JP6034343B2 - Inspection method for multiple exposure image mixing using overlapped exposure - Google Patents
Inspection method for multiple exposure image mixing using overlapped exposure Download PDFInfo
- Publication number
- JP6034343B2 JP6034343B2 JP2014171633A JP2014171633A JP6034343B2 JP 6034343 B2 JP6034343 B2 JP 6034343B2 JP 2014171633 A JP2014171633 A JP 2014171633A JP 2014171633 A JP2014171633 A JP 2014171633A JP 6034343 B2 JP6034343 B2 JP 6034343B2
- Authority
- JP
- Japan
- Prior art keywords
- exposure time
- light emitting
- emitting device
- time value
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007689 inspection Methods 0.000 title claims description 69
- 238000000034 method Methods 0.000 title claims description 26
- 230000007547 defect Effects 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000003973 paint Substances 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 description 13
- 238000005286 illumination Methods 0.000 description 10
- 230000001678 irradiating effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N2021/95638—Inspecting patterns on the surface of objects for PCB's
Landscapes
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
本発明は、回路の検査に用いられる光学検査方法に関し、特に、重複露光を運用した多重露光画像ミキシングの検査方法に関する。 The present invention relates to an optical inspection method used for inspection of a circuit, and more particularly, to an inspection method for multiple exposure image mixing using overlapping exposure.
光学識別システム、例えば自動光学検査装置(Automated Optical Inspection、AOI)及び最終外観検査装置(Automatic Final Inspection、AFI)等の検査装置は、現在電子産業における回路基板の組立生産ライン上の検査フロー内にあまねく運用され、従来の目視検査作業に取って代わるもので、これは画像技術で被検査物と標準画像の差異の有無を比較することで、被検査物が基準に適合しているかどうかを判断する。 Optical identification systems, such as automatic optical inspection equipment (Automated Optical Inspection, AOI) and final visual inspection equipment (Automatic Final Inspection, AFI), are currently in the inspection flow on circuit board assembly production lines in the electronics industry. It is generally used and replaces the conventional visual inspection work. This is based on the comparison of the difference between the inspection object and the standard image using image technology, and it is judged whether the inspection object meets the standard. To do.
よって、光学識別システムは、回路の検査において非常に重要な役割を担い、つまり電子機器の製造コスト内の検査コストが光学識別システムの良し悪い及び速度によって決められている。光学識別システムは正確であるという基本的な要求を満たす以外に、更に重要なのは最短時間で必要とされる回路仕様の正確な検査を行うことができなければならない。そのため、光学識別システムは精度の高い選別検査能力を擁し、一旦検査速度を効果的に向上できない場合、検査コストが増えてしまい、全体的な生産量にも影響を及ぼしてしまう。 Therefore, the optical identification system plays a very important role in the inspection of the circuit, that is, the inspection cost within the manufacturing cost of the electronic device is determined by the quality and speed of the optical identification system. Besides meeting the basic requirement that the optical identification system be accurate, more importantly, it must be able to perform an accurate inspection of the required circuit specifications in the shortest possible time. Therefore, the optical identification system has a high-precision screening inspection capability, and once the inspection speed cannot be effectively improved, the inspection cost increases and the overall production amount is also affected.
従来の技術として、特許文献1は2つの検査ステーションに各々設けられた光学検査プロセスが開示され、第1ステーションで取り込んだ画像(反射光画像)の分析結果について、更に第2ステーションにおいて別の画像(蛍光画像)を取り込み、このように、2個の異なるワークステーションにおいて取り込まれた2枚の画像で回路の欠陥分析を行う。このような検査方法は、検査の流れが煩雑(第1ワークステーションと第2ワークステーションで各々行う必要がある)になるだけでなく、検査所要時間が大幅に増(異なるワークステーションにおいて異なる時間帯で2枚の画像を各々取り込む)えるため、このような配置及び方法は、検査速度を高められる生産量も効果的にアップできないという欠点が生じていた。 As a conventional technique, Patent Document 1 discloses an optical inspection process provided in each of two inspection stations. An analysis result of an image (reflected light image) captured in the first station is further analyzed in the second station. A (fluorescence image) is captured, and thus a circuit defect analysis is performed on the two images captured at two different workstations. Such an inspection method not only complicates the flow of inspection (need to be performed respectively on the first workstation and the second workstation), but also significantly increases the time required for inspection (different time zones on different workstations). Therefore, such an arrangement and method has a drawback in that the production amount capable of increasing the inspection speed cannot be effectively increased.
本発明の目的は、光学検査の流れを簡素化すると共に検査所要時間を短縮することである。 An object of the present invention is to simplify the flow of optical inspection and reduce the time required for inspection.
本発明の別の目的は、検査装置に多種多様なコンフィグレーション設定を行わせる検査方法を提供することである。 Another object of the present invention is to provide an inspection method for causing an inspection apparatus to perform various configuration settings.
上記目的及びその他の目的を達成するため、本発明で提出する重複露光を運用した多重露光画像ミキシングの検査方法は、第1コンフィグレーション下の異なる波長帯及び照射角度のうちのいずれかを有する複数の光源装置の総露光時間を構成する露光時間値を各々設するステップS100と、重複露光を行って順次それら光源装置を対応する露光時間値をオンにした後でオフにし、それら光源装置が被検査回路基板を順次照射すると共に画像取込装置がそれら露光時間値内の異なる波長帯及び照射角度のうちのいずれかの光でミキシングする検査画像を生成するステップS200と、分析検査に供するため該検査画像を出力するステップS300とを含む。 In order to achieve the above object and other objects, the multiple exposure image mixing inspection method using overlapping exposure submitted in the present invention has a plurality of different wavelength bands and irradiation angles under the first configuration. In step S100, each of the exposure time values constituting the total exposure time of the light source device is set, and the corresponding exposure time values are sequentially turned on after the overlap exposure is performed, and the light source devices are turned off. Step S200 for sequentially irradiating the inspection circuit board and generating an inspection image in which the image capturing device mixes with light in one of the different wavelength bands and irradiation angles within the exposure time values, and And step S300 for outputting an inspection image.
本発明の一実施例において、該ステップS200の後ろに、その他のコンフィグレーションの光源装置の有無を判定するステップS210を更に含む。「いいえ」の時、ステップS300に進み、「はい」の時ステップS220に進んで別のコンフィグレーション下の複数の光源装置の各々露光時間値を設定してからステップS200に戻ることで、分析検査に供するため別の検査画像を生成する。 In one embodiment of the present invention, step S210 is further included after step S200 to determine whether there is a light source device of another configuration. If “no”, the process proceeds to step S300, and if “yes”, the process proceeds to step S220 to set exposure time values of a plurality of light source devices under different configurations, and then returns to step S200 to perform analysis inspection. Another inspection image is generated for use.
本発明の一実施例において、該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置と不可視光波帯発光装置とを含む。 In one embodiment of the present invention, the light source devices of the first configuration include a visible light wave light emitting device and an invisible light wave light emitting device.
本発明の一実施例において、該被検査回路基板上の金属線が断線しているかどうかの判断において、該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置及び紫外線波帯発光装置で、該可視光波帯発光装置の露光時間値の該総露光時間に占める割合が該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合より小さい。更に該可視光波帯発光装置の露光時間値の該総露光時間に占める割合が30%で、該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合が70%となる。 In one embodiment of the present invention, in determining whether the metal wire on the circuit board to be inspected is disconnected, the light source devices of the first configuration are a visible light wave light emitting device and an ultraviolet wave light emitting device. The ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is smaller than the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time. Further, the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is 30%, and the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time is 70%.
本発明の一実施例において、該被検査回路基板上の金属線が突出しているかどうかの判断において、該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置及び紫外線波帯発光装置で、該可視光波帯発光装置の露光時間値の該総露光時間に占める割合が該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合に等しい。 In one embodiment of the present invention, in determining whether the metal wire on the circuit board to be inspected protrudes, the light source device of the first configuration is a visible light wave band light emitting device and an ultraviolet wave band light emitting device, The ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is equal to the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time.
本発明の一実施例において、該被検査回路基板上の緑色ペンキ表面に欠陥があるかどうかの判断において、該第1コンフィグレーションのそれら光源装置は、側面光発光装置及び正面光発光装置で、該側面光発光装置の露光時間値の該総露光時間に占める割合が該正面光発光装置の露光時間値の該総露光時間に占める割合に等しい。 In one embodiment of the present invention, in determining whether the green paint surface on the circuit board to be inspected is defective, the light source devices of the first configuration are a side light emitting device and a front light emitting device, The ratio of the exposure time value of the side light emitting device to the total exposure time is equal to the ratio of the exposure time value of the front light emitting device to the total exposure time.
これにより、本発明は撮像装置で被検査回路基板に重複露光することを通じて、該被検査回路基板の異なる光照射の下で呈現する画像が一緒に1枚の検査画像として記録され、その後の分析検査において該検査画像から速やかに被検査回路基板の欠陥を直接判断させることができ、更に画像間の比較及び複数の画像上の欠陥箇所の検索と位置決めを行う必要がないため、光学検査の流れを簡素化すると共に検査所要時間を有効的に短縮できる。 Thus, according to the present invention, the image to be inspected under different light irradiations of the circuit board to be inspected is recorded together as one inspection image through the double exposure on the circuit board to be inspected by the imaging apparatus, and the subsequent analysis is performed. In the inspection, it is possible to directly determine the defect of the circuit board to be inspected from the inspection image, and it is not necessary to compare the images and search for and locate the defective portion on a plurality of images. And the time required for inspection can be effectively shortened.
以下に、本発明の目的、特徴及び効果を十分理解してもらうため、下記の具体的な実施例について添付図面に基づき、本発明を詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To fully understand the objects, features, and effects of the present invention, the following specific embodiments will be described in detail with reference to the accompanying drawings.
まず図1を参照すると、本発明の一実施例における検査システムの配置を示す模式図である。光学検査システムは、複数の光源装置210、220と検査ステージ100と被検査回路基板110と画像取込装置310と演算用PC330とを含む。それら光源装置の組数は実際の必要性に応じて対応の設置を行う。該被検査回路基板110は、フレキシブル基板、硬式回路基板或いはその他の回路構造を備えたボードとすることができる。該画像取込装置310は、最適な画角を見て対応するような調整でき、また図1に例示する被検査回路基板110直上方だけに限るものではない。該演算用PC330は、設定によってそれら光源装置(210、220)の作動及びオン/オフ時間を制御するために用いられる。 First, referring to FIG. 1, it is a schematic diagram showing an arrangement of an inspection system in one embodiment of the present invention. The optical inspection system includes a plurality of light source devices 210 and 220, an inspection stage 100, a circuit board 110 to be inspected, an image capturing device 310, and a calculation PC 330. The number of sets of these light source devices is set according to actual needs. The circuit board 110 to be inspected can be a flexible board, a rigid circuit board, or a board having another circuit structure. The image capturing device 310 can be adjusted so as to correspond to the optimum angle of view, and is not limited to the position directly above the circuit board 110 to be inspected illustrated in FIG. The computing PC 330 is used to control the operation and on / off time of the light source devices (210, 220) by setting.
光学検査において、第1コンフィグレーションの光源装置210或いはその他のコンフィグレーションの光源装置220の光源照射を通じて、該被検査回路基板110上に反射光、散乱光又は励起光を生成できる。本発明は被検査回路基板110に必要な検査項目内で運用する各光源を同一の画像内に記録し、その運用方法の流れを以下に説明する。 In the optical inspection, reflected light, scattered light, or excitation light can be generated on the circuit board 110 to be inspected through light source irradiation of the light source device 210 of the first configuration or the light source device 220 of the other configuration. In the present invention, each light source operated in the inspection items necessary for the circuit board 110 to be inspected is recorded in the same image, and the flow of the operation method will be described below.
図2を参照すると、本発明の一実施例内の検査方法のフローチャートである。本発明の重複露光を運用した多重露光画像ミキシングの検査方法には、
第1コンフィグレーション下の異なる波長帯及び照射角度のうちのいずれかを有する複数の光源装置の総露光時間を構成する露光時間値を各々設するステップS100と、
重複露光を行って順次それら光源装置を対応する露光時間値をオンにした後でオフにし、それら光源装置が被検査回路基板を順次照射すると共に画像取込装置がそれら露光時間値内の異なる波長帯及び照射角度のうちのいずれかの光でミキシングする検査画像を生成するステップS200と、
分析検査に供するため該検査画像を出力するステップS300と、を含む。
Referring to FIG. 2, it is a flowchart of the inspection method in one embodiment of the present invention. The inspection method of the multiple exposure image mixing using the overlap exposure of the present invention includes:
Step S100 for setting each exposure time value constituting the total exposure time of a plurality of light source devices having any one of different wavelength bands and irradiation angles under the first configuration;
Turn on the corresponding exposure time values after turning on the corresponding exposure time values and turn them off, the light source devices sequentially irradiate the circuit board to be inspected, and the image capture device has different wavelengths within the exposure time values. Generating an inspection image to be mixed with light of any one of the band and the irradiation angle; and
And S300 for outputting the inspection image for use in the analysis inspection.
上記ステップは、単一種類の光源コンフィグレーション時の流れで、検査システムが複数組のコンフィグレーションの光源配置がある時、次の光源コンフィグレーションに切り替えた後、同様に上記ステップの流れを行う。本発明において異なる光源コンフィグレーションの照明とは、検査しようとする回路欠陥の種類について対応して配置する光源装置をいう。例えば、ある欠陥を垂直に光で照射し、ある欠陥に斜め側面から光を照射し、よって照明の角度上において2種類の照明コンフィグレーションに分けることができ、更に、ある欠陥は特殊な波長で照らす必要があり、例えば一般的に紫外線で蛍光を励起し、赤外線で金属銅面の反射を強化し、緑色光で緑色ペンキの反射を強化し、近赤外線で緑色ペンキ下の配線検査を強化する等があるため、照明の波長上において2種以上の照明コンフィグレーションに分けることができる。これにより、本発明で述べる異なる光源コンフィグレーションについて、その欠陥分析は異なる光源コンフィグレーション間で取り込んだ異なる画像を取得する必要がない。本発明は単一照射コンフィグレーション下において対応する欠陥種類の検査を完了することでき、本発明で提供する異なるコンフィグレーション間の切替は、異なる欠陥を検査する時に使用する。 The above step is a flow at the time of single-type light source configuration. When the inspection system has a plurality of sets of light source arrangements, the above steps are similarly performed after switching to the next light source configuration. In the present invention, illumination with a different light source configuration refers to a light source device arranged corresponding to the type of circuit defect to be inspected. For example, a defect can be illuminated with light vertically, and a defect can be illuminated with light from an oblique side, so that it can be divided into two illumination configurations in terms of illumination angle. Need to illuminate, for example, generally excite fluorescence with ultraviolet light, enhance reflection of metallic copper surface with infrared light, enhance reflection of green paint with green light, enhance wiring inspection under green paint with near infrared light Therefore, it can be divided into two or more types of illumination configurations on the wavelength of illumination. Thus, for different light source configurations described in the present invention, the defect analysis need not acquire different images captured between the different light source configurations. The present invention can complete inspection of corresponding defect types under a single illumination configuration, and the switching between different configurations provided by the present invention is used when inspecting different defects.
図3を参照すると、本発明の一面走査実施例における金属線が断線しているかどうかの画像を示す模式図である。図3(a)は、照明コンフィグレーションが可視光のみを使用した結果である。図3(b)は、照明コンフィグレーションが紫外線のみを使用した結果である。図3(c)は、照明コンフィグレーションが本発明に基づき重複露光下で同時に可視光と紫外線を使用した結果で、2種類の光源の割合が異なるだけである。図3(a)及び図3(b)も本発明の重複露光の照明コンフィグレーションを利用して実施できる。例えば図3(a)は割合いが比較的多い可視光(99%)と割合が比較的少ない紫外線(1%)を結合した使用に変更できる。図3(b)は割合が比較的少ない可視光(1%)と割合が比較的多い紫外線(99%)を結合した使用に変更できる。以上に多波帯の方式について説明した。これからの本発明の図5で説明するのは、多角度の方式について説明する。これで多波帯と多角度を結合すると、同一時間帯における走査で多くの情報を有する単一画像を取得することで検査判断に供することができる。 Referring to FIG. 3, it is a schematic diagram showing an image of whether or not the metal wire is broken in the one-surface scanning embodiment of the present invention. FIG. 3A shows the result when the illumination configuration uses only visible light. FIG. 3B shows the result of using only ultraviolet rays in the illumination configuration. FIG. 3 (c) is a result of the illumination configuration using visible light and ultraviolet light simultaneously under overlapping exposure according to the present invention, and only the ratio of the two types of light sources is different. 3 (a) and 3 (b) can also be implemented using the illumination configuration of the double exposure of the present invention. For example, FIG. 3A can be changed to a combined use of visible light (99%) having a relatively high ratio and ultraviolet light (1%) having a relatively low ratio. FIG. 3B can be changed to a combined use of visible light (1%) having a relatively low ratio and ultraviolet light (99%) having a relatively high ratio. The multiband method has been described above. FIG. 5 of the present invention will be described with respect to a multi-angle system. By combining the multi-wave band and the multi-angle, it is possible to use for inspection judgment by acquiring a single image having a lot of information by scanning in the same time zone.
該ステップS200の後ろに、その他のコンフィグレーションの光源装置の有無を判定するステップS210を更に含む。「いいえ」の時、ステップS300に進み、「はい」の時ステップS220に進んで別のコンフィグレーション下の異なる波長帯を有する複数の光源装置の各々露光時間値を設定してからステップS200に戻ることで、分析検査に供するため別の検査画像を生成する。 Subsequent to step S200, step S210 for determining the presence or absence of a light source device having another configuration is further included. If “no”, the process proceeds to step S300, and if “yes”, the process proceeds to step S220 to set exposure time values of a plurality of light source devices having different wavelength bands under different configurations, and then returns to step S200. Thus, another inspection image is generated for use in the analysis inspection.
該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置と不可視光波帯発光装置とを含む。本発明の図3を参照すると、図3(a)は可視光のみを被検査回路基板に照射して見た金属線の断線欠陥(点線で囲んだ箇所)の疑いのある階調画像である。図3(b)は、紫外線という不可視光のみを被検査回路基板に照射して見た金属線の断線欠陥(点線で囲んだ箇所)のある階調画像である。従来2枚の画像を各々取得してからオペレータが欠陥であるかどうかを判断し、本発明の操作方法を経た後で取得した画像は図3(c)に示すよなものとなる。図内の点線で囲まれた箇所に金属線の断線欠陥が「ない」ことを見て分かる。これは、非金属線の基材部分が紫外線を吸収して励起光を生じたため、該部分の画像が明るくなった。本発明の操作において、図3(c)の金属線の断線欠陥の疑いのある箇所の階調値と基材の階調値が近似しないため、この検査画像から点線で囲んだ箇所に金属線の断線欠陥が「ない」ことを直接判断できる。 The light source devices of the first configuration include a visible light wave light emitting device and an invisible light wave light emitting device. Referring to FIG. 3 of the present invention, FIG. 3 (a) is a grayscale image that is suspected of a disconnection defect (a portion surrounded by a dotted line) of a metal wire as seen by irradiating only the visible light onto the circuit board to be inspected. . FIG. 3B is a gradation image having a disconnection defect (a portion surrounded by a dotted line) of a metal wire as viewed by irradiating the circuit board to be inspected with only invisible light such as ultraviolet rays. Conventionally, after acquiring two images, it is determined whether or not the operator has a defect, and the image acquired after the operation method of the present invention is as shown in FIG. It can be seen from the figure that there is no disconnection defect of the metal wire in the portion surrounded by the dotted line in the figure. This is because the substrate portion of the non-metallic wire absorbs ultraviolet rays and generates excitation light, so that the image of the portion becomes bright. In the operation of the present invention, since the tone value of the portion suspected of having a disconnection defect of the metal wire in FIG. 3C does not approximate the tone value of the base material, the metal wire is drawn from the inspection image to the portion surrounded by the dotted line. It can be directly judged that there is no disconnection defect.
図3を参照すると、前記金属線断線の有無の判断に基づき、好ましい配置の下で、該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置及び紫外線波帯発光装置である以外に、更に該可視光波帯発光装置の露光時間値の該総露光時間に占める割合は該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合より小さい。例を挙げると、該可視光波帯発光装置の露光時間値の該総露光時間に占める割合は30%で、該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合が70%となる。ただし本発明はこれに限るものではなく、該可視光波帯発光装置の露光時間値の該総露光時間に占める割合は該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合より小さいという条件においていずれも好ましい表示効果を有する。 Referring to FIG. 3, based on the determination of the presence or absence of the disconnection of the metal wire, under a preferable arrangement, the light source devices of the first configuration are a visible light wave light emitting device and an ultraviolet wave light emitting device, Further, the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is smaller than the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time. For example, the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is 30%, and the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time is 70%. Become. However, the present invention is not limited to this, and the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is smaller than the ratio of the exposure time value of the ultraviolet light wave light emitting device to the total exposure time. In any case, the display effect is preferable.
次に図4を参照すると、本発明の一面走査実施例における金属線が突出しているかどうかの画像を示す模式図である。図4(a)は可視光のみを被検査回路基板に照射して見た金属線の突出欠陥(矢印箇所)の疑いのある階調画像である。図4(b)は、紫外線という不可視光のみを被検査回路基板に照射して見た金属線の突出欠陥(矢印箇所)のある階調画像である。従来2枚の画像を各々取得してからオペレータが欠陥であるかどうかを判断し、本発明の操作方法を経た後で取得した画像は図4(c)に示すよなものとなる。図内の矢印箇所に金属線の突出欠陥が「ない」こと(内凹みを呈する)を見て分かる。これは、非金属線の基材部分が紫外線を吸収して励起光を生じたため、該部分の画像が明るくなった。本発明の操作において、図4(c)の金属線の突出欠陥の疑いのある箇所の階調値と金属の階調値が近似しないため、この検査画像から矢印箇所に金属線の突出欠陥が「ない」ことを直接判断できる。 Next, referring to FIG. 4, it is a schematic diagram showing an image of whether or not a metal line protrudes in the one-side scanning embodiment of the present invention. FIG. 4 (a) is a gradation image with a suspicion of a protruding defect (arrowed portion) of a metal wire as seen by irradiating only the visible light to the circuit board to be inspected. FIG. 4B is a gradation image having a protruding defect (arrowed portion) of a metal line as viewed by irradiating the circuit board to be inspected with only invisible light such as ultraviolet rays. Conventionally, after acquiring two images, it is determined whether or not the operator has a defect, and the image obtained after the operation method of the present invention is as shown in FIG. It can be seen that there is no metal wire protruding defect at the arrow in the figure (presenting an inner dent). This is because the substrate portion of the non-metallic wire absorbs ultraviolet rays and generates excitation light, so that the image of the portion becomes bright. In the operation of the present invention, since the gradation value of the portion suspected of the metal line protruding defect in FIG. 4C and the gradation value of the metal do not approximate, there is a protruding defect of the metal line at the arrow point from this inspection image. You can judge directly that there is no.
図4を参照すると、前記金属線突出の有無の判断に基づき、好ましい配置の下で、該第1コンフィグレーションのそれら光源装置は、可視光波帯発光装置及び紫外線波帯発光装置である以外に、更に該可視光波帯発光装置の露光時間値の該総露光時間に占める割合は該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合に等しい。例を挙げると、該可視光波帯発光装置の露光時間値の該総露光時間に占める割合は50%で、該紫外線波帯発光装置の露光時間値の該総露光時間に占める割合が50%となることで、好ましい表示効果を奏する。 Referring to FIG. 4, based on the determination of the presence or absence of the metal wire protrusion, under a preferred arrangement, the light source devices of the first configuration are a visible light wave band light emitting device and an ultraviolet wave band light emitting device, Furthermore, the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is equal to the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time. For example, the ratio of the exposure time value of the visible light wave light emitting device to the total exposure time is 50%, and the ratio of the exposure time value of the ultraviolet light band light emitting device to the total exposure time is 50%. Thus, a preferable display effect is obtained.
次に図5を参照すると、本発明の一線走査実施例における回路基板の緑色ペンキ表面に欠陥があるかどうかの画像を示した模式図である。線走査と面走査の操作上の相違点は、線走査の画像が更に鮮明、正確であるが、線走査を光学システム全体を一つずつ移動させるという線走査方式検査を行う必要がある。 Next, referring to FIG. 5, it is a schematic diagram showing an image of whether or not there is a defect on the surface of the green paint of the circuit board in the one-line scanning embodiment of the present invention. The difference in operation between line scanning and area scanning is that the image of the line scanning is clearer and more accurate, but it is necessary to perform a line scanning inspection that moves the entire optical system one by one.
図5を参照すると、図5(a)は白色側面光の可視光のみを被検査回路基板の緑色ペンキ表面に照射して見た回路基板欠陥(矢印箇所)の疑いのある階調画像である。図5(b)は、白色正面光(正面から入射)の可視光のみを被検査回路基板の緑色ペンキ表面に照射して見た回路基板欠陥(矢印箇所)のある階調画像である。従来2枚の画像を各々取得してからオペレータが欠陥であるかどうかを判断し、本発明の操作方法を経た後で取得した画像は図5(c)に示すよなものとなる。図内の矢印箇所に回路基板緑色ペンキ表面の欠陥が「あり」、且つ画像全体のコントラストも白色側面光のみを被検査回路基板に照射して見た画像(図5(a))より良いことを見て分かる。本発明の操作において、図5(c)の回路基板緑色ペンキ表面の欠陥の疑いのある箇所の階調値と正常な緑色ペンキ表面の階調値が近似しないため、この検査画像から矢印箇所に回路基板の緑色ペンキ表面の欠陥が「ある」ことを直接判断できる。 Referring to FIG. 5, FIG. 5A is a grayscale image with a suspicion of a circuit board defect (arrowed portion) observed by irradiating only the visible light of the white side light onto the green paint surface of the circuit board to be inspected. . FIG. 5B is a grayscale image having a circuit board defect (arrowed portion) viewed by irradiating only the green light of white front light (incident from the front) onto the green paint surface of the circuit board to be inspected. Conventionally, after acquiring two images, it is determined whether or not the operator has a defect, and the image acquired after the operation method of the present invention is as shown in FIG. The circuit board green paint surface has a defect at the arrow in the figure, and the overall image contrast is better than the image seen by irradiating the circuit board to be inspected with only the white side light (FIG. 5A). To see. In the operation of the present invention, since the gradation value of the suspected defect on the surface of the circuit board green paint in FIG. It can be directly determined that there is a defect on the surface of the green paint on the circuit board.
図5を参照すると、前記回路基板に欠陥の有無の判断に基づき、好ましい配置の下で、該第1コンフィグレーションのそれら光源装置は、側面光発光装置及び正面光発光装置である以外に、更に該側面光発光装置の露光時間値の該総露光時間に占める割合は該正面光発光装置の露光時間値の該総露光時間に占める割合に等しい。例を挙げると、該側面光発光装置の露光時間値の該総露光時間に占める割合は50%で、該正面光発光装置の露光時間値の該総露光時間に占める割合が50%となることで、好ましい表示効果を奏する。言い換えると、図5(a)は重複露光のない条件において、白色側面光(約45度の入射角)を照射した後、中空エリアの金属に対する欠陥の検出が容易になる、緑色ペンキ表面上のスリキズは明確に検出できないことを示している。図5(b)は、同様に重複露光のない条件において、白色正面光(〜90度)を照射した後、中空エリアの金属に対するコントラストが図5(a)に示すものより悪いが、緑色ペンキ表面上のスリキズを明確に検出できることを示している。図5(c)は、本発明の重複露光の条件において、正面光と側面光の割合パラメータを調整することで、同一の検査時間帯内における単一画像を取得できる。この画像において、中空エリアの金属に対するコントラストが図5(a)より悪いが、図5(b)より良いことを示している。緑色ペンキ表面上のスリキズにについて、コントラスト図5(b)より悪いが、図5(a)図より良いことを示している。これも本発明の重複露光技術の利点の一つとなる。 Referring to FIG. 5, based on the determination of the presence or absence of a defect in the circuit board, the light source devices of the first configuration are not only the side light emitting device and the front light emitting device, but also in a preferred arrangement. The ratio of the exposure time value of the side light emitting device to the total exposure time is equal to the ratio of the exposure time value of the front light emitting device to the total exposure time. For example, the ratio of the exposure time value of the side light emitting device to the total exposure time is 50%, and the ratio of the exposure time value of the front light emitting device to the total exposure time is 50%. Thus, a preferable display effect is achieved. In other words, FIG. 5 (a) shows a case where a defect on a metal in a hollow area is easily detected after irradiating white side light (incidence angle of about 45 degrees) under a condition without overlapping exposure. Scratches indicate that it cannot be clearly detected. FIG. 5 (b) shows that the contrast to the metal in the hollow area is worse than that shown in FIG. 5 (a) after irradiating white front light (up to 90 degrees) under the same conditions without overlapping exposure. It shows that scratches on the surface can be clearly detected. FIG. 5C shows that a single image can be acquired within the same examination time period by adjusting the ratio parameter of the front light and the side light under the condition of the overlap exposure of the present invention. This image shows that the contrast of the hollow area with the metal is worse than that in FIG. 5A, but better than that in FIG. 5B. The scratch on the green paint surface is worse than the contrast in FIG. 5B, but better than the FIG. 5A. This is also one of the advantages of the overlap exposure technique of the present invention.
上記をとりまとめると、本発明は撮像装置で被検査回路基板に重複露光することを通じて、該被検査回路基板の異なる光照射の下で呈現する画像が一緒に1枚の検査画像として記録され、光学検査の流れを簡素化すると共に検査所要時間を有効的に短縮できる。 In summary, according to the present invention, the image to be inspected under different light irradiations of the circuit board to be inspected is recorded together as one inspection image through the multiple exposure on the circuit board to be inspected by the imaging apparatus, The flow of inspection can be simplified and the time required for inspection can be shortened effectively.
100 検査ステージ
110 被検査回路基板
210 第1コンフィグレーションの光源装置
220 その他のコンフィグレーションの光源装置
310 画像取込装置
330 演算用PC
S100〜S300 ステップ
DESCRIPTION OF SYMBOLS 100 Inspection stage 110 Circuit board to be inspected 210 Light source device of first configuration 220 Light source device of other configuration 310 Image capturing device 330 PC for calculation
S100-S300 steps
Claims (6)
重複露光を行って順次前記光源装置を対応する露光時間値をオンにした後でオフにし、前記光源装置が被検査回路基板を順次照射すると共に画像取込装置が前記露光時間値内の異なる波長帯、及び、照射角度のうちのいずれかの光でミキシングする検査画像を生成するステップS200と、
複数のコンフィグレーション下で、それぞれ、前記光源装置の前記露光時間値を設定し、また前記ステップS200を繰り返すことによって、複数の検査画像を生成した後、
分析検査に供するため、生成した前記複数の検査画像を結合して、1枚の検査画像として出力するステップS300と、
を含む重複露光を運用した多重露光画像ミキシングの検査方法。
Step S100 for setting each exposure time value constituting the total exposure time of a plurality of light source devices having any one of different wavelength bands and irradiation angles under the first configuration;
The light source device is sequentially turned on after the corresponding exposure time value is turned on by performing overlapping exposure, and the light source device sequentially irradiates the circuit board to be inspected, and the image capturing device has different wavelengths within the exposure time value. Step S200 for generating an inspection image to be mixed with light of any one of the band and the irradiation angle;
Under a plurality of configurable grayed configuration, respectively, to set the exposure time value of said light source device, and by repeating the step S200, after generating a plurality of test images,
Order to provide the analysis and inspection, by combining generation of the plurality of test images, and the step S300 of outputting as a single test image,
Inspection method for multi-exposure image mixing using overlapping exposure including
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103125041 | 2014-07-22 | ||
TW103125041A TWI495867B (en) | 2014-07-22 | 2014-07-22 | Application of repeated exposure to multiple exposure image blending detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016024185A JP2016024185A (en) | 2016-02-08 |
JP6034343B2 true JP6034343B2 (en) | 2016-11-30 |
Family
ID=54343328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014171633A Active JP6034343B2 (en) | 2014-07-22 | 2014-08-26 | Inspection method for multiple exposure image mixing using overlapped exposure |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6034343B2 (en) |
KR (1) | KR101679314B1 (en) |
CN (1) | CN105277574B (en) |
TW (1) | TWI495867B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146519A (en) * | 2018-02-12 | 2019-08-20 | 志圣工业股份有限公司 | Circuit board detecting method and circuit board exposure method |
CN110702031A (en) * | 2019-11-19 | 2020-01-17 | 四川长虹电器股份有限公司 | Three-dimensional scanning device and method suitable for dark surface |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3418726A4 (en) | 2016-02-19 | 2019-03-20 | SCREEN Holdings Co., Ltd. | Defect detection apparatus, defect detection method, and program |
CN108414530A (en) * | 2018-03-13 | 2018-08-17 | 昆山国显光电有限公司 | Automated optical detection equipment |
CN110006919A (en) * | 2018-12-10 | 2019-07-12 | 浙江大学台州研究院 | A kind of apparatus and method polishing the shallow scratch detection of quartz wafer |
CN111542218B (en) * | 2020-04-23 | 2021-07-20 | 国网浙江省电力有限公司营销服务中心 | Electric energy meter credible production patch link acquisition verification method and system |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0459489B1 (en) * | 1990-05-30 | 1997-01-22 | Dainippon Screen Mfg. Co., Ltd. | Method of reading optical image of inspected surface and image reading system employable therein |
US6201601B1 (en) * | 1997-09-19 | 2001-03-13 | Kla-Tencor Corporation | Sample inspection system |
JP3012602B2 (en) * | 1998-08-06 | 2000-02-28 | 大分日本電気株式会社 | Surface defect inspection equipment |
US6552783B1 (en) * | 2000-06-28 | 2003-04-22 | Teradyne, Inc. | Optical system |
JP3551188B2 (en) * | 2002-01-10 | 2004-08-04 | オムロン株式会社 | Surface condition inspection method and substrate inspection device |
JP2004150885A (en) | 2002-10-29 | 2004-05-27 | Toppan Printing Co Ltd | System and method for inspecting hologram |
US7355692B2 (en) | 2004-03-05 | 2008-04-08 | Orbotech Ltd | System and method for inspecting electrical circuits utilizing reflective and fluorescent imagery |
JP2006047290A (en) * | 2004-06-30 | 2006-02-16 | Omron Corp | Image generation method for board inspection, board inspecting device and illumination device for board inspection |
EP1612569A3 (en) * | 2004-06-30 | 2006-02-08 | Omron Corporation | Method and apparatus for substrate surface inspection using multi-color light emission system |
JP2006220578A (en) * | 2005-02-14 | 2006-08-24 | Nikon Corp | Surface inspecting apparatus |
JP2006295036A (en) * | 2005-04-14 | 2006-10-26 | World Techno:Kk | Inspection method of printed circuit |
JP4809032B2 (en) * | 2005-10-04 | 2011-11-02 | ヤマハ発動機株式会社 | Mounting board inspection device and printing device |
CN101221122A (en) * | 2007-01-08 | 2008-07-16 | 牧德科技股份有限公司 | Adjustable light source and automatic optical detecting system with the same |
JP2009042202A (en) * | 2007-08-08 | 2009-02-26 | Taniguchi Consulting Engineers Co Ltd | Wafer inspection equipment and wafer inspection method |
CN201396645Y (en) * | 2009-04-10 | 2010-02-03 | 厦门福信光电集成有限公司 | Light source device of automatic optical detecting devices |
CN101887030A (en) * | 2009-05-15 | 2010-11-17 | 圣戈本玻璃法国公司 | Method and system for detecting defects of surface and/or interior of transparent substrate |
JP2010281580A (en) * | 2009-06-02 | 2010-12-16 | Rexxam Co Ltd | Substrate inspection system, irradiation system and substrate inspection method |
JP5582932B2 (en) * | 2010-09-16 | 2014-09-03 | 日東電工株式会社 | Inspection apparatus and printed circuit board manufacturing method |
JP5760371B2 (en) * | 2010-10-13 | 2015-08-12 | 富士通株式会社 | Paint surface defect inspection method |
KR20130077813A (en) * | 2011-11-08 | 2013-07-09 | 가부시키가이샤 메가 트레이드 | Device for detecting print substrate |
KR101361537B1 (en) * | 2011-11-25 | 2014-02-13 | 주식회사 미르기술 | Vision inspection apparatus with infrared ray pattern projector |
TWM443197U (en) * | 2011-12-07 | 2012-12-11 | Zealtek Electronic Co Ltd | Dual lens photographic module capable of obtaining high resolution images |
-
2014
- 2014-07-22 TW TW103125041A patent/TWI495867B/en active
- 2014-08-18 CN CN201410406034.0A patent/CN105277574B/en active Active
- 2014-08-22 KR KR1020140109499A patent/KR101679314B1/en active IP Right Grant
- 2014-08-26 JP JP2014171633A patent/JP6034343B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110146519A (en) * | 2018-02-12 | 2019-08-20 | 志圣工业股份有限公司 | Circuit board detecting method and circuit board exposure method |
CN110702031A (en) * | 2019-11-19 | 2020-01-17 | 四川长虹电器股份有限公司 | Three-dimensional scanning device and method suitable for dark surface |
Also Published As
Publication number | Publication date |
---|---|
CN105277574B (en) | 2018-04-03 |
CN105277574A (en) | 2016-01-27 |
TWI495867B (en) | 2015-08-11 |
KR101679314B1 (en) | 2016-11-24 |
JP2016024185A (en) | 2016-02-08 |
TW201604536A (en) | 2016-02-01 |
KR20160011556A (en) | 2016-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6034343B2 (en) | Inspection method for multiple exposure image mixing using overlapped exposure | |
US10184789B2 (en) | Image inspection apparatus | |
US10591285B2 (en) | Image inspection apparatus | |
US6781687B2 (en) | Illumination and image acquisition system | |
US20180350060A1 (en) | Image Inspection Apparatus | |
JP4408298B2 (en) | Inspection apparatus and inspection method | |
TW201346250A (en) | Optical reexamining system and examining method thereof | |
JP2017040510A (en) | Inspection apparatus, inspection method, and object manufacturing method | |
JP5830229B2 (en) | Wafer defect inspection system | |
KR20140065347A (en) | Visual inspecting apparatus and method | |
JP2012242148A (en) | Appearance inspection apparatus and appearance inspection method of transparent bottle | |
JP2009097977A (en) | Visual inspection device | |
KR20130130567A (en) | Apparatus for inspecting of led and led inspection method using the same | |
KR20140065348A (en) | Visual inspecting apparatus and method | |
TWI711816B (en) | System and method for inspecting object | |
KR20150094948A (en) | Optical inspection apparatus and method of optical inspection | |
JP2006244869A (en) | Plasma display panel inspection device, manufacturing method of plasma display panel, and device inspection method | |
JP2015210226A (en) | Visual inspection device and visual inspection method | |
JP2018205001A (en) | Image inspection device | |
JP2018205000A (en) | Image inspection device | |
KR102678467B1 (en) | Optical inspection device and method of optical inspection | |
JP2018204996A (en) | Image inspection device | |
JP2018204999A (en) | Image inspection device | |
JP2015129662A (en) | Visual inspection device and visual inspection method | |
JP2024079873A (en) | Method for inspecting compatibility of mechanical component of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20151201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20160713 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20160825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6034343 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |