JP5831144B2 - Radiation inspection equipment - Google Patents
Radiation inspection equipment Download PDFInfo
- Publication number
- JP5831144B2 JP5831144B2 JP2011245544A JP2011245544A JP5831144B2 JP 5831144 B2 JP5831144 B2 JP 5831144B2 JP 2011245544 A JP2011245544 A JP 2011245544A JP 2011245544 A JP2011245544 A JP 2011245544A JP 5831144 B2 JP5831144 B2 JP 5831144B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- radiation
- line
- sheet
- radiation detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005855 radiation Effects 0.000 title claims description 123
- 238000007689 inspection Methods 0.000 title claims description 19
- 238000005259 measurement Methods 0.000 claims description 31
- 238000001514 detection method Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000011088 calibration curve Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Description
本発明は、放射線(例えばベータ線、X線,ガンマ線等)を用いた測定装置に関し、特に放射線源と放射線測定器の間に介在する空気層の影響による被測定物(以下、試料という)の測定精度の改善を図った放射線検査装置に関するものである。 The present invention relates to a measuring apparatus using radiation (for example, beta rays, X-rays, gamma rays, etc.), and in particular, an object to be measured (hereinafter referred to as a sample) due to the influence of an air layer interposed between a radiation source and a radiation measuring device. The present invention relates to a radiation inspection apparatus that improves measurement accuracy.
放射線が物質層を通過すると,電離作用や励起作用等によって次第にエネルギ―を失って減衰し,更にこの様な非弾性散乱を多数回受けて進行方向が変化する。従って試料の物理量(例えば厚さ)が増すに伴い透過する放射線の数は減少する。この様な原理を応用し,シ―ト状の種々の試料の物理量を測定する装置が知られている。 When radiation passes through the material layer, it gradually loses energy and attenuates due to ionization and excitation, and the traveling direction is changed by receiving such inelastic scattering many times. Therefore, as the physical quantity (eg thickness) of the sample increases, the number of transmitted radiation decreases. Devices that measure the physical quantities of various sheet-like samples by applying such principles are known.
放射線を用いた検査では、放射線源と検出器の間に試料(製品、人体など)を置き、その透過率から例えば放射線の強度を検出して濃淡の画像を得るのが一般的である。このため、放射線源と検出器の間に存在する空気層の変化は検出画像(検出精度)に直接影響する。即ち、気温や気圧が変化して密度変化が起きるとそれがそのまま測定誤差につながることになる。 In an inspection using radiation, it is common to place a sample (product, human body, etc.) between a radiation source and a detector, and detect, for example, the intensity of the radiation from the transmittance to obtain a grayscale image. For this reason, a change in the air layer existing between the radiation source and the detector directly affects the detection image (detection accuracy). That is, if a change in density occurs due to changes in temperature or pressure, this will directly lead to measurement errors.
放射線源を安定駆動するフィードバック制御や温度制御による放射線量のモニタが行われている。温度や気圧などの変動を監視して測定系にフィードバックし測定対象物を精度良く測定する先行技術として、特開平4−158209号公報や特開2001−227918号公報に開示されたものがある。 The radiation dose is monitored by feedback control and temperature control for stably driving the radiation source. As a prior art for accurately measuring a measurement object by monitoring fluctuations in temperature and pressure and feeding back to a measurement system, there are those disclosed in Japanese Patent Laid-Open Nos. 4-158209 and 2001-227918.
図3(a,b)はX線、放射線、γ線、赤外線などの放射線を用いた透過特性によりシート状の試料の厚さや塗工量測定を行うインライン型厚さ測定装置の一例を示す斜視図である。
5は厚さ測定装置であり、シート状の試料1が右から左方向へ一定速度で流れている。この試料を略直行するように放射線源ヘッド(下側・・・以下線源という)2と電離箱等の検出器ヘッド(上側)3が一対となって試料1を走査する形態で測定を行っている。
FIGS. 3A and 3B are perspective views showing an example of an in-line type thickness measuring apparatus that measures the thickness of a sheet-like sample and the coating amount based on transmission characteristics using radiation such as X-rays, radiation, γ-rays, and infrared rays. FIG.
Reference numeral 5 denotes a thickness measuring device, in which the sheet-
夫々のヘッドは門型と呼ばれるO型フレーム4に支持され、対向する上下ヘッドの位置関係を保持して夫々駆動される。夫々のヘッド2,3は、試料の端部付近で折り返しを繰り返してジグザグに測定を繰り返す。O型フレーム4の右側には夫々のヘッドを退避させるための待避位置Aが設けられている。
Each head is supported by an O-type frame 4 called a gate type, and is driven while maintaining the positional relationship between the opposing upper and lower heads. Each of the
これは、試料をセットする場合や放射線源ヘッド2や検出器ヘッド3のメンテナンス、校正などの際に試料の無い位置に移動する必要があるためである。厚さ測定においては、予め厚さと材質(坪量)が既知の複数の標準サンプルを測定しておき、その坪量に対する透過特性として検量線を求めている。
その検量線と試料の透過出力値から逆引きして厚さを換算する。
This is because it is necessary to move to a position where there is no sample when the sample is set or when the
The thickness is converted by reversely drawing from the calibration curve and the transmission output value of the sample.
図3(a)に示すような方式では高速に流れる試料1に対してヘッド2、3が幅方向に走査するため、ジグザグのライン上を部分的にしか測定出来ない。このため近年では全面測定の要望もある。
In the method as shown in FIG. 3A, since the
図3(b)は検出素子(図示省略)が狭ピッチで隙間無く並んだライン型放射線検出器(以下、ラインセンサという)を設置し、所定の距離はなれた放射線源から放射状に放射線を出射させて試料幅の全面を測定している状態を示す斜視図である。2aは放射線源、3aはラインセンサである。 In FIG. 3B, a line type radiation detector (hereinafter referred to as a line sensor) in which detection elements (not shown) are arranged with a narrow pitch and without gaps is installed, and radiation is emitted radially from a radiation source at a predetermined distance. FIG. 6 is a perspective view showing a state where the entire surface of the sample width is being measured. 2a is a radiation source, and 3a is a line sensor.
ここで、図3(a)に示す走査型測定器であっても、図3(b)に示す全面測定型測定器であっても校正の際には試料1を一旦取り除き、ラインセンサ3aも測定位置から完全に退避させた状態で行わなければならない。
図3(b)は校正に際して放射線源とラインセンサを試料から完全にずらすにはラインセンサの幅wの2.5倍程度が必要であることを示している。
Here, even if it is a scanning type measuring device shown in FIG. 3A or a whole surface measuring type measuring device shown in FIG. 3B, the
FIG. 3B shows that about 2.5 times the width w of the line sensor is required to completely shift the radiation source and the line sensor from the sample during calibration.
即ち、経時変化による線源の劣化、検出器の感度変化、空気層の温度・湿度変化(生産ライン内の空調で制御しきれない季節的または朝晩などの周期的な変動等)に対して校正を行う場合は、試料1が無い状態(=空気層)を測定して校正を行う。 That is, it is calibrated against deterioration of the radiation source due to changes over time, changes in detector sensitivity, changes in the temperature and humidity of the air layer (seasonal or periodic fluctuations such as morning and evening that cannot be controlled by air conditioning in the production line). Is performed, the calibration is performed by measuring the state without the sample 1 (= air layer).
また、ある程度長期的には標準サンプルを測定して検量線を求め直すことも行われる。図3(b)に示す走査形測定器では、従来リアルタイムにセンサヘッド間の温度を測定して空気温度の補正を行なうと共に、数時間単位程度の間隔で空気層の測定を行ない、この値を用いて測定値の補正演算を行っている。 In addition, it is also possible to re-determine a calibration curve by measuring a standard sample for a certain long term. In the scanning type measuring instrument shown in FIG. 3 (b), the temperature between the sensor heads is measured in real time to correct the air temperature, and the air layer is measured at intervals of several hours. It is used to correct the measured value.
ところで、短期−中期にかけての測定精度に一番影響を与える空気層の変化に対して、通常は、数時間おきに退避・校正動作を行えば大きな問題は生じない。しかし、図3(b)に示すような全面測定型の場合には、設置面積が大きくなることから退避動作そのものが行い難いと言う状況がある。 By the way, for the change of the air layer that has the greatest influence on the measurement accuracy from the short-term to the medium-term, normally, if the evacuation / calibration operation is performed every several hours, no major problem occurs. However, in the case of the full-surface measurement type as shown in FIG. 3B, there is a situation that the retreat operation itself is difficult to perform because the installation area becomes large.
連続的に流れる試料を扱う生産ラインの全長は数十m〜百mを超えるものもあり生産現場では、品種替えの際には繋ぎのダミーシートによりライン内の各装置から一時的であっても試料が途切れることが無いようにして、品種替えの作業性を向上させている。
そのため、測定装置側の都合(装置校正やメンテナンス)で容易に試料を取り除くことが出来ない。このため現実的には、図3(a)に示すように装置内に待避位置を設けるなど行われている。
The total length of a production line that handles continuously flowing samples may exceed several tens to hundreds of meters. Even at the production site, even if it is temporary from each device in the line by connecting dummy sheets when changing the product type The workability of changing the varieties is improved so that the sample is not interrupted.
Therefore, the sample cannot be easily removed due to the convenience of the measuring device (device calibration and maintenance). For this reason, in practice, a retracting position is provided in the apparatus as shown in FIG.
一方、図3(b)に示すような全面測定装置では全長の長い一体のラインカメラであるため、スキャン型センサと同様に校正動作を行おうとした場合、これらのフレーム構造そのものを試料から外れた位置まで線源と検出器を一体で引き出して試料の無い空間を確保する必要がある。 On the other hand, since the entire surface measuring apparatus as shown in FIG. 3B is an integrated line camera having a long overall length, when performing a calibration operation in the same manner as a scan type sensor, these frame structures themselves are removed from the sample. It is necessary to secure the space without the sample by pulling the radiation source and detector to the position.
生産工程は、工場のフットプリントを少なくするために、極力装置間の間隔を詰めてレイアウトしてあり、生産ラインと生産ラインの間の通路であっても最小限にしたい。ところが、全長の長いラインカメラ以上の(約2.5倍)装置を通路側に引き出さねばならず、よほど通路が広くない限り、通路を塞いでしまったり、隣のラインと干渉してしまうといった問題がある。 In order to reduce the footprint of the factory, the production process is laid out with as much space as possible between the devices, and it is desirable to minimize the passage between the production lines. However, a long-length line camera or more (about 2.5 times) device must be pulled out to the passage side, and unless the passage is very wide, the passage is blocked or interferes with the next line. There is.
したがって本発明の目的は、連続試料を扱う生産ラインの全面測定装置において、フットプリントをなるべく増大させずに、校正動作を行えるようにして厚さ測定の精度安定性を向上させることを目的とする。 Accordingly, an object of the present invention is to improve the accuracy and stability of thickness measurement by enabling a calibration operation without increasing the footprint as much as possible in a production line full-scale measuring apparatus that handles continuous samples. .
このような課題を達成するために、本発明のうち請求項1記載の放射線検査装置の発明
は、
放射線源から放射され、シート状の試料を透過してくる放射線を前記試料の流れ方向に
対して直角に配置されたライン状放射線検出器により検出し、坪量の測定を行う放射線検
査装置において、前記ライン状放射線検出器の片側に回動機構を設けるとともに前記シート状の試料を前記放射線源に対して垂直方向に移動させる移動手段を設け、前記ライン状放射線検出器及び試料のそれぞれを前記坪量の測定位置から一時的に移動させ、前記放射線源とライン状放射線検出器の間から前記試料を除去した後、前記ライン状放射線検出器を元の測定位置に移動させ、前記放射線源と前記ライン状放射線検出器間の空気層を測定するように構成したことを特徴とする。
In order to achieve such a problem, the invention of the radiation inspection apparatus according to
In a radiation inspection apparatus that measures the basis weight by detecting radiation radiated from a radiation source and transmitted through a sheet-shaped sample by a line-shaped radiation detector arranged perpendicular to the flow direction of the sample, A rotation mechanism is provided on one side of the line-shaped radiation detector and moving means for moving the sheet-shaped sample in a direction perpendicular to the radiation source is provided, and each of the line-shaped radiation detector and the sample is moved to the basis weight. After temporarily moving from the measurement position of the quantity and removing the sample from between the radiation source and the linear radiation detector, the linear radiation detector is moved to the original measurement position, and the radiation source and the It is configured to measure an air layer between the line-shaped radiation detectors.
請求項2においては、請求項1記載の放射線検査装置において、
前記シート状の試料を前記放射線源に対して垂直方向に移動させるに際しては前記シート状の試料の幅に直行し、かつ前記ライン状放射線検出器を挟んで配置された一対の試料
支持手段により移動させることを特徴とする。
In
When the sheet-like sample is moved in a direction perpendicular to the radiation source, the sheet-like sample is moved by a pair of sample support means that are perpendicular to the width of the sheet-like sample and arranged with the line-shaped radiation detector interposed therebetween. It is characterized by making it.
請求項3においては、請求項2記載の放射線検査装置において、
前記回動機構は前記試料支持手段により垂直方向に移動した前記シート状の試料が少なくとも前記ライン状放射線検出器に接触しない程度の角度まで回動し、前記シート状の試料が移動した後はもとの位置に戻り、前記放射線源と前記ライン状放射線検出器の間の空気層を測定するように構成したことを特徴とする。
In
The rotating mechanism rotates to an angle of extent which the sheet-like sample to move in the vertical direction by the specimen support means is not in contact with at least the line-shaped radiation detector, after the sheet-shaped specimen has moved even And the air layer between the radiation source and the line radiation detector is measured.
請求項4の放射線検査装置の発明は、放射線検査装置において、
放射線源から放射され、シート状の試料を透過してくる放射線を前記試料の流れ方向に
対して直角に配置されたライン状放射線検出器により検出し、坪量の測定を行う放射線検
査装置において、前記ライン状放射線検出器を前記シート状の試料の幅方向に対して直角方向に水平に移動させる移動機構と、前記試料を前記放射線源に対して垂直方向に移動させる移動手段を設け、前記ライン状放射線検出器及び試料のそれぞれを前記坪量の測定位置から一時的に移動させ、前記放射線源とライン状放射線検出器の間から前記試料を除去した後、前記ライン状放射線検出器を元の測定位置に移動させ、前記放射線源と前記ライン状放射線検出器間の空気層を測定するように構成したことを特徴とする。
The invention of the radiation inspection apparatus according to claim 4 is the radiation inspection apparatus,
Radiation radiated from the radiation source and transmitted through the sheet-like sample in the flow direction of the sample
A radiation detector that detects the basis weight and detects it with a line-shaped radiation detector placed at a right angle.
In the inspection apparatus, a moving mechanism for moving the line radiation detector horizontally in a direction perpendicular to the width direction of the sheet-like sample, and a moving means for moving the sample in a direction perpendicular to the radiation source. The linear radiation detector and the sample are temporarily moved from the basis weight measurement position, and after removing the sample from between the radiation source and the linear radiation detector, the linear radiation detection is performed. The instrument is moved to the original measurement position, and an air layer between the radiation source and the line radiation detector is measured .
請求項5においては、請求項4記載の放射線検査装置において、
前記シート状の試料を前記放射線源に対して垂直方向に移動させるに際しては前記シート状の試料の幅に直行し、かつ前記ライン状放射線検出器を挟んで配置された一対の試料支持手段により移動させることを特徴とする。
Oite to claim 5, in the radiation inspection apparatus according to claim 4,
When the sheet-like sample is moved in a direction perpendicular to the radiation source, the sheet-like sample is moved by a pair of sample support means that are perpendicular to the width of the sheet-like sample and arranged with the line-shaped radiation detector interposed therebetween. It is characterized by making it.
請求項6においては、請求項4または5記載の放射線検査装置において、
前記ライン状放射線検出器を前記試料に対して直角方向に水平に移動させるに際しては
前記試料の全幅に渡って移動させ、前記試料支持手段により垂直方向に移動した試料が少なくとも前記ライン状放射線検出器に接触しない程度まで移動させると共に試料が移動した後はもとの位置に戻り、前記放射線源と前記ライン状放射線検出器の間の空気層を測定するように構成したことを特徴とする。
Oite to claim 6, a radiation inspection apparatus according to claim 4 or 5, wherein,
When moving the line radiation detector horizontally in the direction perpendicular to the sample, the sample is moved over the entire width of the sample, and the sample moved in the vertical direction by the sample support means is at least the line radiation detector. The sample is moved to such an extent that it does not come into contact with the sample and returned to its original position after the sample has moved, and the air layer between the radiation source and the line-shaped radiation detector is measured.
本発明によれば以下のような効果がある。
連続試料を扱う生産ラインの全面測定装置において、フットプリントをなるべく増大させずに、校正動作を行うことができ、大気変動を由来として生じる測定信号の変動を補償する事により、厚さ測定の精度安定性を向上させることができる。
The present invention has the following effects.
Thickness measurement accuracy can be achieved in a full-scale measurement system for production lines that handle continuous samples, with the ability to perform calibration operations without increasing the footprint as much as possible, and by compensating for variations in the measurement signal caused by atmospheric variations. Stability can be improved.
また、線源変動や大気変動、ダスト等にまつわる変動を補正する際にフレーム全てをシート上から退避する必要が無く、設置上のフットプリントを減じることができる。
また、試料と検出器の位置関係を変えるのみで、校正が可能になり、操業を停止させる必要が無く、通常測定に用いる検出器と線源をそのまま利用することにより、校正処理の精度を向上させることができる。
Further, it is not necessary to evacuate the entire frame from the seat when correcting fluctuations related to radiation source fluctuations, atmospheric fluctuations, dust, etc., and the footprint on installation can be reduced.
In addition, calibration can be performed simply by changing the positional relationship between the sample and the detector, and there is no need to stop the operation. By using the detector and the radiation source used for normal measurement as they are, the accuracy of the calibration process is improved. Can be made.
以下本発明を、図面を用いて詳細に説明する。図1(a,b)は本発明の実施形態の一例を示す構成図で、(a)はライン状放射線検出器(以下、ラインセンサという)の片側に回動機構を設け、シート状の試料(以下、試料という)を放射線源に対して垂直方向に移動させる移動手段を設けた状態の斜視図、(b)はラインセンサを試料に対して直角方向に水平に移動させる移動機構と、試料を放射線源に対して垂直方向に移動させる移動手段を設け状態を示す斜視図である。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1A and FIG. 1B are configuration diagrams showing an example of an embodiment of the present invention. FIG. 1A is a sheet-like sample provided with a rotation mechanism on one side of a line radiation detector (hereinafter referred to as a line sensor). The perspective view of the state which provided the moving means which moves a sample (henceforth a sample) perpendicularly | vertically with respect to a radiation source, (b) is the movement mechanism which moves a line sensor horizontally at right angles to a sample, and a sample It is a perspective view which shows the state which provided the moving means to move to a perpendicular direction with respect to a radiation source.
図1(a−1)は、試料を挟んだ放射線検査装置が試料の測定が可能な状態として設置されている様子を示す。この図において、試料は矢印の何れかの方向に進行する。
図において、放射線源部2aと示した位置から試料1に向かって照射を行い、試料を通過して減衰した放射線量をラインセンサで測定している。
FIG. 1 (a-1) shows a state in which a radiation inspection apparatus sandwiching a sample is installed in a state where the sample can be measured. In this figure, the sample proceeds in either direction of the arrow.
In the figure, the
校正が必要となった場合には、図1(a−2)で示す様にラインセンサの片側に形成された回動機構(図示省略)によりラインセンサを矢印A−B方向に回動させて他方の側を上部に跳ね上げた後、ラインセンサ3aの両脇に配置された試料支持手段(ローラ、又はバー等・・・以下、ローラという)7の位置を上方にHの距離を移動させる事によって試料の通過位置を変更する。 When calibration is required, the line sensor is rotated in the direction of arrows AB by a rotation mechanism (not shown) formed on one side of the line sensor as shown in FIG. After the other side is flipped up, the position of the sample support means (roller or bar, etc., hereinafter referred to as a roller) 7 disposed on both sides of the line sensor 3a is moved upward by a distance H. Change the sample passage position.
試料1とラインセンサ3aが干渉しない位置に達したら、図1(a−3)に示す様に試料の無い状態で空気層をラインセンサで測定する。そして、この状態における放射線の値を校正用データとして記憶する。
When the
校正用データは、主に大気の変動を捉えるが、これ以外にも線源変動、ダストの付着、ラインセンサの劣化等々の試料の減衰以外の測定に及ぼす影響を含んでいる。
校正用データを取り終えたら、逆の順序で試料の通過位置を測定位置に戻し、試料の測定を継続する。この際、得られた測定値から先に得られた校正用データを減算して、補正を行なう。
The calibration data mainly captures atmospheric fluctuations, but also includes effects on measurements other than sample attenuation such as source fluctuations, dust adhesion, and line sensor deterioration.
After obtaining the calibration data, the sample passing position is returned to the measuring position in the reverse order, and the sample measurement is continued. At this time, correction is performed by subtracting the previously obtained calibration data from the obtained measurement value.
ラインセンサに温度センサを含む複数個のセンサが配置されている場合には、夫々の照射分布、ダスト付着量、器差等に合わせて夫々の検出器に適合した校正用データを用いるのが望ましい。そして、必要により温度補償等を適宜行ない、補正後の測定値として出力する。 When a plurality of sensors including a temperature sensor are arranged in the line sensor, it is desirable to use calibration data suitable for each detector in accordance with each irradiation distribution, dust adhesion amount, instrumental error, etc. . Then, if necessary, temperature compensation or the like is performed as appropriate and output as a corrected measured value.
図1(b)は、処理手順は同様であるが、機構としての動きが異なる例を示す要部斜視図である。
ラインセンサの他方を上方に跳ね上げる余裕が無い場合等では、ラインセンサを図1(b−1)から図1(b−2)に示すように図示しない駆動装置により矢印D方向に後方に引き出し、ローラ7によって試料1をH’の距離を上方に移動させて通過位置を変更した後に図1(b−3)に示すようにラインセンサ3aを矢印C方向に元の位置に戻して空気層を測定して校正を行なう。
FIG. 1B is a perspective view of a main part showing an example in which the processing procedure is the same but the movement as a mechanism is different.
When there is no room to jump the other side of the line sensor upward, the line sensor is pulled backward in the direction of arrow D by a driving device (not shown) as shown in FIGS. 1 (b-1) to 1 (b-2). Then, after moving the distance of H ′ by the
校正のための測定が終了したら、逆の手順で試料の通過位置を元に戻して測定を継続する。校正用データの用い方は、図1(a)の例で示したものと同様に行なう。
図1(a,b)に示した何れの方法でも、試料の搬送を止める必要は無く試料の通過位置が変更できれば良い。また、ローラを動かす代わりに放射線源やラインセンサ側が動いても構わない。設置場所の状況に応じてラインセンサの動きは、適宜、図1(a,b)に示す構成を組み合わせた種類のものであっても良い。
When the measurement for calibration is completed, reverse the procedure and return the sample to the original position, and continue the measurement. The calibration data is used in the same manner as shown in the example of FIG.
In any of the methods shown in FIGS. 1A and 1B, it is not necessary to stop the transport of the sample, as long as the passing position of the sample can be changed. Further, instead of moving the roller, the radiation source or the line sensor side may move. Depending on the situation of the installation location, the movement of the line sensor may be of a type that combines the configurations shown in FIGS.
上述の構成によれば、放射線源変動や大気変動、ダスト等にまつわる変動を補正する際にフレーム全てを試料上から退避する必要が無く、設置上のフットプリントを減じることができる。また、試料とラインセンサの位置関係を変えるのみで、校正が可能になり、操業を停止させる必要が無い。また、通常測定に用いる検出器と線源をそのまま利用することができるので、校正処理の精度が向上する。 According to the above-described configuration, it is not necessary to evacuate the entire frame from the sample when correcting fluctuations related to radiation source fluctuations, atmospheric fluctuations, dust, and the like, and the footprint on installation can be reduced. Further, calibration can be performed only by changing the positional relationship between the sample and the line sensor, and there is no need to stop the operation. Further, since the detector and the radiation source used for normal measurement can be used as they are, the accuracy of the calibration process is improved.
図2(a,b)は本発明の放射線検査装置を用いた信号処理の流れを示すフローチャートである。図において(a)は試料測定用センサで測定した信号処理の流れ、(b)は所定時間ごとにラインセンサを一時退避させて試料のない状態にした後、空気層を測定するためのフローである。 2A and 2B are flowcharts showing the flow of signal processing using the radiation inspection apparatus of the present invention. In the figure, (a) is a flow of signal processing measured by the sample measuring sensor, and (b) is a flow for measuring the air layer after temporarily retracting the line sensor every predetermined time so that there is no sample. is there.
図2(a)において、
Step1:放射線が試料全面を透過する測定状態でラインセンサにより試料を透過した後の放射線信号を測定する。
Step2:検量線を用い、
Step3:厚さ(坪量)を求める。
In FIG. 2 (a),
Step 1: A radiation signal after the sample is transmitted through the line sensor is measured in a measurement state where the radiation is transmitted through the entire surface of the sample.
Step 2: Using a calibration curve,
Step 3: Determine thickness (basis weight).
図2(b)において、
Step1’:試料がない状態における放射線源とラインセンサの間の空気層を測定する。
Step2’:その信号を用いて検量線を作成する。
Step3’:作成した検量線を用いて校正用の坪量を計算する。
Step4’:Step3’で計算した坪量を記憶する。
In FIG. 2B,
Step 4 ′: The basis weight calculated in
図2(a)に戻り、
Step4:Step4’で記憶した校正用の坪量を減算する。
ステップ5:補正後の坪量を求め、
ステップ6:その他の補正演算を行う。
ステップ7:補正された坪量を測定値として出力する。
以上のステップにより厚さ測定の補正を行なうことができる。
Returning to FIG.
Step 4: The basis weight for calibration stored in Step 4 ′ is subtracted.
Step 5: Obtain the corrected basis weight,
Step 6: Perform other correction calculations.
Step 7: The corrected basis weight is output as a measured value.
The thickness measurement can be corrected by the above steps.
なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。たとえばラインセンサを上方に僅かに移動させ試料に沿う方向に回動させるように構成しても良い。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. For example, the line sensor may be moved slightly upward and rotated in the direction along the sample.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.
1 試料
2、2a 放射線源
3 検出器ヘッド(電離箱)
3a 放射線検出器(ラインセンサ)
4 O型フレーム
5 厚さ測定装置
6 回動機構
7 試料支持手段(ローラ、バー等)
1
3a Radiation detector (line sensor)
4 O-type frame 5 Thickness measuring device 6
Claims (6)
対して直角に配置されたライン状放射線検出器により検出し、坪量の測定を行う放射線検
査装置において、前記ライン状放射線検出器の片側に回動機構を設けるとともに前記シート状の試料を前記放射線源に対して垂直方向に移動させる移動手段を設け、前記ライン状放射線検出器及び試料のそれぞれを前記坪量の測定位置から一時的に移動させ、前記放射線源とライン状放射線検出器の間から前記試料を除去した後、前記ライン状放射線検出器を元の測定位置に移動させ、前記放射線源と前記ライン状放射線検出器間の空気層を測定するように構成したことを特徴とする放射線検査装置。 In a radiation inspection apparatus that measures the basis weight by detecting radiation radiated from a radiation source and transmitted through a sheet-shaped sample by a line-shaped radiation detector arranged perpendicular to the flow direction of the sample, A rotation mechanism is provided on one side of the line-shaped radiation detector and moving means for moving the sheet-shaped sample in a direction perpendicular to the radiation source is provided, and each of the line-shaped radiation detector and the sample is moved to the basis weight. After temporarily moving from the measurement position of the quantity and removing the sample from between the radiation source and the linear radiation detector, the linear radiation detector is moved to the original measurement position, and the radiation source and the A radiation inspection apparatus configured to measure an air layer between line-shaped radiation detectors.
支持手段により移動させることを特徴とする請求項1記載の放射線検査装置。 When the sheet-like sample is moved in a direction perpendicular to the radiation source, the sheet-like sample is moved by a pair of sample support means that are perpendicular to the width of the sheet-like sample and arranged with the line-shaped radiation detector interposed therebetween. The radiation inspection apparatus according to claim 1, wherein:
対して直角に配置されたライン状放射線検出器により検出し、坪量の測定を行う放射線検
査装置において、前記ライン状放射線検出器を前記シート状の試料の幅方向に対して直角方向に水平に移動させる移動機構と、前記試料を前記放射線源に対して垂直方向に移動させる移動手段を設け、前記ライン状放射線検出器及び試料のそれぞれを前記坪量の測定位置から一時的に移動させ、前記放射線源とライン状放射線検出器の間から前記試料を除去した後、前記ライン状放射線検出器を元の測定位置に移動させ、前記放射線源と前記ライン状放射線検出器間の空気層を測定するように構成したことを特徴とする放射線検査装置。 Radiation radiated from the radiation source and transmitted through the sheet-like sample in the flow direction of the sample
A radiation detector that detects the basis weight and detects it with a line-shaped radiation detector placed at a right angle.
In the inspection apparatus, a moving mechanism for moving the line radiation detector horizontally in a direction perpendicular to the width direction of the sheet-like sample, and a moving means for moving the sample in a direction perpendicular to the radiation source. The linear radiation detector and the sample are temporarily moved from the basis weight measurement position, and after removing the sample from between the radiation source and the linear radiation detector, the linear radiation detection is performed. A radiation inspection apparatus configured to move an instrument to an original measurement position and measure an air layer between the radiation source and the line radiation detector .
前記試料の全幅に渡って移動させ、前記試料支持手段により垂直方向に移動した試料が少なくとも前記ライン状放射線検出器に接触しない程度まで移動させると共に試料が移動した後はもとの位置に戻り、前記放射線源と前記ライン状放射線検出器の間の空気層を測定するように構成したことを特徴とする請求項4または5記載の放射線検査装置。 When moving the line radiation detector horizontally in the direction perpendicular to the sample, the sample is moved over the entire width of the sample, and the sample moved in the vertical direction by the sample support means is at least the line radiation detector. claims sample is moved to the extent not contact returns to the original position after moving, characterized by being configured to measure an air layer between the line-shaped radiation detector and the radiation source 4. The radiological examination apparatus according to 4 or 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011245544A JP5831144B2 (en) | 2011-11-09 | 2011-11-09 | Radiation inspection equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011245544A JP5831144B2 (en) | 2011-11-09 | 2011-11-09 | Radiation inspection equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013101074A JP2013101074A (en) | 2013-05-23 |
JP5831144B2 true JP5831144B2 (en) | 2015-12-09 |
Family
ID=48621807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011245544A Active JP5831144B2 (en) | 2011-11-09 | 2011-11-09 | Radiation inspection equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5831144B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE1301T1 (en) * | 1978-08-07 | 1982-07-15 | Imperial Chemical Industries Plc | METHOD AND DEVICE FOR EVALUATION OF FILM PARAMETERS BY RADIATION. |
JP3173534B2 (en) * | 1993-03-11 | 2001-06-04 | 横河電機株式会社 | Correction calculation method of online thickness gauge |
JP5408432B2 (en) * | 2009-12-18 | 2014-02-05 | 横河電機株式会社 | Radiation detection apparatus and radiation detection method using this apparatus |
JP5429485B2 (en) * | 2010-02-05 | 2014-02-26 | 横河電機株式会社 | Radiation measurement equipment |
-
2011
- 2011-11-09 JP JP2011245544A patent/JP5831144B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013101074A (en) | 2013-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868034B2 (en) | Radiation inspection equipment | |
US8687766B2 (en) | Enhancing accuracy of fast high-resolution X-ray diffractometry | |
US9551677B2 (en) | Angle calibration for grazing-incidence X-ray fluorescence (GIXRF) | |
US7356114B2 (en) | X-ray fluorescence spectrometer | |
KR20070009479A (en) | Enhancing resolution of x-ray measurements by sample motion | |
CA2141813C (en) | Online tomographic gauging of sheet metal | |
JP5423705B2 (en) | Radiation inspection equipment | |
TWI439664B (en) | Radiation thickness meter | |
JP2014025709A (en) | Radiation measurement method and radiation measurement device | |
JP5831144B2 (en) | Radiation inspection equipment | |
JP2007531890A (en) | Method and system for measuring the density and dimensional properties of objects and applications for inspecting nuclear fuel pellets during production | |
JP2011242254A (en) | Steel plate thickness measuring instrument and calibration method thereof | |
JP6031857B2 (en) | Radiation measurement method | |
JP5408432B2 (en) | Radiation detection apparatus and radiation detection method using this apparatus | |
KR102010068B1 (en) | Thickness measuring device for edge portion and method thereof | |
JP5783373B2 (en) | Radiation inspection equipment | |
JP5429485B2 (en) | Radiation measurement equipment | |
Berbiers et al. | High-precision X-ray tomograph for quality control of the ATLAS muon monitored drift chambers | |
JP2014044162A (en) | Radiation measuring method | |
JP5919146B2 (en) | Film thickness measuring device | |
DK176823B1 (en) | Method for providing the density profile of a plate-shaped body | |
JP5879953B2 (en) | Radiation inspection equipment | |
JP6598512B2 (en) | Radioactivity concentration measuring apparatus and radioactivity concentration measuring method | |
JP2018146554A (en) | X-ray inspection device | |
Tretyak et al. | A measuring complex for control the uniformity of the light output of scintillators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5831144 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |