JP5879953B2 - Radiation inspection equipment - Google Patents
Radiation inspection equipment Download PDFInfo
- Publication number
- JP5879953B2 JP5879953B2 JP2011254505A JP2011254505A JP5879953B2 JP 5879953 B2 JP5879953 B2 JP 5879953B2 JP 2011254505 A JP2011254505 A JP 2011254505A JP 2011254505 A JP2011254505 A JP 2011254505A JP 5879953 B2 JP5879953 B2 JP 5879953B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- atmospheric
- humidity
- sample
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Measurement Of Radiation (AREA)
Description
本発明は、放射線(例えばベータ線、X線,ガンマ線等)を用いた検査装置に関し、特に放射線源と放射線測定器の間に介在する空気層の影響による被測定物(以下、試料という)の測定精度の改善を図った放射線検査装置に関するものである。 The present invention relates to an inspection apparatus using radiation (for example, beta rays, X-rays, gamma rays, etc.), and in particular, an object to be measured (hereinafter referred to as a sample) due to the influence of an air layer interposed between a radiation source and a radiation measuring instrument. The present invention relates to a radiation inspection apparatus that improves measurement accuracy.
放射線(以下β線という)が物質層を通過すると,電離作用や励起作用等によって次第にエネルギ―を失って減衰し,更にこの様な非弾性散乱を多数回受けて進行方向が変化する。従って試料の物理量(例えば厚さ)が増すに伴い透過するβ線の数は減少する。この様な原理を応用し,シ―ト状の種々の試料の物理量を測定する装置が知られている。 When radiation (hereinafter referred to as β-rays) passes through the material layer, it gradually loses energy due to ionization and excitation, and decays. In addition, it undergoes such inelastic scattering many times and changes its traveling direction. Therefore, as the physical quantity (for example, thickness) of the sample increases, the number of transmitted β rays decreases. Devices that measure the physical quantities of various sheet-like samples by applying such principles are known.
放射線を用いた検査では、放射線源と検出器の間に試料(製品、人体など)を置き、その透過率から例えばβ線の強度を検出して濃淡の画像を得るのが一般的である。このため、β線源と検出器の間に存在する空気層の変化は検出画像(検出精度)に直接影響する。即ち、気温や気圧が変化して密度変化が起きるとそれがそのまま測定誤差につながることになる。 In an inspection using radiation, it is common to place a sample (product, human body, etc.) between a radiation source and a detector, and detect, for example, the intensity of β rays from the transmittance to obtain a grayscale image. For this reason, a change in the air layer existing between the β-ray source and the detector directly affects the detected image (detection accuracy). That is, if a change in density occurs due to changes in temperature or pressure, this will directly lead to measurement errors.
β線源を安定駆動するフィードバック制御や温度制御によるβ線量のモニタが行われている。温度や気圧などの変動を監視して測定系にフィードバックし測定対象物を精度良く測定する先行技術として、特開平4−158209や特開2001−227918に開示されたものがある。 The β dose is monitored by feedback control and temperature control for stably driving the β-ray source. As prior art for monitoring fluctuations in temperature, pressure, etc., and feeding back to a measurement system to measure a measurement object with high accuracy, there are those disclosed in Japanese Patent Laid-Open Nos. 4-158209 and 2001-227918.
図4はX線、β線、γ線、赤外線などを用いた透過特性によりシート状の試料の厚さや塗工量測定を行うインライン測定器の一例を示す斜視図である。
シート状の試料1は右から左方向へ一定速度で流れており、この試料を略直行するように放射線源ヘッド(下側・・・以下線源という)2と電離箱等の検出器ヘッド(上側・・・以下検出器という)3が一対となって試料1を走査する形態で測定を行っている。
FIG. 4 is a perspective view showing an example of an in-line measuring instrument that measures the thickness and coating amount of a sheet-like sample by transmission characteristics using X-rays, β-rays, γ-rays, infrared rays, and the like.
The sheet-like sample 1 flows at a constant speed from the right to the left, and a radiation source head (lower side: hereinafter referred to as a radiation source) 2 and a detector head such as an ionization chamber (to be referred to as an ionization chamber) Measurement is performed in a form in which the sample 1 is scanned as a pair.
夫々のヘッドは門型と呼ばれるO型フレーム4に支持され、対向する上下ヘッドの位置関係を保持して上下夫々駆動される。夫々のヘッド2,3は、試料の端部付近で折り返しを繰り返してジグザグに測定を繰り返す。更に夫々のヘッドはO型フレーム4の右側に待避位置Aが設けられている。 Each head is supported by an O-type frame 4 called a gate type, and is driven up and down while maintaining the positional relationship of the opposing upper and lower heads. Each of the heads 2 and 3 repeats the measurement in a zigzag manner by repeatedly folding around the end of the sample. Further, each head is provided with a retracting position A on the right side of the O-shaped frame 4.
これは、試料をセットする場合や放射線源ヘッド2や検出器ヘッド3のメンテナンス、校正などの際に試料の無い位置に移動する必要があるためである。厚さ測定においては、予め厚さと材質(坪量)が既知の複数の標準サンプルを測定しておき、その坪量に対する透過特性として検量線を求めている。 This is because it is necessary to move to a position where there is no sample when the sample is set or when the radiation source head 2 or the detector head 3 is maintained or calibrated. In the thickness measurement, a plurality of standard samples whose thickness and material (basis weight) are known are measured in advance, and a calibration curve is obtained as a transmission characteristic with respect to the basis weight.
その検量線と試料の透過出力値から逆引きして厚さを換算する。塗工量については図4
に示す厚さ測定装置5を2本乃至3本生産ライン内に設置し、塗工工程前後にその透過特
性を測定し、夫々の差分を求めることで塗工量を知ることが出来る。
The thickness is converted by reversely drawing from the calibration curve and the transmission output value of the sample. Figure 4 shows the coating amount .
2 to 3 are installed in the production line, the permeation characteristics are measured before and after the coating process, and the difference can be obtained to determine the coating amount.
図4に示すような方式では高速に流れる試料1に対してヘッド2、3が幅方向に走査するため、ジグザグのライン上を部分的にしか測定出来ない。このため近年では全面測定の要望もある。 In the system as shown in FIG. 4, since the heads 2 and 3 scan in the width direction with respect to the sample 1 flowing at high speed, it is possible to measure only partly on the zigzag line. For this reason, there is also a demand for full-scale measurement in recent years.
図5は検出素子(図示省略)が狭ピッチで隙間無く並んだライン型検出器3aを設置し、所定の距離はなれた放射線源から放射状に放射線を出射させて全面を測定している状態を示す斜視図である。2aは放射線源、3aは放射線検出器(ラインカメラ)である。
ここで、図4に示す走査型測定器であっても、図5に示す全面測定型測定器であっても
校正の際には試料1を一旦取り除いて行わなければならない。
FIG. 5 shows a state in which a line type detector 3a in which detection elements (not shown) are arranged with a narrow pitch and without gaps is installed, and radiation is emitted radially from a radiation source separated by a predetermined distance to measure the entire surface. It is a perspective view. 2a is a radiation source, and 3a is a radiation detector (line camera).
Here, even if it is a scanning type measuring device shown in FIG. 4 or the whole surface measuring type measuring device shown in FIG. 5, the sample 1 must be once removed at the time of calibration.
即ち、経時変化による線源の劣化、検出器の感度変化、空気層の温度・湿度変化(生産ライン内の空調が悪く季節的または朝晩などの周期的な変動)に対して校正を行う場合は、試料1が無い状態(=空気層)を測定して校正を行う。 In other words, when calibrating against radiation source deterioration due to changes over time, detector sensitivity changes, air layer temperature / humidity changes (periodic fluctuations such as seasonal or morning / night due to poor air conditioning in the production line) Then, calibration is performed by measuring the state in which there is no sample 1 (= air layer).
また、ある程度長期的には標準サンプルを測定して検量線を求め直すことも行われる。図4に示す走査形測定器では、従来リアルタイムにセンサヘッド間の温度を測定して空気
温度の補償を行なうと共に、数十分乃至数時間単位程度の間隔で空気層の測定を行ない、
この値を用いて測定値の補償演算を行っている。
In addition, it is also possible to re-determine a calibration curve by measuring a standard sample for a certain long term. In the conventional scanning type measuring instrument shown in FIG. 4 , the temperature between the sensor heads is measured in real time to compensate for the air temperature, and the air layer is measured at intervals of several tens of minutes to several hours.
Using this value, compensation of the measured value is performed.
ところで、短期−中期に掛けての測定精度に一番影響を与える空気層の変化に対して、数時間おきに退避・校正動作を行う事で、通常測定では、大きな問題は無い。但し、工場のコールドスタート時や台風通過等による短時間での大気変動が生じる場合には、数時間単位での校正動作では精度維持が難しい場合がある。 By the way, with respect to the change of the air layer that most affects the measurement accuracy in the short-term to medium-term, by performing the evacuation / calibration operation every several hours, there is no major problem in the normal measurement. However, when a short-term atmospheric change occurs due to a cold start of a factory or a typhoon passing, it may be difficult to maintain accuracy with a calibration operation in units of several hours.
校正動作の間隔を短くする事は解決策の一つであるが、退避位置での校正動作中は試料の測定ができなくなるというデメリットが存在する。また図5に示すような全面測定型の場合には、試料から外れるまで装置を引き出す必要があるため、装置自体の幅(W)に対して2.5倍程度の幅が必要となり、また、退避動作そのものが行い難いと言う状況がある。 Shortening the interval of the calibration operation is one of the solutions, but has a demerit that the sample cannot be measured during the calibration operation at the retracted position. Further, in the case of the whole surface measurement type as shown in FIG. 5 , since it is necessary to pull out the apparatus until it is detached from the sample, a width of about 2.5 times the width (W) of the apparatus itself is required. There is a situation where the evacuation operation itself is difficult to perform.
比較的測定値に影響を与え易い温度変化を小さくするために測定ギャップの空気層に恒温化した空気を吹き付ける等の対策も行なわれているが、空気消費が多い・恒温化のためのヒータ電力が掛かる等の問題がある。 Measures such as blowing constant temperature air to the air gap in the measurement gap are taken to reduce the temperature change that is relatively easy to affect the measured value, but air consumption is high. Heater power for constant temperature There is a problem such as.
したがって本発明の目的は、温度、湿度、気圧などの大気変動を由来として生じる測定信号の変動を補償する事により、厚さ測定の精度安定性を向上させることを目的とする。 Accordingly, an object of the present invention is to improve the accuracy and stability of thickness measurement by compensating for variations in measurement signals caused by atmospheric variations such as temperature, humidity, and atmospheric pressure.
このような課題を達成するために、本発明のうち請求項1記載の放射線検査装置の発明
は、
放射線源から放射され、試料を透過してくる放射線を放射線検出器により検出し、坪量の測定を行う放射線検査装置において、
前記検査装置の近傍に温度センサと気圧センサと湿度検出手段を配置し、前記温度センサで検出した温度と前記気圧センサで検出した気圧に基づいて大気重量を計算し、前記湿度検出手段で検出した湿度に基づいて水分重量を計算するとともに、この水分重量に基づいて前記大気重量を補正する大気重量演算手段を備え、この大気重量演算手段で計算した大気重量に基づいて前記坪量を補正するように構成したことを特徴とする。
In order to achieve such a problem, the invention of the radiation inspection apparatus according to claim 1 of the present invention is:
In a radiation inspection apparatus that measures the basis weight by detecting radiation emitted from a radiation source and passing through a sample with a radiation detector,
A temperature sensor, an atmospheric pressure sensor, and humidity detection means are arranged in the vicinity of the inspection device, and the atmospheric weight is calculated based on the temperature detected by the temperature sensor and the atmospheric pressure detected by the atmospheric pressure sensor, and detected by the humidity detection means. A moisture weight is calculated based on the humidity, and an atmospheric weight calculating means for correcting the atmospheric weight based on the moisture weight is provided, and the basis weight is corrected based on the atmospheric weight calculated by the atmospheric weight calculating means. It is characterized by comprising.
請求項2においては、請求項1記載の放射線検査装置において、
前記水分重量の計算は、飽和水蒸気圧の近似式と、気体の状態方程式と、前記湿度とに基づいて行なうことを特徴とする。
In Claim 2, in the radiological examination apparatus of Claim 1,
The calculation of the moisture weight is performed based on an approximate expression of saturated water vapor pressure , a gas equation of state, and the humidity .
本発明によれば以下のような効果がある。
線源と検出器の間隔が離れていてその間に存在する大気の量が測定対象となる試料の坪量への影響が大きい場合、或いは、薄膜フィルムの様に測定対象となる試料の坪量が小さく大気変動の影響を受け易い場合等に測定精度を高める事ができる。
The present invention has the following effects.
When the distance between the radiation source and the detector is far and the amount of air present between them is greatly affecting the basis weight of the sample to be measured, or the basis weight of the sample to be measured is a thin film film The measurement accuracy can be increased when it is small and susceptible to atmospheric fluctuations.
また、全面測定型の測定器を用いる場合にも、退避操作を不要または最小限として連続的に精度良く測定することができ、坪量測定の安定化を図ることができる。
また、工場内の温湿度変動が大きなコールドスタート時や台風通過等の気象変動の際にも安定した精度の良い坪量値を測定することができる。
また、放射線源と放射線検出装置の間に恒温化したドライエアを吹き付ける必要が無くなり、圧縮空気の削減と電力の削減を図ることができる。
In addition, even when using a full-surface measurement type measuring instrument, it is possible to perform continuous and accurate measurement with unnecessary or minimal evacuation operation, and stabilization of the basis weight measurement can be achieved.
In addition, a stable and accurate basis weight value can be measured even during a cold start where the temperature and humidity fluctuations in the factory are large or during a weather fluctuation such as the passage of a typhoon.
Further, there is no need to blow dry air that is kept at a constant temperature between the radiation source and the radiation detection apparatus, and it is possible to reduce compressed air and power.
以下本発明を、図面を用いて詳細に説明する。図1は本発明の実施形態の一例を示す構成図で(a)は斜視図、(b)は検出器ヘッドと放射線源と試料及び大気の関係を示す模式図である。図3と異なる点は厚さ測定装置の近傍に温度センサ10、気圧センサ・湿度センサ11を配置すると共にこれらのセンサからの出力を入力し、各種の演算(気体の状態方程式や、水分重量、大気重量、坪量補正など)を行う演算手段12を備えている点である。 Hereinafter, the present invention will be described in detail with reference to the drawings. 1A and 1B are configuration diagrams showing an example of an embodiment of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a schematic diagram showing a relationship among a detector head, a radiation source, a sample, and the atmosphere. The difference from FIG. 3 is that a temperature sensor 10, an atmospheric pressure sensor / humidity sensor 11 are arranged in the vicinity of the thickness measuring device and outputs from these sensors are input, and various calculations (a gas state equation, moisture weight, It is the point provided with the calculating means 12 which performs atmospheric weight, basic weight correction, etc.).
図1(b)に示すように、線源と検出器間に試料を置き、試料を透過したときの放射線減衰量から試料厚さを求める場合には、大気による減衰を含んで測定していることになる。試料の厚さを正確に求めたい場合には、大気による減衰分を補正する事が重要である。
ここでは、検出器で得た試料と大気を含む重量から大気重量を下記の方法により算出した値を減算して試料重量を正確に得る方法について説明する。
As shown in FIG. 1 (b), when a sample is placed between a radiation source and a detector, and the sample thickness is obtained from the radiation attenuation when passing through the sample, measurement is performed including attenuation due to the atmosphere. It will be. When it is desired to accurately determine the thickness of the sample, it is important to correct the attenuation due to the atmosphere.
Here, a method for accurately obtaining the sample weight by subtracting the value obtained by calculating the atmospheric weight from the weight including the sample and the atmosphere obtained by the detector by the following method will be described.
温度と気圧が坪量に与える影響については、「気体の状態方程式」から導く事ができる。
PV=nRT=(W/m)RT・・・(1)
W=m(PV/RT)・・・・・・・(2)
ここで、m=平均分子量(空気はO2とN2窒素が1:4で構成されているとして、その平均分子量は、32×1/5+28×4/5=28.8)
W=重量[g]
n=モル数
R=リュードベリ定数(1モルの気体定数=8.314472(75)[J・mol−1・K−1])
P=気体の圧力[Pa]
V=体積[m3]
T=温度[K]
The effect of temperature and pressure on the basis weight can be derived from the “gas equation of state”.
PV = nRT = (W / m) RT (1)
W = m (PV / RT) ... (2)
Here, m = average molecular weight (air is composed of O 2 and N 2 nitrogen 1: 4, and the average molecular weight is 32 × 1/5 + 28 × 4/5 = 28.8)
W = weight [g]
n = number of moles R = Rydberg constant (1 mole of gas constant = 8.314472 (75) [J · mol-1 · K-1])
P = gas pressure [Pa]
V = volume [m 3 ]
T = temperature [K]
線源と検出器との間に存在する空気の体積をVとする。ここでVは坪量に相当する量として計算するため、1m2の底面に対して線源と検出器ヘッド間の距離を高さとして算出する。気圧をPとし温度をTとし、m(平均分子量)に大気の平均分子量を用いる事で(2)式より線源−検出器間に存在する大気の重量を求める事ができる。
予め算出体積を坪量に相当する底面(1m2)としておけば、大気重量はそのまま大気坪量と等価である。
Let V be the volume of air present between the source and the detector. Here, since V is calculated as an amount corresponding to the basis weight, the distance between the radiation source and the detector head is calculated as the height with respect to the bottom surface of 1 m 2 . By using atmospheric pressure as P and temperature as T, and using the average molecular weight of the atmosphere as m (average molecular weight), the weight of the atmosphere existing between the radiation source and the detector can be obtained from the equation (2).
If the calculated volume is previously set as the bottom surface (1 m 2 ) corresponding to the basis weight, the atmospheric weight is equivalent to the atmospheric basis weight as it is.
湿度の影響は、水蒸気量の重さとして算出することができる。水蒸気の重さは、飽和水蒸気量と湿度の積として計算されるため、ここでは近似的に飽和水蒸気圧を求めるAntoineの式(アントワン式)を用いる。
log10P=A−(B/T+C)
ここで、P=蒸気圧(Pa)
T=温度(K)
A,B,C=アントワン定数で物質と蒸気圧と温度の単位に依存する定数
例えば水においてはPの単位としてパスカル、Tの単位としてケルビンをとると333K〜423Kの範囲ではA=10.09、B=1668.21、C=45.15となる。
The influence of humidity can be calculated as the weight of water vapor. Since the weight of water vapor is calculated as the product of the saturated water vapor amount and the humidity, the Antoine equation (Antoine equation) for obtaining the saturated water vapor pressure approximately is used here.
log 10 P = A− (B / T + C)
Where P = vapor pressure (Pa)
T = temperature (K)
A, B, C = Antoine constants and constants depending on the substance, vapor pressure and temperature units For example, in water, Pa = scal as the unit of P, and Kelvin as the unit of T, A = 10.09 in the range of 333K to 423K , B = 1668.21, C = 45.15.
例えば、Antoineの式を用いて飽和水蒸気圧を得れば、飽和水蒸気量は飽和水蒸気圧を「気体の状態方程式」のPに代入して算出できる。これによって得た飽和水蒸気量と測定した湿度の積を取れば、大気中の水分重量を得ることができる。先に示したように1m2辺りの底面として体積を計算すれば、これが大気中の湿度による坪量となる。 For example, if the saturated water vapor pressure is obtained using the Antoine equation, the saturated water vapor amount can be calculated by substituting the saturated water vapor pressure into P of the “gas state equation”. By taking the product of the saturated water vapor amount thus obtained and the measured humidity, the moisture weight in the atmosphere can be obtained. If the volume is calculated as the bottom surface of about 1 m 2 as shown above, this is the basis weight due to the humidity in the atmosphere.
ここまで、空気の坪量と湿度の坪量の計算手法を述べたが、実際には、湿度がもたらす水蒸気の分圧に従って、乾燥空気のモル数が変化する。水蒸気1molの増加に対し、分子数比(約空気28.8/水18)に応じた乾燥空気が減じられる事になる。したがって、湿度を考慮した大気坪量を得るには、乾燥空気に対して湿度の変動に応じた分子数比の加減算を行なった後に水分重量の加算を行なえば良い。 So far, the calculation method of the basis weight of air and the basis weight of humidity has been described, but in actuality, the number of moles of dry air changes according to the partial pressure of water vapor caused by humidity. The amount of dry air corresponding to the molecular number ratio (about air 28.8 / water 18) is reduced with respect to an increase of 1 mol of water vapor. Therefore, in order to obtain the atmospheric basis weight in consideration of humidity, the moisture weight may be added after adding / subtracting the molecular number ratio corresponding to the change in humidity with respect to the dry air.
図2はこのような演算を行い、例えば30℃50%を基準にした時の湿度変化による水蒸気量の変化と大気重量の変化を求めた図である。厚さ(坪量)測定装置には、内蔵または近傍に温度・湿度・気圧を測定できる検出手段を設置している。
線源と検出器との距離に応じた乾燥空気の重量を気体の状態方程式を用いて、温度と気圧から計算する。
FIG. 2 is a diagram in which such a calculation is performed, and for example, a change in the amount of water vapor and a change in the atmospheric weight due to a change in humidity when the temperature is 30 ° C. and 50% are obtained. The thickness (basis weight) measuring device is provided with detection means that can measure temperature, humidity, and atmospheric pressure in or near it.
The dry air weight according to the distance between the radiation source and the detector is calculated from the temperature and the atmospheric pressure using the gas equation of state.
具体的な例としては、Antoine(アントワン)の近似式等から飽和水蒸気量を求める。求めた飽和水蒸気量と得られた湿度から、気体の状態方程式を用いて空気中の水分量を求める事ができる。
近似式には、他にもGoff−Gratch(ゴフ−グラッチェ)の式、Magnus−Teten(テーテンス)の式、Wexler−Hyland(Hyland and Wexler)の式ほか、様々な式があるが、使い勝手に合わせて、適宜選択すれば良い。
As a specific example, the saturated water vapor amount is obtained from an approximate equation of Antine or the like. The amount of moisture in the air can be obtained from the obtained saturated water vapor amount and the obtained humidity using the gas equation of state.
There are other approximate expressions such as Goff-Gratch expression, Magnus-Teten expression, Wexler-Hyland (Hyland and Wexler) expression, and various other expressions. And may be selected as appropriate.
水蒸気分圧に相当する乾燥空気の重量を減じた後、水分重量を加算して、線源と検出器との距離に応じた大気重量を求める。
求めた大気重量は、検出器感度等測定上の都合(例えば大気と試料とで異なる線減弱係数比に代表される感度補正)に合わせて感度補正を行なう。
一方試料を測定した際の線源からの照射が減衰する量を測定し、あらかじめ作成された検量線を用いて、試料の坪量を得る。
After reducing the weight of dry air corresponding to the water vapor partial pressure, the moisture weight is added to determine the atmospheric weight according to the distance between the radiation source and the detector.
The obtained atmospheric weight is subjected to sensitivity correction in accordance with convenience in measurement such as detector sensitivity (for example, sensitivity correction represented by a different linear attenuation coefficient ratio between the atmosphere and the sample).
On the other hand, the amount by which irradiation from the radiation source attenuates when the sample is measured is measured, and the basis weight of the sample is obtained using a calibration curve prepared in advance.
この坪量から感度補正後の大気重量を減じる事で試料の厚さを精度良く得ることができる。温度、湿度、気圧による大気重量の計算は、上記の計算方法による以外に予め用意した値の参照テーブルや検量線あるいは専用の近似式を用意して計算しても良い。
また、大気重量の補正を行なうに際して、通常では天候の変化に対して、湿度が高い状態で気圧が低く湿度の低い状態で気圧の高い状態である傾向を持つ。このため、湿度か気圧のいずれか一方の測定値を元に他方の要因を含んだ値として補正を行なっても精度向上をはかることができる。
The thickness of the sample can be obtained with high accuracy by subtracting the atmospheric weight after sensitivity correction from this basis weight. The calculation of the atmospheric weight based on temperature, humidity, and atmospheric pressure may be performed by preparing a reference table of values prepared in advance, a calibration curve, or a dedicated approximate expression in addition to the above calculation method.
Further, when the atmospheric weight is corrected, normally, there is a tendency that the atmospheric pressure is low when the humidity is high and the atmospheric pressure is high when the humidity is low. For this reason, accuracy can be improved even if correction is performed using a measured value of either humidity or atmospheric pressure as a value including the other factor.
図3(a〜c)は本発明の放射線測定装置を用いた信号処理の流れを示すフローチャートである。図において(a)は試料測定用センサで測定した信号処理の流れ、(b)は温度測定装置および気圧測定装置で測定した信号の流れ、(c)は湿度測定装置で測定した信号の流れを示す図である。なお、これら(a〜c)による各センサは放射線測定装置で測定を開始した時点で同時に測定を開始するものとする。 3A to 3C are flowcharts showing the flow of signal processing using the radiation measuring apparatus of the present invention. In the figure, (a) is a signal processing flow measured by a sample measuring sensor, (b) is a signal flow measured by a temperature measuring device and an atmospheric pressure measuring device, and (c) is a signal flow measured by a humidity measuring device. FIG. In addition, each sensor by these (a-c) shall start a measurement simultaneously at the time of starting a measurement with a radiation measuring device.
図3(a)において、
Step1:試料用の検出器で試料を透過した際の線源からの信号を測定する。
Step2:試料用検量線を用い、
Step3:厚さ(坪量)を求める。
In FIG. 3 (a),
Step 1: The signal from the radiation source when the sample is transmitted by the sample detector is measured.
Step 2: Use a sample calibration curve,
Step 3: Determine thickness (basis weight).
図3(b)において、
Step1’:温度センサ・気圧センサ11で測定した信号を演算手段12に入力し、
Step2’:気体の状態方程式を用い、
Step3’:乾燥空気重量を計算する。
In FIG. 3B,
Step 1 ′: The signal measured by the temperature sensor / barometric pressure sensor 11 is input to the calculation means 12,
Step 2 ′: Using the gas equation of state,
Step 3 ′: Calculate the dry air weight.
図3(c)において、
Step1’’:湿度センサで湿度を測定し、
Step2’’:飽和水蒸気圧を計算する。
Step3’’:飽和水蒸気圧から気体の状態方程式を用い、
Step4’’:水分重量を計算する。
In FIG. 3C,
Step 1 ″: Measure humidity with a humidity sensor,
Step 2 '': Calculate saturated water vapor pressure.
Step 3 ″: Using the gas state equation from the saturated water vapor pressure,
Step 4 ″: Calculate the moisture weight.
図3(b)のステップ4’に進み、
Step4’:Step3’で求めた乾燥空気重量とStep4’’で求めた水分重量から水蒸気分圧分を減算する。
Step5’:tep4’’で求めた水分重量とStep4’で求めた水蒸気分圧分を減算した値から大気重量を計算し、
Step6’:大気重量感度補正を行う。
Proceed to step 4 ′ of FIG.
Step 4 ′: The partial pressure of water vapor is subtracted from the dry air weight determined in Step 3 ′ and the moisture weight determined in Step 4 ″.
Step 5 ′: Calculate the atmospheric weight from the value obtained by subtracting the water weight determined in Step 4 ″ and the water vapor partial pressure determined in Step 4 ′.
Step 6 ′: Atmospheric weight sensitivity correction is performed.
図3(a)に戻り、
Step4:Step3で求めた坪量とStep6’で求めた大気重量感度補正の値から大気重量減算し、
ステップ5:補正後の坪量を求め、
ステップ6:補正された坪量を測定値として出力する。
以上のステップにより厚さ測定の補償が行なうことができる。
Returning to FIG.
Step 4: Atmospheric weight is subtracted from the basis weight determined at Step 3 and the atmospheric weight sensitivity correction value determined at Step 6 ′.
Step 5: Obtain the corrected basis weight,
Step 6: The corrected basis weight is output as a measured value.
The thickness measurement can be compensated by the above steps.
なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。実施例では温度センサ及び気圧センサと湿度センサにより測定した値を用いた例を示したが、気圧や湿度の変化による測定精度の低下は温度変化に比較して少ないので、ある平均的な気圧を用いることにより気圧センサはなくても良い。また測定精度は低下するが気圧センサに湿度の代表的な相関を取り込む運用をすれば湿度センサを用いずに補償を行うことも可能である。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention. In the embodiment, an example using values measured by a temperature sensor, an atmospheric pressure sensor, and a humidity sensor has been shown. However, since the decrease in measurement accuracy due to changes in atmospheric pressure and humidity is small compared to temperature changes, a certain average atmospheric pressure is used. By using it, there is no need to have an atmospheric pressure sensor. Further, although the measurement accuracy is lowered, it is possible to perform compensation without using the humidity sensor if the atmospheric pressure sensor is operated so as to incorporate a representative correlation of humidity.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.
1 試料
2 線源
2a 放射線源
3 検出器ヘッド(電離箱)
3a 放射線検出器(ラインカメラ)
4 O型フレーム
5 厚さ測定装置
6 ライン型検出器
10 温度センサ
11 気圧・湿度センサ
12 演算手段
1 Sample 2 Radiation source 2a Radiation source 3 Detector head (ionization chamber)
3a Radiation detector (line camera)
4 O-type frame 5 Thickness measuring device 6 Line-type detector 10 Temperature sensor 11 Pressure / humidity sensor 12 Calculation means
Claims (2)
前記検査装置の近傍に温度センサと気圧センサと湿度検出手段を配置し、前記温度センサで検出した温度と前記気圧センサで検出した気圧に基づいて大気重量を計算し、前記湿度検出手段で検出した湿度に基づいて水分重量を計算するとともに、この水分重量に基づいて前記大気重量を補正する大気重量演算手段を備え、この大気重量演算手段で計算した大気重量に基づいて前記坪量を補正するように構成したことを特徴とする放射線検査装置。 In a radiation inspection apparatus that measures the basis weight by detecting radiation emitted from a radiation source and passing through a sample with a radiation detector,
A temperature sensor, an atmospheric pressure sensor, and humidity detection means are arranged in the vicinity of the inspection device, and the atmospheric weight is calculated based on the temperature detected by the temperature sensor and the atmospheric pressure detected by the atmospheric pressure sensor, and detected by the humidity detection means. A moisture weight is calculated based on the humidity, and an atmospheric weight calculating means for correcting the atmospheric weight based on the moisture weight is provided, and the basis weight is corrected based on the atmospheric weight calculated by the atmospheric weight calculating means. Radiation inspection apparatus characterized by comprising.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011254505A JP5879953B2 (en) | 2011-11-22 | 2011-11-22 | Radiation inspection equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011254505A JP5879953B2 (en) | 2011-11-22 | 2011-11-22 | Radiation inspection equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013108859A JP2013108859A (en) | 2013-06-06 |
JP5879953B2 true JP5879953B2 (en) | 2016-03-08 |
Family
ID=48705757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011254505A Active JP5879953B2 (en) | 2011-11-22 | 2011-11-22 | Radiation inspection equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5879953B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0363510A (en) * | 1989-07-31 | 1991-03-19 | Kobe Steel Ltd | Radiation thickness meter |
JPH04158209A (en) * | 1990-10-22 | 1992-06-01 | Fuji Electric Co Ltd | Radiation thickness meter and measuring method of thickness by using radiation |
JP2006275605A (en) * | 2005-03-28 | 2006-10-12 | Mitsubishi Heavy Ind Ltd | Apparatus and method for measuring thickness of sheet |
-
2011
- 2011-11-22 JP JP2011254505A patent/JP5879953B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013108859A (en) | 2013-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kessler Jr et al. | The deuteron binding energy and the neutron mass | |
US8447012B2 (en) | Radiation inspection apparatus | |
JP2004163293A (en) | Method and apparatus for measuring ozone gas concentration | |
JPH02171647A (en) | Measurement method and sensor for measuring relative density of gas or steam | |
US11719654B2 (en) | X-ray instrument with ambient temperature detector | |
JP2014025709A (en) | Radiation measurement method and radiation measurement device | |
CN118130310B (en) | Calibration method of full-detection type surface densimeter | |
CN114720324B (en) | Method, device and system for detecting net coating amount of lithium battery pole piece | |
JP5423705B2 (en) | Radiation inspection equipment | |
US11519867B2 (en) | X-ray-based determining of weights for coated substrates | |
JPS5949524B2 (en) | measurement system | |
CN117129371B (en) | Calibration method and device for surface density measuring instrument and readable storage medium | |
JP5879953B2 (en) | Radiation inspection equipment | |
JP6031857B2 (en) | Radiation measurement method | |
Pausch et al. | Stabilizing scintillation detector systems by exploiting the temperature dependence of the light pulse decay time | |
JP2011145127A (en) | Radiation measurement apparatus | |
JP5408432B2 (en) | Radiation detection apparatus and radiation detection method using this apparatus | |
JP2014044162A (en) | Radiation measuring method | |
CN114544536A (en) | Generation method of nitrogen oxide concentration calibration model | |
JP5783373B2 (en) | Radiation inspection equipment | |
CN102346247B (en) | Computing method and calibration method for HJ-1B B08 effective waveband width | |
JP5831144B2 (en) | Radiation inspection equipment | |
RU2418306C1 (en) | Method of correcting scintillation detector signals | |
RU2490609C1 (en) | Method of testing pyrometers in working conditions | |
CN106950266A (en) | A kind of method for eliminating electrochemical gas detection sensor error |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160118 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5879953 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |