも気体が漏れ出る。この漏れ出た気体を検知することで、外筒20の経年変化による異常を検知することができる。
他の作用,効果は、上記の実施形態と同様である。
Furthermore, since the air guide plate 71 of the guide blade 70 has a small radius of the concave surface, the centrifugal force applied to the gas flowing through the other flow path Rb is increased. That is, power transmission to the blade 41 of the rotor blade 40 that receives the gas flowing into the supply port 11 guided by the air guide plate 71 of the guide blade 70 is ensured, and the inner cylinder 10 is reliably rotated.
Further, when the thin portion 175 has a hole due to secular change, the gas in the outer cylinder 20 leaks into the outer shell 1 from the hole, and the atmospheric pressure in the outer shell 1 rises, and the gas leaks from the outer shell 1. By detecting the leaked gas, it is possible to detect an abnormality due to the secular change of the outer cylinder 20.
Other actions and effects are the same as in the above embodiment.

[第五実施形態]
図26〜33には、本発明の第五実施形態に係る対流温度差原動装置S5を示している。
この対流温度差原動装置S5は、第四実施形態に係る対流温度差原動装置S4と同様に、一方支軸82が内筒回転軸13(13b)に対して回転可能に設けられている。また、第四実施形態に係る対流温度差原動装置S4と異なり、一方支軸82の下端に、ロッド306が設けられている。このロッド306は、一方支軸82の下端を閉塞し、この一方支軸82と同動するとともに、内筒回転軸13(13b)に軸受305を介して摺接する。
[Fifth embodiment]
26 to 33 show a convection temperature difference prime mover S5 according to a fifth embodiment of the present invention.
In this convection temperature difference prime mover S5, like the convection temperature difference prime mover S4 according to the fourth embodiment, one support shaft 82 is provided to be rotatable with respect to the inner cylinder rotary shaft 13 (13b). Further, unlike the convection temperature difference prime mover S4 according to the fourth embodiment, a rod 306 is provided at the lower end of the one support shaft 82. The rod 306 closes the lower end of the one support shaft 82, moves together with the one support shaft 82, and slidably contacts the inner cylinder rotation shaft 13 (13 b) via the bearing 305.

この対流温度差原動装置S5は、上記の遊星歯車機構170(以下「第1の遊星歯車機構170」という)の他に、一方支軸82に、内筒回転軸13(13b)からの動力を伝達するための第2の遊星歯車機構310を備え、一方支軸82が内筒10に連係して回転することができる。   In addition to the planetary gear mechanism 170 (hereinafter referred to as “first planetary gear mechanism 170”), the convection temperature difference prime mover S5 transmits power from the inner cylinder rotary shaft 13 (13b) to the one support shaft 82. A second planetary gear mechanism 310 for transmission is provided, and the support shaft 82 can rotate in conjunction with the inner cylinder 10.

第2の遊星歯車機構310は、図28,32に示すように、軸が一方支軸82の下端に設けたロッド306に固定されて、一方支軸82と同動する中央の歯車311と、この歯車311の周囲に配置され、内筒回転軸13(13b)の下端部に設けた円盤体312に回転可能に軸支される3つの歯車313とを備えている。円盤体312は、その中央が内筒回転軸13(13b)の下端部に設けた右ネジに螺合されて、内筒回転軸13(13b)に結合されている。また、周囲の3つの歯車312は、土台1aに立設された筒状のガイド部材315の内部に設けたギア316に噛合されている。
また、この第2の遊星歯車機構310は、外郭1の内部の下部に設けた仕切板317により、外郭1の内部空間の下側に形成された部屋に設けられている。仕切板317は、その中央に、内筒回転軸13(13b)を軸支する平軸受321が設けられている。
さらに、歯車311及び歯車313の噛合関係は、内筒10の回転速度V1と、内筒10の内筒回転軸13(13b)によって回転させられる一方支軸82の回転速度V4との関係が、V4>V1となるように定められている。
As shown in FIGS. 28 and 32, the second planetary gear mechanism 310 has a central gear 311 whose shaft is fixed to a rod 306 provided at the lower end of the one support shaft 82 and that moves together with the one support shaft 82, Three gears 313 are provided around the gear 311 and rotatably supported by a disc body 312 provided at the lower end portion of the inner cylinder rotary shaft 13 (13b). The center of the disk body 312 is screwed into a right screw provided at the lower end of the inner cylinder rotation shaft 13 (13b), and is coupled to the inner cylinder rotation shaft 13 (13b). The three surrounding gears 312 are meshed with a gear 316 provided inside a cylindrical guide member 315 provided upright on the base 1a.
The second planetary gear mechanism 310 is provided in a room formed below the inner space of the outer shell 1 by a partition plate 317 provided in the lower portion of the outer shell 1. The partition plate 317 is provided at its center with a plain bearing 321 that supports the inner cylinder rotary shaft 13 (13b).
Further, the meshing relationship between the gear 311 and the gear 313 is the relationship between the rotation speed V1 of the inner cylinder 10 and the rotation speed V4 of the one support shaft 82 rotated by the inner cylinder rotation shaft 13 (13b) of the inner cylinder 10. It is determined that V4> V1.

また、図26〜29に示すように、筒体10aは、上下を変換可能に設けられる。筒体10aの下部は、外筒20に固定された複数のアーム314に取り付けられた筒状体315に挿通される。筒体10aの上部は、ガイド翼70の導風板71に設けられた筒状体316に挿通される。そして、筒体10aは、筒状体315,316のいずれか一方に摺接してガイドされ、いずれか他方に連結される。筒体10aと筒状体315,316との連結は、各筒状体315,316に設けた複数のスリットに、筒体10aの上下いずれか一方側の表面の周方向に突設された複数の凸状体318を嵌合して行なわれる。   Moreover, as shown to FIGS. 26-29, the cylinder 10a is provided so that conversion is possible up and down. A lower portion of the cylindrical body 10 a is inserted into a cylindrical body 315 attached to a plurality of arms 314 fixed to the outer cylinder 20. The upper part of the cylindrical body 10 a is inserted into a cylindrical body 316 provided on the air guide plate 71 of the guide blade 70. The cylindrical body 10a is guided in sliding contact with any one of the cylindrical bodies 315 and 316, and is connected to either one. The cylindrical body 10a and the cylindrical bodies 315 and 316 are connected to each other by a plurality of slits provided in the cylindrical bodies 315 and 316 so as to protrude in the circumferential direction of the surface on the upper or lower side of the cylindrical body 10a. This is performed by fitting the convex body 318.

また、図26に示すように、一方支軸82の上部に、一方流路Raの供給口11側に滞留した気体を下側に押し込むためのフィン320が設けられている。このフィン320は、図33に示すように、一方支軸82に挿通される管体321と、管体321の周囲に設けられた4枚の羽根322とを備えてなる。
また、内筒10の内部は、一方支軸82に巻回されて設けられた多孔質部材60がない構成となっている。
さらに、内筒10の排出口12側に、内周面に沿って突設されるリング状の突条330が設けられている。この突条330は、断面が矩形状に形成されている。
他の構成は、第四実施形態の対流温度差原動装置S4とほぼ同じになっている。
In addition, as shown in FIG. 26, a fin 320 is provided on the upper side of the one support shaft 82 for pushing the gas staying on the supply port 11 side of the one flow path Ra downward. As shown in FIG. 33, the fin 320 includes a tube body 321 inserted through the one support shaft 82 and four blades 322 provided around the tube body 321.
Further, the inside of the inner cylinder 10 has a configuration in which the porous member 60 provided around the one support shaft 82 is not provided.
Furthermore, a ring-shaped protrusion 330 that protrudes along the inner peripheral surface is provided on the discharge port 12 side of the inner cylinder 10. The ridge 330 has a rectangular cross section.
The other configuration is substantially the same as the convection temperature difference prime mover S4 of the fourth embodiment.

この対流温度差原動装置S5は、設置時において、筒体10aを外筒20と同動させる場合には、凸状体318を、アーム314を備えた筒状体315のスリットに嵌合した状態で凸状体318がある側を下側にするとともに、筒状体316を筒体10aに挿通し、アーム314の先端を外筒20の内壁に接合する。
一方、筒体10aをガイド翼70と同動させる場合には、筒体10aを凸状体318がある側を上側にし、筒状体315を筒体10aに挿通するとともに、筒状体316を挿通して凸状体318にこの筒状体316のスリットを嵌合する。そして、筒状体315のアーム314を外筒20の内壁に接合する。
In the convection temperature difference prime mover S5, when the cylindrical body 10a is moved together with the outer cylinder 20 at the time of installation, the convex body 318 is fitted in the slit of the cylindrical body 315 provided with the arm 314. Thus, the side with the convex body 318 is set to the lower side, the cylindrical body 316 is inserted into the cylindrical body 10a, and the tip of the arm 314 is joined to the inner wall of the outer cylinder 20.
On the other hand, when the cylindrical body 10a is moved together with the guide wing 70, the cylindrical body 10a is inserted into the cylindrical body 10a while the cylindrical body 315 is inserted into the cylindrical body 10a. The slit of this cylindrical body 316 is fitted into the convex body 318 through insertion. Then, the arm 314 of the cylindrical body 315 is joined to the inner wall of the outer cylinder 20.

対流温度差原動装置S5を作動させる場合、上記の実施形態と同様にし、冷却液体循環管路80により冷却液体が循環され、加温液体循環管路90に加温液体が循環され、内筒10及び外筒20が回転する。
この場合、内筒10が回転した状態においては、第2の遊星歯車機構310により、一方支軸82の回転が内筒10の回転よりも高速になる。そのため、一方流路Raの供給口11側に滞留した気体がフィン320により高速で排出口12側に押し込まれるので、内筒10内部の気体の気流が高速になり、それだけ対流が円滑に行なわれ、動力が得やすくなる。
When the convection temperature difference prime mover S5 is operated, the cooling liquid is circulated through the cooling liquid circulation pipe 80 and the heating liquid is circulated through the heating liquid circulation pipe 90 in the same manner as in the above embodiment. And the outer cylinder 20 rotates.
In this case, in the state in which the inner cylinder 10 is rotated, the rotation of the one support shaft 82 is faster than the rotation of the inner cylinder 10 by the second planetary gear mechanism 310. For this reason, the gas staying on the supply port 11 side of the one-side channel Ra is pushed into the discharge port 12 side at high speed by the fins 320, so that the gas flow inside the inner cylinder 10 becomes high speed and the convection is smoothly performed. , Easy to get power.

また、フィン320により、排出口12側に押し込まれた一方流路Raの気体は、フィン320の回転及び内筒10の回転により渦流となるとともに、渦流による遠心力で内筒10の内周面側に圧縮される。そして、この気体により、内筒10の内周面近傍に圧縮気体層が形成される。圧縮気体層の気体は、排出口11側で突条330に衝突するとともに、この突条330を乗り越えて排出口12から排出される。
この際、一方流路Raの気体は、突条330に衝突しその流速がある程度制限される。
すなわち、突条330が無い場合、内筒10の内周面近傍の排出口12側の気体は、排出口12から順次排出され、その密度が供給口11側に比較して大幅に低くなり、圧縮気体層の気体の密度が不均一になりやすくなる。これに対し、突条330を設けた場合、突条330で内筒10内周面近傍の気体の流れを制限し、排出口12側に気体を留めるので、内筒10の内周面全面に亘ってほぼ均一にすることができる。これにより、流出口84からの冷却液体は、気体が均一に分布した圧縮気体層に散布され、この気体を冷却するので、冷却効率が向上し、動力が得やすくなる。
Further, the gas in the one flow path Ra pushed into the discharge port 12 side by the fin 320 becomes a vortex by the rotation of the fin 320 and the rotation of the inner cylinder 10, and the inner peripheral surface of the inner cylinder 10 by the centrifugal force due to the vortex Compressed to the side. Then, a compressed gas layer is formed near the inner peripheral surface of the inner cylinder 10 by this gas. The gas in the compressed gas layer collides with the protrusion 330 on the discharge port 11 side, and passes over the protrusion 330 and is discharged from the discharge port 12.
At this time, the gas in the one flow path Ra collides with the protrusion 330 and its flow velocity is limited to some extent.
That is, when there is no protrusion 330, the gas on the discharge port 12 side in the vicinity of the inner peripheral surface of the inner cylinder 10 is sequentially discharged from the discharge port 12, and its density is significantly lower than that on the supply port 11 side. The density of the gas in the compressed gas layer tends to be non-uniform. On the other hand, when the protrusion 330 is provided, the protrusion 330 limits the gas flow in the vicinity of the inner peripheral surface of the inner cylinder 10 and keeps the gas on the discharge port 12 side. It can be made almost uniform throughout. Thereby, the cooling liquid from the outflow port 84 is sprayed on the compressed gas layer in which the gas is uniformly distributed, and the gas is cooled, so that the cooling efficiency is improved and power is easily obtained.

また、設置時に筒体10aをガイド翼70または外筒20のいずれかと同動するように選択できるので、筒状体316を介してガイド翼70と同動させると、筒体10aを高速で回転させることができる。また、一方、筒状体315及びアーム314を介して外筒20と同動させると、筒体10aを低速で回転させることができる。
他の作用,効果は、上記の実施形態と同様である。
Further, since the cylinder body 10a can be selected to move together with either the guide blade 70 or the outer cylinder 20 at the time of installation, the cylinder body 10a rotates at a high speed when moved along with the guide blade 70 via the tubular body 316. Can be made. On the other hand, if it moves with the outer cylinder 20 via the cylindrical body 315 and the arm 314, the cylindrical body 10a can be rotated at low speed.
Other actions and effects are the same as in the above embodiment.

[第六実施形態]
図34は、本発明の第六実施形態に係る対流温度差原動装置S6を示している。
この対流温度差原動装置S6は、第一実施形態に係る対流温度差原動装置S1とほぼ同様であるが、これと異なり、一方支軸82が内筒と一体に回転可能になっており、その下端の開口が、冷却液体の流入口83に形成されている。
また、動力取得機構30は、内筒10の一端側の内筒回転軸13(13a)に設けられ該内筒回転軸13(13a)の回転を取出すタイミングベルト伝動機構400と、外筒20の他端側の外筒回転軸23(23b)の回転を取出すタイミングベルト伝動機構401とから構成されている。
[Sixth embodiment]
FIG. 34 shows a convection temperature difference prime mover S6 according to the sixth embodiment of the present invention.
This convection temperature difference prime mover S6 is substantially the same as the convection temperature difference prime mover S1 according to the first embodiment, but unlike this, the one support shaft 82 is rotatable integrally with the inner cylinder, An opening at the lower end is formed in the cooling liquid inlet 83.
The power acquisition mechanism 30 is provided on the inner cylinder rotation shaft 13 (13a) on one end side of the inner cylinder 10 and a timing belt transmission mechanism 400 that takes out the rotation of the inner cylinder rotation shaft 13 (13a); It is comprised from the timing belt transmission mechanism 401 which takes out rotation of the outer cylinder rotating shaft 23 (23b) of the other end side.

さらに、内筒10の一端に、供給口11から流入した気体を受けて内筒10に回転力を付与する動翼40が設けられている。この動翼40は、内筒10の一端側において、内筒10の回転軸を中心に等角度関係で列設され、外筒20に設けたガイド翼70により導かれた気体を受ける面を有し気体を上側から内筒10内に導く、複数のブレード41を備えている。
一方、外筒20に設けたガイド翼70は、動翼40のブレード41に対応させて等角度関係で列設された導風板71を備え、内筒10の外側を通って供給口11に至る他方流路Rbからの気体を反転させて、動翼40のブレード41の上側からこのブレード41に送給する。そのため、鉛直方向に気体が流入させられるので、ブレード41での気体の受けが確実になり、回転効率が向上する。
Further, at one end of the inner cylinder 10, a moving blade 40 that receives gas flowing from the supply port 11 and applies a rotational force to the inner cylinder 10 is provided. The rotor blades 40 are arranged on one end side of the inner cylinder 10 at an equiangular relationship around the rotation axis of the inner cylinder 10 and have a surface for receiving the gas guided by the guide blades 70 provided on the outer cylinder 20. A plurality of blades 41 for guiding the gas from the upper side into the inner cylinder 10 are provided.
On the other hand, the guide blade 70 provided in the outer cylinder 20 includes a wind guide plate 71 arranged in an equiangular relationship corresponding to the blade 41 of the rotor blade 40, and passes through the outer side of the inner cylinder 10 to the supply port 11. The gas from the other flow path Rb is reversed and fed to the blade 41 from the upper side of the blade 41 of the rotor blade 40. For this reason, since the gas is caused to flow in the vertical direction, the gas is surely received by the blade 41 and the rotation efficiency is improved.

さらにまた、内筒10の他端の外方に、案内翼50が設けられている。案内翼50は、排出口12から排出された気体を受けて、内筒10に回転力を付与し、排出口12から排気された気体を他方流路Rbの気体の流通方向に導く。この案内翼50は、排出口12からの気体を他方流路Rbの気体の流通方向に反転させる椀状の案内板体51と、この案内板体51に複数設けられる羽根部材52とを備えている。案内板体51は、外筒20に固定されている。これにより、案内翼50と外筒20とは、同回転する。他の作用,効果は、上記と同様である。   Furthermore, a guide vane 50 is provided outside the other end of the inner cylinder 10. The guide vane 50 receives the gas discharged from the discharge port 12, applies a rotational force to the inner cylinder 10, and guides the gas discharged from the discharge port 12 in the gas flow direction of the other flow path Rb. The guide blade 50 includes a bowl-shaped guide plate body 51 that reverses the gas from the discharge port 12 in the gas flow direction of the other flow path Rb, and a plurality of blade members 52 provided on the guide plate body 51. Yes. The guide plate body 51 is fixed to the outer cylinder 20. Thereby, the guide vane 50 and the outer cylinder 20 rotate in the same direction. Other actions and effects are the same as described above.

<応用例>
図35には、本発明の第一実施形態に係る対流温度差原動装置を作動させるシステムの応用例を示している。
このシステムの対流温度差原動装置S1は、冷却部よりも上流側の冷却液体循環管体と加温部よりも上流側の加温液体循環管体の一部が兼用されており、途中で分岐し、冷却液体循環管体と加温液体循環管体とに分かれている。
詳しくは、対流温度差原動装置S1は、その冷却液体循環管路80及び加温液体循環管路90上に、冷却液体及び加温液体を回収する回収口156を上流側に備えた回収管体155を備えている。この回収管体155の下流側において、冷却液体循環管体80a及び加温液体循環管体90aに分岐している。また、冷却液体循環管体80a及び加温液体循環管体90aに分岐する分岐点よりも上流側には、逆止弁157が設けられている。
<Application example>
FIG. 35 shows an application example of a system for operating the convection temperature difference prime mover according to the first embodiment of the present invention.
In this system, the convection temperature difference prime mover S1 has a cooling liquid circulation pipe upstream of the cooling section and a part of the heating liquid circulation pipe upstream of the heating section. However, it is divided into a cooling liquid circulation pipe and a warming liquid circulation pipe.
Specifically, the convection temperature differential prime mover S1 has a recovery pipe body provided with a recovery port 156 on the upstream side for recovering the cooling liquid and the heated liquid on the cooling liquid circulation line 80 and the heated liquid circulation line 90. 155. On the downstream side of the recovery pipe body 155, it branches off into a cooling liquid circulation pipe body 80a and a warming liquid circulation pipe body 90a. Further, a check valve 157 is provided on the upstream side of the branch point where the cooling liquid circulation pipe body 80a and the heated liquid circulation pipe body 90a branch.

また、このシステムには、回収管155から迂回する迂回管160が設けられている。迂回管160の途中には、ポンプ160aが設けられており、このポンプ160aは、回収管155を流れる液体を吸引するとともに、この液体を逆止弁157よりも下流側の回収管155へ流入させる。また、タンク136に溜められた液体を回収管体迂回管160に補充する補給管161が設けられている。この補給管161は、タンク136に設けられた液体量測定器139が測定した液体量にもとづいて開閉される。   In addition, in this system, a bypass pipe 160 that bypasses the recovery pipe 155 is provided. A pump 160 a is provided in the middle of the bypass pipe 160, and the pump 160 a sucks the liquid flowing through the recovery pipe 155 and causes the liquid to flow into the recovery pipe 155 downstream of the check valve 157. . Further, a supply pipe 161 for replenishing the recovery pipe body bypass pipe 160 with the liquid stored in the tank 136 is provided. The supply pipe 161 is opened and closed based on the liquid amount measured by the liquid amount measuring device 139 provided in the tank 136.

補給管161は、補給管161を開閉する電磁弁163と、迂回管160から液体が逆流しないようにするための逆止弁164とを備えている。電磁弁163は、タンク136内の液体の量を測定する液体量測定器139により、補給管161と迂回管160の合流点よりも上流側に設けられた電磁弁162とともに開閉する。
この電磁弁162及び電磁弁163の動作は、次のようになる。液体量測定器139がタンク136内の液体の量が所定量よりも少ないことを検知すると、スイッチ143により電源150を電磁弁163に接続し、電磁弁163を閉じる。一方、電磁弁162は、電源150から切断されて開く。この場合、回収管155からの液体が、ポンプ160aで吸引させられ、回収管155に戻される。また、液体量測定器139がタンク136内の液体の量が所定量よりも大きいことを検知すると、スイッチ143により電源150が電磁弁162に接続されて電磁弁162を閉じる。一方、電磁弁163は、電源150から切断されて開く。この場合、タンク136内の液体は、ポンプ160aで吸引させられる。
The supply pipe 161 includes an electromagnetic valve 163 that opens and closes the supply pipe 161 and a check valve 164 for preventing liquid from flowing backward from the bypass pipe 160. The electromagnetic valve 163 opens and closes together with the electromagnetic valve 162 provided on the upstream side of the junction of the supply pipe 161 and the bypass pipe 160 by the liquid amount measuring device 139 that measures the amount of liquid in the tank 136.
The operations of the electromagnetic valve 162 and the electromagnetic valve 163 are as follows. When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is less than a predetermined amount, the switch 143 connects the power source 150 to the electromagnetic valve 163 and closes the electromagnetic valve 163. On the other hand, the solenoid valve 162 is disconnected from the power source 150 and opened. In this case, the liquid from the recovery pipe 155 is sucked by the pump 160 a and returned to the recovery pipe 155. When the liquid amount measuring device 139 detects that the amount of liquid in the tank 136 is larger than a predetermined amount, the switch 143 connects the power source 150 to the electromagnetic valve 162 and closes the electromagnetic valve 162. On the other hand, the electromagnetic valve 163 is disconnected from the power supply 150 and opened. In this case, the liquid in the tank 136 is sucked by the pump 160a.

このシステムと対流温度差原動装置S1によれば、冷却液体と加温液体を一緒に回収口156で回収し、かつ、外筒20と摺接部材89の間から漏れ出た冷却液体及び加温液体を、適時に迂回管160を介して冷却液体循環管路80と加温液体循環管路90に戻すことができるので、冷却液体と加温液体とを冷却液体循環管路80と加温液体循環管路90に所定量流すことができる。
また、冷却液体と加温液体を別々に回収しないので、構造が簡単になり、対流温度差原動装置S1の設置コストが低減される。
他の作用,効果は上記のものと同様である。
According to this system and the convection temperature difference prime mover S 1, the cooling liquid and the heating liquid are collected together at the collection port 156, and the cooling liquid and the heating leaked from between the outer cylinder 20 and the sliding contact member 89. Since the liquid can be returned to the cooling liquid circulation line 80 and the warming liquid circulation line 90 via the bypass pipe 160 at an appropriate time, the cooling liquid and the warming liquid are exchanged with the cooling liquid circulation line 80 and the warming liquid. A predetermined amount can flow through the circulation line 90.
Further, since the cooling liquid and the heating liquid are not separately collected, the structure is simplified, and the installation cost of the convection temperature difference prime mover S1 is reduced.
Other actions and effects are the same as those described above.

なお、本発明の各実施形態に係る各対流温度差原動装置S1,S2,S3,S4,S5において、内筒10及び外筒20の形状を、円筒状にしたが、これに限定されるものでなく、図36中(a),(b),(c),(d),(e),(f),(g),(h)に示すように、種々の形状にしてもよく、適宜設計変更して差し支えない。   In addition, in each convection temperature difference prime mover S1, S2, S3, S4, S5 which concerns on each embodiment of this invention, although the shape of the inner cylinder 10 and the outer cylinder 20 was made into cylindrical shape, it is limited to this Instead, as shown in (a), (b), (c), (d), (e), (f), (g), (h) in FIG. The design can be changed as appropriate.

Claims (11)

外郭と、該外郭に回転可能に軸支され、軸方向一端に気体の供給口が形成され、他端に気体の排出口が形成された内筒と、上記外郭及び内筒に対して回転可能に設けられ、壁部が外郭と内筒との間に位置する外筒とを備え、気体が、上記内筒の供給口から該内筒の内部を通って排出口に至る一方流路及び該内筒の排出口から該内筒の外側を通って供給口に至る他方流路を通るように、上記気体に温度差を付与して気体の対流を生じさせ、該気体の対流により上記内筒及び外筒を回転させて動力を得る対流温度差原動装置において、
上記内筒に、上記供給口から流入した上記気体を受けて該内筒に回転力を付与する動翼を設け、
上記内筒内に冷却液体を散布して、上記一方流路を通る気体を冷却し、かつ、該冷却液体を循環させる冷却液体循環管路を設け、該冷却液体循環管路の途中に、該冷却液体を冷却する冷却部を設け、
上記内筒と外筒との間に加温液体を散布して、上記他方流路を通る気体を加温し、かつ、該加温液体を循環させる加温液体循環管路を設け、該加温液体循環管路の途中に、該加温液体を加温する加温部を設けたことを特徴とする対流温度差原動装置。
An outer shell, an inner cylinder rotatably supported by the outer shell, a gas supply port formed at one end in the axial direction, and a gas discharge port formed at the other end, and rotatable relative to the outer shell and the inner tube An outer cylinder whose wall is located between the outer shell and the inner cylinder, and a gas flow from the supply port of the inner cylinder to the discharge port through the inside of the inner cylinder and the flow path A temperature difference is imparted to the gas so as to pass through the other flow path from the discharge port of the inner tube to the supply port through the outside of the inner tube, and convection of the gas is generated. And in the convection temperature difference prime mover for obtaining power by rotating the outer cylinder,
The inner cylinder is provided with a moving blade that receives the gas flowing from the supply port and applies a rotational force to the inner cylinder,
A cooling liquid is sprayed in the inner cylinder, a gas passing through the one flow path is cooled, and a cooling liquid circulation pipe for circulating the cooling liquid is provided. In the middle of the cooling liquid circulation pipe, A cooling unit for cooling the cooling liquid is provided,
A heating liquid is sprayed between the inner cylinder and the outer cylinder, the gas passing through the other channel is heated, and a heating liquid circulation conduit for circulating the heating liquid is provided. A convection temperature difference prime mover characterized in that a warming section for warming the warming liquid is provided in the middle of the warm liquid circulation conduit.
上記冷却液体循環管路が、一端側に、上記外郭に設けられた冷却液体の流入口を有し、他端側に、上記内筒に該冷却液体を散布する多数の流出口を有し、さらに、上記内筒と外筒の他端を回転可能にする一方支軸,上記一方支軸の流入口に接続される注入口,上記一方流路の気体を冷却した後上記内筒の排出口から流出した冷却流体を回収する回収口,及び,上記回収口から再び上記注入口に冷却液体を循環させる冷却液体循環管体を備え、
上記加温液体循環管路が、一端側に、上記外郭に設けられ加温液体の流入口を有し、他端側に、流出口を有し、さらに、上記内筒と外筒の一端を軸支する他方支軸,上記内筒の外側を覆い、該内筒との間に上記他方支軸の流出口からの加温液体が流通可能な流通路を形成し、かつ、上記外筒に向けて加温液体を噴射する多数の噴射口が形成された筒体,上記他方支軸の流入口に接続される注入口,上記筒体の噴射口から噴射された加温液体を回収する回収口,及び,上記回収口から再び上記注入口に加温液体を循環させる加温液体循環管体を備えたことを特徴とする請求項1記載の対流温度差原動装置。
The cooling liquid circulation conduit has a cooling liquid inlet provided in the outer shell on one end side, and a plurality of outlets for spraying the cooling liquid on the inner cylinder on the other end side, Further, the one support shaft that enables rotation of the other ends of the inner cylinder and the outer cylinder, an injection port connected to the inlet of the one support shaft, and a discharge port of the inner cylinder after cooling the gas in the one flow path A recovery port for recovering the cooling fluid that has flowed out of the cooling fluid, and a cooling liquid circulation tube that circulates the cooling liquid from the recovery port to the inlet again.
The warming liquid circulation conduit is provided on one end side with an inlet for the warming liquid provided on the outer shell, has an outlet on the other end side, and further has one end of the inner cylinder and the outer cylinder. The other support shaft that supports the shaft, covers the outside of the inner cylinder, forms a flow passage through which the heated liquid from the outlet of the other support shaft can flow, and the outer cylinder. A cylinder having a plurality of injection ports for injecting the heated liquid toward the injection port, an injection port connected to the inlet of the other support shaft, and a recovery for recovering the heated liquid injected from the injection port of the cylinder The convection temperature difference prime mover according to claim 1, further comprising a heated liquid circulation tube that circulates the heated liquid from the opening and the recovery port to the injection port again.
上記内筒に、上記一方支軸又は他方支軸に回転可能に挿通される管状の内筒回転軸を設け、上記外筒に、該内筒回転軸と同軸の管状の外筒回転軸を設け、上記内筒回転軸及び外筒回転軸の両方から動力を得る動力取得機構を設けたことを特徴とする請求項2記載の対流温度差原動装置。   The inner cylinder is provided with a tubular inner cylinder rotating shaft that is rotatably inserted into the one supporting shaft or the other supporting shaft, and the outer cylinder is provided with a tubular outer cylinder rotating shaft that is coaxial with the inner cylinder rotating shaft. The convection temperature difference prime mover according to claim 2, further comprising a power acquisition mechanism for obtaining power from both the inner cylinder rotation shaft and the outer cylinder rotation shaft. 上記動力取得機構が、上記内筒回転軸に設けられる第一原動ギア,上記外筒回転軸に設けられる第二原動ギア,第一原動ギアに噛合する第一従動ギア,第二原動ギアに噛合する第二従動ギア,第一従動ギアと第二従動ギアが取り付けられるシャフト,及び,該シャフトに連係して駆動される発電機を備えたことを特徴とする請求項3記載の対流温度差原動装置。   The power acquisition mechanism meshes with a first driving gear provided on the inner cylinder rotating shaft, a second driving gear provided on the outer cylinder rotating shaft, a first driven gear meshing with the first driving gear, and a second driving gear. The convection temperature difference driving device according to claim 3, further comprising: a second driven gear, a shaft to which the first driven gear and the second driven gear are attached, and a generator driven in association with the shaft. apparatus. 上記外筒の一端側の内周に、上記供給口に設けた動翼に気体を導くガイド翼を設け、
上記動翼が、上記内筒の一端側に、該内筒の回転軸を中心に等角度関係で列設され、さらに、上記ガイド翼により導かれた気体を受ける面を有した複数のブレードを備え、
上記ガイド翼が、上記動翼のブレードに対応させて等角度関係で列設された複数の導風板を備えたことを特徴とする請求項1,2,3又は4記載の対流温度差原動装置。
Provided on the inner periphery of one end side of the outer cylinder is a guide blade that guides gas to the moving blade provided at the supply port,
A plurality of blades each having a surface for receiving the gas guided by the guide blades, wherein the rotor blades are arranged on one end side of the inner tube at an equiangular relationship around the rotation axis of the inner tube. Prepared,
5. The convection temperature difference driving device according to claim 1, wherein the guide blade includes a plurality of air guide plates arranged in an equiangular relationship so as to correspond to the blades of the moving blade. apparatus.
上記導風板を、円周一方向に凹曲して形成し、該導風板の凹曲した面によって、上記供給口に流入する気体に遠心力を付与することを特徴とする請求項5記載の対流温度差原動装置。   6. The air guide plate is formed by being bent in one circumferential direction, and centrifugal force is applied to the gas flowing into the supply port by the concave surface of the wind guide plate. Convection temperature difference prime mover. 上記内筒の他端の外方に、上記排出口から排出された気体を受けて該内筒に回転力を付与するとともに該排出口から排気された気体を上記他方流路の気体の流通方向に導く案内翼を設けたことを特徴とする請求項5又は6記載の対流温度差原動装置。   On the outside of the other end of the inner cylinder, the gas discharged from the discharge port is received and a rotational force is applied to the inner tube, and the gas discharged from the discharge port is made to flow in the other channel. The convection temperature difference prime mover according to claim 5 or 6, characterized in that a guide vane is provided to guide the convection. 上記内筒の内部に、上記一方通路を通る気体及び冷却液体が通過可能な多孔質部材を設けたことを特徴とする請求項1,2,3,4,5,6又は7記載の対流温度差原動装置。   The convection temperature according to claim 1, 2, 3, 4, 5, 6 or 7, wherein a porous member capable of passing the gas passing through the one passage and the cooling liquid is provided inside the inner cylinder. Differential prime mover. 上記多孔質部材を、巻回されたシート状の金属製網としたことを特徴とする請求項8記載の対流温度差原動装置。   9. The convection temperature difference prime mover according to claim 8, wherein the porous member is a wound sheet-like metal net. 上記内筒の内周であって上記一方流路の供給口側に、滞留した気体を排出口側に押し込むフィンを設けたことを特徴とする請求項1,2,3,4,5,6,7,8又は9記載の対流温度差原動装置。   7. A fin for pushing the accumulated gas to the discharge port side is provided on the supply port side of the one flow path on the inner periphery of the inner cylinder. , 7, 8 or 9 convection temperature difference prime mover. 上記一方支軸を、上記内筒と連係して回転可能とし、該一方支軸に、上記一方流路の供給口側に滞留した気体を排出口側に押し込むフィンを設けたことを特徴とする請求項1,2,3,4,5,6,7,8又は9記載の対流温度差原動装置。   The one support shaft is rotatable in conjunction with the inner cylinder, and the one support shaft is provided with a fin for pushing the gas retained on the supply port side of the one flow path to the discharge port side. The convection temperature difference prime mover according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
JP2006550596A 2004-12-28 2005-06-24 Convection temperature difference prime mover Pending JPWO2006070497A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004381023 2004-12-28
JP2004381023 2004-12-28
PCT/JP2005/011580 WO2006070497A1 (en) 2004-12-28 2005-06-24 Convection temperature difference prime motive power device

Publications (1)

Publication Number Publication Date
JPWO2006070497A1 true JPWO2006070497A1 (en) 2008-06-12

Family

ID=36614624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006550596A Pending JPWO2006070497A1 (en) 2004-12-28 2005-06-24 Convection temperature difference prime mover

Country Status (2)

Country Link
JP (1) JPWO2006070497A1 (en)
WO (1) WO2006070497A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932950B1 (en) * 2014-12-01 2016-06-08 阿部 俊廣 Temperature difference energy converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JP2000303947A (en) * 1999-04-26 2000-10-31 Toshihiro Abe Highly efficient method and its device for convection flow temperature difference prime mover
JP2000356181A (en) * 1999-06-11 2000-12-26 Toshihiro Abe Super efficient double rotating method and its device for convection temperature difference prime mover
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JP2000303947A (en) * 1999-04-26 2000-10-31 Toshihiro Abe Highly efficient method and its device for convection flow temperature difference prime mover
JP2000356181A (en) * 1999-06-11 2000-12-26 Toshihiro Abe Super efficient double rotating method and its device for convection temperature difference prime mover
WO2002036963A1 (en) * 2000-10-27 2002-05-10 Toshihiro Abe Convective power generating method and device
JP2002256882A (en) * 2001-03-06 2002-09-11 Toshihiro Abe Convection temperature difference motive power device

Also Published As

Publication number Publication date
WO2006070497A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2801721B1 (en) Wind turbine blade and deicing method for the same
US8893469B2 (en) Oil bypass channel deaerator for a geared turbofan engine
JP5022233B2 (en) Solar thermal power generation equipment, heat medium supply equipment, and temperature fluctuation suppression device
US6357998B1 (en) Ribbon drive pumping apparatus and method
US8684682B2 (en) Power generating apparatus of renewable energy type
KR100999715B1 (en) Cooling Lubrication System of Wind Generating Gearbox
JP2005506824A (en) Generator for hydropower plant
JPH0243076B2 (en)
EP2743502B1 (en) Renewable energy type electric power generation device
WO2005068831A1 (en) Power generation device utilizing falling water flow
KR970009807B1 (en) Heat pump
US6592335B2 (en) Ribbon drive pumping apparatus and method
CN105090463A (en) Gear unit and a method for heating lubricant oil of a gear unit
JPWO2006070497A1 (en) Convection temperature difference prime mover
JP5238057B2 (en) Heat medium temperature fluctuation suppression device, heat medium supply facility and solar power generation facility
CN102251903A (en) Display mechanism for illustrating fluid dynamics
JP4480521B2 (en) Aeration and circulation equipment for reservoirs and the like by wind energy
JP6964915B1 (en) Liquid circulation type power generator
JP6671061B2 (en) Liquid pump circulation device
KR20170019778A (en) Boiler distribution system
WO2021117252A1 (en) Liquid pumping/circulation device
CN207526694U (en) Self-balanced multiple-stage centrifugal pump is opened in heat radiating type level
JPH06147098A (en) Convection type temperature gradient prime mover
US10570913B2 (en) Systems and methods for generating clean energy through hydrodynamic closed cycle
CN214660589U (en) Bearing self-cooling hydraulic turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315