JP6031857B2 - Radiation measurement method - Google Patents

Radiation measurement method Download PDF

Info

Publication number
JP6031857B2
JP6031857B2 JP2012155671A JP2012155671A JP6031857B2 JP 6031857 B2 JP6031857 B2 JP 6031857B2 JP 2012155671 A JP2012155671 A JP 2012155671A JP 2012155671 A JP2012155671 A JP 2012155671A JP 6031857 B2 JP6031857 B2 JP 6031857B2
Authority
JP
Japan
Prior art keywords
sample
measurement
radiation
basis weight
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012155671A
Other languages
Japanese (ja)
Other versions
JP2014016312A (en
Inventor
大日方 祐彦
祐彦 大日方
悠策 古賀
悠策 古賀
西田 和史
和史 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2012155671A priority Critical patent/JP6031857B2/en
Publication of JP2014016312A publication Critical patent/JP2014016312A/en
Application granted granted Critical
Publication of JP6031857B2 publication Critical patent/JP6031857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

本発明は放射線(例えばX線、ベータ線、ガンマ線、赤外線等)を用いた放射線測定方法に関し、特に放射線源と放射線測定器の間に介在する大気の影響による被測定物(以下、試料という)の坪量の測定精度の改善を図った放射線測定方法に関するものである。   The present invention relates to a radiation measurement method using radiation (for example, X-rays, beta rays, gamma rays, infrared rays, etc.), and in particular, an object to be measured (hereinafter referred to as a sample) due to the influence of the atmosphere interposed between the radiation source and the radiation measurement device. It is related with the radiation measuring method which aimed at the improvement of the measurement accuracy of the basic weight.

放射線が物質層を通過すると,電離作用や励起作用等によって次第にエネルギ―を失って減衰し,更にこの様な非弾性散乱を多数回受けて進行方向が変化する。従って試料の物理量(例えば坪量)が増すに伴い透過する放射線の数は減少する。この様な原理を応用し,シ―ト状の種々の試料の物理量を測定する装置が知られている。   When radiation passes through the material layer, it gradually loses energy and attenuates due to ionization and excitation, and the traveling direction is changed by receiving such inelastic scattering many times. Accordingly, as the physical quantity (for example, basis weight) of the sample increases, the number of transmitted radiation decreases. Devices that measure the physical quantities of various sheet-like samples by applying such principles are known.

放射線を用いた例えば坪量測定では、放射線源と検出器の間にシート状の試料を置き、その透過率から例えば放射線の強度を検出して信号分布を得るのが一般的である。このため、放射線源と検出器の間に存在する大気の変化は検出画像(検出精度)に直接影響する。即ち、気温や気圧が変化して密度変化が起きるとそれがそのまま測定誤差につながることになる。   In the basis weight measurement using radiation, for example, it is common to place a sheet-like sample between a radiation source and a detector and detect the intensity of the radiation from the transmittance to obtain a signal distribution. For this reason, a change in the atmosphere existing between the radiation source and the detector directly affects the detected image (detection accuracy). That is, if a change in density occurs due to changes in temperature or pressure, this will directly lead to measurement errors.

放射線源を安定駆動するフィードバック制御や温度制御による放射線量のモニタが行われている。温度や気圧などの変動を監視して測定系にフィードバックし測定対象物を精度良く測定する先行技術として、特開平4−158209や特開2001−227918に開示されたものがある。   The radiation dose is monitored by feedback control and temperature control for stably driving the radiation source. As prior art for monitoring fluctuations in temperature, pressure, etc., and feeding back to a measurement system to measure a measurement object with high accuracy, there are those disclosed in Japanese Patent Laid-Open Nos. 4-158209 and 2001-227918.

図3はX線、β線、γ線、赤外線などの放射線を用いた透過特性によりシート状の試料の坪量(厚さ)や塗工量測定を行うインライン測定器の一例を示す斜視図である。
シート状の試料1は右から左方向へ一定速度で流れており、この試料を略直行するように放射線源ヘッド(下側・・・以下線源という)2と電離箱等の検出器ヘッド(上側・・・以下検出器という)3が一対となって試料1を走査する形態で測定を行っている。
FIG. 3 is a perspective view showing an example of an in-line measuring instrument that measures the basis weight (thickness) and coating amount of a sheet-like sample by transmission characteristics using radiation such as X-rays, β-rays, γ-rays, and infrared rays. is there.
The sheet-like sample 1 flows at a constant speed from the right to the left, and a radiation source head (lower side: hereinafter referred to as a radiation source) 2 and a detector head such as an ionization chamber (to be referred to as an ionization chamber) Measurement is performed in a form in which the sample 1 is scanned as a pair.

夫々のヘッドは門型と呼ばれるO型フレーム4に支持され、対向する上下ヘッドの位置関係を保持して上下夫々駆動される。夫々のヘッド2,3は、試料の端部付近で折り返しを繰り返してジグザグに測定を繰り返す。更に夫々のヘッドはO型フレーム4の右側に待避位置Aが設けられている。   Each head is supported by an O-type frame 4 called a gate type, and is driven up and down while maintaining the positional relationship of the opposing upper and lower heads. Each of the heads 2 and 3 repeats the measurement in a zigzag manner by repeatedly folding around the end of the sample. Further, each head is provided with a retracting position A on the right side of the O-shaped frame 4.

これは、試料をセットする場合や放射線源ヘッド2や検出器ヘッド3のメンテナンス、校正などの際に試料の無い位置に移動する必要があるためである。厚さ測定においては、予め厚さ(坪量)と材質が既知の複数の標準サンプルを測定しておき、その坪量に対する透過特性として検量線を求めている。   This is because it is necessary to move to a position where there is no sample when the sample is set or when the radiation source head 2 or the detector head 3 is maintained or calibrated. In the thickness measurement, a plurality of standard samples whose thickness (basis weight) and material are known are measured in advance, and a calibration curve is obtained as a transmission characteristic with respect to the basis weight.

その検量線と試料の透過出力値から逆引きして坪量(厚さ)を換算する。塗工量については図3に示す厚さ測定装置5を2本乃至3本生産ライン内に設置し、塗工工程前後にその透過特性を測定し、夫々の差分を求めることで塗工量を知ることが出来る。   The basis weight (thickness) is converted by reversely drawing from the calibration curve and the transmission output value of the sample. About the coating amount, the thickness measuring device 5 shown in FIG. 3 is installed in two to three production lines, the transmission characteristics are measured before and after the coating process, and the difference is obtained by determining the difference between the coating amounts. I can know.

図3に示すような方式では高速に流れる試料1に対してヘッド2、3が幅方向に走査するため、ジグザグのライン上を部分的にしか測定出来ない。このため近年では全面測定の要望もある。   In the method as shown in FIG. 3, since the heads 2 and 3 scan in the width direction with respect to the sample 1 flowing at high speed, it is possible to measure only partly on the zigzag line. For this reason, there is also a demand for full-scale measurement in recent years.

図4は複数の検出素子(図示省略)が狭ピッチで列状に隙間無く並んだライン型検出器3aを設置し、所定の距離はなれた放射線源から放射状に放射線を出射させて全面を測定している状態を示す斜視図である。2aは放射線源、3aは放射線測定器(ラインカメラ)である。
ここで、図3に示す走査型測定器であっても、図4に示す全面測定型測定器であっても校正の際には試料1を一旦取り除いて行わなければならない。
FIG. 4 shows a line-type detector 3a in which a plurality of detection elements (not shown) are arranged in a line at a narrow pitch without gaps, and radiation is emitted radially from a radiation source separated by a predetermined distance to measure the entire surface. FIG. 2a is a radiation source, and 3a is a radiation measuring device (line camera).
Here, even if it is a scanning type measuring device shown in FIG. 3 or the whole surface measuring type measuring device shown in FIG. 4, the sample 1 must be once removed at the time of calibration.

即ち、経時変化による線源の劣化、検出器の感度変化、大気の温度・湿度変化(生産ライン内の空調が悪く季節的または朝晩などの周期的な変動)に対して校正を行う場合は、試料1が無い状態(=大気)を測定して校正を行う。   In other words, when calibrating against radiation source deterioration, detector sensitivity change, atmospheric temperature / humidity change (periodic fluctuations such as seasonal or morning / night due to poor air conditioning in the production line), Measure and calibrate in the absence of sample 1 (= atmosphere).

また、ある程度長期的には標準サンプルを測定して検量線を求め直すことも行われる。図3に示す走査形測定器では、従来リアルタイムにセンサヘッド間の温度を測定して大気温度の補償を行なうと共に、数十分乃至数時間単位程度の間隔で大気の測定を行ない、この値を用いて測定値の補償演算を行っている。   In addition, it is also possible to re-determine a calibration curve by measuring a standard sample for a certain long term. In the conventional scanning type measuring device shown in FIG. 3, the temperature between the sensor heads is measured in real time to compensate for the atmospheric temperature, and the atmosphere is measured at intervals of several tens of minutes to several hours. To compensate the measured values.

特開平4−158209JP-A-4-158209 特開2001−227918JP 2001-227918 A

ところで、短期−中期にかけての測定精度に一番影響を与える大気の変化に対して、数時間おきに退避・校正動作を行う事で、通常測定では、大きな問題は無い。但し、工場のコールドスタート時や台風通過等による短時間での大気変動が生じる場合には、数時間単位での校正動作では精度維持が難しい場合がある。   By the way, in the normal measurement, there is no major problem by performing the evacuation / calibration operation every several hours with respect to the atmospheric change that most affects the measurement accuracy from the short-term to the medium-term. However, when a short-term atmospheric change occurs due to a cold start of a factory or a typhoon passing, it may be difficult to maintain accuracy with a calibration operation in units of several hours.

校正動作の間隔を短くする事は解決策の一つであるが、退避位置での校正動作中は試料の測定ができなくなるというデメリットが存在する。また図4に示すような全面測定型の場合には、試料から外れるまで装置を引き出す必要があるため、装置自体の幅(W)に対して2.5倍程度の幅が必要となり、また、退避動作そのものが行い難いと言う状況がある。また、大気の変動が測定値に与える影響は、試料の材質や坪量の変化に伴って変化する性質のものである事と合わせ、このような測定系では試料の坪量に対する大気坪量の割合が大きく、大気変動による坪量変動を単純な係数で補償しても誤差を少なくすることが難しい。   Shortening the interval of the calibration operation is one of the solutions, but has a demerit that the sample cannot be measured during the calibration operation at the retracted position. In the case of a full-surface measurement type as shown in FIG. 4, it is necessary to pull out the device until it is detached from the sample. There is a situation where the evacuation operation itself is difficult to perform. In addition, the effect of atmospheric fluctuations on the measured value is combined with the nature of the sample that changes with changes in the material and basis weight of the sample. The ratio is large, and it is difficult to reduce the error even if the basis weight variation due to atmospheric variation is compensated with a simple coefficient.

比較的測定値に影響を与え易い温度変化を小さくするために測定ギャップの大気に恒温化した空気を吹き付ける等の対策も行なわれているが、空気消費が多く恒温化のためのヒータ電力が掛かる等の問題がある。   Measures such as blowing constant temperature air to the measurement gap atmosphere to reduce the temperature change that is relatively easy to affect the measured values are taken, but air consumption is high and heater power for constant temperature is applied. There are problems such as.

したがって本発明の目的は、温度、湿度、気圧などの大気変動を由来として生じる測定信号の変動をリアルタイムに補償することにより、坪量(厚さ)測定の精度安定性を向上させることを目的とする。   Accordingly, an object of the present invention is to improve the accuracy and stability of the basis weight (thickness) measurement by compensating in real time for the fluctuation of the measurement signal caused by atmospheric fluctuations such as temperature, humidity, and atmospheric pressure. To do.

このような課題を達成するために、本発明のうち請求項1記載の放射線測定方法の発明は、
放射線源から放射され、試料を透過してくる放射線を放射線測定器により検出し、大気変動による検出感度の補償を行って坪量の測定を行う放射線測定方法において、大気変動による検出感度の補償を行うに際しては、測定試料の種類と坪量に合わせた感度補正を行うようにしたことを特徴とする。
In order to achieve such a problem, the invention of the radiation measuring method according to claim 1 of the present invention is:
In a radiation measurement method that measures the basis weight by detecting the radiation emitted from the radiation source and passing through the sample with a radiation measuring instrument and compensating the detection sensitivity due to atmospheric fluctuations, the detection sensitivity due to atmospheric fluctuations is compensated. When performing, sensitivity correction according to the kind and basis weight of the measurement sample is performed.

請求項2においては、請求項1に記載の放射線測定方法において、
前記大気変動による検出感度の補償を行うに際しては、大気変動に対する測定試料の補償感度を既知の他の試料に対する感度を介在させることにより、大気変動に対して感度補正された坪量補正を行うことを特徴とする。
In Claim 2, in the radiation measuring method of Claim 1,
When compensating the detection sensitivity due to atmospheric fluctuation, the basis weight corrected for sensitivity to atmospheric fluctuation is corrected by interposing the sensitivity of the measurement sample against atmospheric fluctuation with the sensitivity to other known samples. It is characterized by.

請求項3においては、請求項2に記載の放射線測定方法において、
既知の他の試料を用いた感度補正には、下記の式を用いることを特徴とする。
感度補正値=測定試料/大気=(測定試料/既知の他の試料)×(既知の他の試料)/大気)
In Claim 3, In the radiation measuring method of Claim 2,
The sensitivity correction using another known sample is characterized by using the following equation.
Sensitivity correction value = measurement sample / atmosphere = (measurement sample / known other sample) × (known other sample) / air)

請求項4においては、請求項1〜3のいずれかに記載の放射線測定方法において、
前記大気変動の検出は、同一線源による大気層の測定信号または、大気の密度、重さを測定または推定できる他の検出器からの測定値を用いて行うことを特徴とする。
In Claim 4, In the radiation measuring method in any one of Claims 1-3,
The detection of the atmospheric variation is performed using a measurement signal of the atmospheric layer from the same radiation source or a measurement value from another detector capable of measuring or estimating the density and weight of the atmosphere.

請求項5においては、請求項1〜4のいずれかに記載の放射線測定方法において、
放射線測定器は、複数の素子が列状に形成されていることを特徴とする。
In Claim 5, in the radiation measuring method in any one of Claims 1-4,
The radiation measuring instrument is characterized in that a plurality of elements are formed in a row.

請求項6においては、請求項1〜5のいずれかに記載の放射線測定方法において、
前記放射線源は、X線、β線、γ線、赤外線、マイクロ波、可視光線、紫外線、超音波のいずれかを用いることを特徴とする。
In Claim 6, in the radiation measuring method in any one of Claims 1-5,
As the radiation source, any one of X-rays, β-rays, γ-rays, infrared rays, microwaves, visible rays, ultraviolet rays, and ultrasonic waves is used.

本発明によれば以下のような効果がある。
未知な測定試料であっても、大気の坪量変化による感度補正を適切に行うことができるので、坪量測定値の測定精度を向上させることができる。
また、測定試料の坪量が変化した場合にも感度補正を行うことで適切な補正値を与えることができるので、坪量測定値の測定精度を向上させることができる。
The present invention has the following effects.
Even an unknown measurement sample can appropriately perform sensitivity correction due to a change in the basis weight of the atmosphere, so that the measurement accuracy of the basis weight measurement value can be improved.
Further, even when the basis weight of the measurement sample changes, an appropriate correction value can be given by performing sensitivity correction, so that the measurement accuracy of the basis weight measurement value can be improved.

測定試料の坪量違いによる大気に対する感度変化を示す図である。It is a figure which shows the sensitivity change with respect to the air | atmosphere by the basis weight difference of a measurement sample. アルミ試料に対する既知の他の試料の感度比を示す図である。It is a figure which shows the sensitivity ratio of the other known sample with respect to an aluminum sample. 補償感度を用いて大気坪量感度による変化分を減算するためのフローチャートである。It is a flowchart for subtracting the amount of change due to atmospheric basis weight sensitivity using compensation sensitivity. 従来例を示す斜視図である。It is a perspective view which shows a prior art example. 他の従来例を示す斜視図である。It is a perspective view which shows another prior art example.

以下本発明を、図面を用いて詳細に説明する。
一般に、大気の坪量変動に対して、測定対象の試料の種類と坪量によって補償感度が異なる。各測定試料と坪量による感度比について図1(a,b)を用いて簡単に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In general, the compensation sensitivity varies depending on the type of the sample to be measured and the basis weight with respect to the basis weight variation of the atmosphere. The sensitivity ratio according to each measurement sample and basis weight will be briefly described with reference to FIGS.

図1(a)は発明者らがシミュレーションにより作成した、測定試料の坪量の違いによる大気に対する感度変化を示すもので、縦軸は大気に対する感度比、横軸は試料の坪量(g/m3)であり、イで示す曲線はアルミ (Al)、ロで示す曲線はニッケル酸リチウム(LiNiO2)、ハで示す曲線はマンガン酸リチウム(LiMnO4)である。
図において、例えば400g/m3の坪量を持つLiMn24では大気の変動に対する測定試料の感度比は1.2程度であるのに対し、LiNiO2では0.15程度の感度の感度比になっている。
FIG. 1A shows changes in sensitivity to the atmosphere due to the difference in basis weight of the measurement sample created by the inventors. The vertical axis represents the sensitivity ratio to the atmosphere, and the horizontal axis represents the basis weight of the sample (g / g). m 3 ), the curve indicated by a is aluminum (Al), the curve indicated by b is lithium nickelate (LiNiO 2 ), and the curve indicated by c is lithium manganate (LiMnO 4 ).
In the figure, for example, LiMn 2 O 4 having a basis weight of 400 g / m 3 has a sensitivity ratio of the measurement sample with respect to atmospheric fluctuations of about 1.2, whereas LiNiO 2 has a sensitivity ratio of about 0.15. It has become.

図1(b)は既知の1次試料(アルミ)に対する他の試料(LiMn24及びLiNiO2)の測定試料感度比を現すものであり、この関係は図1(a)に示すAlを基準として計算することによって求めている。
この補償感度を下記1式の様に組み合わせることで、組成が未知である測定試料であっても、大気変動に対する測定試料の補償感度を求める事ができる。
測定試料の補償感度値=測定試料/大気=
(測定試料/既知の他の試料)×(既知の他の試料)/大気)・・・式1
上記式1の右辺は各々の測定値または推定値である。
FIG. 1B shows the measured sample sensitivity ratio of other samples (LiMn 2 O 4 and LiNiO 2 ) to the known primary sample (aluminum), and this relationship is the same as the Al shown in FIG. It is obtained by calculating as a standard.
By combining these compensation sensitivities as shown in the following equation 1, the compensation sensitivity of the measurement sample against atmospheric fluctuations can be obtained even for a measurement sample whose composition is unknown.
Compensation sensitivity value of measurement sample = measurement sample / atmosphere =
(Measurement sample / other known sample) × (known other sample) / air) Equation 1
The right side of the above formula 1 is each measured value or estimated value.

図2(a〜c)は大気による坪量変化と測定された測定試料の坪量測定値に対して上記
の補償感度を用いて大気坪量感度による変化分を減算するためのフローチャートである。 図2(a)は試料の坪量を測定した信号処理の流れ、
図2(a〜c)は大気による坪量変化と測定された測定試料の坪量測定値に対して上記
の補償感度を用いて大気坪量感度による変化分を減算するためのフローチャートである。 図2(a)は試料の坪量を測定した信号処理の流れ、
図2(b)は坪量の大気変動による感度補正を行うための信号処理の流れ、
図2(c)は大気と測定試料の感度比を演算するための流れを示している。
FIGS. 2A to 2C are flowcharts for subtracting the change due to the atmospheric basis weight sensitivity using the above compensation sensitivity to the basis weight change due to the atmosphere and the measured basis weight measurement value of the measurement sample. FIG. 2A shows a signal processing flow in which the basis weight of the sample is measured.
FIGS. 2A to 2C are flowcharts for subtracting the change due to the atmospheric basis weight sensitivity using the above compensation sensitivity to the basis weight change due to the atmosphere and the measured basis weight measurement value of the measurement sample. FIG. 2A shows a signal processing flow in which the basis weight of the sample is measured.
FIG. 2 (b) is a signal processing flow for performing sensitivity correction due to atmospheric variations in basis weight.
FIG. 2C shows a flow for calculating the sensitivity ratio between the atmosphere and the measurement sample.

図2(a、b)は坪量測定を開始した時点で同時に進行する。(c)については、予め大気と測定試料の感度比を求めておき、試料種類と試料坪量に対応する感度比を適宜用いる様にすれば使い易い。
図2(a)において、
Step1:試料を透過した放射線の信号を測定する。
Step2:検量線を用い、
Step3:厚さ(坪量)を求める。
2A and 2B proceed simultaneously at the time when the basis weight measurement is started. About (c), it is easy to use if the sensitivity ratio between the atmosphere and the measurement sample is obtained in advance, and the sensitivity ratio corresponding to the sample type and sample basis weight is appropriately used.
In FIG. 2 (a),
Step 1: A signal of radiation transmitted through the sample is measured.
Using calibration curve,: Step 2
Step 3: Determine thickness (basis weight).

図2(b)において、
Step1’:大気変動を測定し、
Step2’:大気変動を坪量化する。
In FIG. 2B,
Step 1 ': Measure atmospheric fluctuation,
Step 2 ′: The atmospheric fluctuation is made basis weight.

図2(c)において、
Step1”:既知他の試料((イ)アルミ、(ロ)LiNiO2、(ハ)LiMnO4を例として)と大気の感度比を抽出する(図1a参照)。ここで、「既知」とは坪量と材質を含んだ表現である。
Step2”:既知他の試料(アルミ)と測定試料の感度比を抽出する(図1b参照)。
Step3”:大気と測定試料の感度比を上記1式により演算する。
In FIG. 2C,
Step 1 ″: Extracts the sensitivity ratio of other known samples ((a) aluminum, (b) LiNiO 2 , (c) LiMnO 4 as an example) and the atmosphere (see FIG. 1a). This expression includes the basis weight and material.
Step 2 ″: Extracts the sensitivity ratio between the other known sample (aluminum) and the measurement sample (see FIG. 1b).
Step 3 ″: The sensitivity ratio between the atmosphere and the measurement sample is calculated according to the above formula 1.

図2(b)に戻り、
Step3’:図2(a)のステップ3で計算した坪量と図2(c)のStep3”で
演算した大気と測定試料の感度比を入力し、測定試料の補償量を演算する。
次に、図2(a)に戻り、
Step4:Step3で計算した試料の坪量から図2(b)のステップ3’で計算し
た測定試料の変動量を入力し大気坪量感度減算を行う。
Step5:補正後の坪量を求め、
Step6:補正された坪量を測定値として出力する。
Returning to FIG.
Step 3 ′: The basis weight calculated in Step 3 of FIG. 2A and the sensitivity ratio between the atmosphere and the measurement sample calculated in Step 3 ″ of FIG. 2C are input, and the compensation amount of the measurement sample is calculated.
Next, returning to FIG.
Step 4: The variation amount of the measurement sample calculated in Step 3 ′ of FIG. 2B is input from the basis weight of the sample calculated in Step 3, and the atmospheric basis weight sensitivity is subtracted.
Step 5: Obtain the basis weight after correction,
Step 6: The corrected basis weight is output as a measured value.

上記の測定/演算を行う際、大気の坪量測定は、被測定物を放射線の照射経路に含まない素子での変動を採取しても良いし、温湿度・気圧の測定値から導出する等、適宜に求めたものでも良い。   When performing the above measurement / calculation, the basis weight measurement of the atmosphere may be performed by collecting fluctuations in elements that do not include the object to be measured in the radiation irradiation path, or derived from measured values of temperature, humidity, and atmospheric pressure. It may be obtained appropriately.

本発明によれば、未知な測定試料であっても、大気の坪量変化による感度補正を適切に行うことができるので、坪量測定値の測定精度を向上させることができる。
また、測定試料の坪量が変化した場合にも感度補正を行うことで適切な補正値を与えることができるので、坪量測定値の測定精度を向上する。
According to the present invention, even if it is an unknown measurement sample, sensitivity correction due to a change in the basis weight of the atmosphere can be appropriately performed, so that the measurement accuracy of the basis weight measurement value can be improved.
Moreover, even when the basis weight of the measurement sample changes, an appropriate correction value can be given by performing sensitivity correction, so that the measurement accuracy of the basis weight measurement value is improved.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。例えば図1で示したアルミ、LiNiO2、LiMnO4以外のものであってもよい。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, it may be other than aluminum, LiNiO 2 and LiMnO 4 shown in FIG.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

1 試料
2、2a 放射線源
3 検出器ヘッド(電離箱)
3a 放射線測定器(ラインカメラ)
4 O型フレーム
5 厚さ(坪量)測定装置
1 Sample 2, 2a Radiation source 3 Detector head (ionization chamber)
3a Radiation measuring instrument (line camera)
4 O-type frame 5 Thickness (basis weight) measuring device

Claims (4)

放射線源から放射され、試料を透過してくる放射線を放射線測定器により検出し、大気
変動による検出感度の補償を行って坪量の測定を行う放射線測定方法において、大気変動
による検出感度の補償を行うに際しては、大気変動に対する測定試料の補償感度を既知の他の試料に対する感度を介在させることにより、大気変動に対して感度補正された坪量補正を行って測定試料の種類と坪量に合わせた感度補正を行うようにし、前記既知の他の試料を用いた感度補正には、下記の式を用いることを特徴とする放射線測定方法。
感度補正値=測定試料/大気=
(測定試料/既知の他の試料)×(既知の他の試料)/大気)
In a radiation measurement method that measures the basis weight by detecting the radiation emitted from the radiation source and passing through the sample with a radiation measuring instrument and compensating the detection sensitivity due to atmospheric fluctuations, the detection sensitivity due to atmospheric fluctuations is compensated. When performing the calibration, the compensation sensitivity of the measurement sample against atmospheric variations is interspersed with the sensitivity of other known samples, and the basis weight corrected for sensitivity to atmospheric variations is corrected to match the type and basis weight of the measurement sample. The radiation measurement method is characterized in that the following equation is used for sensitivity correction using the other known sample.
Sensitivity correction value = measured sample / atmosphere =
(Measurement sample / other known sample) × (known other sample) / air)
前記大気変動の検出は、同一線源による大気層の測定信号または、大気の密度、重さを
測定または推定できる他の検出器からの測定値を用いて行うことを特徴とする請求項1に記載の放射線測定方法。
The atmospheric fluctuation is detected by measuring the atmospheric layer measurement signal from the same radiation source or the density and weight of the atmosphere.
The radiation measurement method according to claim 1, wherein the measurement is performed using a measurement value from another detector that can be measured or estimated .
放射線測定器は、複数の素子が列状に形成されていることを特徴とする請求項1に記載の放射線測定方法。 The radiation measuring method according to claim 1, wherein the radiation measuring device has a plurality of elements formed in a row . 前記放射線源は、X線、β線、γ線、赤外線、マイクロ波、可視光線、紫外線、超音波
のいずれかを用いることを特徴とする請求項1に記載の放射線測定方法。
The radiation source is X-ray, β-ray, γ-ray, infrared ray, microwave, visible ray, ultraviolet ray, ultrasonic wave
Any one of these is used , The radiation measuring method of Claim 1 characterized by the above-mentioned.
JP2012155671A 2012-07-11 2012-07-11 Radiation measurement method Active JP6031857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155671A JP6031857B2 (en) 2012-07-11 2012-07-11 Radiation measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155671A JP6031857B2 (en) 2012-07-11 2012-07-11 Radiation measurement method

Publications (2)

Publication Number Publication Date
JP2014016312A JP2014016312A (en) 2014-01-30
JP6031857B2 true JP6031857B2 (en) 2016-11-24

Family

ID=50111109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155671A Active JP6031857B2 (en) 2012-07-11 2012-07-11 Radiation measurement method

Country Status (1)

Country Link
JP (1) JP6031857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044162A (en) * 2012-08-28 2014-03-13 Yokogawa Electric Corp Radiation measuring method
US11826773B2 (en) * 2021-03-29 2023-11-28 Honeywell International Inc. Correlate thermographic image data to online scanning basis weight measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277709A (en) * 1988-04-28 1989-11-08 Sumitomo Metal Ind Ltd Method for measuring thickness of metallic layer
JPH04158209A (en) * 1990-10-22 1992-06-01 Fuji Electric Co Ltd Radiation thickness meter and measuring method of thickness by using radiation
JP2000292140A (en) * 1999-04-05 2000-10-20 Toshiba Corp Radiation thickness gage
JP2001227918A (en) * 2000-02-21 2001-08-24 Teijin Ltd Method for measuring thickness of film and method of manufacturing for film using it
JP2006275605A (en) * 2005-03-28 2006-10-12 Mitsubishi Heavy Ind Ltd Apparatus and method for measuring thickness of sheet
JP5648891B2 (en) * 2010-03-18 2015-01-07 横河電機株式会社 Radiation measurement method and radiation measurement apparatus

Also Published As

Publication number Publication date
JP2014016312A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP4868034B2 (en) Radiation inspection equipment
JP6978125B2 (en) Gain correction device and method for scintillation detector
CN103206931A (en) Method and device for measuring X-ray thickness
US11519867B2 (en) X-ray-based determining of weights for coated substrates
JP5423705B2 (en) Radiation inspection equipment
US11719654B2 (en) X-ray instrument with ambient temperature detector
JP6031857B2 (en) Radiation measurement method
JP2014025709A (en) Radiation measurement method and radiation measurement device
TWI807057B (en) Film thickness measuring device and correction method
CN117129371B (en) Calibration method and device for surface density measuring instrument and readable storage medium
EP2894433B1 (en) X ray thickness meter
JP5408432B2 (en) Radiation detection apparatus and radiation detection method using this apparatus
JP2011145127A (en) Radiation measurement apparatus
JP5648891B2 (en) Radiation measurement method and radiation measurement apparatus
CN103256999A (en) Distributed type optical fiber temperature measuring method
JP2014044162A (en) Radiation measuring method
CN207020320U (en) A kind of gain correcting device of scintillation detector
CN106500642A (en) A kind of method along projected route on-line measurement battery plate thickness
JP5879953B2 (en) Radiation inspection equipment
JP5783373B2 (en) Radiation inspection equipment
RU2418306C1 (en) Method of correcting scintillation detector signals
JP5831144B2 (en) Radiation inspection equipment
EP3035082B1 (en) Method for measuring x-ray energy of an accelerator in an inspection system
JPS59154347A (en) Measuring method of water content
Gunsing et al. Re-commissioning of n_TOF EAR1

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250