JPH04158209A - Radiation thickness meter and measuring method of thickness by using radiation - Google Patents

Radiation thickness meter and measuring method of thickness by using radiation

Info

Publication number
JPH04158209A
JPH04158209A JP28404190A JP28404190A JPH04158209A JP H04158209 A JPH04158209 A JP H04158209A JP 28404190 A JP28404190 A JP 28404190A JP 28404190 A JP28404190 A JP 28404190A JP H04158209 A JPH04158209 A JP H04158209A
Authority
JP
Japan
Prior art keywords
signal
radiation
time
value
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28404190A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
靖 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28404190A priority Critical patent/JPH04158209A/en
Publication of JPH04158209A publication Critical patent/JPH04158209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To dispense with a radiation detecting element and thereby to simplify construction and to facilitate manufacture and maintenance by using a pressure gauge and a thermometer measuring the pressure and temperature of a gas respectively. CONSTITUTION:A radiation detector 4 disposed opposite to a radiation source 2 at a prescribed gap G detects a radiation 2a and outputs a first detection signal 4a. A preamplifier 6 converts this signal into a voltage signal and outputs a second detection signal 6a having a voltage E. A pressure gauge 18 detects the pressure P of a gas 12 in a measuring space 5, while a thermometer 19 detects the absolute temperature T thereof, and they output a pressure signal 18a and a temperature signal 19a respectively. A signal processing element 20 receiving the signals 6a, 18a and 19a as inputs stores a value Eoa of the voltage E, a value Pa of the pressure P and a value Ta of the temperature T obtained by input of a first control signal 20a, at the time t1 in a state wherein a substance 11 to be measured is not inserted into the space 5. Besides, it computes the right member of an equation by using a voltage value Ex, a pressure value Pb and a temperature value Tb obtained by input of a second control signal 20b at the time t2 later than the time t1 and also the values Eoa, Pa and Ta, and outputs a thickness signal 20c showing X as a result. According to this constitution, the measurement of a thickness is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は物体を透過した後の透過放射線の線量りもとづ
−・て前記物体の厚ざを測定するようにした放射好厚さ
計及び放射線を用いた厚さ測定方法。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a radiation thickness meter that measures the thickness of an object based on the dose of transmitted radiation after passing through the object. and a thickness measurement method using radiation.

轡に、放射−卓さ計の製作及び保守の容易化を図ること
のできる厚さ計ならびF゛厚さ測定方法に関する。
More particularly, the present invention relates to a thickness gauge and an F thickness measuring method that can facilitate the production and maintenance of the radiation-tablet gauge.

〔従来の技術〕[Conventional technology]

第3図は従来の放射線厚さ計1の構成図である。 FIG. 3 is a configuration diagram of a conventional radiation thickness meter 1.

図において、24線#谷器3/2:収容された放射線源
、44@77、2 ′に対して所定の間隔Gを有する測
定空所5を介して対向配置され尭かつl源2が放射する
放射a2aを検出して検出した放射#2mの線量に応じ
た第1検出信号4aを出力するようでした放射線検出器
、6は検出信号4aを電圧信号に変換しかつ増幅して前
記線fに比例した電圧Eを有する第2検出信号6aとし
て出力するようにしたプリアンプで、7は検出器4とア
ンプ6とを固定的に取り付けた取付枠である。8は線源
2と検出器4とが上述の関係配置を保持するように容器
3と取付枠7とを固定した架台、9は上述の放射線源2
乃至架台8からなる放射線検出部、1が工検出信号6a
が入力され、かつ信号6aが表す電圧値E/c対して後
述する記憶並びに演算を行って空所5で図示したように
挿入された紙状または板状の被測定#!111の厚さX
を表す厚さ信号1がを出力するよう(した信号処理部で
、放射線厚さ計1は上述した噴出部9と処理部1oとで
構成されている。
In the figure, the 24-wire #trough device 3/2: accommodated radiation source, 44@77, 2' is placed opposite to the measurement space 5 with a predetermined interval G, and the source 2 emits radiation. A radiation detector 6 detects radiation a2a and outputs a first detection signal 4a corresponding to the dose of detected radiation #2m. A preamplifier is designed to output a second detection signal 6a having a voltage E proportional to , and 7 is a mounting frame to which the detector 4 and amplifier 6 are fixedly attached. Reference numeral 8 denotes a mount to which the container 3 and the mounting frame 7 are fixed so that the radiation source 2 and the detector 4 maintain the above-mentioned relational arrangement, and 9 represents the above-mentioned radiation source 2.
A radiation detection unit consisting of a stand 8 and a stand 8, 1 is a work detection signal 6a
is input, and the voltage value E/c represented by the signal 6a is subjected to storage and calculation described later, and a paper-like or plate-like measured object #! is inserted as shown in the blank space 5. 111 thickness
The radiation thickness meter 1 is composed of the above-mentioned ejection part 9 and the processing part 1o.

厚さ計1は上述のように構成されており、この結果被測
定物11に入射した放射線2aは該被測定物11の厚さ
Xに応じて減衰して放射線検出器4(入射するので、測
定空所57(被測定物11が挿入された状態で検出信号
6aが呈する電圧Eの値Bx)x(2)式右辺のように
表され、ここに、E。
The thickness gauge 1 is configured as described above, and as a result, the radiation 2a incident on the object to be measured 11 is attenuated in accordance with the thickness X of the object to be measured 11 and is incident on the radiation detector 4 (since Measurement space 57 (value Bx of voltage E exhibited by detection signal 6a when object to be measured 11 is inserted) x is expressed as the right side of equation (2), where E.

は被測定物11の厚さXが零である場合、つまり空所5
に被測定物11が挿入され℃いない場合の電圧Eの値で
、UI!Iは被測定物11の放射線2a#c対する吸収
係数、 Dt!1は被測定物11の密度である。
is when the thickness X of the object to be measured 11 is zero, that is, the space 5
The value of voltage E when the object to be measured 11 is inserted into UI! I is the absorption coefficient of the object to be measured 11 for the radiation 2a#c, Dt! 1 is the density of the object 11 to be measured.

Ex=E0−eXp(−Uffl値Dm@x)・−・・
・・(4)ところが、(す式から6)式が導かれるので
、厚さ計1九音いては、予め5111疋iE’ i /
−訊nか埴−繊密fDmとが予め言号!6理部10(記
憶させられており、ヱた。空所5/C被−J11宕吻1
1が挿入されていない状態における時刻【3で処理部1
0に第1制御信号10bが入力されることによって該処
理e10が時刻【、における前記電圧値Eoを記憶し。
Ex=E0-eXp (-Uffl value Dm@x) ---
...(4) However, since equation (6) is derived from equation (S), if the thickness is 19 tones, then 5111 iE' i /
-Kenka Hani- Sensitive fDm is the word in advance! 6 Science Department 10 (It is memorized, it is. Blank space 5/C covered - J11 Memoir 1
Time when 1 is not inserted [processing unit 1 at 3]
0, the process e10 stores the voltage value Eo at time [,].

さらに、時刻【3よりも優の、空vr5に被測定物11
が挿入された状!!!九おける時刻【4で6浬部10に
第2制句信号10Cが入力されることによって。
Furthermore, the object to be measured 11 is placed in the sky vr5 at a time better than 3.
It looks like it has been inserted! ! ! By inputting the second punctuation signal 10C to the sixth section 10 at time [4].

処理部10が時刻【、において信号6aが呈する電圧E
の値Exと前記各記順値Um−Dm及びEoとを用いて
(5)式右辺の演算を行ってC9式左辺のXを表す上述
の厚さ信号10aを出力するよって該処理部10が構成
されている。故だ、厚さ計11Cよれば信号IQa/c
よって厚さXを測定することができることになる。
The processing unit 10 calculates the voltage E exhibited by the signal 6a at time [,
The processing unit 10 calculates the right side of equation (5) using the value Ex and the order values Um-Dm and Eo, and outputs the above-mentioned thickness signal 10a representing X on the left side of equation C9. It is configured. Therefore, according to the thickness gauge 11C, the signal IQa/c
Therefore, the thickness X can be measured.

x=−(t/(UIt1@D−)I−tn(Ex/Eo
>−・−・C5)〔発明つ1解決しようとする課、頂〕 厚さ計1でおいCは上述のよってL℃厚さXの測定が行
われるが、この場合、放射線2aは実際Cは被測定物1
1中だけでなく空所5(存在する空気のような気体12
中でも−jtC衰して、この結果、上述した電圧値Eo
は、空所5に放射縁2aを減衰させる何物も存在しない
場合で信号61が呈する電圧Eの値を”0(1とし、か
つ気体12の放射#J2!に対する吸収係数なU□とし
、かつ前述の時刻t3における気体12の密度をDaと
して(0式で表されることになり、ここ(密度Daは経
時的に変化する量であるから、Eoを予め測定して決定
した定数として(ジ式右辺の演算を行って厚さXを求め
る厚さ測定方法lcは密度Daの経時変化にもとづ(測
定誤差が含まれることになる。
x=-(t/(UIt1@D-)I-tn(Ex/Eo
>-・-・C5) [Section to be solved by Invention 1, top] With the thickness gauge 1, C is L℃ as described above.Thickness X is measured, but in this case, the radiation 2a is actually C is the object to be measured 1
1 as well as the void 5 (existing air-like gas 12
Among them, -jtC decays, and as a result, the above-mentioned voltage value Eo
Let the value of the voltage E exhibited by the signal 61 when there is nothing in the cavity 5 to attenuate the radiation edge 2a be "0 (1), and let U□ be the absorption coefficient for the radiation #J2! of the gas 12, And, if the density of the gas 12 at the aforementioned time t3 is Da, it will be expressed by the equation (0), where (density Da is a quantity that changes over time, so Eo is determined as a constant determined in advance by measuring Eo in advance). The thickness measurement method lc, which calculates the thickness X by calculating the right side of the equation 1, is based on the change in density Da over time (this includes measurement errors).

E、 =E0.・eXp(−Uae[)a@G〕…(1
)  −・・−、・((3)したがって、厚さ計1の場
合、厚さ信号l0a中r−Dユの経時変化にもとづく測
定誤差が生じないようにするためて、Exを測定する都
度事前に。
E, =E0.・eXp(-Uae[)a@G]…(1
) −・・−,・((3) Therefore, in the case of thickness gauge 1, in order to avoid measurement errors due to changes in r−D in the thickness signal l0a over time, each time Ex is measured, Beforehand.

あるいはExの測定を中断してB、を測定しなければな
らないので、厚さ測定の作業が面倒であるという問題点
があり、このため、第4図のIRKを有する放射線厚さ
計13を採用することによつ℃上記の問題点を解決する
ことが従来性われている。
Alternatively, it is necessary to interrupt the measurement of Ex and measure B, so there is a problem that the work of measuring the thickness is troublesome.For this reason, the radiation thickness meter 13 with IRK shown in Fig. 4 is adopted. It has been conventionally known to solve the above-mentioned problems by

そうして、第4図/cSい1:、第3図と異なる所Vま
、間隔Gの測定空所5と全く同じ寸法構成の測定空所1
4ヶM己、かつこの空所14と空所5とが短で)くかつ
太い連通路で遅過ずるよって配置された第3図の放射l
@検出部9と全く同451に構成された放射線検出部1
5が検出部9のほか(投けられτいることと、第3図の
信号処理部lOのかわりに、検出部9が出力する検出信
号6aと噴出部15が出力する前記信号61(対応した
検出信号15aとが入力される信号処理部16が設けら
れていることで、この場合、空所14(は被測定物11
が挿入されないように放射線検出部15が構成されてい
るので、検出信号151は常時気体12の密度Daの経
時変化に応じた(51式左辺の電圧値E0を呈すること
になる。そうして、第4図でおいては、信号処理部16
が、信号61が常時呈する電圧値Exと信号15aが常
時呈する電圧値E、とを用いて(52式右辺の演算を行
って【5)式左辺のXを表す信号16aを出力するよう
に構成されていて。
Then, Fig. 4/cS 1:, where V differs from Fig. 3, measurement space 1 with exactly the same dimensional configuration as measurement space 5 with interval G.
The radiation l in Fig. 3 is arranged such that the space 14 and the space 5 are short, and there is a delay due to the long and thick communicating path.
@ Radiation detection section 1 configured exactly the same as detection section 9 451
In addition to the detection unit 9, the detection signal 6a outputted by the detection unit 9 and the signal 61 outputted by the ejection unit 15 (corresponding to By providing the signal processing section 16 to which the detection signal 15a is input, in this case, the space 14 (is the object to be measured 11).
Since the radiation detection unit 15 is configured such that the radiation detection unit 15 is not inserted, the detection signal 151 always corresponds to the change in the density Da of the gas 12 over time (it exhibits the voltage value E0 on the left side of Equation 51. In FIG. 4, the signal processing unit 16
is configured to perform the calculation on the right side of equation (52) using the voltage value Ex that the signal 61 always exhibits and the voltage value E that the signal 15a always exhibits to output the signal 16a representing the X on the left side of the expression (5). It has been done.

放射@厚さ計131検出部9及び15と信号処理部16
とで構成されている。
Radiation@thickness gauge 131 detection units 9 and 15 and signal processing unit 16
It is made up of.

厚さ計13は上述のよう(aCi5!されているので。The thickness gauge 13 is as described above (aCi5!).

気体12の密度り、の変化(もとづ(誤差を含むことの
ない正確な厚さ測定を信号16a/cよって行い得るこ
とが明らかであるが、この厚さ計13の場合、検出B9
と同じ構成の放射線検出部が二組必要でありかつ検出部
9及び15を構成する放射線源2.#源容器3.放射線
検出器4及びブIJアンプ6はいずれも製作に面倒な作
業を要するため厚さ計13の構成が複雑で、この結果厚
さ計13の製作並び保守が容易でないという問題点があ
る。
It is clear that an accurate thickness measurement without any errors can be made by the signals 16a/c, but in the case of this thickness gauge 13, the detection B9
Two sets of radiation detection sections having the same configuration as the radiation source 2. which constitutes the detection sections 9 and 15 are required. # Source container 3. Since both the radiation detector 4 and the IJ amplifier 6 require troublesome work to manufacture, the structure of the thickness gauge 13 is complicated, and as a result, there is a problem that manufacturing and maintenance of the thickness gauge 13 are not easy.

本発明の目的#工、放射線検出部15のかわりに気体1
2の圧力と温度とを測定する圧力計と@置針とを用いる
ことによって厚さ計の構成を簡単にし、もって厚さ計の
j11昨並びに保守を容易で行うことができるようにす
ることにある。
The purpose of the present invention is to use a gas 1 instead of the radiation detection section 15.
The purpose of the present invention is to simplify the structure of the thickness gauge by using a pressure gauge and a positioning needle for measuring pressure and temperature, thereby making the thickness gauge easy to operate and maintain. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため1本発明によれば、放射線源と
、この放射4I源(対して所定の間隔Gを有する測定空
所を介して対向配電されかつ前記放射#源が放射する放
射縁を検出して検出した前記放射1nstic応じた第
1検出信号を出力する放射線検出器と、前記第1検出信
号を電圧信号に変涜しかつ増幅して前記線量に比例した
電圧Eを有する第2検出信号として出力するプリアンプ
と、前記測定空所における気体の圧力Pを検出して前記
圧力Pを表す圧力信号を出力する圧力計と。
In order to achieve the above objects, the present invention includes a radiation source, a radiation source (with respect to which power is distributed facing each other via a measurement space having a predetermined interval G, and a radiation edge emitted by the radiation source). a radiation detector that detects and outputs a first detection signal according to the detected radiation 1nstic; and a second detection that converts the first detection signal into a voltage signal and amplifies it to have a voltage E proportional to the dose. a preamplifier that outputs a signal; and a pressure gauge that detects the pressure P of gas in the measurement cavity and outputs a pressure signal representing the pressure P.

前記測定空所における前記気体の絶対温度Tを検出して
前記絶対温度Tを表す温度信号を出力する温度計と、前
記第2横田信号と前記圧力信号と前記温度信号とが入力
され、かつ前記測定空所に被測定物が挿入されていない
伏!1における時刻t。
a thermometer that detects the absolute temperature T of the gas in the measurement cavity and outputs a temperature signal representing the absolute temperature T; the second Yokota signal, the pressure signal, and the temperature signal are input; No object to be measured is inserted into the measurement space! Time t in 1.

で第1制御信号が入力されることによつ℃前記時刻tI
Kおける前記第2検出信号の前記電圧Eの値Eoaと前
記時刻t、VCおける前記圧力信号が表す前記圧力Pの
値Pg1と前記時刻t、における前記温度信号が表す前
記絶対温度Tの値Taとを記憶し、かつ前記時刻t1よ
りも遅い時刻tよで第2制御信号が入力されることによ
つ″CmCm側1. [おける前記第2慣出信号の前記
電圧Eの!@Bxと前記時刻【、における前記圧力信号
が表す前記圧力Pの値Pbと前記時刻り、における前記
温度信号が表す前記絶対温度Tの値Tbと前記各記憶値
Eが゜Pa及びTaとを用いて(1)右辺辺の演算を行
ってこの演算結果のXを表す厚さ信号を出力する信号処
理部とを備え、前記厚さ信号によって前記測定空所(挿
入された前記被測定物の厚さXを測定する放射線厚さ計
であつ℃、ここに。
By inputting the first control signal at the time tI
The value Eoa of the voltage E of the second detection signal at K and the time t, the value Pg1 of the pressure P represented by the pressure signal at VC and the value Ta of the absolute temperature T represented by the temperature signal at time t. and by inputting the second control signal at a time t later than the time t1, the voltage E of the second run-in signal at ``CmCm side 1. Using the value Pb of the pressure P represented by the pressure signal at the time [, the value Tb of the absolute temperature T represented by the temperature signal at the time, and the stored values E of °Pa and Ta, 1) a signal processing unit that performs calculations on the right side and outputs a thickness signal representing the calculation result X; Measure the radiation thickness with a thickness meter at ℃, here.

UIlfiは前記被測定物の前記放射!I(対する吸収
係数。
UIlfi is the radiation of the object to be measured! I (absorption coefficient for

D、は前記被測定物の密度。D is the density of the object to be measured.

U8は前記気体の前記放射線に対する吸収係数。U8 is the absorption coefficient of the gas for the radiation.

Mは前記気体の分子量、 Bは普遍気体定数。M is the molecular weight of the gas, B is the universal gas constant.

であるように放射線厚さ計を構成し。Configure the radiation thickness gauge as follows.

!=−(1/(U!n@Dm) l−[tn(Ex/E
oa)+U、−((P b/Tb ) (P a/T 
a ) l・(M/R)・G〕・・・(1)また5本発
明によれば。
! =-(1/(U!n@Dm) l-[tn(Ex/E
oa)+U, -((P b/Tb ) (P a/T
a) l・(M/R)・G]...(1) Also according to the present invention.

放射線源と、この放射線源に対して所定の間隔G?呵す
る測定空所を介して対向配電さnかつ前記放射線源が放
射する放射檜を検出して検出した前記放射線の@i[に
応じた第1検出信号を出力する放射1ilJ!検出器と
、=記第1慣出信号を電圧信号にf慣しかつ1繻して前
記a1/C比例した電圧Eを有する第2検出信号として
圧力するプリアンプと、前記測定空所における気体の圧
力Pを検出して前記圧力Pを表す圧力信号を出力する出
力計と。
A radiation source and a predetermined distance G? A radiation source 1ilJ! which detects a radiation beam emitted by the radiation source and outputs a first detection signal corresponding to @i[ of the detected radiation; a detector, a preamplifier for converting the first run-in signal into a voltage signal and applying it as a second detection signal having a voltage E proportional to the a1/C; an output meter that detects pressure P and outputs a pressure signal representing the pressure P;

前記測定空所における前記気体の絶対温度Tを検出して
前記絶対温度Tを表すa度信号を出力する温度計と、前
記圧力信号と前記温度信号とが入力され、かつ前記測定
空所に被測定物が挿入されていない状@における時刻t
、で第1制御信号が入力されることによって前記時刻t
、/cおける前記圧力信号が表す前記圧力Pの値PRと
前記時刻t。
a thermometer that detects the absolute temperature T of the gas in the measurement cavity and outputs an a degree signal representing the absolute temperature T; Time t when no measurement object is inserted @
, by inputting the first control signal at the time t.
, /c and the value PR of the pressure P represented by the pressure signal at the time t.

における前記温度信号が表する前記絶対温度Tの値Ta
とを記憶し、かつ前記時刻を童よりも遅い時刻1.で第
2制御信号が入力されることによって前記時刻t1にお
ける前記圧力信号が表す前記圧力Pの値Pbと前記時刻
1tにおげろ前記温度信号が表す前記絶対温度Tの値T
bと前記各記憶櫃Pa及びTaとを用いて(2右方辺の
演算を行ってこの演算結果のΔDaを表す府芙変化信号
を出力する第1信号処理部と、前記第2恢呂信号と前記
密度変化信号とが入力され、かつ前記時刻【Iで前記第
1制呻信号が人カされることによって前記時刻【1/c
:F6げる前記第2検出信号の前記電圧Eの値Eoaを
記1し、かつ前記時刻1で前記第2制御信号が人力され
ることによって前記時刻t、 +における前記第2検出
信号の前記電圧Eのl1g、と前記時刻1以f4cおい
て前記密度変化信号が表す前記ΔDaと前記記憶値Fi
oaとを用いてG)右辺辺の演算を行ってこの演算結果
のXを表す厚さ信号を出力する第2信号処理部とを備え
、前記厚さ信号によって前記測定空所(挿入された前記
被測定物の厚さXを測定する放射線厚さ計であって。
The value Ta of the absolute temperature T represented by the temperature signal at
, and set the time to a time later than the child's time 1. By inputting a second control signal, the value Pb of the pressure P represented by the pressure signal at the time t1 and the value T of the absolute temperature T represented by the temperature signal at the time 1t are changed.
a first signal processing unit that performs a calculation on the right side of (2) using b and the storage boxes Pa and Ta and outputs a change signal representing ΔDa of the calculation result; and the density change signal are input, and the first suppressing signal is inputted at the time [I, so that the time [1/c
: F6 indicates the value Eoa of the voltage E of the second detection signal, and the second control signal is manually input at the time 1, so that the value of the second detection signal at the time t, + is l1g of the voltage E, the ΔDa represented by the density change signal from the time 1 to f4c, and the stored value Fi.
G) a second signal processing unit that performs a calculation on the right-hand side using G) and outputs a thickness signal representing the result of this calculation, This is a radiation thickness meter that measures the thickness X of an object to be measured.

ここ/c。here/c.

Mは前記気体の分子量。M is the molecular weight of the gas.

Rは普遍気体定数。R is the universal gas constant.

Ulは前記被測定物の前記放射線に対する吸収係数。Ul is the absorption coefficient of the object to be measured for the radiation.

Dmは前記被測定物のそ皇。Dm is the height of the object to be measured.

Uatヱ前記気体の前記放射線九対する吸収係数、であ
るように放射線源さ計をSaし。
Set the radiation source meter so that the absorption coefficient of the gas for the radiation 9 is.

ΔD a== ((Pb/Tb)−(Pl/T3 ) 
l ・(M/R) 囮・・C2>x= −(l/(Ur
naDff(1) l”(tn (Ex/E0.)+U
a@ΔDa@G1・・・・・・・・・ (3) さら(1本発明によれば。
ΔD a== ((Pb/Tb)-(Pl/T3)
l ・(M/R) Decoy・・C2>x= −(l/(Ur
naDff(1) l”(tn (Ex/E0.)+U
a@ΔDa@G1 (3) Furthermore (1 according to the present invention).

放射′aTNと、この放射線検出器して所定の間隔Gを
有する測定空所を介して対向配置されかつ前記放射線源
が放射する放射線を検出して検出した前記放射線の線量
に応じた第1検出信号を出方する放射線検出器と、前記
第1検出信号を電圧信号に変換しかつ増幅して前記線量
に比例した電圧Eを有する第2検出信号として出力する
プリアンプとを備えた放射線検出srcおげろ前記測定
空所に挿入される被測定物の前記放射蕨九対する吸収係
数Uffiと前記被仰]定物の密度Dmと前記測定空所
における気体の前記放射線に対する吸収係数Uaとを測
定してそれぞれの測定値を記憶する第1手順と。
radiation 'aTN, and a first detection according to the dose of the radiation detected by detecting the radiation emitted by the radiation source, which is arranged opposite to each other via a measurement space having a predetermined interval G between the radiation detectors; A radiation detection src sensor comprising a radiation detector that outputs a signal, and a preamplifier that converts the first detection signal into a voltage signal, amplifies it, and outputs it as a second detection signal having a voltage E proportional to the dose. Measure the density Dm of the object and the absorption coefficient Ua of the gas in the measurement space for the radiation; a first step of storing each measured value;

前記測定空所に前記被測定物が播入され℃いない伏僧に
ある場合の時刻【1における前記第2検出信号の前記電
圧Eの値E。aを記憶すると共に。
The value E of the voltage E of the second detection signal at time [1] when the object to be measured is injected into the measurement space and is in a low position. Along with remembering a.

前記時刻監、での前記測定空所でおける前記気体の圧力
Pを測定して測定結果の圧力値Paを記憶しかつ前記時
刻1.での前記測定空所でおける前記気体の絶対@fT
を測定して測定結果のmtL値T値上1憶する第3手順
と。
The time monitor measures the pressure P of the gas in the measurement space and stores the pressure value Pa of the measurement result, and at the time 1. The absolute @fT of the gas in the measurement cavity at
and a third step of measuring the mtL and T values of the measurement results.

前記時刻t1よりも遅い時刻t、でおける前記第2検出
信号の前記電圧Eの値Exを記憶すると共に、前記時刻
1での前記渭1定空所でおける前記気体の圧力Pを測定
して測定結果の圧力値Pbを記憶しかつ前記時刻t、で
の前記測定空所における前記気体の絶対温度Tを測定し
て測定結果の温度値Tbを記憶する第3手順と。
Storing the value Ex of the voltage E of the second detection signal at a time t later than the time t1, and measuring the pressure P of the gas at the 1st constant space at the time 1; a third step of storing the pressure value Pb of the measurement result, and measuring the absolute temperature T of the gas in the measurement space at the time t, and storing the temperature value Tb of the measurement result;

前記第1乃至第3手順で記憶した前記各記憶値Unn’
 Dffl”a’ E0a、Pa”r8. EX、Pb
及びTbを用いて(1)右辺辺の演1を行う第4手順と
からなり、前記第4手、頃の演算1笥果としての前記(
1)左辺辺1) xを前記g1釧定物の値さの測定値と
する放射線を牛−・た4さ測定方法であって、二二Il
c。
Each of the stored values Unn' stored in the first to third steps
Dffl"a' E0a, Pa"r8. EX, Pb
and a fourth step of performing (1) operation 1 of the right-hand side using (1) and Tb, and the above (
1) Left side 1) A method of measuring radiation, where x is the measured value of the value of the g1 constant object, and 22Il
c.

Uoは前記4vL測定物の前記放射線に対する吸収係数
Uo is the absorption coefficient of the 4vL measurement object for the radiation.

DB rl FTo 4e a 、jIt i 物’3
 FJ! K、Uaは前」ピ気不ユリ躬4ピ放射Δて対
する吸収係数。
DB rl FTo 4e a,jIt i thing'3
FJ! K and Ua are the absorption coefficients for the previous radiation Δ.

Mis前記気体の分子量。Mis Molecular weight of the gas.

Rは普遍気体定数 であるように放射組を用いた厚さ測定方法を構成する。R is the universal gas constant A thickness measurement method using a radiation set is constructed as follows.

X = −+ 1/(Urn−D、 > l・Cl n
 (E x/E 。3 )+U 、 −[F’fi/T
o )−(Pa/Ta) 1・lid/R)−G:)−
・・= (1)〔作用〕 上記の;ウニ構成すると、 (23式と(31式とから
(1J式が得られることは明らかであり、また、CD式
が6)式/C2げろ這圧値E0の測定空所における気体
の!WitDaの変化にもとづく変化を考慮した式にな
っていることを後述のようにして証明することができる
ので、したがって、本発明によれば、いずれも表昨九面
倒な作業を要する放射線源2、線源容1s3.放射線検
出器4及びプリアンプ6を備えた上述1つ放射線検出部
150;不要で、この検出部15のD・わりに上記気体
の圧力と温度とを検出する圧力計と温度計とを用いるこ
とによって厚さ計の*成が簡単化されることでなるので
、WI局、本発明によれば厚ざ計の、a作並びに保守を
容易だ行うことができることになる。
X = −+ 1/(Urn-D, > l・Cl n
(Ex/E.3)+U, -[F'fi/T
o )-(Pa/Ta) 1.lid/R)-G:)-
...= (1) [Effect] If we configure the sea urchin above, it is clear that the equation (1J) can be obtained from the equations (23 and (31), and the CD equation becomes the equation 6)/C2 gas crawling pressure It can be proven as described below that the formula takes into account changes based on changes in !WitDa of the gas in the measurement space of value E0. Therefore, according to the present invention, both of the above The above-mentioned one radiation detection unit 150, which is equipped with a radiation source 2, a radiation source capacity 1s 3, a radiation detector 4, and a preamplifier 6, which requires a cumbersome work; unnecessary, and the pressure and temperature of the above gas is By using a pressure gauge and a thermometer that detect It will be possible to do it.

〔実厖例〕[Actual example]

第1図は本発明(よる放射線厚さ計の一実施例17の構
成図で1本図においては、第3図におけるものと同じも
の(第3図の場合と同じ符号がつけである。
FIG. 1 is a block diagram of an embodiment 17 of a radiation thickness meter according to the present invention. In this figure, the same components as those in FIG. 3 (the same reference numerals as in FIG.

第1図において、18は測定空所5における気体12の
圧力Pを検出してこの圧力Pを表す圧力信号18a出力
するようにした圧力計、19は空所5における気体12
の絶対a度Tを検出してこの温IfTを表す温度信号1
9aを出力するようにしたm[計、20はプリアンプ6
6”−出力する第2検出信号6aと圧力信号18aと温
度信号19mと!11制御信20aと第2制御信号20
bとが入力され、これらの信号を用いて以下で説明する
信号fiF1行って出力信号20Cを出力するよってし
た信号処1部で、厚さ計17は放射線検出部9と圧力計
18と温度計19と信号処理部2oとでfR成されてい
る。
In FIG. 1, 18 is a pressure gauge that detects the pressure P of the gas 12 in the measurement space 5 and outputs a pressure signal 18a representing this pressure P; 19 is the pressure gauge of the gas 12 in the measurement space 5;
A temperature signal 1 representing this temperature IfT by detecting the absolute a degree T of
m that outputs 9a [total, 20 is preamplifier 6]
6”-Output second detection signal 6a, pressure signal 18a, temperature signal 19m, and !11 control signal 20a and second control signal 20
b is input, and these signals are used to perform the signal fiF1, which will be explained below, and output the output signal 20C. 19 and the signal processing section 2o constitute an fR.

さ℃、厚3計17は上述のよ5+こ構成され℃いるので
、第2凍出信号6aが呈する前述の′亀王値Eo&工(
6)式で示したように気体12の密度Da に応じ℃変
化することになり、したかつ℃、今、測定空所5て被測
定物11が挿入されていない吠聾における時刻り、の時
!1匿Daがり、1で電圧E0がE。aであったとする
と(61式からfTJ式が得られ、また1時刻t。
Since the total thickness 17 is composed of the above-mentioned 5+ degrees Celsius, the above-mentioned ``Kaisei value Eo &
6) As shown in the equation, the temperature will change depending on the density Da of the gas 12, and the time at which the measurement space 5 and the object to be measured 11 are not inserted is now ℃. ! When 1 and Da are 1, the voltage E0 becomes E. If it is a (fTJ formula is obtained from formula 61, and 1 time t.

よりも優の時刻りの時密度DaがDa□で電圧E0がE
。bであったとすると同じく(6)式から3)式が得ら
れるので、Da2””Dal+ΔDaとすると■式と侶
)式とから9)式が導かれる。
When the time is better than that, the density Da is Da□ and the voltage E0 is E
. If it is b, then equation 3) is obtained from equation (6), so if Da2""Dal+ΔDa, equation 9) is derived from equation ① and equation d).

”oa=Eoo・exP(Ul・Da+”G)   =
=  (のEoo;”oo ” exP (Ul ・D
Bz・G )   ・−”=  (g)EOt) = 
Eg3 ’ eXp (−(J aaΔDJl’G) 
  −=  (9)故九、上述の時刻りで検出信号6a
が呈する電圧ED頃がExであったとすると、 T51
式のE。
”oa=Eoo・exP(Ul・Da+”G)=
= (Eoo;”oo” exP (Ul ・D
Bz・G) ・−”= (g)EOt) =
Eg3' eXp (-(J aaΔDJl'G)
-= (9) Detection signal 6a at the above time
If the voltage around ED exhibited by is Ex, then T51
E of the formula.

が(9)式のE。bVC等しいとすること九よって、密
度Daf′)経時変化ΔDa紮考・献し゛・−仮測定物
11の1−vさXを正しく求めろ演1式(10)が得ら
れろことになろ。
is E in equation (9). Assuming that bVC is equal to 9, the density Daf') change over time ΔDa Analysis and Dedication - Correctly determine the 1-v length

χ=−11/(U、・Dカ))・tzn (F;、/E
o3)+U、 。
χ=-11/(U, ・Dka))・tzn (F;, /E
o3) +U, .

ΔD、−Gl四−・(y)) Lかろ(2、二こで1式体12o〕浬切気体であるとす
ると、Mを気体12の分子−,Rを*a気体定数として
、質tWの気体12つ1占めろg撰Vとこの気体12の
圧力及び温度P、Tとの間に川辺の(11)式の関係O
りあり2また上述の密度り、と誓1Wと@遺Vとの間y
r +x (12)式の関係があるので、(11)式と
(12)式とから(13)式が得もねる。
ΔD, -Gl4-・(y)) L (2, 2 = 1 formula 12o) Assuming that it is a gas, M is the molecule of gas 12 -, R is *a gas constant, and the quality tW The relationship O expressed by Kawabe's equation (11) is between the 12 gases 1 occupied by g, V, and the pressure and temperature P, T of this gas 12.
Ariari 2 Also, the above-mentioned density, and oath 1 between W and @I V y
r +x Since there is the relationship of equation (12), equation (13) can be obtained from equation (11) and equation (12).

PV−W−(R/M)−T     囮−(値)D、 
= WlV         曲・・ (12)Da=
{P/T)−(M/R)    −・・−(13)した
がって、上述の時刻【、の時気体12の圧力及び履″v
:、がそれぞれP、 、 Taであったとし、また、上
述の時刻I、のJ#気坏12’JJ)圧力及び温度o1
; t”−ぞバPb、Tbであったと′しろと1時刻t
PV-W-(R/M)-T Decoy-(value)D,
= WlV song... (12) Da=
{P/T)-(M/R)-- (13) Therefore, at the above-mentioned time [, the pressure of the gas 12 and the
: , are P, , Ta, respectively, and the pressure and temperature o1 at the above time I,
; t”-Zoba Pb, Tb and 1 time t
.

でJ〕密鮫I)3.と俄刻t2での漕寡D□、との上述
したi J D 3−D ;12 0al+S (13
)式(もユづ(・て(14)式び〕・よ5 に;’7 
”1ノ)で @ y) 〔x4)式ブ)ΔD3を(10
)式(代入するととによって(T5)式がイ尋らtt 
”:r :と江なろ。
De J] Sea Shark I) 3. The above-mentioned i J D 3-D ;12 0al+S (13
) ceremony (moyuzu(・te(14) ceremonybi)・yo5 ni;'7
``1 no) @ y) [x4) formula b) ΔD3 (10
) expression (by substituting and , the expression (T5) becomes tt
”:r:Toenaro.

ΔD、1(Pb/Tb)−(Pa、/T1口・(\(/
It、 )−(14)x=−値I((:、、・DIT(
1)l−[zn(Bx/Bo、)−+4J、−I(Ph
4b)−(Pl、Ir、 ) l−(M/R)−0J・
・・・(15) ところが、第1図/C第3いて1;、信号処理部2゜が
、上述1〕時刻1で該処理部2o九第1制釘信号203
つ)入力されろこと九よって、この時刻t。
ΔD, 1 (Pb/Tb) - (Pa, /T1 mouth・(\(/
It, )−(14)x=−value I((:,,・DIT(
1) l-[zn(Bx/Bo,)-+4J,-I(Ph
4b)-(Pl, Ir, ) l-(M/R)-0J・
...(15) However, in FIG.
Therefore, this time t.

rおける第2険出信号6aの電圧Eの値Iε。、と。The value Iε of the voltage E of the second output signal 6a at r. ,and.

時刻【、に寸v;け石工力信号18aが表す爪体12勺
圧力PのrjiP、と、時刻t、 cおけろ温度信号1
9aが表す気体12の絶対温度Tの値゛raとな記憶し
、さらて、−上述の時刻t、で処理部2o/C第2制1
1111信号20F)つ;入力されろことてよって、こ
の処r3K・571) y予め肥!iaさせらh−(い
ろ上述の各物理iitUm、 [;1. ■指、 M及
びRと、時刻”1/jjrTける信号61の電圧Eの頭
F+Jxと1時刻暖、におけろ圧力信号182 ウ’1
表す圧力Pn値Pbと1時刻t。
At time t, the masonry force signal 18a represents the pressure P of the claw body 12, and the time t, the temperature signal 1
The value ra of the absolute temperature T of the gas 12 represented by 9a is stored, and furthermore, at the above-mentioned time t, the processing unit 2o/C second control 1 is stored.
1111 signal 20F); Since it is input, this place r3K・571) y Fertilize in advance! ia leta h- (Iro each of the above-mentioned physical iitUm, U'1
Representing pressure Pn value Pb and one time t.

(おけろ温度信号19aが畏す@IfTの値’rbと。(The value of @IfT that temperature signal 19a is afraid of is 'rb.

A?T述した処理部20における各記憶値E0□、P。A? Each stored value E0□, P in the processing unit 20 mentioned above.

及びT1とを用いて(15)右辺辺の演算を行ってこの
償算萌果としての(L5)左辺辺のXを表す厚さ信号と
しての紡述の信号20Cを出力するように構成されてい
る。
and T1 to perform the calculation on the right side (15) and output a spinning signal 20C as a thickness signal representing (L5) X on the left side as the result of this compensation. There is.

したがって、厚さ計17(よれば、厚さ信号20CrC
よつ℃被測定物11の+9[さXを気体12の密度の変
化(もとづく誤差を含むことなく正しく測定することが
できろわけで、この厚さ計17の場合、−度処理部20
W:電圧値E、1.圧力値P□及び温度fiTaを記憶
させろと、以後、はぼ連続的に気体12の密IfD□の
経時変化(もとづく上記測定誤差を補償した厚さ信号2
0Cが得られることがと述した所から明らかであるから
、1マさ計17(よれば正確な厚さ測定を常時極めて容
易(行うことができること(なる、そうして、また、こ
の厚ご1117の場合、いずれもN1九面倒な作業なダ
する衣?1線挿2.線源容43.放剰線検出器4及びブ
11ア/プロを備えた上述の放射@噴出部15のかわり
(圧力計18と温度計19と髪用いろこと(よって′γ
さ計17つ壱祝う1上述した従来の1厚さ計13のF′
値Iay、よりも」単(なっていることが明らかである
から、厚さ計17の構成でよれば、該厚さ計の製作並び
【保守をまことに容易(行うことかでオること(なる。
Therefore, the thickness gauge 17 (according to the thickness signal 20CrC
It is possible to accurately measure +9 [X
W: voltage value E, 1. After being told to memorize the pressure value P□ and the temperature fiTa, the change over time of the density IfD□ of the gas 12 (based on the thickness signal 2 which compensated for the measurement error described above) is continuously recorded.
It is clear from the above that 0C can be obtained, so it is very easy to carry out accurate thickness measurements at all times. In the case of 1117, all of them require N19 troublesome work.1 line insertion 2. source container 43. radiation detector 4 and bulb 11a/pro. (Use pressure gauge 18, thermometer 19, and hair (therefore, ′γ
Thickness is 17 in total. 1 Thickness is 13 in total.
It is clear that the value Iay is greater than the value Iay, so the configuration of the thickness gauge 17 makes it extremely easy to manufacture and maintain the thickness gauge. .

第2図は木発明九よる第1図(示した!!楕例とは異な
る実施例として0放躬線厚さ計21の構成図で、木’;
;’+の第1図とりなる所は、圧力信号18aと温度信
号19aとが入力され、かつ−上述の時刻1tで第1制
仰信号20aが入力されろこと℃より℃この時刻【、に
おけろ信号18mが表す圧力値Paと時刻1.におけろ
信号19aが表すa#c傭Taとを記憶し、かつ上述の
時刻1で第2制匈信号2が)が入力されろこと(よって
この時刻1゜(おけろ信号18濡が表す圧力値Pbと時
刻【、−おけろ信号192が表す温度値TI、と前記の
各組Ta4i:jIVPa及びTaとを用いて(14)
右辺の演算を行りてこの演算結果のΔDaを表すお質変
化信号22aを出力する第11号処理部22と、第2検
出信号61と密度変化信号22aとが入力され、かつ時
刻値で第1制御信号20aが入力されることによってこ
の時刻E1における検出信号6aの電圧値goaを記憶
し、かつ時刻上、で第2制岬信号20bが入力されるこ
とによってこの時刻【!における信号6aの電圧値Ex
と時刻1以降において信号22aが表す密度変化量lD
aと前記紀l値Eoaとを用いて(10)右辺辺の演算
を行ってこの演算結果のXを表す厚さ信号231を出力
する第2信号処理部23とが、第1図の信号処理部20
のかわり(設けられていることで、厚さ計21ににいて
も、信号23mでよって被測定物11の厚さXを正確に
測定することができ、また、この場合厚さ計21の製昨
羞び(保守を容易に行い得ることは特(説明するまでも
なく明らかである。
Figure 2 is a block diagram of the 0-radial thickness gauge 21 as an embodiment different from the elliptical example shown in Figure 1 (shown in Figure 1) according to Wood Invention 9;
'+ in Figure 1 is that the pressure signal 18a and the temperature signal 19a are input, and - the first restraint signal 20a is input at the above-mentioned time 1t. Pressure value Pa and time 1. At this point, remember that the a #c signal 19a represents a, and the second control signal 2 is input at the above-mentioned time 1. Using the pressure value Pb, the time [, - the temperature value TI represented by the stop signal 192, and each of the above-mentioned sets Ta4i:jIVPa and Ta, (14)
The eleventh processing unit 22 performs the calculation on the right side and outputs the quality change signal 22a representing ΔDa of the calculation result, the second detection signal 61 and the density change signal 22a are input, and the second detection signal 61 and the density change signal 22a are inputted, and By inputting the first control signal 20a, the voltage value goa of the detection signal 6a at this time E1 is stored, and by inputting the second control signal 20b at the time E1, the voltage value goa of the detection signal 6a at this time E1 is stored. The voltage value Ex of the signal 6a at
and the amount of density change lD represented by the signal 22a after time 1
The second signal processing unit 23 performs the calculation on the right side (10) using a and the thickness value Eoa and outputs a thickness signal 231 representing the calculation result X, which performs the signal processing shown in FIG. Part 20
(By providing the thickness gauge 21, it is possible to accurately measure the thickness X of the object to be measured 11 using the signal 23m. It is obvious that maintenance is easy (there is no need to explain it).

〔発明の効果〕〔Effect of the invention〕

上述したよう(2本発明においては。 As mentioned above (in the present invention).

放射線源と、この放射線源に対して所矩の間隔G?有す
る聾(定空所を介して対向配置されかつ放射嘘源〇−放
射する放射−を検出して検出した前記放射線の11で応
じた第1検出情号を吊刀する放射−検出器と、前記第1
検出儒号を一4圧信号(変ゆしかつ増感して前記線量に
比例した電圧Eを有する再2S:15信号として出力す
るプリアンプと。
Radiation source and the given rectangular distance G to this radiation source? a radiation detector that detects a radiation source (radiation source) and transmits first detection information corresponding to the detected radiation in step 11; Said first
A preamplifier outputs the detected signal as a 14 voltage signal (modified and sensitized to a 2S:15 signal having a voltage E proportional to the dose).

演り定空所における気体の子方Pを検出して圧力Pを表
す圧力信号を出力する圧力計と、クリ定空所における前
記気体の絶対温度Tをゆ出して絶対温度Tを表す温度信
号を出力するH2計と、第2検出信号と圧力信号と温度
信号とが入力され、かつ測定空所に被測定物が挿入され
ていない状態における時刻【1で第1制御信号が入力さ
れることによつ1時刻【、ににける第2噴出信号の電圧
Eの値EI、aと時刻t1における圧力信号が表す圧力
Pの値P3と時刻【、における[Mlf信号が表す絶対
温度Tの値Taとを記憶し、かつ時刻t1よりも遅い時
刻1で第2制御信号が入力されろことてよって時刻t!
における第2慣出信号の電圧Eの値Exと時刻【。
A pressure gauge that detects the side P of the gas in the fixed space and outputs a pressure signal representing the pressure P, and a temperature signal that outputs the absolute temperature T of the gas in the clear space and represents the absolute temperature T. The first control signal is input at time [1] when the H2 meter that outputs the second detection signal, the pressure signal, and the temperature signal are input, and the object to be measured is not inserted into the measurement space. The value EI, a of the voltage E of the second ejection signal at time 1, the value P3 of the pressure P represented by the pressure signal at time t1, and the value of the absolute temperature T represented by the Mlf signal at time [, Ta and the second control signal is input at time 1, which is later than time t1, so that time t!
The value Ex of the voltage E of the second run-in signal at and the time [.

におけろ圧力信号り;表す圧力Pの値Pbと時刻hにお
ける温【信号が表す、8対温′xTf)値Tbと前記各
記Iii値E 、;1 * PB及びTaとを用いて(
11式右辺の演算を行ってこの演算電果7’2 Xを表
す4さ信号を出力する信号処1部とを備え、厚さ信号(
よって測定空所に挿入された被測定物の厚ざXを測定す
る放射線厚さ計であって、ここ/c。
Using the pressure signal Pb expressed by the pressure Pb and the temperature [8 vs.
A signal processing section 1 performs the calculation on the right side of Equation 11 and outputs a 4-square signal representing the calculation result 7'2X.
Therefore, it is a radiation thickness meter that measures the thickness X of a measured object inserted into a measurement space, where /c.

U!!Iは前記被測定物の前記放射婦九対する吸収係数
U! ! I is the absorption coefficient of the object to be measured for the radiation.

DInは前記被測定物の密度。DIn is the density of the object to be measured.

U2は前記気体の駒組放射線に対する吸収係数。U2 is the absorption coefficient of the gas for Komagumi radiation.

Mは両組気体の分子着。M is the molecular bond of both gases.

Rは普遍気体定数。R is the universal gas constant.

であるよって放射線厚さ計を構成し。This constitutes a radiation thickness meter.

x=−(1/(UIl、@D−)l・Ctn (E X
/B 0a)+U a・((Pb/Tb)  (Pa/
Ta)I・(ル’R)−G:l・−・−・(1)また2
本発明九おいては。
x=-(1/(UIl, @D-)l・Ctn (E
/B 0a)+U a・((Pb/Tb) (Pa/
Ta)I・(ru'R)-G:l・-・-・(1)Also 2
In the ninth aspect of the present invention.

放射線源と、この放射線源(対して所定の聞漏Gを有す
る測定空所を介して対向配置lすれかつ放射a源が放射
する放射線を検出して検出した放射線の線量に応じた第
1検出信号を出力する放射線検出器と、第1検出信号を
電圧信号に変換しかつ噌1!L″C荊記−童に比例した
電圧Eを有する第2検出信号として圧力するプリアンプ
と、測定空所における気体の圧力Pを検出して圧力Pを
表す圧力信号を出力する圧力計と、測定9所における前
記気体の糖対温度Tを検出して絶対温度Tを表す温度信
号を出力する温室計と2圧力信号と温度信号とが入力さ
れ、かつ測定空所に被測定物が挿入されていたい伏角に
おける時刻【、で第1制御信号が入力されることによっ
て時刻【1における圧力信号が表す圧力Pの値P、と時
刻!、における温度信号が一冴する絶対温度Tの値Ta
とを記憶し、かつ時刻1.よりも遅い時刻−で第2制岬
信号が入力されることによって時刻(、九おける圧力信
号が表す圧力Pの値Pbと時刻ttにおける温度信号が
表す絶対温度Tの値Tbと前記各記憶値P、及びTaと
音用いて(2)右辺辺の演算を行ってこの演算結果のΔ
Daを表す密度変化信号を出力する第1信号処理部と、
第2検出信号と密度変化信号とが入力され、かつ時刻1
にで第1fllJ御信号が入力されろことによって時刻
【Iにおける第2慣出信号の電圧Eの1直Boaを記4
シ、y+・つ時刻【、で第2制−言号つ・人力尽、7′
Lるこ5f工って時刻【、にSける第2慣出信号の屯2
Eの値Exと時刻t!以降ておいて密定♂化1号が表す
@記ΔDaと前記記ji直E0aとを用いて(31式右
辺の演算を行ってこの、X d侍14:のXを表す厚さ
信号を出力する第2信号処場部とを備え、厚さ官号てよ
って測定空所(挿入された被測定物の厚さXを測定する
放射線厚さ計であって、ここに。
A radiation source, and a first detection device that is arranged opposite to this radiation source via a measurement space having a predetermined leakage G, and detects the radiation emitted by the radiation source, and detects the radiation dose according to the detected radiation dose. a radiation detector that outputs a signal, a preamplifier that converts the first detection signal into a voltage signal and applies pressure as a second detection signal having a voltage E proportional to a pressure gauge that detects the pressure P of the gas at and outputs a pressure signal representing the pressure P, and a greenhouse meter that detects the sugar versus temperature T of the gas at nine measurement locations and outputs a temperature signal representing the absolute temperature T. 2. The pressure signal and the temperature signal are input, and the first control signal is input at the time [, when the object to be measured is inserted into the measurement space], so that the pressure P represented by the pressure signal at the time [1] is inputted. The value Ta of the absolute temperature T at which the temperature signal at the value P and time ! is clear
and time 1. By inputting the second control signal at a time later than , the value Pb of pressure P represented by the pressure signal at time tt, the value Tb of absolute temperature T represented by the temperature signal at time tt, and each of the above-mentioned stored values (2) Perform the calculation on the right side using the sounds P and Ta, and calculate Δ of this calculation result.
a first signal processing unit that outputs a density change signal representing Da;
The second detection signal and the density change signal are input, and the time 1
By inputting the first fllJ control signal at
shi, y + tsu time [, second system - word tsu tsu manpower, 7'
It's time for the second training signal at S.
Value Ex of E and time t! From now on, using the @notation ΔDa expressed by the compact #1 and the above-mentioned ji direct E0a (calculate the right side of equation 31 and output the thickness signal representing X of X d Samurai 14: A radiation thickness meter for measuring the thickness X of the inserted object (a radiation thickness meter for measuring the thickness X of the inserted object).

Mに前記気体の分子量。M is the molecular weight of the gas.

R2は普遍気体定数。R2 is the universal gas constant.

Urnは前記被測定物の前記放射線に対する吸収係数、 D工は前記被測定物の密度。Urn is the absorption coefficient of the object to be measured for the radiation; D is the density of the object to be measured.

U、は前記気体の前記放射lIi!に対する吸収係数、
であるよって放射線厚さ計を構成し。
U, is the radiation lIi! of the gas. absorption coefficient for,
This constitutes a radiation thickness gauge.

ΔD、={(Pb/Tb3−CP、/T(1)l・(M
/R)・・・・・・(2)x=−(1/(Um’Dm)
)・【tn(Ex/Eoa)−+−U、・ΔD、・G)
・・・・・−・・(3) さらで1本発明ににいて4゜ 放射@原と、この放射書源(対して所定の間隔Gを有す
る刊定空、折を介して対向配置さ飢かつ放射#源が1M
1’lする放射@を検出して慣用した放耐薔の@労で応
じた第1検出信号を圧力する放射線検出器と、第I検出
信号を訂圧言号lc更鷹しかつ増福して@記綴tF比ダ
」した電圧EをKする第2検出信号として上刃するアリ
アンプとを備えた放射線検出部でおける前記測定空所に
挿入される被グIj宝物の前記放射111!九対する吸
収係数U。と被測定物の密Y Dmと測定空所におけろ
気坏の前記放射線に対する吸収係数Uaとを伸j定して
それぞれの測定値を紀1する第1手順と。
ΔD,={(Pb/Tb3-CP,/T(1)l・(M
/R)...(2)x=-(1/(Um'Dm)
)・[tn(Ex/Eoa)−+−U,・ΔD,・G)
(3) Furthermore, according to the present invention, a 4° radiation@original and this radiation source (with a predetermined interval G) are arranged opposite to each other with a space between them. Starvation radiation #source is 1M
A radiation detector that detects the radiation @1'l and presses the first detection signal in response to the conventional radiation resistance @labor, and the first detection signal is revised and increased. The radiation 111 of the target Ij treasure inserted into the measurement space in the radiation detection unit equipped with an amplifier that uses the voltage E as a second detection signal to generate the voltage E as a second detection signal. Absorption coefficient U for 9. and a first step of elongating the density YDm of the object to be measured and the absorption coefficient Ua of the air in the measurement space for the radiation to obtain the respective measured values.

測定空所に被測定物が挿入されていない状nにある場合
の時刻1.におゆる第2検出信号の電圧Eの1直E。a
を記憶すると共で1時刻(菫での測定空所における気体
の圧力Pを測定して測定結果の圧力値Paを記憶しかつ
時刻t1での測定空所における気体の絶対温、IfTな
測定して測定結果の温度値Taを記憶する第3手、獣と
Time 1 when the object to be measured is not inserted into the measurement space n. 1 direct E of the voltage E of the second detection signal. a
At the same time, the pressure P of the gas in the measurement cavity at 1 time (violet) is memorized, the pressure value Pa of the measurement result is memorized, and the absolute temperature of the gas in the measurement cavity at time t1, IfT, is measured. The third method is to store the temperature value Ta of the measurement result.

峙刈1.よりも遅い時刻t、5%ける第2検出信号の電
圧Eの値Exを記憶すると共に、時刻りでの測定空所に
おける気体の圧力Pを測定して測定結果の圧力値Pbを
記憶しかつ時刻りでの測定空所における気体の絶対温度
Tを測定して測定結果の温度値Tbを記憶する第3手順
と。
Chikari 1. At a later time t, the value Ex of the voltage E of the second detection signal by 5% is stored, and the pressure P of the gas in the measurement space at the time is measured and the pressure value Pb of the measurement result is stored. a third step of measuring the absolute temperature T of the gas in the measurement space at the specified time and storing the temperature value Tb of the measurement result;

第1乃至第3手順で記憶した前記各記憶値Um。Each of the stored values Um stored in the first to third steps.

Dm、U3 * B 03 、P3 、 Ta* EX
、Pi)及びTI)を弔いて(11式右辺の演算を行う
第4手順とからなり、第4手順の演算結果としての(υ
左辺辺のXを被測定物の厚さの測定値とする放射線を用
いた厚さ測定方法であって、ここく。
Dm, U3 * B 03 , P3, Ta * EX
, Pi) and TI), and the fourth step of calculating the right-hand side of Equation 11.
This is a thickness measurement method using radiation in which X on the left side is the measured value of the thickness of the object to be measured.

Uoは前記被測定物の前記放射線九対する吸収係数。Uo is the absorption coefficient of the object to be measured for the radiation 9.

Doは前記被測定物の密度。Do is the density of the object to be measured.

Uaは前記気体の前記放射線(対する吸収係数、Mは前
記気体の分子量。
Ua is the absorption coefficient of the gas for the radiation (M) is the molecular weight of the gas.

Rは普遍気体定数 であるように放射線を用いた厚さ測定方法を構成した。R is the universal gas constant We constructed a thickness measurement method using radiation as follows.

X=  +t/(Um−Dm)+−[zrt(Ex/E
oa)+U、*f<F”b/Tb)−(F’a/Ta)
l−(M/R)−G)・・・・−・ (1) このため、と記のように構構成ると、C)式と(3)式
とから+11弐〇−得られることは明らかであり、また
、σ)弐が6)式九おける亀圧菫Eoの測定空所におけ
る気体の密’1t−Daの変化にもとづく変化を考寵し
た式になっていることを前述のようにして証明すること
ができるので、したがつτ1本発明によれば、いずれも
製作(面倒な1業を要する放射線源2.線源容器3.放
射線検出器4及びアリアンプ6を備えた上述の放射線検
出部15が不要で。
X= +t/(Um-Dm)+-[zrt(Ex/E
oa)+U, *f<F"b/Tb)-(F'a/Ta)
l-(M/R)-G)...- (1) Therefore, if we construct it as shown below, we can obtain +112〇- from Equation C) and Equation (3). This is obvious, and as mentioned above, σ)2 is an equation that takes into account changes in the gas density '1t-Da in the measurement space of the turtle pressure sumi Eo in equation 6). According to the present invention, the above-mentioned radiation source 2, source container 3, radiation detector 4, and amplifier 6, each of which requires a laborious task to manufacture, can be proved as follows. Radiation detection section 15 is not required.

この検出部15のかわりに上記気体の圧力と温度とを検
出する圧力計と温度計とを用いることによって厚さ計の
構成が簡単化されること(なるので。
By using a pressure gauge and a thermometer that detect the pressure and temperature of the gas in place of the detection unit 15, the configuration of the thickness gauge can be simplified.

結局、本発明vcは厚さ計の製作並びに保守を容易に行
うことができるという効果がある・
In conclusion, the VC of the present invention has the advantage that the thickness gauge can be manufactured and maintained easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発1jJ]fCよる放射線厚さ計の一実施愕
の構成図。 第2図は本発明(よる放射線厚さ計の第1図に示口た実
抱例とは異なる実癩例のW4戎図。 第3図は従来の放射縁厚さ計の値I成図。 第4図は第3図に示した放射襟慎さ軒とは異なる従来の
放射線・厚さ計の嘴或図である。 1、13.17.21・・・・・・放射線厚さ計、2・
・・・・・放射11[、2a・・・・・・放射線、4・
・・・・・放射線検出器、  4a・・・第1検出信号
、5.14・・・・・・測定空所、6・・・・・・プリ
アンプ、 5a・・・・・・第2検出信号、9.15・
・・・−・放射線検出器、  10.16.20・−・
−・−信号処理部、 10al 20CI231・・・
・・・厚さ信号、  11・・・・・・被測定物、12
・・・・・・気体。 18・・・・・・圧力計、181・・・・・・圧力信号
、  19・・・・・・温度計。 19m・・・・・・1変信号、20a・・・・・・第1
制御信号、20b・・・・・・第2制御信号、22・・
・・・・第1信号処理部、22a・・・・・・密度変化
信号、23・・・・・・第2信号処理部。
FIG. 1 is a block diagram of one implementation of the radiation thickness meter based on the present invention 1jJ]fC. Figure 2 is a W4 diagram of a leprosy case different from the actual example shown in Figure 1 of the radiation thickness gauge according to the present invention. Figure 3 is a value I diagram of a conventional radiation edge thickness gauge. Figure 4 shows the beak of a conventional radiation/thickness meter that is different from the radiation collar modest eaves shown in Figure 3. 1, 13.17.21...Radiation thickness meter , 2・
...Radiation 11[, 2a...Radiation, 4.
...Radiation detector, 4a...First detection signal, 5.14...Measurement space, 6...Preamplifier, 5a...Second detection Signal, 9.15・
...-Radiation detector, 10.16.20...
---Signal processing section, 10al 20CI231...
... Thickness signal, 11 ... Measured object, 12
······gas. 18...Pressure gauge, 181...Pressure signal, 19...Thermometer. 19m...1 odd signal, 20a...1st
Control signal, 20b...Second control signal, 22...
. . . 1st signal processing section, 22a . . . Density change signal, 23 . . . 2nd signal processing section.

Claims (1)

【特許請求の範囲】[Claims] (1)放射線源と、この放射線源に対して所定の間隔G
を有する測定空所を介して対向配置されかつ前記放射線
源が放射する放射線を検出して検出した前記放射線の線
量に応じた第1検出信号を出力する放射線検出器と、前
記第1検出信号を電圧信号に変換しかつ増幅して前記線
量に比例した電圧Eを有する第2検出信号として出力す
るプリアンプと、前記測定空所における気体の圧力Pを
検出して前記圧力Pを表す圧力信号を出力する圧力計と
、前記測定空所における前記気体の絶対温度Tを検出し
て前記絶対温度Tを表す温度信号を出力する温度計と、
前記第2検出信号と前記圧力信号と前記温度信号とが入
力され、かつ前記測定空所に被測定物が挿入されていな
い状態における時刻t_1で第1制御信号が入力される
ことによつて前記時刻t_1における前記第2検出信号
の前記電圧Eの値E_0_aと前記時刻t_1における
前記圧力信号が表す前記圧力Pの値P_aと前記時刻t
_1における前記温度信号が表す前記絶対温度Tの値T
_aとを記憶し、かつ前記時刻t_1よりも遅い時刻t
_2で第2制御信号が入力されることによって前記時刻
t_2における前記第2検出信号の前記電圧Eの値E_
xと前記時刻t_2における前記圧力信号が表す前記圧
力Pの値P_bと前記時刻t_2における前記温度信号
が表す前記絶対温度Tの値T_bと前記各記憶値E_0
_a・P_a及びT_aとを用いて(1)式右辺の演算
を行つてこの演算結果のxを表す厚さ信号を出力する信
号処理部とを備え、前記厚さ信号によつて前記測定空所
に挿入された前記被測定物の厚さxを測定する放射線厚
さ計であつて、ここに、 U_mは前記被測定物の前記放射線に対する吸収係数。 D_mは前記被測定物の密度、 U_aは前記気体の前記放射線に対する吸収係数、Mは
前記気体の分子量、 Rは普遍気体定数、 であることを特徴とする放射線厚さ計。 X=−{1/(U_m・D_m)}・〔ln(E_x/
E_0_a)+U_a・{(P_b/T_b)−(P_
a/T_a)}・(M/R)・G〕…(1)2)放射線
源と、この放射線源に対して所定の間隔Gを有する測定
空所を介して対向配置されかつ前記放射線源が放射する
放射線を検出して検出した前記放射線の線量に応じた第
1検出信号を出力する放射線検出器と、前記第1検出信
号を電圧信号に変換しかつ増幅して前記線量に比例した
電圧Eを有する第2検出信号として出力するプリアンプ
と、前記測定空所における気体の圧力Pを検出して前記
圧力Pを表す圧力信号を出力する圧力計と、前記測定空
所における前記気体の絶対温度Tを検出して前記絶対温
度Tを表す温度信号を出力する温度計と、前記圧力信号
と前記温度信号とが入力され、かつ前記測定空所に被測
定物が挿入されていない状態における時刻t_1で第1
制御信号が入力されることによって前記時刻t_1にお
ける前記圧力信号が表す前記圧力Pの値P_aと前記時
刻t_1における前記温度信号が表す前記絶対温度Tの
値T_aとを記憶し、かつ前記時刻t_1よりも遅い時
刻t_2で第2制御信号が入力されることによつて、前
記時刻t_2における前記圧力信号が表す前記圧力Pの
値P_bと前記時刻t_2における前記温度信号が表す
前記絶対温度Tの値T_bと前記各記憶値P_a及びT
_aとを用いて(2)式右辺の演算を行つてこの演算結
果のΔD_aを表す密度変化信号を出力する第1信号処
理部と、前記第2検出信号と前記密度変化信号とが入力
され、かつ前記時刻t_1で前記第1制御信号が入力さ
れることによつて前記時刻をt_1における前記第2検
出信号の前記電圧Eの値E_0_aを記憶し、かつ前記
時刻t_2で前記第2制御信号が入力されることによつ
て前記時刻t_2における前記第2検出信号の前記電圧
Eの値E_xと前記時刻t_2以降において前記密度変
化信号が表す前記ΔD_aと前記記憶値E_0_aとを
用いて(3)式右辺の演算を行つてこの演算結果のxを
表す厚さ信号を出力する第2信号処理部とを備え、前記
厚さ信号によつて前記測定空所に挿入された前記被測定
物の厚さxを測定する放射線厚さ計であつて、ここに、 Mは前記気体の分子量、 Rは普遍気体定数、 U_mは前記被測定物の前記放射線に対する吸収係数、 D_mは前記被測定物の密度、 U_aは前記気体の前記放射線に対する吸収係数、であ
ることを特徴とする放射線厚さ計。 ΔD_a={(P_b/T_b)−(P_a/T_a)
}・(M/R)…(2)x=−{1/(U_m・D_m
)}・(ln(E_x/E_0_a)+U_a・ΔD_
a・G}…(3) 3)放射線源と、この放射線源に対して所定の間層Gを
有する測定空所を介して対向配電されかつ前記放射線源
が放射する放射線を検出して検出した前記放射線の線量
に応じた第1検出信号を出力する放射線検出器と、前記
第1検出信号を電圧信号に変換しかつ増幅して前記線量
に比例した電圧Eを有する第2検出信号として出力する
プリアンプとを備えた放射線検出部における前記測定空
所に挿入される被測定物の前記放射線に対する吸収係数
U_mと前記被測定物の密度D_mと前記測定空所にお
ける気体の前記放射線に対する吸収係数U_aとを測定
してそれぞれの測定値を記憶する第1手順と、 前記測定空所に前記被測定物が挿入されていない状態に
ある場合の時刻t_1における前記第2検出信号の前記
電圧Eの値E_0_aを記憶すると共に、前記時刻t_
1での前記測定空所における前記気体の圧力Pを測定し
て測定結果の圧力値P_aを記憶しかつ前記時刻t_1
での前記測定空所における前記気体の絶対温度Tを測定
して測定結果の温度値T_aを記憶する第3手順と、 前記時刻t_1よりも遅い時刻t_2における前記第2
検出信号の前記電圧Eの値E_xを記憶すると共に、前
記時刻t_2での前記測定空所における前記気体の圧力
Pを測定して測定結果の圧力値P_bを記憶しかつ前記
時刻t_2での前記測定空所における前記気体の絶対温
度Tを測定して測定結果の温度値T_bを記憶する第3
手順と、 前記第1乃至第3手順で記憶した前記各記憶値U_m・
D_m・U_a・E_0_a・P_a・T_a・E_x
・P_b及びT_bを用いて(1)式右辺の演算を行う
第4手順とからなり、前記第4手順の演算結果としての
前記(1)式左辺のxを前記被測定物の厚さの測定値と
する放射線を用いた厚さ測定方法であつて、ここに、U
_mは前記被測定物の前記放射線に対する吸収係数、 D_mは前記被測定物の密度、 U_aは前記気体の前記放射線に対する吸収係数、Mは
前記気体の分子量、 Rは普遍気体定数 であることを特徴とする放射線を用いた厚さ測定方法。 X=−{1/(U_m・D_m)}・〔ln(E_x/
E_0_a)+Ua・{(P_b/T_b)−(P_a
/T_a)}・(M/R)・G〕……(1)
(1) A radiation source and a predetermined distance G with respect to this radiation source
radiation detectors that are arranged opposite to each other with a measurement space having a preamplifier that converts into a voltage signal, amplifies it, and outputs it as a second detection signal having a voltage E proportional to the dose; and a preamplifier that detects the pressure P of the gas in the measurement cavity and outputs a pressure signal representing the pressure P. a pressure gauge that detects the absolute temperature T of the gas in the measurement cavity and outputs a temperature signal representing the absolute temperature T;
The second detection signal, the pressure signal, and the temperature signal are input, and the first control signal is input at time t_1 when the object to be measured is not inserted into the measurement space. The value E_0_a of the voltage E of the second detection signal at time t_1, the value P_a of the pressure P represented by the pressure signal at time t_1, and the time t.
The value T of the absolute temperature T represented by the temperature signal at _1
_a, and a time t later than the time t_1.
By inputting the second control signal at _2, the value E_ of the voltage E of the second detection signal at the time t_2
x, the value P_b of the pressure P represented by the pressure signal at time t_2, the value T_b of the absolute temperature T represented by the temperature signal at time t_2, and each of the stored values E_0.
_a, P_a and T_a to calculate the right side of equation (1) and output a thickness signal representing x of the calculation result, A radiation thickness meter for measuring the thickness x of the object to be measured inserted into the object, where U_m is an absorption coefficient of the object to be measured for the radiation. D_m is the density of the object to be measured; U_a is the absorption coefficient of the gas for the radiation; M is the molecular weight of the gas; and R is a universal gas constant. X=-{1/(U_m・D_m)}・[ln(E_x/
E_0_a)+U_a・{(P_b/T_b)−(P_
a/T_a)}・(M/R)・G]... (1) 2) A radiation source and a radiation source arranged opposite to the radiation source through a measurement space having a predetermined interval G, and the radiation source is a radiation detector that detects emitted radiation and outputs a first detection signal according to the dose of the detected radiation; and a radiation detector that converts the first detection signal into a voltage signal and amplifies it to a voltage E proportional to the dose. a preamplifier that outputs a second detection signal having a pressure P of the gas in the measurement cavity and a pressure gauge that outputs a pressure signal representing the pressure P; and an absolute temperature T of the gas in the measurement cavity. at time t_1 in a state where the pressure signal and the temperature signal are inputted, and the object to be measured is not inserted into the measurement space. 1st
By inputting a control signal, the value P_a of the pressure P represented by the pressure signal at the time t_1 and the value T_a of the absolute temperature T represented by the temperature signal at the time t_1 are stored, and from the time t_1 By inputting the second control signal at a later time t_2, the value P_b of the pressure P represented by the pressure signal at the time t_2 and the value T_b of the absolute temperature T represented by the temperature signal at the time t_2. and each of the stored values P_a and T
a first signal processing unit that performs the calculation on the right side of equation (2) using _a and outputs a density change signal representing the calculation result ΔD_a; the second detection signal and the density change signal are input; By inputting the first control signal at the time t_1, the value E_0_a of the voltage E of the second detection signal at the time t_1 is stored, and the second control signal is input at the time t_2. Equation (3) is calculated using the value E_x of the voltage E of the second detection signal at the time t_2 by being input, the ΔD_a represented by the density change signal after the time t_2, and the stored value E_0_a. a second signal processing unit that performs a calculation on the right side and outputs a thickness signal representing x of the calculation result, and the thickness of the object to be measured inserted into the measurement space is determined by the thickness signal. A radiation thickness meter that measures x, where M is the molecular weight of the gas, R is the universal gas constant, U_m is the absorption coefficient of the object to be measured for the radiation, D_m is the density of the object to be measured, A radiation thickness meter characterized in that U_a is an absorption coefficient of the gas for the radiation. ΔD_a={(P_b/T_b)−(P_a/T_a)
}・(M/R)...(2)x=-{1/(U_m・D_m
)}・(ln(E_x/E_0_a)+U_a・ΔD_
a・G}...(3) 3) A radiation source and a radiation source that is electrically distributed across the radiation source through a measurement space having a predetermined interlayer G and that detects the radiation emitted by the radiation source. a radiation detector that outputs a first detection signal according to the radiation dose; and a radiation detector that converts the first detection signal into a voltage signal, amplifies it, and outputs it as a second detection signal having a voltage E proportional to the dose. an absorption coefficient U_m for the radiation of the object to be measured inserted into the measurement space in a radiation detection unit equipped with a preamplifier, a density D_m of the object to be measured, and an absorption coefficient U_a of the gas for the radiation in the measurement space; a first step of measuring and storing each measured value; and a value E_0_a of the voltage E of the second detection signal at time t_1 when the object to be measured is not inserted into the measurement space. At the same time, the time t_
Measure the pressure P of the gas in the measurement space at t_1 and store the pressure value P_a of the measurement result, and at the time t_1.
a third step of measuring the absolute temperature T of the gas in the measurement space and storing the temperature value T_a of the measurement result; and the second step at a time t_2 later than the time t_1.
The value E_x of the voltage E of the detection signal is stored, and the pressure P of the gas in the measurement space at the time t_2 is measured and the pressure value P_b of the measurement result is stored, and the measurement at the time t_2 is performed. A third device that measures the absolute temperature T of the gas in the void and stores the temperature value T_b of the measurement result.
procedure, and each of the stored values U_m. stored in the first to third procedures.
D_m・U_a・E_0_a・P_a・T_a・E_x
- A fourth step of calculating the right side of equation (1) using P_b and T_b, and x on the left side of equation (1) as the calculation result of the fourth step is used to measure the thickness of the object to be measured. A thickness measurement method using radiation with a value of U
_m is an absorption coefficient of the object to be measured for the radiation, D_m is the density of the object to be measured, U_a is an absorption coefficient of the gas for the radiation, M is the molecular weight of the gas, and R is a universal gas constant. A thickness measurement method using radiation. X=-{1/(U_m・D_m)}・[ln(E_x/
E_0_a)+Ua・{(P_b/T_b)−(P_a
/T_a)}・(M/R)・G〕……(1)
JP28404190A 1990-10-22 1990-10-22 Radiation thickness meter and measuring method of thickness by using radiation Pending JPH04158209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28404190A JPH04158209A (en) 1990-10-22 1990-10-22 Radiation thickness meter and measuring method of thickness by using radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28404190A JPH04158209A (en) 1990-10-22 1990-10-22 Radiation thickness meter and measuring method of thickness by using radiation

Publications (1)

Publication Number Publication Date
JPH04158209A true JPH04158209A (en) 1992-06-01

Family

ID=17673531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28404190A Pending JPH04158209A (en) 1990-10-22 1990-10-22 Radiation thickness meter and measuring method of thickness by using radiation

Country Status (1)

Country Link
JP (1) JPH04158209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108859A (en) * 2011-11-22 2013-06-06 Yokogawa Electric Corp Radiographic inspection apparatus
JP2014016312A (en) * 2012-07-11 2014-01-30 Yokogawa Electric Corp Radiation measuring method
WO2018186155A1 (en) * 2017-04-05 2018-10-11 株式会社日立製作所 Neutron intensity monitoring system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335056B2 (en) * 1972-09-22 1978-09-25
JPS6079207A (en) * 1983-10-06 1985-05-07 Sumitomo Metal Ind Ltd Thickness measurement of plate by radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335056B2 (en) * 1972-09-22 1978-09-25
JPS6079207A (en) * 1983-10-06 1985-05-07 Sumitomo Metal Ind Ltd Thickness measurement of plate by radiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108859A (en) * 2011-11-22 2013-06-06 Yokogawa Electric Corp Radiographic inspection apparatus
JP2014016312A (en) * 2012-07-11 2014-01-30 Yokogawa Electric Corp Radiation measuring method
WO2018186155A1 (en) * 2017-04-05 2018-10-11 株式会社日立製作所 Neutron intensity monitoring system and method
JP2018179580A (en) * 2017-04-05 2018-11-15 株式会社日立製作所 System and method for monitoring neutron intensity

Similar Documents

Publication Publication Date Title
US7334484B2 (en) Line pressure measurement using differential pressure sensor
US5811690A (en) Differential pressure transmitter with highly accurate temperature compensation
JP3532573B2 (en) Pressure transmitter with remote seal diaphragm
Wallace Jr et al. Equation of state of He 3 close to the critical point
Schellekens et al. Measurements of the refractive index of air using interference refractometers
CN103597330A (en) Method for temperature compensation in sensor, computation program for method for temperature compensation, computation processing device, and sensor
Astrov et al. Precision gas thermometry between 2.5 K and 308 K
GB2079940A (en) Measuring physical properties using mechanical vibrations
JPH04158209A (en) Radiation thickness meter and measuring method of thickness by using radiation
JP5114251B2 (en) Vacuum processing equipment
CN106644245A (en) Atmosphere pressure measurement system and air pressure measurement method
Wild Optimising the design of a pressure transducer for aircraft altitude measurement using optical fibre Bragg grating sensors
GB2049955A (en) Refractometer
CN205580670U (en) Uncertainty evaluation device and method for of indirect full gloss way spectral detection system
CN105784270B (en) The uncertainty evaluation method of the full optical path spectral detection system of indirect type
JPS61155719A (en) Error compensator
Sears, Junr et al. Determinations of the fundamental standards of length in terms of wave-lengths of light
JPH08101158A (en) Flow potential measuring method
SU901851A1 (en) Method of determination of thermal converter thermal lag index
CN114264844B (en) MEMS accelerometer with stress compensation function
JP3291541B2 (en) Manometer
Hartmann Compensated mercury barometers
Schellekens et al. Design and results of a new interference refractometer based on a commercially available laserinterferometer
JPS63277910A (en) Detection signal processing method for infrared thickness gauge
Korpelainen et al. Online determination of the refractive index of air by ultrasonic speed of sound measurement for interferometric displacement measurement