JP6042165B2 - Method for producing composite powder - Google Patents

Method for producing composite powder Download PDF

Info

Publication number
JP6042165B2
JP6042165B2 JP2012223318A JP2012223318A JP6042165B2 JP 6042165 B2 JP6042165 B2 JP 6042165B2 JP 2012223318 A JP2012223318 A JP 2012223318A JP 2012223318 A JP2012223318 A JP 2012223318A JP 6042165 B2 JP6042165 B2 JP 6042165B2
Authority
JP
Japan
Prior art keywords
mass
powder
zinc oxide
composite powder
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012223318A
Other languages
Japanese (ja)
Other versions
JP2014073997A (en
Inventor
武弘 後藤
武弘 後藤
田中 巧
巧 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Kasei Kogyo Co Ltd
Original Assignee
Daito Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Kasei Kogyo Co Ltd filed Critical Daito Kasei Kogyo Co Ltd
Priority to JP2012223318A priority Critical patent/JP6042165B2/en
Publication of JP2014073997A publication Critical patent/JP2014073997A/en
Application granted granted Critical
Publication of JP6042165B2 publication Critical patent/JP6042165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、薄片状基板粉末にロッド状酸化亜鉛を表面被覆処理した複合粉末製造方法関するものである。 The present invention relates to a method for manufacturing a composite powder surface coating treatment of the rod-shaped zinc oxide flaky substrate powder.

近年、シワ隠し効果や素肌感を演出するために様々な手法がとられており、球状粉末の拡散反射によるぼかし効果により素肌の毛穴や小じわなどの肌の物理的な凹凸を補整する方法や、タルク、アルミナ、硫酸バリウムやマイカなどの薄片状基板粉末の表面に微細な粒子を複合化する方法や、球状シリカ粒子の表面に酸化チタン層とシリカ層を設けて光の屈折率を変えることにより光拡散効果を高めソフトフォーカス性を向上させる方法などがある(特許文献1〜4参照)。   In recent years, various methods have been taken to produce a wrinkle concealment effect and a feeling of bare skin, a method of correcting physical irregularities of the skin such as pores and fine lines on the bare skin by a blurring effect by diffuse reflection of spherical powder, By combining fine particles on the surface of flaky substrate powders such as talc, alumina, barium sulfate and mica, or by changing the refractive index of light by providing a titanium oxide layer and a silica layer on the surface of spherical silica particles There are methods for enhancing the light diffusion effect and improving the soft focus property (see Patent Documents 1 to 4).

特公平2−42387号公報Japanese Examined Patent Publication No. 2-42387 特公平2−42388号公報Japanese Examined Patent Publication No. 2-42388 特許第3184608号公報Japanese Patent No. 3184608 特開平2−16168号公報Japanese Patent Laid-Open No. 2-16168

しかしながら、これらの方法で得られた粉末は、隠ぺい性と透明感の創出といった、相反する課題を同時に解決しないといけないことから、完全に満足されるものには至っていない。   However, the powders obtained by these methods have not been completely satisfied because they have to solve conflicting problems such as hiding and creating transparency.

球状粉末を用いた場合には、化粧料に均一に分散させることが困難であり、多量に配合するとプレス成型性が困難になる。また、球状粉末が皮溝に落ち込み、逆に毛穴や小じわを目立たせてしまうことがある。   When spherical powder is used, it is difficult to uniformly disperse it in cosmetics, and if it is added in a large amount, press moldability becomes difficult. Also, the spherical powder may fall into the skin groove and conversely make pores and fine lines stand out.

また、薄片状基板粉末に微細な酸化チタンなどの粒子を表面処理する方法では、肌の色彩などの欠点を隠蔽し均一な仕上がりにみせることは可能であるが、その質感は光沢がなくマットな感じになる。また、酸化チタンは高い屈折率によりファンデーションなどの仕上がりが青白くなり透明感が得られないなどの問題がある。   In addition, the method of surface-treating fine particles of titanium oxide on the flaky substrate powder can hide defects such as skin color and show a uniform finish, but its texture is not glossy and matte. I feel. In addition, titanium oxide has a problem that the finish such as foundation becomes pale due to a high refractive index, and a transparent feeling cannot be obtained.

また、紫外線遮蔽剤としては、有機系の紫外線吸収剤を初め、超微粒子の酸化チタンや酸化亜鉛などの無機粉末が用いられている。しかしながら、有機系の紫外線遮蔽剤は皮膚への安全性の問題があり、また紫外線遮蔽能のある無機粉体は粒子径が小さいために凝集しやすく、皮膚に塗布したとき透明性に欠け、しかも均一に分散させることが困難である。さらに、紫外線遮蔽能のある超微粒子酸化チタンや酸化亜鉛の一次粒子径は100nm以下であることから、皮膚吸収の問題が懸念される。   Further, as the ultraviolet shielding agent, organic ultraviolet absorbers and ultrafine inorganic powders such as titanium oxide and zinc oxide are used. However, organic UV screening agents have safety issues on the skin, and inorganic powders with UV screening ability tend to aggregate due to their small particle size, and lack transparency when applied to the skin. It is difficult to disperse uniformly. Furthermore, since the primary particle diameter of ultrafine particle titanium oxide or zinc oxide having an ultraviolet shielding ability is 100 nm or less, there is a concern about the problem of skin absorption.

一方、酸化亜鉛粉末の製造方法については、各種の方法が知られている。一般的には、乾式法としてフランス法と呼ばれる製造方法が知られている。この方法は、溶融させた金属亜鉛をレトルトの中で約1000℃に加熱し、発生する亜鉛蒸気を空気で酸化させ、これを送風機で空冷管に送って冷却し、サイクロン及びバグフィルターで分離、捕集する方法である。一方、湿式法としては、ドイツ法が知られている。この方法は、硫酸亜鉛または塩化亜鉛の水溶液にソーダ灰溶液を加えてできる白色の塩基性炭酸亜鉛の沈殿を水洗乾燥後焼成して製造する方法である。しかし、これらの方法で作製された酸化亜鉛は形態を制御することが困難であるという問題点がある。また、高温での処理が必要になるため、環境に与える影響があるとともに、反応装置がコスト高になるという問題点がある。   On the other hand, various methods are known for producing zinc oxide powder. In general, a production method called French method is known as a dry method. In this method, molten metal zinc is heated to about 1000 ° C. in a retort, the generated zinc vapor is oxidized with air, this is sent to an air cooling tube with a blower, cooled, and separated with a cyclone and a bag filter. It is a method of collecting. On the other hand, the German method is known as a wet method. In this method, a white basic zinc carbonate precipitate formed by adding a soda ash solution to an aqueous solution of zinc sulfate or zinc chloride is washed with water, dried, and calcined. However, zinc oxide produced by these methods has a problem that it is difficult to control the form. In addition, since treatment at a high temperature is required, there are problems in that the environment is affected and the cost of the reaction apparatus is increased.

本発明は、前述のような問題点に鑑みてなされたもので、環境に優しく、簡便で低コストな方法にて、形態をロッド状に制御した酸化亜鉛を薄片状基板粉末の表面に被覆できるようにし、ロッド状酸化亜鉛粉末が凝集することなく、高い紫外線吸収能を有しつつ、透明性に優れた複合粉末の製造方法を提供ることを目的とするものである。 The present invention has been made in view of the above-mentioned problems, and can be applied to the surface of a flaky substrate powder with zinc oxide whose form is controlled in a rod shape by an environment-friendly, simple and low-cost method. and so, without the rod-shaped zinc oxide powder to aggregate, while having a high ultraviolet absorptivity, it is an object that you provide a production method excellent composite powder transparency.

前記目的を達成するために、本発明者らは鋭意研究した結果、2段階でのソフト溶液反応を行うことにより、薄片状基板粉末の表面に、形態がロッド状に制御された酸化亜鉛が被覆された複合粉末の製造方法を見出した。
ここで、2段階でのソフト溶液反応とは、プロセスIで、水溶性亜鉛化合物とグリコールとアミン化合物及び電荷が+4位以下の金属イオンの金属塩を用い、ソフト溶液反応にて、薄片状基板粉末の表面に形態を球状に制御された酸化亜鉛を被覆する。その後、プロセスIIにおいて、プロセスIにて得られた粉末に表面処理された球状粒子を成長核として利用し、水溶性亜鉛化合物とグリコールとアミン化合物を用い、ソフト溶液反応にて、薄片状基板粉末の表面に均一に形態をロッド状に制御された複合粉末とする。また、上記製造方法にて得られた複合粉末を300℃から1500℃にて焼成処理しても良く、この焼成処理を行うことにより、比表面積を制御し、吸油量や結晶性を制御することができる。
In order to achieve the above object, the present inventors have intensively studied and, as a result of conducting a soft solution reaction in two stages, the surface of the flaky substrate powder is coated with zinc oxide whose shape is controlled in a rod shape. The manufacturing method of the obtained composite powder was discovered.
Here, the two-step soft solution reaction is a flaky substrate in Process I using a water-soluble zinc compound, a glycol, an amine compound, and a metal salt of a metal ion having a charge of +4 or less. The surface of the powder is coated with zinc oxide whose shape is controlled to be spherical. Thereafter, in Process II, the powder obtained in Process I is used as a growth nucleus, and the powder obtained in Process I is used as a growth nucleus. Using a water-soluble zinc compound, glycol and an amine compound, a flaky substrate powder is obtained by a soft solution reaction. A composite powder whose shape is uniformly controlled on the surface of the rod is formed. Further, the composite powder obtained by the above production method may be calcined at 300 ° C. to 1500 ° C. By performing this calcining treatment, the specific surface area is controlled, and the oil absorption and crystallinity are controlled. Can do.

さらに、得られた複合粉末をポリシロキサン、アルキルシラン化合物、アルキルチタネート化合物、フッ素化合物などの化合物で表面被覆することにより、疎水性や疎油性を有する被覆複合粉末を得ることができ、また、その複合粉末及び/又は被覆複合粉末を化粧料に配合することによって、紫外線遮蔽効果、ソフトフォーカス性や使用感に優れ、更に光毒性が抑制された化粧料を提供することが可能である。本発明者らは、これらの知見に基づき、本発明を完成するに至ったものである。   Furthermore, by coating the surface of the obtained composite powder with a compound such as polysiloxane, alkylsilane compound, alkyl titanate compound, or fluorine compound, a coated composite powder having hydrophobicity or oleophobicity can be obtained. By blending the composite powder and / or the coated composite powder into the cosmetic, it is possible to provide a cosmetic that is excellent in ultraviolet shielding effect, soft focus property and feeling of use, and further has suppressed phototoxicity. Based on these findings, the present inventors have completed the present invention.

発明による複合粉末の製造方法は、
薄片状基板粉末の表面に、形態がロッド状の酸化亜鉛を被覆処理してなる複合粉末の製造方法であって、次の2段階の処理工程により製造することを特徴とするものである。
第1段階;亜鉛とグリコールとアミン化合物とドープする金属塩と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、グリコールの割合が10〜50質量%、アミン化合物の割合が1〜20質量%、ドープする金属の割合が0.00001〜0.5質量%、水の割合が40〜80質量%の範囲内になるように混合し、その混合溶液中に、被覆される酸化亜鉛濃度が1〜30質量%の範囲内になるように薄片状基板粉末を加え、その後、50℃〜100℃の温度条件下で、10分〜5時間保持するようなソフト溶液反応を行うことで薄片状基板粉末の表面に微細な球状酸化亜鉛を被覆処理する。
第2段階;亜鉛とアミン化合物と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、アミン化合物の割合が0.01〜10.0質量%、水の割合が50〜90質量%の範囲内になるように混合し、その混合溶液中に前記第1段階にて得られた核となる球状酸化亜鉛が被覆された薄片状基板粉末を酸化亜鉛濃度が5〜80質量%の範囲内になるように加え、その後、50℃〜100℃の温度条件下で、10分〜5時間保持するようなソフト溶液反応を行い、その後400℃〜1500℃にて焼成を行うことにより目的とする複合粉末を得る。
The method for producing a composite powder according to the present invention comprises
A method for producing a composite powder obtained by coating the surface of a flaky substrate powder with rod-shaped zinc oxide , characterized in that it is produced by the following two stages of processing steps.
First stage: When the ratio of zinc, glycol, amine compound, metal salt to be doped and water is 100% by mass of the whole mixture, the ratio of zinc is 0.01 to 10.0% by mass, and the ratio of glycol is 10%. -50 mass%, mixing so that the proportion of amine compound is 1-20 mass%, the proportion of metal to be doped is 0.00001-0.5 mass%, and the proportion of water is in the range of 40-80 mass%. The flaky substrate powder is added to the mixed solution so that the concentration of zinc oxide to be coated is in the range of 1 to 30% by mass, and then, for 10 minutes to 5 at 50 ° C. to 100 ° C. The surface of the flaky substrate powder is coated with fine spherical zinc oxide by performing a soft solution reaction that maintains the time .
Second stage: When the ratio of zinc, amine compound and water is 100% by mass of the whole mixture, the ratio of zinc is 0.01 to 10.0% by mass, and the ratio of amine compound is 0.01 to 10.0. A flaky substrate powder in which the mixture is mixed so that the mass percentage and the water ratio are in the range of 50 to 90 mass%, and the mixed solution is coated with the spherical zinc oxide as the core obtained in the first stage. Is added so that the zinc oxide concentration falls within the range of 5 to 80% by mass, and then a soft solution reaction is performed under a temperature condition of 50 ° C. to 100 ° C. for 10 minutes to 5 hours, and then 400 ° C. The target composite powder is obtained by firing at ˜1500 ° C.

発明の製造方法によれば、2段階で処理を行うことにより、環境に負荷を与えないソフト溶液反応により形態がロッド状に制御された酸化亜鉛を均一に薄片状基板粉末に被覆処理することができ、被覆された酸化亜鉛の粒子径の制御もでき、かつ被覆量の調整も可能となる。こうして、ッド状酸化亜鉛粉末が凝集することなく、高い紫外線吸収能を有しつつ、透明性に優れた複合粉末を得ることができる。 According to the production method of the present invention, the flaky substrate powder is uniformly coated with zinc oxide whose form is controlled in a rod shape by a soft solution reaction that does not give an environmental load by performing the treatment in two stages. It is possible to control the particle diameter of the coated zinc oxide and to adjust the coating amount. Thus, without Rod shaped zinc oxide powder to aggregate, while having a high ultraviolet absorptivity, it is possible to obtain an excellent composite powder transparency.

また、本発明の製造方法においては、第2段階におけるソフト溶液反応の後に400℃〜1500℃で焼成するようにされているので、比表面積を1〜100m/gの範囲に入るように調整し、結晶性を向上させるとともに、吸油量が制御された複合粉末を得ることができる。 Moreover, in the manufacturing method of this invention, since it is made to bake at 400 to 1500 degreeC after the soft solution reaction in a 2nd step, it is set so that a specific surface area may enter into the range of 1-100 m < 2 > / g. It is possible to adjust and improve the crystallinity and to obtain a composite powder with controlled oil absorption.

製造実施例1にて得られた複合粉末を走査型電子顕微鏡にて観察した写真(a)(b)Photographs (a) and (b) of the composite powder obtained in Production Example 1 observed with a scanning electron microscope 製造比較例1にて得られた複合粉末を走査型電子顕微鏡にて観察した写真(a)(b)Photographs (a) and (b) of the composite powder obtained in Production Comparative Example 1 observed with a scanning electron microscope 製造実施例1の複合粉末及び基材として用いた合成マイカのX線回折結果を示すグラフThe graph which shows the X-ray-diffraction result of the synthetic mica used as composite powder and base material of manufacture Example 1 製造実施例1の複合粉末、基材及び製造比較例1の複合粉末の透過率測定結果を示すグラフThe graph which shows the transmittance | permeability measurement result of the composite powder of manufacture Example 1, a base material, and the composite powder of manufacture comparative example 1

次に、本発明による複合粉末製造方法具体的な実施の形態について説明する。 Next, a specific embodiment of a method for producing a composite powder according to the invention.

本発明においては、形態がロッド状に制御された酸化亜鉛(ロッド状酸化亜鉛)を薄片状基板粉末の表面に被覆処理したものである。ここで、被覆されているロッド状の酸化亜鉛の短径は2〜200nmで、長径が50〜2000nm程度であり、ロッド状粉体を形成している。このロッド状紛体の粒子径は反応の条件によって制御することができる。また、複合粉末のロッド状粒子の平均粒子径は、透過型電子顕微鏡(TEM)にて観察し、任意の20個の一次粒子の直径を計測し、その平均値を算出することによって測定することができる。   In the present invention, the surface of the flaky substrate powder is coated with zinc oxide (rod-shaped zinc oxide) whose form is controlled in a rod shape. Here, the coated rod-shaped zinc oxide has a short diameter of 2 to 200 nm and a long diameter of about 50 to 2000 nm, forming a rod-shaped powder. The particle size of the rod-shaped powder can be controlled by reaction conditions. The average particle diameter of the rod-like particles of the composite powder is measured by observing with a transmission electron microscope (TEM), measuring the diameter of any 20 primary particles, and calculating the average value. Can do.

本発明の複合粉末は、次のようにして製造される。すなわち、本発明は2段階(プロセスI及びプロセスII)で処理を行うことを特徴とし、プロセスIでは,亜鉛とグリコールとアミン化合物とドープする金属塩と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、グリコールの割合が10〜50質量%、アミン化合物の割合が1〜20質量%、ドープする金属の割合が0.00001〜0.5質量%、水の割合が40〜80質量%の範囲内になるように混合する。その溶液の中に被覆される酸化亜鉛濃度が1〜30質量%の範囲内になるように薄片状基板粉末を加える。その後、50℃〜100℃の温度条件下で、10分〜5時間ソフト溶液反応を行い、水洗、ろ過、乾燥、粉砕を行うことにより、複合粉末の球状酸化亜鉛の核となる酸化亜鉛が被覆された合成マイカ(薄片状基板粉末)を得る。なお、加熱反応中は、撹拌を行っても構わない。次いで、プロセスIIでは、亜鉛とアミン化合物と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、アミン化合物の割合が0.01〜10.0質量%、水の割合が50〜90質量%の範囲内になるように混合する。その溶液の中にプロセスIにて得られた核となる酸化亜鉛粒子が被覆された合成マイカ(薄片状基板粉末)を酸化亜鉛濃度が5〜80質量%の範囲内になるように加える。その後、50℃〜100℃の温度条件下で、10分〜5時間ソフト溶液反応を行い、水洗、ろ過、乾燥、粉砕を行い、場合によっては300〜1500℃にて焼成を行うことにより、複合粉末を得る。また、プロセスIIにおいて、場合によっては電荷が+4位以下の金属イオンの金属塩を用い、金属をドープしても構わない。ここで、ドープとは、何らかの形で酸化亜鉛粉体に金属酸化物を付加することを意味し、その付加状態を問うものではなく、酸化亜鉛に金属酸化物の一部が入り込んでいる状態も、酸化亜鉛粉体に金属酸化物が被覆されている状態も、このドープの概念に包括される。   The composite powder of the present invention is produced as follows. That is, the present invention is characterized in that the treatment is performed in two stages (Process I and Process II). In Process I, the ratio of zinc, glycol, amine compound, metal salt to be doped, and water is set to 100% by mass of the entire mixture. When the ratio of zinc is 0.01 to 10.0 mass%, the proportion of glycol is 10 to 50 mass%, the proportion of amine compound is 1 to 20 mass%, and the proportion of metal to be doped is 0.00001 to 0 Mix so that the ratio of water is within the range of 40 to 80% by mass. The flaky substrate powder is added so that the concentration of zinc oxide coated in the solution is in the range of 1 to 30% by mass. Thereafter, a soft solution reaction is performed for 10 minutes to 5 hours under a temperature condition of 50 ° C. to 100 ° C., followed by washing with water, filtration, drying, and pulverization, so that the zinc oxide that is the core of the spherical zinc oxide of the composite powder is coated. Thus obtained synthetic mica (flaky substrate powder) is obtained. In addition, you may stir during a heating reaction. Next, in Process II, when the ratio of zinc, amine compound and water is 100% by mass of the entire mixture, the ratio of zinc is 0.01 to 10.0% by mass, and the ratio of amine compound is 0.01 to 10%. Mix so that the ratio of water is within a range of 50 to 90% by mass. In the solution, synthetic mica (flaky substrate powder) coated with zinc oxide particles as a nucleus obtained in Process I is added so that the zinc oxide concentration is in the range of 5 to 80% by mass. Thereafter, a soft solution reaction is performed for 10 minutes to 5 hours under a temperature condition of 50 ° C. to 100 ° C., followed by washing with water, filtration, drying, and pulverization. Obtain a powder. In Process II, depending on the case, a metal salt of a metal ion having a charge of +4 or less may be used to dope the metal. Here, the dope means that a metal oxide is added to the zinc oxide powder in some form, and the addition state is not questioned, and a state where a part of the metal oxide enters the zinc oxide is also included. The state where zinc oxide powder is coated with a metal oxide is also included in the concept of this dope.

前記水溶性亜鉛化合物としては、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、塩化亜鉛などを用いることができる。   As the water-soluble zinc compound, zinc nitrate, zinc sulfate, zinc acetate, zinc chloride and the like can be used.

グリコールとしては、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、ピナコール、ジエチレングリコール、トリエチレングリコール等のアルキレングリコールや、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール等の脂環式グリコール類や、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メチル−3−メトキシブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノアセテート等のグリコール類のモノエーテル及びモノエステル等の誘導体等が挙げられる。このうち、エチレングリコールを用いるのが特に好ましい。   Examples of the glycol include ethylene glycol, propylene glycol, trimethylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, , 8-octanediol, 1,10-decanediol, pinacol, diethylene glycol, triethylene glycol and other alkylene glycols, cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol Alicyclic glycols such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, 3-methyl-3-methoxybutyl Nord, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, triethylene glycol monomethyl ether, derivatives of monoethers and monoesters of glycols such as ethylene glycol monoacetate, and the like. Of these, it is particularly preferable to use ethylene glycol.

アミン化合物としては、アンモニア、エチルアミン、エタノールアミン、ジエチルアミン、ジエタノールアミン、トリエチルアミン、トリエタノールアミン、ヘキサメチレンテトラミンなどが挙げられる。このうち、プロセスIではトリエタノールアミン、プロセスIIではヘキサメチレンテトラミンを用いるのが特に好ましい。   Examples of the amine compound include ammonia, ethylamine, ethanolamine, diethylamine, diethanolamine, triethylamine, triethanolamine, hexamethylenetetramine, and the like. Among these, it is particularly preferable to use triethanolamine in Process I and hexamethylenetetramine in Process II.

ドープする原子価が4以下の金属イオンの金属塩としては、硝酸鉄、硝酸ジルコニウム、硝酸マグネシウム、硝酸コバルト、硝酸ニッケル、硝酸アルミニウム、硝酸カルシウム、硝酸銅、硝酸クロム、硝酸マンガン、塩化カルシウム、塩化銀、塩化クロム、塩化コバルト、塩化すず、塩化鉄、塩化銅、塩化ニッケル、塩化マグネシウム、硫酸アルミニウム、硫酸カルシウム、硫酸銀、硫酸すず、硫酸鉄、硫酸銅、硫酸ニッケル、硫酸マグネシウム、硫酸マンガンなどが挙げられるが、これらから合成される金属酸化物のドープにより、自由電子および正孔を補足するという条件を満足する限り、特に限定されるものではない。   The metal salts of metal ions with a valence of 4 or less are iron nitrate, zirconium nitrate, magnesium nitrate, cobalt nitrate, nickel nitrate, aluminum nitrate, calcium nitrate, copper nitrate, chromium nitrate, manganese nitrate, calcium chloride, and chloride. Silver, chromium chloride, cobalt chloride, tin chloride, iron chloride, copper chloride, nickel chloride, magnesium chloride, aluminum sulfate, calcium sulfate, silver sulfate, tin sulfate, iron sulfate, copper sulfate, nickel sulfate, magnesium sulfate, manganese sulfate, etc. However, it is not particularly limited as long as it satisfies the condition of capturing free electrons and holes by doping a metal oxide synthesized therefrom.

前記反応における反応温度は50℃〜100℃とするのが好ましいが、最も良い条件としては70℃以上である。また、オートクレーブやマイクロ波水熱法などの反応方法を用いることによって100℃以上の高温で行っても構わない。しかし、反応装置が高価であるため、一般的に使用されている反応装置で反応が可能な100℃以下での反応とするのが好ましい。   The reaction temperature in the reaction is preferably 50 ° C to 100 ° C, but the best condition is 70 ° C or higher. Moreover, you may carry out at high temperature of 100 degreeC or more by using reaction methods, such as an autoclave and a microwave hydrothermal method. However, since the reaction apparatus is expensive, it is preferable to set the reaction at 100 ° C. or lower, which allows the reaction to be performed by a generally used reaction apparatus.

上記方法にて得られた複合粉末を焼成する際の焼成条件としては、300℃〜1500℃の温度範囲で行うのが好ましい。より好ましくは、400℃〜800℃の範囲である。焼成温度が300℃未満の場合においても、X線回折にて分析を行った結果、被覆されたロッド状酸化亜鉛は酸化亜鉛の結晶構造であることが確認できるが、400℃以上で焼成することによって、結晶の配向性が向上し、結晶中での酸素欠陥などの欠陥が減少する。また、紫外線遮蔽効果も長波長側の波長から紫外線を遮蔽することができる。一方、1500℃よりも高い温度になると、高温での処理となり、環境への負荷が増大し、形状も酸化亜鉛が焼結し球状を維持できない。   As firing conditions when firing the composite powder obtained by the above method, it is preferable to carry out in a temperature range of 300 ° C to 1500 ° C. More preferably, it is the range of 400 degreeC-800 degreeC. As a result of analysis by X-ray diffraction even when the firing temperature is less than 300 ° C., it can be confirmed that the coated rod-like zinc oxide has a crystal structure of zinc oxide, but it should be fired at 400 ° C. or higher. Thus, the crystal orientation is improved and defects such as oxygen defects in the crystal are reduced. Further, the ultraviolet ray shielding effect can also shield the ultraviolet ray from the longer wavelength side wavelength. On the other hand, when the temperature is higher than 1500 ° C., the treatment is performed at a high temperature, the load on the environment is increased, and the zinc oxide is sintered and the spherical shape cannot be maintained.

本発明の複合粉末に疎水性や疎油性を付与する為にポリシロキサン、アルキルシラン化合物、アルキルチタネート化合物やフッ素化合物などで表面処理を施しても構わない。上記の化合物以外にも、従来公知の各種の表面処理を施すことができる。なお、これらの処理は複数組み合わせることも可能である。次に、疎水性および疎油性の複合粉末(被覆複合粉末)について説明する。   In order to impart hydrophobicity or oleophobicity to the composite powder of the present invention, surface treatment may be performed with polysiloxane, an alkylsilane compound, an alkyl titanate compound, a fluorine compound, or the like. In addition to the above compounds, various conventionally known surface treatments can be applied. A plurality of these processes can be combined. Next, the hydrophobic and oleophobic composite powder (coating composite powder) will be described.

本発明において、複合粉末がファンデーションやサンスクリーン剤として利用される場合、皮膚に塗布したあと、耐水性や耐油性が必要となるため、この複合粉末に疎水性や疎油性を付与する必要がある。粉末に疎水性を付与するには、ポリシロキサン、アルキルシラン化合物、アルキルチタネート化合物などの化合物で粉末の表面が被覆される。粉末に疎水性と疎油性を付与するには、フッ素化合物などの化合物で粉末の表面が被覆される。   In the present invention, when the composite powder is used as a foundation or sunscreen agent, water resistance and oil resistance are required after being applied to the skin. Therefore, it is necessary to impart hydrophobicity and oleophobicity to the composite powder. . In order to impart hydrophobicity to the powder, the surface of the powder is coated with a compound such as polysiloxane, an alkylsilane compound, or an alkyl titanate compound. In order to impart hydrophobicity and oleophobicity to the powder, the surface of the powder is coated with a compound such as a fluorine compound.

この表面処理の例としては、以下の処理が挙げられる。
a)フッ素化合物処理・・・パーフルオロアルキルリン酸エステル処理やパーフルオロアルキルシラン処理、パーフルオロポリエーテル処理、フルオロシリコーン処理、フッ素化シリコーン樹脂処理など
b)シリコーン処理・・・メチルハイドロジェンポリシロキサン処理、ジメチルポリシロキサン処理、気相法テトラメチルテトラハイドロジェンシクロテトラシロキサン処理など
c)ペンダント処理・・・気相法シリコーン処理後にアルキル鎖などを付加する処理
d)シランカップリング剤処理
e)チタンカップリング剤処理
f)アルミニウムカップリング剤処理
g)油剤処理
h)N−アシル化リジン処理
i)ポリアクリル酸処理
j)金属石鹸処理・・・ステアリン酸塩処理やミリスチン酸塩処理など
k)アクリル樹脂処理
l)金属酸化物処理
m)多糖類処理
n)天然由来成分処理
Examples of this surface treatment include the following treatments.
a) Fluorine compound treatment: perfluoroalkyl phosphate treatment, perfluoroalkylsilane treatment, perfluoropolyether treatment, fluorosilicone treatment, fluorinated silicone resin treatment, etc. b) Silicone treatment: methyl hydrogen polysiloxane Treatment, dimethylpolysiloxane treatment, vapor phase tetramethyltetrahydrogencyclotetrasiloxane treatment, etc. c) pendant treatment: treatment to add alkyl chain after vapor phase silicone treatment d) silane coupling agent treatment e) titanium Treatment with coupling agent f) Treatment with aluminum coupling agent g) Treatment with oil agent h) Treatment with N-acylated lysine i) Treatment with polyacrylic acid j) Treatment with metal soap ... Treatment with stearate or myristate k) Acrylic Resin treatment l) Metal oxide Management m) polysaccharide processing n) naturally occurring component processing

また、疎水性化合物や疎油性化合物を表面被覆する処理方法としては、被覆処理される粉末を適当なミキサー中で撹拌し、表面被覆する化合物を液滴下あるいはスプレー噴霧にて加えた後、一定時間高速強撹拌する。その後、撹拌を続けながら80〜200℃に加熱熟成させることによって、反応表面被覆処理を行う方法が一般的である。あるいは、表面被覆する化合物をエタノール、イソプロピルアルコール、イソブタノール等のアルコール類、トルエン、n−ヘキサン、シクロヘキサン等の炭化水素系有機溶剤、アセトン、酢酸エチル、酢酸ブチル等の極性有機溶剤などに溶解させておき、この溶液に撹拌中に化粧料用粉末を添加撹拌した後、有機溶剤を完全に蒸発除去し、その後、80〜200℃に加熱熟成させることにより、表面被覆処理を行う方法等も挙げられる。   In addition, as a treatment method for coating the surface of a hydrophobic compound or an oleophobic compound, the powder to be coated is stirred in an appropriate mixer, and the compound to be coated is added under a droplet or by spraying for a certain period of time. Stir vigorously at high speed. Then, the method of performing the reaction surface coating process by making it heat-ripen at 80-200 degreeC, continuing stirring is common. Alternatively, the surface coating compound is dissolved in alcohols such as ethanol, isopropyl alcohol and isobutanol, hydrocarbon organic solvents such as toluene, n-hexane and cyclohexane, polar organic solvents such as acetone, ethyl acetate and butyl acetate. In addition, after adding and stirring the cosmetic powder to the solution while stirring, the organic solvent is completely removed by evaporation, and then the surface coating treatment is performed by heating and aging at 80 to 200 ° C. It is done.

また、混合分散方法としては、溶液の濃度や粘度などに応じて適当な方法を選択することができる。好適な例としては、ディスパー、ヘンシェルミキサー、レディゲミキサー、ニーダー、V型混合機、ロールミル、ビーズミル、2軸混練機等の混合機による方法や、水溶液と粉末を加熱空気中に噴霧して水分を一気に除去するスプレードライの方法などを選択することができる。また、粉砕を行う場合においては、ハンマーミル、ボールミル、サンドミル、ジェットミル等の通常の粉砕機を用いることができる。これらいずれの粉砕機によっても同等の品質のものが得られるため、特に限定されるものではない。   As the mixing and dispersing method, an appropriate method can be selected according to the concentration and viscosity of the solution. Suitable examples include a method using a mixer such as a disper, a Henschel mixer, a Redige mixer, a kneader, a V-type mixer, a roll mill, a bead mill, or a twin-screw kneader, or water and powder sprayed into heated air. It is possible to select a spray drying method or the like that removes at a stroke. When pulverization is performed, a normal pulverizer such as a hammer mill, a ball mill, a sand mill, or a jet mill can be used. Since any of these pulverizers can obtain the same quality, it is not particularly limited.

この場合、粉末の表面被覆処理に用いられる化合物である成分の質量比は、被覆処理される粉末に対して0.5〜30質量%である。前記質量比が0.5質量%未満であるとロングラスティング効果と肌への均一な付着性が充分でなく、30質量%を超えると感触が非常に油っぽく湿った感じとなり、化粧料としては適さない。   In this case, the mass ratio of the component which is a compound used for the surface coating treatment of the powder is 0.5 to 30% by mass with respect to the powder to be coated. When the mass ratio is less than 0.5% by mass, the long lasting effect and the uniform adhesion to the skin are not sufficient, and when it exceeds 30% by mass, the feel becomes very oily and moist. Not suitable for.

また、本発明の表面被覆された複合粉末(被覆複合粉末)を配合する化粧料の形態は特に限定されないが、ファンデーション、サンスクリーン、美容液、化粧水、口紅、美容クリーム、洗顔剤、香水、口内清涼剤、口臭予防剤、うがい剤、歯磨き、入浴剤、制汗剤、石鹸、シャンプー、リンス、ボディーソープ、ボディーローション、デオドラント剤、ヘアクリーム剤、色白剤、美肌剤、育毛剤などが挙げられる。   Further, the form of the cosmetic to which the surface-coated composite powder (coating composite powder) of the present invention is blended is not particularly limited, but foundation, sunscreen, serum, lotion, lipstick, beauty cream, facial cleanser, perfume, Mouth fresheners, bad breath prevention agents, gargles, toothpastes, bathing agents, antiperspirants, soaps, shampoos, rinses, body soaps, body lotions, deodorants, hair creams, whitening agents, skin cleansing agents, hair restorers, etc. It is done.

また、本発明の複合粉末が配合される化粧料においては、その複合粉末以外に、通常の化粧料に用いられる油剤、粉体(顔料、色素、樹脂)、フッ素化合物、樹脂、界面活性剤、粘剤、防腐剤、香料、保湿剤、生理活性成分、塩類、溶媒、キレート剤、中和剤、pH調整剤等の成分を同時に配合することができる。ここで、前記粉末としては、例えば、赤色104号、赤色201号、黄色4号、青色1号、黒色401号等の色素、黄色4号アルミニウムレーキ、黄色203号バリウムレーキ等のレーキ色素、ナイロンパウダー、シルクパウダー、ウレタンパウダー、テフロンパウダー(テフロン:登録商標)、シリコンパウダー、セルロースパウダー、シリコンエラストマー等の高分子、黄酸化鉄、赤色酸化鉄、黒酸化鉄、酸化クロム、カーボンブラック、群青、紺青等の有色顔料、酸化チタン、酸化セリウム等の白色顔料、タルク、マイカ、セリサイト、カオリン等の体質顔料、雲母チタン等のパール顔料、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム等の金属塩、シリカ、窒化ホウ素等の無機粉体、微粒子酸化チタン、微粒子酸化鉄、アルミナ処理微粒子酸化チタン、シリカ処理微粒子酸化チタン、ベントナイト、スメクタイト等が挙げられる。これらの粉末の形状、大きさに特に制限はない。また、これらの粉末は従来公知の各種の表面処理が施されていてもいなくても構わない。表面処理の例としては、例えばアクリルシリコン処理、メチルハイドロジェンポリシロキサン処理、シリコーンレジン処理、オクチルトリエトキシシラン処理、N−アシル化リジン処理、有機チタネート処理、シリカ処理、アルミナ処理、セルロース処理、パーフルオロポリエーテル処理、フッ素化シリコーンレジン処理など親水性、親油性、撥水性の各種の処理を用いることが可能である。前記油剤としては、例えばセチルアルコール、イソステアリルアルコール、ラウリルアルコール、ヘキサデシルアルコール、オクチルドデカノール等の高級アルコール、イソステアリン酸、ウンデシレン酸、オレイン酸等の脂肪酸、グリセリン、ソルビトール、エチレングリコール、プロピレングリコール、ポリエチレングリコール等の多価アルコール、ミリスチン酸ミリスチン、ラウリル酸ヘキシル、オレイン酸デシル、ミリスチン酸イソプロピル、ジメチルオクタン酸ヘキシルデシル、モノステアリン酸グリセリン、フタル酸ジエチル、モノステアリン酸エチレングリコール、オキシステアリン酸オクチル等のエステル類、流動パラフィン、ワセリン、スクワラン等の炭化水素、ラノリン、還元ラノリン、カルナバロウ等のロウ、ミンク油、カカオ油、ヤシ油、バーム核油、ツバキ油、ゴマ油、ヒマシ油、オリーブ油等の油脂、エチレン・α−オレフィン・コオリゴマー等が挙げられる。また、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ポリエーテル変性オルガノポリシロキサン、フルオロアルキル・ポリオキシアルキレン共変性オルガノポリシロキサン、アルキル変性オルガノポリシロキサン、フッ素変性オルガノポリシロキサン、アモジメチコン、アミノ変性オルガノポリシロキサン、シリコンゲル、アクリルシリコン、トリメチルシロキシケイ酸、シリコンRTVゴム等のシリコン化合物、パーフルオロポリエーテル、フッ化ピッチ、フルオロカーボン、フルオロアルコール、フッ素化シリコーンレジン等のフッ素化合物が挙げられる。また、前記界面活性剤としては、例えばアニオン型界面活性剤、カチオン型界面活性剤、ノニオン型界面活性剤、べタイン型界面活性剤を用いることができる。前記溶媒としては、精製水、エタノール、軽質流動イソパラフィン、低級アルコール、エーテル類、LPG、フルオロカーボン、N−メチルピロリドン、フルオロアルコール、パーフルオロポリエーテル、代替フロン、揮発性シリコン等が挙げられる。   Further, in the cosmetic compounded with the composite powder of the present invention, in addition to the composite powder, oils, powders (pigments, pigments, resins), fluorine compounds, resins, surfactants used in ordinary cosmetics, Components such as a sticking agent, an antiseptic, a fragrance, a moisturizing agent, a physiologically active ingredient, a salt, a solvent, a chelating agent, a neutralizing agent, and a pH adjusting agent can be blended simultaneously. Here, examples of the powder include red 104, red 201, yellow 4, blue 1, black 401 and other dyes, yellow 4 aluminum lake, yellow 203 barium lake and other lake dyes, nylon, and the like. Powder, Silk powder, Urethane powder, Teflon powder (Teflon: registered trademark), Silicon powder, Cellulose powder, Silicone elastomer and other polymers, yellow iron oxide, red iron oxide, black iron oxide, chromium oxide, carbon black, ultramarine, Colored pigments such as bitumen, white pigments such as titanium oxide and cerium oxide, extender pigments such as talc, mica, sericite and kaolin, pearl pigments such as titanium mica, barium sulfate, calcium carbonate, magnesium carbonate, aluminum silicate, silica Metal salts such as magnesium acid, inorganic powders such as silica and boron nitride, Particles of titanium oxide, fine particles of iron oxide, alumina-treated fine titanium oxide particles, silica treated ultrafine titanium dioxide, bentonite, smectite, and the like. There are no particular restrictions on the shape and size of these powders. These powders may or may not be subjected to various conventionally known surface treatments. Examples of surface treatments include, for example, acrylic silicon treatment, methyl hydrogen polysiloxane treatment, silicone resin treatment, octyltriethoxysilane treatment, N-acylated lysine treatment, organic titanate treatment, silica treatment, alumina treatment, cellulose treatment, par Various hydrophilic, lipophilic, and water-repellent treatments such as fluoropolyether treatment and fluorinated silicone resin treatment can be used. Examples of the oil include higher alcohols such as cetyl alcohol, isostearyl alcohol, lauryl alcohol, hexadecyl alcohol, octyldodecanol, fatty acids such as isostearic acid, undecylenic acid, oleic acid, glycerin, sorbitol, ethylene glycol, propylene glycol, Polyhydric alcohols such as polyethylene glycol, myristic myristate, hexyl laurate, decyl oleate, isopropyl myristate, hexyl decyl dimethyloctanoate, glyceryl monostearate, diethyl phthalate, ethylene glycol monostearate, octyl oxystearate, etc. Esters, hydrocarbons such as liquid paraffin, petrolatum, squalane, lanolin, reduced lanolin, wax such as carnauba wax, mink , Cacao oil, coconut oil, balm kernel oil, camellia oil, sesame oil, castor oil, oils such as olive, ethylene-alpha-olefin co-oligomer, and the like. In addition, methyl hydrogen polysiloxane, dimethyl polysiloxane, methyl phenyl polysiloxane, polyether-modified organopolysiloxane, fluoroalkyl / polyoxyalkylene co-modified organopolysiloxane, alkyl-modified organopolysiloxane, fluorine-modified organopolysiloxane, amodimethicone , Silicon compounds such as amino-modified organopolysiloxane, silicon gel, acrylic silicon, trimethylsiloxysilicic acid, silicon RTV rubber, and fluorine compounds such as perfluoropolyether, fluorinated pitch, fluorocarbon, fluoroalcohol, and fluorinated silicone resin It is done. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and a betaine surfactant. Examples of the solvent include purified water, ethanol, light liquid isoparaffin, lower alcohol, ethers, LPG, fluorocarbon, N-methylpyrrolidone, fluoroalcohol, perfluoropolyether, alternative chlorofluorocarbon, and volatile silicon.

次に、本発明による複合粉末製造方法具体的な実施例について、図面を参照しつつ説明する。なお、本発明は以下に述べる実施例に限定されるものではない。以下、複合粉末を調製する実施例を「製造実施例」と称し、この複合粉末を用いて化粧料を調製する実施例を単に「実施例」と称することとする。 Next, specific examples of the method for manufacturing the composite powder according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the Example described below. Hereinafter, an example of preparing the composite powder is referred to as “manufacturing example”, and an example of preparing a cosmetic using the composite powder is simply referred to as “example”.

(製造実施例1)
プロセスI:0.05mol・dm−3の硝酸亜鉛水溶液500mlに、硝酸鉄・9水和物0.10gを加え溶解した。さらにエチレングリコール250gを添加した後、トリエタノールアミン31.2gを加え撹拌した。そこに薄片状基板粉末(合成マイカPDM−5L:トピー工業株式会社製)を11.4g加え、その後、2℃・min−1の昇温速度にて90℃にまで加温し、90℃に到達してから1時間90℃を保持した。その後、水洗、ろ過、乾燥を行い、核となる酸化亜鉛が被覆された薄片状基板粉末を得た。
(Production Example 1)
Process I: 0.10 g of iron nitrate nonahydrate was added and dissolved in 500 ml of a 0.05 mol · dm −3 aqueous zinc nitrate solution. Further, 250 g of ethylene glycol was added, and then 31.2 g of triethanolamine was added and stirred. 11.4 g of flaky substrate powder (synthetic mica PDM-5L: manufactured by Topy Industries Co., Ltd.) was added thereto, and then heated to 90 ° C. at a rate of 2 ° C./min −1 to 90 ° C. The temperature was maintained at 90 ° C. for 1 hour after the arrival. Thereafter, washing with water, filtration and drying were performed to obtain a flaky substrate powder coated with zinc oxide as a core.

プロセスII:0.1mol・dm−3の硝酸亜鉛水溶液500mlに、0.1mol・dm−3のヘキサメチレンテトラミンを500ml加え撹拌した。そこにプロセスIで得られた核となる酸化亜鉛が被覆された薄片状基板粉末を3.7g加え、その後、0.4℃・min−1の昇温速度にて90℃にまで加温し、90℃に到達してから3時間90℃を保持した。その後、水洗、ろ過、乾燥を行ったのち、400℃にて2時間焼成を行い、形態をロッド状に制御された酸化亜鉛が全体で60質量%被覆された複合粉末を得た。 Process II: zinc nitrate aqueous solution 500ml of 0.1 mol · dm -3, and the hexamethylenetetramine 0.1 mol · dm -3 500ml added and stirred. 3.7 g of the flaky substrate powder coated with zinc oxide as a core obtained in Process I was added thereto, and then heated to 90 ° C. at a temperature increase rate of 0.4 ° C. · min −1. The temperature was maintained at 90 ° C. for 3 hours after reaching 90 ° C. Then, after washing with water, filtration, and drying, baking was performed at 400 ° C. for 2 hours to obtain a composite powder coated with 60% by mass of zinc oxide whose shape was controlled in a rod shape.

(製造比較例1)
製造実施例の比較として1段階での処理を行った。0.1mol・dm−3の硝酸亜鉛水溶液500mlに、0.1mol・dm−3のヘキサメチレンテトラミンを500ml加え撹拌した。そこに薄片状基板粉末(合成マイカPDM−5L:トピー工業株式会社製)を2.7g加え、その後、0.4℃・min−1の昇温速度にて90℃にまで加温し、90℃に到達してから3時間90℃を保持した。その後、水洗、ろ過、乾燥を行ったのち、400℃にて2時間焼成を行い、酸化亜鉛が全体で60質量%被覆された複合粉末を得た。
(Production Comparative Example 1)
As a comparison with the production examples, a one-step process was performed. Zinc nitrate aqueous solution 500ml of 0.1 mol · dm -3, and the hexamethylenetetramine 0.1 mol · dm -3 500ml added and stirred. 2.7 g of flaky substrate powder (synthetic mica PDM-5L: manufactured by Topy Industries Co., Ltd.) was added thereto, and then heated to 90 ° C. at a temperature increase rate of 0.4 ° C. · min −1. The temperature was maintained at 90 ° C. for 3 hours after the temperature was reached. Then, after performing water washing, filtration, and drying, baking was performed at 400 ° C. for 2 hours to obtain a composite powder coated with 60% by mass of zinc oxide as a whole.

図1には、製造実施例1にて得られた複合粉末を、走査型電子顕微鏡にて観察した写真(a)(b)が示され、図2には、製造比較例1にて得られた複合粉末を、走査型電子顕微鏡にて観察した写真(a)(b)が示されている。これらの写真により、2段階で処理を行う方が、均一に薄片状基板粉末の表面にロッド状に形態が制御された酸化亜鉛が被覆されていることがわかる。   FIG. 1 shows photographs (a) and (b) obtained by observing the composite powder obtained in Production Example 1 with a scanning electron microscope, and FIG. Photographs (a) and (b) of the composite powder observed with a scanning electron microscope are shown. From these photographs, it can be seen that the two-step treatment uniformly coats the surface of the flaky substrate powder with zinc oxide whose shape is controlled in a rod shape.

図3には、製造実施例1にて得られた複合粉末と未処理の薄片状基板粉末のX線回折結果が示されている。X線回折結果より、得られた複合粉末の表面に被覆された球状酸化亜鉛は酸化亜鉛特有のピークが得られていることがわかる。   FIG. 3 shows the X-ray diffraction results of the composite powder obtained in Production Example 1 and the untreated flaky substrate powder. From the X-ray diffraction results, it can be seen that the spherical zinc oxide coated on the surface of the obtained composite powder has a peak specific to zinc oxide.

製造実施例1および製造比較例1で得られた複合粉末と未処理の薄片状基板粉末(合成マイカPDM−5L)をシリコーンオイル(東レ・ダウコーニング株式会社製 SF8417)にて20質量%になるように混合し、フーバーマーラーにて100rpm、3回の条件で分散させた。その後、5cm×8cmの石英板の上にトランスポアテープを貼り、上記方法にて分散させた分散体0.08gをテープ上に均一に塗布した。その後15分間放置した後、SPFアナライザー(Labsphere社製 UV−1000S)を用いて、Sun Protection Factor(SPF)の測定を行った。その結果が表1に示されている。SPFの測定結果において、製造比較例1と未処理とを比較したところ、高い紫外線遮蔽効果があることが分かった。   The composite powder obtained in Production Example 1 and Production Comparative Example 1 and the untreated flaky substrate powder (synthetic mica PDM-5L) are 20% by mass with silicone oil (SF8417 manufactured by Toray Dow Corning Co., Ltd.). Then, the mixture was dispersed with a Hoovermarler at 100 rpm for 3 times. Thereafter, a transpore tape was applied on a 5 cm × 8 cm quartz plate, and 0.08 g of the dispersion dispersed by the above method was uniformly applied on the tape. After standing for 15 minutes, Sun Protection Factor (SPF) was measured using an SPF analyzer (UV-1000S manufactured by Labsphere). The results are shown in Table 1. In the measurement result of SPF, it was found that when Comparative Example 1 and untreated were compared, there was a high ultraviolet shielding effect.

次に、上記測定に用いた分散体を用いて、透過率の測定を行った。この透過率の測定には、分散体を光路長が0.03mmの挟み込みセルに仕込み、分光光度計にて透明性の測定を行った。図4に透過率測定結果が示されている。図4に示されるように、製造実施例1にて製造された複合粉末は製造比較例1と比較し、可視光域での透明性が高いことがわかる。また、均一に球状酸化亜鉛粒子が被覆されていることから、酸化亜鉛のバンドギャップに由来する紫外線遮蔽効果が高いことがわかる。   Next, the transmittance was measured using the dispersion used in the above measurement. For the measurement of the transmittance, the dispersion was charged in a sandwich cell having an optical path length of 0.03 mm, and the transparency was measured with a spectrophotometer. FIG. 4 shows the transmittance measurement result. As shown in FIG. 4, it can be seen that the composite powder produced in Production Example 1 has higher transparency in the visible light region as compared with Production Comparative Example 1. Further, since the spherical zinc oxide particles are uniformly coated, it can be seen that the ultraviolet shielding effect derived from the band gap of zinc oxide is high.

(製造実施例2)
製造実施例1にて得られた複合粉末に、メチルハイドロジェンポリシロキサンにて表面被覆処理を施した。
(Production Example 2)
The composite powder obtained in Production Example 1 was subjected to a surface coating treatment with methyl hydrogen polysiloxane.

ヘンシェルミキサーに製造実施例1で得られた複合粉末1000質量部を入れ、続いてメチルハイドロジェンポリシロキサン20.4質量部をイソプロピルアルコール125質量部に溶解させた溶液を滴下混合し、複合粉末と良く混合した。その後、ヘンシェルミキサー内を加熱及び減圧し、イソプロピルアルコールを除去した。処理された粉体をヘンシェルミキサーから取り出し、粉砕して加熱処理を行い、シリコン化合物が2質量%処理された複合粉末を得た。   Into a Henschel mixer, 1000 parts by mass of the composite powder obtained in Production Example 1 was added, and then a solution in which 20.4 parts by mass of methylhydrogenpolysiloxane was dissolved in 125 parts by mass of isopropyl alcohol was dropped and mixed. Mix well. Thereafter, the interior of the Henschel mixer was heated and depressurized to remove isopropyl alcohol. The treated powder was taken out from the Henschel mixer, pulverized and heat-treated to obtain a composite powder treated with 2% by mass of the silicon compound.

(実施例1;パウダーファンデーションの製造)
表2の処方と下記製造方法に従いパウダーファンデーションを得た。なお、表中の単位は質量%である。
製造方法:
成分Aを、ミキサーを用いて良く混合しながら、均一に加熱溶解した成分Bを除々に加えてさらに混合した後、粉砕し、メッシュを通した後、金型を用いて金皿に打型して製品を得た。
(Example 1; Production of powder foundation)
A powder foundation was obtained according to the formulation in Table 2 and the following production method. In addition, the unit in a table | surface is the mass%.
Production method:
While mixing component A well with a mixer, add component B, which is uniformly heated and dissolved, and gradually mix, pulverize, pass through a mesh, and then mold into a metal pan using a mold. And got the product.

(実施例2)
表3の処方と下記製造方法に従いW/O型リキッドファンデーションを製造した。なお、配合量の単位は質量%である。
製造方法:
成分Bを、ミキサーを用いて良く混合した。一方、成分Aを80℃に加温し、均一になるように良く混合した。ここに成分Bを攪拌下に除々に添加し、50℃まで徐冷した。ついで、成分Cを80℃に加温し、均一に溶解させた後、50℃にまで徐冷した。成分Aに成分Cを攪拌下に加え、さらに良く攪拌し、室温まで冷却した。得られた溶液を容器に充填し、製品を得た。
(Example 2)
W / O type liquid foundation was manufactured according to the prescription of Table 3 and the following manufacturing method. In addition, the unit of a compounding quantity is the mass%.
Production method:
Component B was mixed well using a mixer. On the other hand, Component A was heated to 80 ° C. and mixed well so as to be uniform. To this, component B was gradually added with stirring and gradually cooled to 50 ° C. Next, Component C was heated to 80 ° C. and dissolved uniformly, and then slowly cooled to 50 ° C. Component C was added to component A under stirring, further stirred well, and cooled to room temperature. The obtained solution was filled in a container to obtain a product.

(比較例1)
製造実施例2で製造したシリコン処理複合粉末の代わりに、シリコン処理された製造比較例1の複合粉末を用いた他は全て実施例1と同様にして製品を得た。
(Comparative Example 1)
A product was obtained in the same manner as in Example 1 except that the silicon-treated composite powder produced in Production Example 2 was used instead of the silicon-treated composite powder in Production Comparative Example 1.

(比較例2)
製造実施例2で製造したシリコン処理複合粉末の代わりに、シリコン処理された製造比較例1の複合粉末を用いた他は全て実施例2と同様にして製品を得た。
(Comparative Example 2)
A product was obtained in the same manner as in Example 2 except that the silicon-treated composite powder produced in Production Example 2 was used instead of the silicon-treated composite powder in Production Comparative Example 1.

実施例および比較例で作製した各化粧料について、女性パネラー10名を使用して、使用感に関する官能評価試験を実施した。試験はアンケート形式で実施し、各項目に0から5点の間の点数をつけ、0点は評価が悪い、5点は評価が優れるとして数値化し、結果を全パネラーの平均点として表した。従って、点数が高い程評価が優れていることを示す。結果を表4に示す。   About each cosmetics produced by the Example and the comparative example, the sensory evaluation test regarding a usability | use_condition was implemented using 10 female panelists. The test was conducted in a questionnaire format, and each item was scored between 0 and 5 points, 0 points were bad in evaluation, 5 points were numerically evaluated as excellent, and the results were expressed as average points of all panelists. Therefore, the higher the score, the better the evaluation. The results are shown in Table 4.

表4の結果より、実施例1,2共に、比較例1,2よりも、使用感、化粧持ち、肌の透明感全てにおいて優れた結果となった。   From the results shown in Table 4, both Examples 1 and 2 were superior to Comparative Examples 1 and 2 in terms of usability, makeup lasting, and skin transparency.

本発明によれば、2段階で処理を行うことにより、短径が2〜200nmで長径が50〜2000nmのロッド状を形成している酸化亜鉛粉体が薄片状基板粉末の表面に均一に処理された複合粉末を提供することが可能であり、また、その複合粉末に疎水性化合物を表面被覆した被覆複合粉末を配合することにより、肌へ塗布した時の使用感、透明感、化粧持ちが優れた化粧料を提供することが可能であるので、ファンデーション、アイシャドウ、ほほ紅、口紅などのメイクアップ化粧料あるいはサンスクリーン化粧料に用いて好適であり、産業上の利用可能性が大である。   According to the present invention, by performing the treatment in two steps, the zinc oxide powder forming a rod shape having a minor axis of 2 to 200 nm and a major axis of 50 to 2000 nm is uniformly treated on the surface of the flaky substrate powder. It is possible to provide a composite powder that is applied to the skin, and by blending the composite powder with a coated composite powder that is surface-coated with a hydrophobic compound, the feeling of use, transparency, and longevity when applied to the skin can be provided. Since it is possible to provide excellent cosmetics, it is suitable for makeup cosmetics such as foundations, eye shadows, cheeks, lipsticks, and sunscreen cosmetics, and has great industrial applicability. is there.

Claims (1)

薄片状基板粉末の表面に、形態がロッド状の酸化亜鉛を被覆処理してなる複合粉末の製造方法であって、次の2段階の処理工程により製造することを特徴とする複合粉末の製造方法。
第1段階;亜鉛とグリコールとアミン化合物とドープする金属塩と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、グリコールの割合が10〜50質量%、アミン化合物の割合が1〜20質量%、ドープする金属の割合が0.00001〜0.5質量%、水の割合が40〜80質量%の範囲内になるように混合し、その混合溶液中に、被覆される酸化亜鉛濃度が1〜30質量%の範囲内になるように薄片状基板粉末を加え、その後、50℃〜100℃の温度条件下で、10分〜5時間保持するようなソフト溶液反応を行うことで薄片状基板粉末の表面に微細な球状酸化亜鉛を被覆処理する。
第2段階;亜鉛とアミン化合物と水の割合を、混合物全体を100質量%とするとき、亜鉛の割合が0.01〜10.0質量%、アミン化合物の割合が0.01〜10.0質量%、水の割合が50〜90質量%の範囲内になるように混合し、その混合溶液中に前記第1段階にて得られた核となる球状酸化亜鉛が被覆された薄片状基板粉末を酸化亜鉛濃度が5〜80質量%の範囲内になるように加え、その後、50℃〜100℃の温度条件下で、10分〜5時間保持するようなソフト溶液反応を行い、その後400℃〜1500℃にて焼成を行うことにより目的とする複合粉末を得る。
A method of manufacturing a composite powder obtained by coating a surface of a flaky substrate powder with rod-shaped zinc oxide , which is manufactured by the following two-stage processing steps. .
First stage: When the ratio of zinc, glycol, amine compound, metal salt to be doped and water is 100% by mass of the whole mixture, the ratio of zinc is 0.01 to 10.0% by mass, and the ratio of glycol is 10%. -50 mass%, mixing so that the proportion of amine compound is 1-20 mass%, the proportion of metal to be doped is 0.00001-0.5 mass%, and the proportion of water is in the range of 40-80 mass%. The flaky substrate powder is added to the mixed solution so that the concentration of zinc oxide to be coated is in the range of 1 to 30% by mass, and then, for 10 minutes to 5 at 50 ° C. to 100 ° C. The surface of the flaky substrate powder is coated with fine spherical zinc oxide by performing a soft solution reaction that maintains the time .
Second stage: When the ratio of zinc, amine compound and water is 100% by mass of the whole mixture, the ratio of zinc is 0.01 to 10.0% by mass, and the ratio of amine compound is 0.01 to 10.0. A flaky substrate powder in which the mixture is mixed so that the mass percentage and the water ratio are in the range of 50 to 90 mass%, and the mixed solution is coated with the spherical zinc oxide as the core obtained in the first stage. Is added so that the zinc oxide concentration falls within the range of 5 to 80% by mass, and then a soft solution reaction is performed under a temperature condition of 50 ° C. to 100 ° C. for 10 minutes to 5 hours, and then 400 ° C. The target composite powder is obtained by firing at ˜1500 ° C.
JP2012223318A 2012-10-05 2012-10-05 Method for producing composite powder Active JP6042165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223318A JP6042165B2 (en) 2012-10-05 2012-10-05 Method for producing composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223318A JP6042165B2 (en) 2012-10-05 2012-10-05 Method for producing composite powder

Publications (2)

Publication Number Publication Date
JP2014073997A JP2014073997A (en) 2014-04-24
JP6042165B2 true JP6042165B2 (en) 2016-12-14

Family

ID=50748451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223318A Active JP6042165B2 (en) 2012-10-05 2012-10-05 Method for producing composite powder

Country Status (1)

Country Link
JP (1) JP6042165B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848742B2 (en) * 1997-07-03 2006-11-22 メルク株式会社 UV shielding pigment
JP3671013B2 (en) * 2002-03-07 2005-07-13 株式会社資生堂 COMPOSITE POWDER, MAKEUP COSMETICS COMPRISING THE SAME, AND METHOD FOR PRODUCING COMPOSITE POWDER
JP4569597B2 (en) * 2007-04-26 2010-10-27 堺化学工業株式会社 Zinc oxide production method and zinc oxide
JP2010030845A (en) * 2008-07-30 2010-02-12 Fujifilm Corp Metal oxide structure and its producing method
JP2010195628A (en) * 2009-02-25 2010-09-09 Fujifilm Corp Metal oxide structure and method for producing the same, and light-emitting element

Also Published As

Publication number Publication date
JP2014073997A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP3187440B2 (en) Activity-suppressing zinc oxide powder and cosmetics
US9839587B2 (en) Treated platy substrates
JP5955137B2 (en) Method for producing spherical titanium dioxide
JP4046394B2 (en) Cosmetics and makeup method
JP7088183B2 (en) Powder modifiers and composite powders, as well as make-up cosmetics
JP2007308395A (en) Cosmetic
JP5782256B2 (en) Powder cosmetics
JP5593568B2 (en) Method for producing plate boehmite and plate alumina powder
JP6012339B2 (en) Method for producing composite powder
JP5727783B2 (en) Powder cosmetics
WO2013138312A1 (en) Treated platy substrates
JP5872825B2 (en) Metal oxide / zinc oxide solid solution particle production method, spherical powder production method, coated spherical powder production method, and cosmetic production method
JP6042165B2 (en) Method for producing composite powder
JP2008050388A (en) Water-repellent and oil-repellent pigment and cosmetic containing the same
JPH08127514A (en) Make-up cosmetic
JP6454569B2 (en) Method for producing spherical zinc oxide
JP6143640B2 (en) Acicular zinc oxide particles, production method thereof, and cosmetics
JPH11199458A (en) Cosmetic
JP2012193119A (en) Spherical powder and cosmetic including the same
JP4666699B2 (en) Cosmetics
JP3492937B2 (en) Cosmetics
JPH0848614A (en) Make-up cosmetic
JPH10204317A (en) Composite powder and cosmetic
JP3524281B2 (en) Cosmetics
JPH11209646A (en) Reduced-activity titanium oxide powder and cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161109

R150 Certificate of patent or registration of utility model

Ref document number: 6042165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250