JP6037057B2 - 示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ - Google Patents

示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ Download PDF

Info

Publication number
JP6037057B2
JP6037057B2 JP2015561121A JP2015561121A JP6037057B2 JP 6037057 B2 JP6037057 B2 JP 6037057B2 JP 2015561121 A JP2015561121 A JP 2015561121A JP 2015561121 A JP2015561121 A JP 2015561121A JP 6037057 B2 JP6037057 B2 JP 6037057B2
Authority
JP
Japan
Prior art keywords
mobile phase
sample
cell
drift amount
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015561121A
Other languages
English (en)
Other versions
JPWO2015118668A1 (ja
Inventor
神宮句実子
藤原理悟
冨田眞巳
河野穣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Application granted granted Critical
Publication of JP6037057B2 publication Critical patent/JP6037057B2/ja
Publication of JPWO2015118668A1 publication Critical patent/JPWO2015118668A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/4146Differential cell arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、液体クロマトグラフなどの分析装置の検出器として用いられる示差屈折率計を用いた測定方法とその測定方法を使用する示差屈折率計及び液体クロマトグラフに関するものである。
示差屈折率計は、試料を含む溶液を通液させる試料用セルと、参照溶液用の参照用セルを備え、それらのセルが光透過性の仕切を挟んで配置されている。参照用のセルと試料用のセルを光源からの測定光が順に透過するように構成する。両セル間の仕切に対して斜め方向に測定光を入射させ、両セルを透過した光の光軸の位置を検出器で検出する(特許文献1参照。)。
両セルを透過した光の光軸の位置は参照用セルと試料用セルとの屈折率差によって変化する。参照用セルの屈折率は一定であるため、参照用セルと試料用セルとの屈折率差は試料溶液の濃度に応じて変化する。したがって、参照用セルと試料用セルを透過した光の光軸の位置の変位量を測定することにより、試料溶液の屈折率の変化量を求めることができ、試料溶液の屈折率の変化量から試料溶液中の成分濃度を定量することができる。
特開2012−68024号公報
試料用セルの屈折率は試料用セルを流れる移動相の組成や温度の影響を大きく受け、検出信号のベースラインにうねりや大きなドリフトが発生することが知られている。
試料の測定中に検出信号のベースラインにうねりが発生すると、ピーク面積の算出を正確に行なうことができなくなり、算出された成分濃度の定量値の信頼性が低下する。しかし、従来では、検出信号に発生するうねりを積極的に抑制することは行なわれていなかった。
また、屈折率が変化すると、検出信号のベースラインのドリフト方向が変化してクロマトグラムの波形処理に影響する場合がある。しかし、従来では、検出信号のベースラインのドリフトを積極的に制御することも行なわれていなかった。
そこで、本発明は、示差屈折率計の検出信号のベースラインのうねりやドリフトを積極的に制御することができるようにすることを目的とするものである。
本発明にかかる測定方法は、試料溶液が通液される試料用セル、参照溶液用の参照用セル及び試料用セルと参照用セルの両セルを順次透過するように光を照射してその透過光を光検出器で検出するように構成された光学系を有し、試料用セル及び参照用セルを透過した光の変位を検出することにより試料用セルと参照用セルとの間の屈折率差を測定する示差屈折率計を用いるものを対象としている。
本発明にかかる測定方法のうち第1の方法は、試料用セルに移動相を供給するステップと、移動相を収容する移動相容器内を連続して攪拌するステップと、移動相が送液されている流路中に試料を注入するステップと、試料用セル及び参照用セルに光を照射してその透過光を光検出器で検出するステップと、光検出器の検出信号に基づいて試料用セルと参照用セルとの間の屈折率差を求めるステップと、を備えたものである。
本発明者らは、試料用セルに試料を導入するための移動相を貯留する移動相容器内において、移動相に含まれる酸化物や不純物の濃度、溶存酸素濃度が不均一になっていることがあり、それによって試料用セルを流れる移動相の組成が時間的に変化し、検出信号に発生するうねりの原因の一つとなっていることを見出した。上記第1の方法は、かかる知見に基づいている。
本発明にかかる測定方法のうち第2の方法は、試料用セルに移動相を供給するステップと、試料用セルに供給される移動相の脱気を行なうステップと、試料の測定を開始する前に、光検出器の検出信号のベースラインのドリフト量を算出するステップと、算出したドリフト量が所定の範囲に入るように移動相の脱気度を調整するステップと、移動相の脱気度を調整した後、移動相が送液されている流路中に試料を注入するステップと、試料用セル及び参照用セルに光を照射してその透過光を光検出器で検出するステップと、光検出器の検出信号に基づいて試料用セルと参照用セルとの間の屈折率差を求めるステップと、を備えたものである。
本発明者らは、試料用セルを流れる移動相の溶存酸素量を変化させることによって、示差屈折率計の検出信号のベースラインのドリフト方向及びドリフト量が変化することを見出した。上記第2の方法は、かかる知見に基づいている。
移動相の脱気は、移動相を収容した移動相容器に脱気用ガスを供給することにより行なってもよい。その場合、移動相の脱気度の変更は移動相容器に対する脱気用ガスの供給量を調整することにより行なう。
上記第2の方法においては、試料用セルの屈折率をK1、参照用セルの屈折率をK2とし、検出信号のベースラインのドリフト方向について、試料用セルと参照用セルの屈折率差(K1−K2)が増大していく方向をプラス、試料用セルと参照用セルの屈折率差(K1−K2)が減少していく方向をマイナスとした場合において、検出信号のベースラインのドリフト量を増大させるときは脱気用ガスの供給量を増大させ、検出信号のベースラインのドリフト量を減少させるときは脱気用ガスの供給量を減少させる。
試料用セルの屈折率は試料用セルを流れる移動相中の溶存酸素濃度によって変化し、参照用セル内の参照溶液の溶存酸素濃度に対して移動相中の溶存酸素濃度が低いほど試料用セルの屈折率が大きくなる。したがって、移動相容器への脱気用ガスの供給量を増加させることで、移動相中の溶存酸素濃度が低くなって試料用セルの屈折率が大きくなり、検出信号のベースラインのドリフト量が増大する。逆に、移動相容器への脱気用ガスの供給量を減少させることで、移動相中の溶存酸素濃度が高くなって試料用セルの屈折率が小さくなり、検出信号のベースラインのドリフト量が減少する。
本発明にかかる第1の示差屈折率計は、上記第1の方法を実行するように構成されている。すなわち、第1の示差屈折率計は、試料溶液が通液される試料用セル及び参照溶液用の参照用セルを備えた測定セルと、試料用セルに通じ、試料を移動相とともに試料用セルに導入するための試料導入流路と、測定セルに向けて光を照射する光源及び試料用セルと参照用セルを透過した光を検出する光検出器を備えた測定部と、移動相を収容した移動相容器を有し試料導入流路を通じて試料用セルに移動相を供給する移動相供給部と、移動相容器内を連続的に攪拌する攪拌機構と、を備えている。
上記攪拌機構の一例としては、マグネチックスターラを挙げることができる。マグネチックスターラとは、容器内に配置された攪拌子を磁力によって遠隔的に駆動するものであり、密閉容器に収容された溶液の攪拌を行なうことができる。したがって、本発明における攪拌機構としての用途に適している。
本発明にかかる第2の示差屈折率計は、上記第2の方法を実行するように構成されている。すなわち、第2の示差屈折率計は、試料溶液が通液される試料用セル及び参照溶液用の参照用セルを備えた測定セルと、試料用セルに通じ、試料を移動相とともに試料用セルに導入するための試料導入流路と、測定セルに向けて光を照射する光源及び試料用セルと参照用セルを透過した光を検出する光検出器を備えた測定部と、移動相を収容した移動相容器を有し試料導入流路を通じて試料用セルに移動相を供給する移動相供給部と、移動相容器内の移動相の脱気を行なう脱気装置と、測定部から光検出器で得られた検出信号を取り込み、その検出信号に基づいて脱気装置の動作を制御する制御部と、を備え、その制御部は、光検出器の検出信号のベースラインのドリフト量の目標範囲を設定するドリフト量設定手段、試料の測定が行なわれる前の検出信号のベースラインのドリフト量を算出するドリフト量算出手段、及びドリフト量算出手段により算出されたドリフト量がドリフト量設定手段で設定された目標範囲に入るように、脱気装置による移動相の脱気度を試料の測定が行なわれる前に調整する脱気度制御手段を備えている。
脱気装置の一例は、移動相容器内に脱気用のガスを供給する供給源、及びその供給量を可変に調整する調整機構を備えた脱気用ガス供給部である。
脱気用ガスの一例としてヘリウムガスが挙げられる。
上記第2の示差屈折率計では、試料用セルの屈折率をK1、参照用セルの屈折率をK2とし、検出信号のベースラインのドリフト方向について、試料用セルと参照用セルの屈折率差(K1−K2)が増大していく方向をプラス、試料用セルと参照用セルの屈折率差(K1−K2)が減少していく方向をマイナスとした場合において、脱気度制御手段は、ドリフト量算出手段により算出されたドリフト量が目標範囲よりも小さいときは移動相の脱気度を上げ、ドリフト量算出手段により算出されたドリフト量が目標範囲よりも大きいときは移動相の脱気度を下げるように構成されていることが好ましい。
本発明にかかる液体クロマトグラフは、本発明の示差屈折率計と、示差屈折率計の試料導入流路に試料を導入する試料導入部と、試料導入流路上で示差屈折率計の上流側に設けられ、試料を成分ごとに分離する分析カラムと、示差屈折率計により得られた検出信号に基づいて成分濃度の定量を行なう演算処理部と、を備えている。
本発明の第1の測定方法では、移動相容器内を連続的に攪拌するステップを備えているので、移動相容器内の移動相の組成の均一化が図られ、検出信号のうねりが抑制される。
ここで、「うねり」とは、屈折率が時間経過とともに増減を繰り返し、ベースラインに波(周期性、非周期性を含む)が現れる状態である。
また、「ドリフト」とは、時間経過とともに屈折率が増加し続ける、もしくは減少し続ける状態であり、時間変化量あたりの屈折率変化量が0でない状態である。
本発明の第2の測定方法では、試料の測定が開始される前に検出信号のベースラインのドリフト量を算出するステップ、算出されたドリフト量に応じて移動相の脱気度を調整するステップを備えているので、検出信号のベースラインのドリフト量が所望の目標範囲に制御された状態で試料の測定を実行することができ、試料の測定精度を向上させることができる。
本発明の第1の示差屈折率計では、移動相容器内を連続的に攪拌する攪拌機構を備えているので、移動相容器内の移動相の組成が均一化され、検出信号のベースラインのうねりが抑制される。
本発明の第2の示差屈折率計では、測定部から光検出器で得られた検出信号を取り込み、その検出信号に基づいて脱気装置の動作を制御する制御部を備え、その制御部は、光検出器の検出信号のベースラインのドリフト量の目標範囲を設定するドリフト量設定手段、試料の測定が行なわれる前の検出信号のベースラインのドリフト量を算出するドリフト量算出手段、及びドリフト量算出手段により算出されたドリフト量がドリフト量設定手段で設定された目標範囲に入るように、脱気装置による移動相の脱気度を試料の測定が行なわれる前に調整する脱気度制御手段を備えているので、試料の測定が行なわれる前に検出信号のベースラインのドリフト量が所望の目標範囲に制御されるようになる。これにより、試料測定の精度が向上する。
本発明の液体クロマトグラフは、本発明の示差屈折率計を備えているので、検出信号のベースラインのうねりやドリフトが制御され、信頼性の高い定量分析を行なうことができる。
示差屈折率計を備えた液体クロマトグラフの一実施例を示す概略構成図である。 同実施例における示差屈折率計の光学系を示す図である。 移動相容器内を連続的に攪拌した場合の検出信号のベースラインと攪拌しなかった場合の検出信号のベースラインの一例を示す図である。 示差屈折率計を備えた液体クロマトグラフの他の実施例を示す概略構成図である。 同実施例の測定動作を示すフローチャートである。 同実施例のドリフト量を調整する動作を示すフローチャートである。 脱気用ガスの供給量を変化させたときのドリフト量の変化を示す検出信号のベースラインの図である。 検出素子上に結像されるスリット像の移動方向と検出素子から出力される信号を説明するための概念図である。
[実施例1]
図1を用いて示差屈折率計を備えた液体クロマトグラフの一実施例について説明する。
この液体クロマトグラフは、分析カラム16により分離された成分を検出するための検出器として示差屈折率計が用いられている。測定部18については後述するが、測定部18は測定セルや光学系を備えている。測定部18の測定セルは試料を移動相とともに通液させるための試料用セルと参照溶液用の参照用セルを備えている。
分析流路2は試料用セルに試料及び移動相を導入するための試料導入流路でもある。分析流路2において移動相を送液するための移動相供給部4が設けられている。移動相供給部4は移動相容器8に収容されている移動相をポンプ6によって分析流路2に供給する。分析流路2上には上流側から順に試料導入部12及び分析カラム16が設けられている。試料導入部12は試料を分析流路2中に導入するオートサンプラであり、分析流路12中に導入された試料が移動相供給部4からの移動相によって分析カラム16に導入され、分析カラム16において分離された各成分が移動相とともに測定部18の試料用セルを流れるように構成されている。分析カラム16は内部温度が一定に維持されるカラムオーブン14内に収容されている。
移動相容器8内はマグネチックスターラ20によって攪拌されるようになっている。マグネチックスターラ20は移動相容器8内に配置された攪拌子22を磁力によって遠隔的に駆動する攪拌機構である。攪拌子22は一定に駆動され、移動相容器8内の移動相の組成が均一に維持されている。
移動相容器8には脱気用ガスであるヘリウムガスを供給するヘリウムボンベ26からの管24が挿入されており、移動相容器8内において溶存酸素などの脱気が行なわれるようになっている。ヘリウムボンベ26から移動相容器8へのヘリウムガスの供給量は圧力調整弁28により調整される。圧力調整弁28はヘリウムボンベ26の出口の圧力を設定された圧力に制御するように構成されている。圧力調整弁28に設定された圧力によってヘリウムボンベ26の出口の開度が調整され、ヘリウムガスの供給量が調整される。圧力調整弁28の設定圧力は分析者により設定される。
ヘリウムボンベ26及び圧力調整弁28は脱気用ガス供給部を構成する。この脱気用ガス供給部は移動相容器8内の移動相を脱気する脱気装置を実現するものであるが、脱気装置の構成はこれに限定されるものではない。例えば、真空ポンプによって移動相容器8内の溶存酸素を吸引除去するものであってもよい。その場合、移動相容器8内の移動相の脱気度の変更は真空ポンプの回転数を制御することによって行なう。
ポンプ6、オートサンプラ12、カラムオーブン14及びマグネチックスターラ20の動作はシステムコントローラ30を介して演算処理装置32により制御される。演算処理装置32は例えば汎用のパーソナルコンピュータや専用のコンピュータにより実現される。分析スケジュールや分析条件などの情報は演算処理装置32において設定され、それらの情報に基づく信号がシステムコントローラ30に送信される。システムコントローラ30は演算処理装置32から与えられた信号に基づいてポンプ6、オートサンプラ12、カラムオーブン14及びマグネチックスターラ20の動作を制御する。
ここで、測定部18の光学系について図2を用いて説明する。
測定セル42がスリット38を介して入射する光源34からの光36の光軸上に配置されている。既述のように測定セル42は、試料を通液させるための試料用セルと参照溶液用の参照用セルを備え、両セルが隔壁42aによって仕切られている。測定セル42の光源34からの光36が照射される側にレンズ40が配置され、測定セル42を挟んでレンズ40とは反対側にミラー44が配置されている。光36は隔壁42aに対して斜め方向に入射するように、測定セル42が配置されている。ミラー44により反射された光の光路上に受光素子48が配置されており、ミラー44で反射して測定セル42を透過した測定光が受光素子48上に結像されるようになっている。ミラー44で反射した後の光の光路上でレンズ40と受光素子48との間に、受光素子48上でのスリット像を平行移動させるためのゼログラス46が配置されている。
測定部18の光学系の一例を図8に示す。図8に示されているように、受光素子48はその受光面が48aと48bの2つの受光領域に分割されており、スリット像がそれらの受光領域48a,48bをまたぐように結像される。受光領域48a及び48bはそれぞれに入射した光量に応じた信号S1とS2を出力するようになっており、受光領域48a及び48bから出力された信号S1及びS2はシステムコントローラ30を介して演算処理装置32に取り込まれるようになっている。
受光素子48上に結像されるスリット像は、測定セル42の試料用セルの屈折率K1と参照用セルとの屈折率K2の差(K1−K2)が0であるときに受光領域48aと48bに入射する光量が同じになるように調整される。測定セル42の参照用セルの屈折率K2は一定であるのに対し、試料用セルの屈折率K1は試料用セルを流れる溶液中の試料成分濃度によって変化するため、試料用セルを流れる溶液中の試料成分濃度が変化すると試料用セルと参照用セルとの屈折率差(K1−K2)が変化する。試料用セルと参照用セルの屈折率差(K1−K2)が変化すると、スリット像が受光領域48a側又は48b側のいずれかへ変位し、受光領域48aと48bから出力される信号S1とS2が変化する。
この実施例では、スリット像の変位方向を、受光領域48a側を+(プラス)とし、受光領域48b側を−(マイナス)とする。試料用セルの屈折率K1が増大(試料用セルと参照用セルの屈折率差(K1−K2)が増大)したときにスリット像が+側へ変位し、試料用セルの屈折率K1が減少(試料用セルと参照用セルの屈折率差K1−K2が減少)したときにスリット像が−側へ変位するようになっている。
受光素子48上に結像されるスリット像の変位量ΔLは、例えば次式により検出する。
ΔL=(S1−S2)/(S1+S2)
演算処理装置32は、信号S1及びS2を取り込んだときに上記ΔLを算出し、算出したΔLに基づいて試料用セルを流れる溶液中の試料成分濃度を求める機能を備えている。ΔLと試料成分濃度との関係は予め関連付けられており、演算処理装置32内に格納されている。
図1に戻って、既述のように、移動相容器8はマグネチックスターラ20によって連続的に攪拌されるようになっている。移動相容器8内では、溶存酸素量などによって移動相の組成が不均一になっていることがあり、それによって測定セル42の試料用セルの屈折率が時間的に変化し、測定部18の受光素子48から出力される信号のベースラインに発生するうねりの原因となっている。
図3は測定部18の受光素子48の受光領域48aと48bの検出信号差(S1−S2)の時間変化の一例を示すグラフである。この測定では、分析流路2に試料を導入することなく移動相のみを流し続けている。一方の波形「攪拌なし」は、マグネチックスターラ20の動作を停止して移動相容器8内の攪拌を行なわずに移動相を送液したときの波形であり、他方の波形「攪拌あり」は、マグネチックスターラ20により移動相容器8内の攪拌を行ないながら移動相を送液したときの波形である。
この波形からわかるように、移動相容器8内の攪拌を行なわなかったときはベースラインにうねりが生じているのに対し、移動相容器8内を攪拌しながら送液を行なうことで、そのうねりが抑制されている。
移動相容器8内を攪拌する攪拌機構はマグネチックスターラに限定されない。移動相容器8内を連続的に攪拌し続けることができるものであれば、いかなるものであってもよい。
[実施例2]
次に、示差屈折率計を備えた液体クロマトグラフの他の実施例について図4を用いて説明する。
この実施例2は、移動相容器8内に供給される脱気用ガスの供給量を制御する圧力調整弁28の設定圧力を、装置が自動的に設定するようになっている点において、上記の実施例1と異なっている。システムコントローラ30aは演算処理装置32aからの信号に基づいてポンプ6、試料導入部12、カラムオーブン14、マグネチックスターラ20及び圧力調整弁28を制御する。演算処理装置32aは、実施例1の演算処理装置32と同様に、例えば汎用のパーソナルコンピュータや専用のコンピュータにより実現される。演算処理装置32aには、システムコントローラ30aを介して測定部18の受光素子48からの出力信号S1及びS2(図7参照)が取り込まれる。演算処理装置32aは取り込んだ信号S1及びS2に基づいて試料成分濃度を求める機能を備えている。
演算処理装置32aには、ドリフト量設定手段52、ドリフト量算出手段54及び脱気度制御手段56がさらに設けられている。これらの手段52,54及び56は、検出部18で得られる検出信号のベースラインのドリフト量が分析者の設定したドリフト量に近づくように移動相容器8に供給される脱気用ガスの供給量を調整し、試料用セルを流れる移動相中の溶存酸素濃度を調整するために設けられている。これらの手段52,54及び56は、演算処理装置32aに格納されたプログラム及びそのプログラムを実行するCPUなどの演算装置により実現される機能である。
ドリフト量設定手段52は、分析者にドリフト量の目標範囲を入力させて設定するように構成されたものである。ドリフト量算出手段54は、システムコントローラ30aを介して取り込まれる受光領域48a及び49b(図7参照)の出力信号S1及びS2に基づいて、単位時間当たりのドリフト量(例えばRIU/min)を算出するように構成されている。ドリフト量ΔD[μRIU/min]は任意時間当たりの屈折率の変化であり、例えば次式により求めることができる。なお、tは時間(min)である。
ΔD=(S1−S2)/t
このドリフト量ΔDはこの示差屈折率計の設定ポラリティ(出力極性)がプラスの場合である。設定ポラリティがマイナスの場合は上記ドリフト量ΔDの値の正負が設定ポラリティがプラスの場合と逆になる。示差屈折率計のポラリティは、分析者が、例えばシステムコントローラ30aに対して演算処理装置32aを介して設定することができる。
脱気度制御手段56は、ドリフト量算出手段54により算出されたドリフト量がドリフト量設定手段52によって設定されたドリフト量の目標範囲に近づくように、圧力調整弁28の設定圧力を調整するように構成されている。
図6は、移動相容器8に供給する脱気用ガス(ヘリウムガス)の供給量(ガス圧)と測定部18の受光素子48の一方の受光領域48aと48bの出力信号差S1−S2(図7参照)との関係を示すグラフである。ガス圧とは、圧力調整弁28の設定圧力のことである。
出力信号差S1−S2のベースラインは、設定圧力(ガス圧)が10kPaのときに信号強度が時間とともに大きく上昇し、プラス側へドリフトしている。その後、設定圧力(ガス圧)を0kPaに変更すると、そのドリフト量が徐々に減少し、最終的にドリフト方向がマイナス側へ変化している。さらに、その後、設定圧力(ガス圧)を7kPaに変更すると、ベースラインのドリフト量が徐々に大きくなり、ドリフト方向が最終的にプラス側へ変化している。なお、このデータでは、約108分のところで検出器のゼロ点調整をしているため、信号強度が急激に落ち込んでいるように表示されている。
以上のことから、移動相容器8への脱気用ガスの供給量を調整することによって、検出信号のベースラインのドリフト量やドリフト方向を制御することができることがわかる。なお、圧力調整弁28の設定圧力(ガス圧)の変更後、ドリフト方向が変わるまでの時間T1及びT2は、脱気度が変化した移動相容器8内の移動相が試料用セルに到達するまでに要する遅れ時間である。
同実施例の測定動作について図4とともに図5のフローチャートを用いて説明する。
移動相供給部4から試料用セルに移動相を供給する。試料の測定を開始する前に、検出部18の検出信号のベースラインのドリフト量の調整を行なう。ドリフト量の調整については後述する。検出信号のベースラインのドリフト量が設定された目標範囲に調整されると、圧力調整弁28をその状態に維持した状態で、試料導入部12によって試料を分析流路2に導入し、試料の測定を行なう。
次に、検出信号のベースラインのドリフト量の調整について図4とともに図6のフローチャートを用いて説明する。
まず、ドリフト量の調整段階になると、ドリフト量設定手段52が分析者にドリフト量の目標範囲の入力を促す表示を、例えば外付けのPCのモニタ又は装置に設けられた専用のモニタを介して行なう。ここで設定されるドリフト量の目標範囲は、例えば上限Aと下限Bである。分析者に入力されたA,Bの値がドリフト量の目標範囲として設定され、脱気度制御手段56による圧力調整弁28の設定圧力の制御に用いられる。
ドリフト量の目標範囲が設定された後、ドリフト量算出手段54が測定部18の検出信号に基づいてドリフト量を算出する。脱気度制御手段56は、ドリフト量算出手段54により算出されたドリフト量が設定された下限Aと上限Bの間に収まっているか否かを判定し、その結果に応じて脱気用ガスの供給量が増減するように圧力調整弁28の設定圧力を調整する。
ドリフト量が下限Aを下回っている場合、装置のポラリティがプラスに設定されていれば、脱気用ガスの供給量が増加するように圧力調整弁28の設定圧力を上げる。逆に、装置のポラリティがマイナスに設定されていれば、脱気用ガスの供給量が減少するように圧力調整弁28の設定圧力を下げる。
ドリフト量が上限Bを超えている場合、装置のポラリティがプラスに設定されていれば、脱気用ガスの供給量が減少するように圧力調整弁28の設定圧力を下げる。逆に、装置のポラリティがマイナスに設定されていれば、脱気用ガスの供給量が増加するように圧力調整弁28の設定圧力を上げる。
圧力調整弁28の設定圧力の調整幅は、ドリフト量算出手段54により算出されたドリフト量と下限A又は上限Bとの差の大きさに応じて決定される。さらに、移動相容器8内の移動相残量によって移動相中の溶存酸素がヘリウムに置換される速度も変わるため、圧力調整弁28の設定圧力の調整幅は、移動相容器8内の移動相残量に応じて決定される。演算処理装置32aの脱気度制御手段56は、ドリフト量と下限A又は上限Bとの差、移動相残量をパラメータとし、各パラメータに応じて用意された圧力調整弁28の調整幅のデータを保持しており、そのデータに基づいて圧力調整弁28の設定圧力の調整を行なうようになっている。
これらの調整が行なわれてからその調整の影響が検出信号に反映されるまでの一定時間待機した後、ドリフト量算出手段54によって直近のドリフト量が算出され、その算出結果に基づいて圧力調整弁28の設定圧力の調整が行なわれる。ここで調整された圧力調整弁28の設定圧力は、少なくともその後実行される試料の測定中は維持される。
2 分析流路(試料導入流路)
4 移動相供給部
6 ポンプ
8 移動相容器
12 試料導入部
14 カラムオーブン
16 分析カラム
18 測定部
20 マグネチックスターラ
22 攪拌子
24 管
26 ヘリウムボンベ
28 圧力調整弁
30,30a システムコントローラ
32,32a 演算処理装置
52 ドリフト量設定手段
54 ドリフト量算出手段
56 脱気度制御手段

Claims (8)

  1. 試料溶液が通液される試料用セル、参照溶液用の参照用セル及び前記試料用セルと前記参照用セルの両セルを順次透過するように光を照射してその透過光を光検出器で検出するように構成された光学系を有し、前記試料用セル及び前記参照用セルを透過した光の変位を検出することにより前記試料用セルと前記参照用セルとの間の屈折率差を測定する示差屈折率計を用いた測定方法であって、
    前記試料用セルに移動相を供給するステップと、
    前記試料用セルに供給される移動相の脱気を行なうステップと、
    試料の測定を開始する前に、前記光検出器の検出信号のベースラインのドリフト量を算出するステップと、
    算出したドリフト量が所定の範囲に入るように移動相の脱気度を調整するステップと、
    移動相の脱気度を調整した後、前記移動相が送液されている前記流路中に試料を注入するステップと、
    前記試料用セル及び前記参照用セルに光を照射してその透過光を前記光検出器で検出するステップと、
    前記光検出器の検出信号に基づいて前記試料用セルと前記参照用セルとの間の屈折率差を求めるステップと、を備えた測定方法。
  2. 移動相の脱気は、移動相を収容した移動相容器に脱気用ガスを供給することにより行ない、移動相の脱気度の変更は前記移動相容器に対する前記脱気用ガスの供給量を調整することにより行なう請求項1に記載の測定方法。
  3. 前記試料用セルの屈折率をK1、前記参照用セルの屈折率をK2とし、前記光検出器の検出信号のベースラインのドリフト方向について、前記試料用セルと前記参照用セルの屈折率差(K1−K2)が増大していく方向をプラス、前記試料用セルと前記参照用セルの屈折率差(K1−K2)が減少していく方向をマイナスとした場合において、
    移動相の脱気度を調整するステップにおいて、前記光検出器の検出信号のベースラインのドリフト量を増大させるときは移動相の脱気度を上げ、前記ドリフト量を減少させるときは移動相の脱気度を下げる請求項1又は2に記載の測定方法。
  4. 試料溶液が通液される試料用セル及び参照溶液用の参照用セルを備えた測定セルと、
    前記試料用セルに通じ、試料を移動相とともに前記試料用セルに導入するための試料導入流路と、
    前記測定セルに向けて光を照射する光源及び前記試料用セルと前記参照用セルを透過した光を検出する光検出器を備えた測定部と、
    移動相を収容した移動相容器を有し前記試料導入流路を通じて前記試料用セルに前記移動相を供給する移動相供給部と、
    前記移動相容器内の移動相の脱気を行なう脱気装置と、
    前記測定部から前記光検出器で得られた検出信号を取り込み、その検出信号に基づいて前記脱気装置の動作を制御する制御部と、を備え、
    前記制御部は、前記光検出器の検出信号のベースラインのドリフト量の目標範囲を設定するドリフト量設定手段、試料の測定が行なわれる前の前記検出信号のベースラインのドリフト量を算出するドリフト量算出手段、及び前記ドリフト量算出手段により算出されたドリフト量が前記ドリフト量設定手段で設定された目標範囲に入るように、前記脱気装置による移動相の脱気度を試料の測定が行なわれる前に調整する脱気度制御手段を備えている示差屈折率計。
  5. 前記脱気装置は、前記移動相容器内に脱気用のガスを供給する供給源、及びその供給量を可変に調整する調整機構を備えた脱気用ガス供給部である請求項に記載の示差屈折率計。
  6. 前記脱気用ガスはヘリウムガスである請求項に記載の示差屈折率計。
  7. 前記試料用セルの屈折率をK1、前記参照用セルの屈折率をK2とし、前記光検出器の検出信号のベースラインのドリフト方向について、前記試料用セルと前記参照用セルの屈折率差(K1−K2)が増大していく方向をプラス、前記試料用セルと前記参照用セルの屈折率差(K1−K2)が減少していく方向をマイナスとした場合において、
    前記脱気度制御手段は、前記ドリフト量算出手段により算出されたドリフト量が前記目標範囲よりも小さいときは移動相の脱気度を上げ、前記ドリフト量算出手段により算出されたドリフト量が前記目標範囲よりも大きいときは移動相の脱気度を下げるように構成されている請求項4から6のいずれか一項に記載の示差屈折率計。
  8. 請求項4からのいずれか一項に記載の示差屈折率計と、
    前記示差屈折率計の試料導入流路に試料を導入する試料導入部と、
    前記試料導入流路上で前記示差屈折率計の上流側に設けられ、試料を成分ごとに分離する分析カラムと、
    前記示差屈折率計で得られた検出信号に基づいて成分濃度の定量を行なう演算処理部と、を備えた液体クロマトグラフ。
JP2015561121A 2014-02-07 2014-02-07 示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ Active JP6037057B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052954 WO2015118668A1 (ja) 2014-02-07 2014-02-07 示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ

Publications (2)

Publication Number Publication Date
JP6037057B2 true JP6037057B2 (ja) 2016-11-30
JPWO2015118668A1 JPWO2015118668A1 (ja) 2017-03-23

Family

ID=53777496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015561121A Active JP6037057B2 (ja) 2014-02-07 2014-02-07 示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ

Country Status (4)

Country Link
US (1) US10024789B2 (ja)
JP (1) JP6037057B2 (ja)
CN (1) CN105940293B (ja)
WO (1) WO2015118668A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658091B2 (ja) * 2016-02-29 2020-03-04 株式会社島津製作所 分析測定装置システム
US11965900B2 (en) 2018-11-09 2024-04-23 Wyatt Technology, Llc Indicating a status of an analytical instrument on a screen of the analytical instrument
CN109507410B (zh) * 2018-11-20 2022-03-18 湖北工业大学 快速检测尿液中硝酸盐的方法和便携装置
JP7235298B2 (ja) * 2019-03-20 2023-03-08 株式会社日立ハイテクサイエンス クロマトグラフのデータ処理装置、データ処理方法、およびクロマトグラフ
JP6604677B1 (ja) * 2019-04-05 2019-11-13 日本分光株式会社 示差屈折率の測定方法、測定装置、および、測定プログラム
CN112915594B (zh) * 2021-01-22 2022-08-02 深圳市鑫路远电子设备有限公司 一种基于人工智能的真空搅拌脱泡备料方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011608A (en) * 1988-11-18 1991-04-30 Dragana Damjanovic Biogenic amine assay using HPLC-ECD
JPH1123555A (ja) * 1997-07-02 1999-01-29 Tosoh Corp 液体クロマトグラフ用示差屈折率検出器
JP2006084457A (ja) * 2004-08-20 2006-03-30 Daicel Chem Ind Ltd クロマトグラフィー装置及び溶剤組成調整装置
JP2006105998A (ja) * 2004-10-07 2006-04-20 Wyatt Technol Corp 屈折率示差を測定するための向上された示差屈折計および測定方法
WO2008102872A1 (ja) * 2007-02-23 2008-08-28 Tosoh Corporation カラムオーブン二重温調

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798081A (en) * 1985-11-27 1989-01-17 The Dow Chemical Company High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers
US6975392B2 (en) 2004-01-29 2005-12-13 Wyatt Technology Corporation Enhanced sensitivity differential refractometer measurement cell
JP4577177B2 (ja) * 2005-09-30 2010-11-10 株式会社島津製作所 示差屈折率検出器及びその調整方法
JP4656018B2 (ja) * 2006-07-28 2011-03-23 株式会社島津製作所 示差屈折率検出器
JP2012068024A (ja) 2010-09-21 2012-04-05 Shimadzu Corp 示差屈折率計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011608A (en) * 1988-11-18 1991-04-30 Dragana Damjanovic Biogenic amine assay using HPLC-ECD
JPH1123555A (ja) * 1997-07-02 1999-01-29 Tosoh Corp 液体クロマトグラフ用示差屈折率検出器
JP2006084457A (ja) * 2004-08-20 2006-03-30 Daicel Chem Ind Ltd クロマトグラフィー装置及び溶剤組成調整装置
JP2006105998A (ja) * 2004-10-07 2006-04-20 Wyatt Technol Corp 屈折率示差を測定するための向上された示差屈折計および測定方法
WO2008102872A1 (ja) * 2007-02-23 2008-08-28 Tosoh Corporation カラムオーブン二重温調

Also Published As

Publication number Publication date
CN105940293A (zh) 2016-09-14
JPWO2015118668A1 (ja) 2017-03-23
WO2015118668A1 (ja) 2015-08-13
US20170010213A1 (en) 2017-01-12
US10024789B2 (en) 2018-07-17
CN105940293B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
JP6037057B2 (ja) 示差屈折率計を用いた測定方法、その測定方法を使用する示差屈折率計及び液体クロマトグラフ
US8343258B2 (en) Apparatus and method for controlling constant mass flow to gas chromatography column
US9335308B2 (en) Chromatography system, signal processing apparatus, chromatography data processing apparatus, and program
JP4577177B2 (ja) 示差屈折率検出器及びその調整方法
JP2007064977A (ja) 特徴部の位置合わせを行うシステム及び方法
CN107436310B (zh) 钻井液的x射线分析
US7551270B2 (en) Differential refractive index detector
CN101000352A (zh) 一种液体凝固时间的测量装置
JP6585557B2 (ja) 流速測定方法および流速測定システム
JP2006275975A (ja) 溶解度測定システム
US20190162654A1 (en) Optical Analysis Apparatus, Manufacturing System for a Substance, and Manufacturing Method for a Substance
EP3729058B1 (en) Deflection-type refractometer with extended measurement range
WO2020027234A1 (ja) 分析方法、試薬キット及び分析装置
JP4793413B2 (ja) 示差屈折率検出器
RU2778221C9 (ru) Установка для определения температуры насыщения жидких углеводородов парафином
RU2778221C1 (ru) Установка для определения температуры насыщения жидких углеводородов парафином
CN216747309U (zh) 溶液颗粒分析仪
JP7231576B2 (ja) 電解質濃度測定装置
CN112051218B (zh) 用于校正由光学传感器检测到的主测量信号的方法
US20240011953A1 (en) Analysis of mobile phase supply from mobile phase container
JP5352397B2 (ja) 反応液体クロマトグラフ装置における制御方法,反応液体クロマトグラフ装置、およびアミノ酸分析計
JP2008164290A (ja) フロー分析システム
JP2019002844A (ja) 掘削流体のx線分析
WO2013083187A1 (en) Calibration procedure for fluidic sensors
JP2726373B2 (ja) 酵母自動添加装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R151 Written notification of patent or utility model registration

Ref document number: 6037057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151