WO2018186155A1 - Neutron intensity monitoring system and method - Google Patents

Neutron intensity monitoring system and method Download PDF

Info

Publication number
WO2018186155A1
WO2018186155A1 PCT/JP2018/010675 JP2018010675W WO2018186155A1 WO 2018186155 A1 WO2018186155 A1 WO 2018186155A1 JP 2018010675 W JP2018010675 W JP 2018010675W WO 2018186155 A1 WO2018186155 A1 WO 2018186155A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft error
data
occurrence rate
error occurrence
neutron
Prior art date
Application number
PCT/JP2018/010675
Other languages
French (fr)
Japanese (ja)
Inventor
巧 上薗
鳥羽 忠信
長崎 文彦
健一 新保
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018186155A1 publication Critical patent/WO2018186155A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation

Definitions

  • the present invention relates to environmental neutron monitoring technology.
  • Patent Document 1 JP-A-2002-40147 (Patent Document 1).
  • This publication includes a reactive substance that emits ⁇ -rays by neutron reaction, an ⁇ -ray detector that detects ⁇ -rays by a soft error phenomenon, and a control circuit that reads data from the ⁇ -ray detector.
  • a neutron detector that detects the amount of neutrons from the detected amount of alpha rays obtained from a circuit is described.
  • Patent Document 2 discloses a neutron dose measurement technique including a step of obtaining a fast neutron beam dose at an actual measurement location from a ratio of occurrence frequency of soft errors.
  • a commonly used neutron detector is, for example, a Bonner ball type neutron detector.
  • the Bonner ball type neutron detector is composed of a spherical neutron moderator and a 3He proportional counter arranged at the center thereof. Normally, the 3He proportional counter is used for detecting low-energy neutrons and cannot detect high-energy neutrons. However, a high-energy neutron can be detected by arranging a neutron moderator around it.
  • the Bonner Ball type detector requires a high voltage signal processing circuit exceeding 1 kV, and has a problem that the moderator is large and cannot be miniaturized.
  • Patent Document 1 discloses a neutron detector in which a neutron converter material and a semiconductor RAM are combined. Neutrons are indirectly detected by converting neutrons to ⁇ -rays using a neutron converter material, generating soft errors in the semiconductor RAM using the ⁇ -rays, and observing soft error events.
  • a neutron detector for the purpose of neutron measurement in an environment where people live
  • Patent Document 1 discloses a neutron detector in which a neutron converter material and a semiconductor RAM are combined. Neutrons are indirectly detected by converting neutrons to ⁇ -rays using a neutron converter material, generating soft errors in the semiconductor RAM using the ⁇ -rays, and observing soft error events.
  • there is an advantage of low power consumption as compared with a semiconductor detector used as a radiation detector but there is a problem that detectable neutrons depend on the energy characteristics of the reaction between the converter material and the neutrons.
  • neutrons generally collide with hydrogen nuclei and decelerate, so the neutron shielding effect may change depending on the environment and weather conditions.
  • conventional neutron detectors consider the neutron shielding effect due to environmental and weather conditions. There is a problem that is not.
  • an object of the present invention is to provide an environmental neutron intensity monitoring system that can remove local measurement variations due to weather factors and improve neutron measurement accuracy.
  • One aspect of the present invention includes a semiconductor memory, an input unit for inputting environmental sensor data from the environmental sensor, read access to the semiconductor memory to detect a soft error, time information regarding the detection time, and the number of detected soft errors.
  • a soft error detection unit that outputs soft error detection result data, and a calculation unit that calculates a soft error occurrence rate from the soft error detection result data, corrects it with environmental sensor data, and obtains a corrected soft error occurrence rate.
  • a neutron intensity monitoring system is provided.
  • Another aspect of the present invention provides a first input device that receives soft error detection result data detected by read access to a semiconductor memory, and a soft error based on the soft error detection result data.
  • a software error rate calculation unit for calculating the rate of occurrence; a second input device that inputs data relating to the environment of the semiconductor memory and changes with time; and the environment for the soft error rate
  • a neutron intensity monitoring system including a soft error occurrence rate correction unit that performs correction based on data and generates a corrected soft error occurrence rate, and a storage device that stores the corrected soft error occurrence rate as time-series data.
  • One aspect of the present invention is a method for monitoring neutron intensity, wherein data is written to and read from a semiconductor memory to detect a soft error, and a soft error occurrence rate is calculated based on the detected soft error.
  • Step 1 and the information processing apparatus obtains a correction coefficient corresponding to the environmental data corresponding to the detection of the soft error, corrects the soft error occurrence rate with the correction coefficient, and generates a corrected soft error occurrence rate.
  • the perspective view which is an example of a structure of the neutron monitoring system which concerns on 1st embodiment of this invention.
  • the flowchart which is an example of the flow of a process in the soft error detection circuit which concerns on 1st embodiment of this invention.
  • the flowchart which is an example of the flow of a process in the soft error incidence calculation part which concerns on 1st embodiment of this invention.
  • the table which is an example of the neutron increase / decrease rate which concerns on 1st embodiment of this invention.
  • the perspective view which is an example of a structure of the neutron monitoring system which concerns on 2nd embodiment of this invention.
  • the flowchart which is an example of the flow of a process in the soft error incidence prediction part which concerns on 2nd embodiment of this invention.
  • the perspective view which is an example of a structure of the neutron monitoring system which concerns on 3rd embodiment of this invention.
  • the flowchart which is an example of the flow of a process in the neutron energy distribution prediction part which concerns on 3rd embodiment of this invention.
  • the perspective view which is an example of a structure of the neutron monitoring system which concerns on 4th embodiment of this invention.
  • the block diagram which is an example of a structure of the neutron monitoring system which concerns on 5th embodiment of this invention.
  • Notations such as “first”, “second”, and “third” in this specification and the like are attached to identify the constituent elements, and do not necessarily limit the number, order, or contents thereof. is not.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • a representative environmental neutron intensity monitoring system includes a semiconductor memory and an environmental sensor, and performs read access to the semiconductor memory to detect occurrence of a soft error, and at least a detection operation period and a soft error detection.
  • a soft error detection unit that outputs soft error detection data consisting of numbers, and a soft error occurrence rate calculation unit that calculates a soft error occurrence rate from the soft error detection data and corrects it with environmental sensor data.
  • FIG. 1 is a configuration diagram of an environmental neutron monitoring system according to an embodiment of the present invention.
  • the neutron monitoring system 1 detects one or more semiconductor memories 2 and a soft error by performing read / write access to the semiconductor memory 2 and outputs soft error detection result data 7.
  • a circuit 3 an environmental sensor 6 that senses environmental information such as atmospheric pressure and outputs environmental data 8, a soft error rate calculation unit 4 that corrects the soft error detection result data 7 with the environmental data 8, and a soft error rate
  • the display unit 9 displays the calculation result of the calculation unit 4 as a display screen 10.
  • FIG. 1 shows an example in which the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 are mounted on the same substrate 5, and the apparatus is configured to operate independently. ing.
  • the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 can be stored in separate substrates or cases.
  • the parts other than the semiconductor memory 2 serving as a sensor such as the soft error detection circuit 3 and the soft error occurrence rate calculation unit 4, use electronic components with high neutron resistance so that soft errors due to neutrons do not occur. good. For example, an element that is not miniaturized is used. Alternatively, a shield against neutrons is added. Further, the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 may be installed in a physically isolated place and connected via a network.
  • a nuclear spallation reaction is caused by the Si nuclei and neutrons of the semiconductor memory 2.
  • charged particles are generated, data stored in the semiconductor memory 2 is inverted, and a soft error may occur.
  • the soft error detection circuit 3 detects the soft error by performing read / write access to the semiconductor memory 2 and comparing the read data with the write data.
  • FIG. 2 is a flowchart showing an example of processing of the soft error detection circuit 3. The operation based on the flowchart of FIG. 2 is as follows.
  • Step 101 Write an initial value to the semiconductor memory 2. Since the initial value is arbitrary, for example, all “0” may be used. Since the data itself is not meaningful, it may be random, but since it is used later as a reference, it is necessary to understand the contents.
  • Step 102 Hold the write data as reference data.
  • the reference data is stored in a memory element that is strong against the soft error, for example, MRAM (magneto-resistive Random Access Memory).
  • MRAM magnetic-resistive Random Access Memory
  • the memory element or the soft error detection circuit 3 including the memory element is shielded with a neutron shielding material such as boron-containing polyethylene.
  • neutron shielding material such as boron-containing polyethylene.
  • memory type selection and shielding are used in combination.
  • Step 103 Read data from the same address of the semiconductor memory 2. That is, the data written in step 101 is read. Note that when data is read from the memory, error correction may be performed by ECC (Error Correction Code) or the like, but error correction is not performed in Step 103.
  • ECC Error Correction Code
  • Step 104 The reference data held in step 102 is compared with the read data acquired in step 103. If they do not match, it is determined that a soft error has occurred.
  • Step 105 When the data does not match, it is determined that a soft error is detected, and the number of detected soft errors is counted and added.
  • a soft error has a phenomenon called MBU (MultipleMultiBit Upset) in which a plurality of bits are inverted at a time. In this case, it is generally known that the memory cell holding the data to be inverted is in a physically close position. Therefore, in counting the number of detected soft errors, the number of groups of bits that are inconsistent (physically close) is counted.
  • the range of bits to be grouped can be arbitrarily set, for example, 10 memory cells squarely.
  • the counted number of detected soft errors is added to the result of the previous cycle.
  • Step 106 Update the reference data with the previous read data.
  • Step 107 It is determined whether a certain time has elapsed from the start of measurement or from the previous output of the software error detection result data 7. This fixed time represents the time granularity of the measurement result.
  • Processing 103 to processing 106 are performed in a predetermined cycle (cycle) until a predetermined time elapses.
  • the mismatch detected in the comparison process 104 is a difference from the read data of the previous cycle. Since the number of soft error detections based on this mismatch is added in processing 105, the number of soft error detections output as soft error detection data after a lapse of a certain time is an integrated value for the certain time.
  • Step 108 After a predetermined time has elapsed, the software error detection result data 7 is output to the software error occurrence rate calculation unit 4.
  • the soft error detection result data 7 includes the elapsed time from the start of measurement or the previous execution of step 108 and the number of soft error detections.
  • Step 109 The number of detected soft errors is initialized to zero.
  • Step 110 It is determined whether or not to end the measurement. For example, whether or not a measurement end signal has been received from an external terminal, whether or not a certain time has elapsed since the start of measurement, and the like can be considered.
  • the data is not compared immediately before and after the start of the fixed time (107), for example, when 10 bits of the memory are inverted, it is inverted bit by bit. This is because it is necessary to identify whether 10 bits have been inverted simultaneously (10 soft errors) or 10 bits have been inverted simultaneously (1 soft error). Even if two soft errors have occurred, if the locations where the first and second soft errors occur are physically close, this may be determined as one MBU. In addition, during the lapse of a certain time, there is a possibility that a soft error has occurred twice in the same bit and has returned to the original value. Therefore, as shown in the processes 103 to 106 in FIG. 2, the comparison is repeated at time intervals obtained by subdividing a certain time.
  • the fixed time of the process 107 that is the time granularity of the measurement time can be arbitrarily determined.
  • the period of the processes 103 to 106 can be arbitrarily determined as long as soft errors can be separated in time.
  • the time interval of neutron beam generation may be measured with another detector such as a counter tube, and the period may be determined with reference to this.
  • FIG. 3 shows an example of calculation by the soft error rate calculation unit 4.
  • Step 201 Calculate the soft error occurrence rate using the measurement time of the soft error detection result data 7 and the number of detected soft errors during measurement.
  • the unit of measurement time T is hour
  • the unit of soft error occurrence rate SER is FIT (Failures-In-Time).
  • Step 202 Referring to the environmental data 8 corresponding to the detection of the soft error, which is the basis of the soft error occurrence rate, the neutron increase / decrease rate in the current environment is calculated.
  • the neutron increase / decrease rate is set by standard environmental conditions (for example, temperature 20 degrees, humidity 50%, no rain, no clouds, 1 atm, 139 longitude east latitude 35 degrees north latitude, etc.) Expressed as a rate.
  • standard environmental conditions for example, temperature 20 degrees, humidity 50%, no rain, no clouds, 1 atm, 139 longitude east latitude 35 degrees north latitude, etc.
  • a method of preliminarily holding the increase / decrease rate of neutrons in a table format is conceivable.
  • FIG. 4 is an example of a correction table 400 in which the neutron increase / decrease rate with respect to the atmospheric pressure is stored in a table format.
  • atmospheric pressure not described in the table, for example, it can be obtained by interpolation using previous and subsequent data.
  • the atmospheric pressure is handled as the environmental data 8
  • the neutron increase / decrease rate under each environmental condition is acquired in the same manner as in the case of the above atmospheric pressure, and all the neutron increase / decrease rates are obtained.
  • the neutron increase / decrease rate in the current environment can be obtained. For example, if the neutron increase / decrease rate due to atmospheric pressure is ap, the neutron increase / decrease rate due to clouds is ac, and the neutron increase / decrease rate in the current environment is ae, the following equation is obtained.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • LIDAR is a radar that uses laser light instead of radio waves. It emits pulsed laser light into the atmosphere and collects and detects reflected light from the atmosphere, clouds, and aerosols with a reflective telescope, and its strength and Doppler speed.
  • parameters such as atmospheric trace components such as ozone, methane, nitrogen oxides, water vapor, wind, temperature, aerosol, cloud distribution, rainfall, etc. can be measured.
  • the environmental data is not limited to weather information such as temperature, humidity, rainfall, cloud thickness, and atmospheric pressure, but may include position information such as latitude and longitude and astronomical information such as solar flare.
  • the time interval for acquiring environmental data can be acquired in real time for LIDAR data. Since the weather and the weather fluctuate in a cycle of several hours to several days, the time granularity of the data is about 1 week or less, preferably 1 day or less.
  • the solar flare may be an annual cycle, and the position information may be fixed according to the position. Needless to say, if the environmental neutrons are monitored for solar activity or geographical differences, they are not corrected. If the solar activity origin and geographical differences are removed as environmental factors, it is possible to monitor by focusing on neutrons originating from radioactive materials existing near the measurement site. In the present embodiment, an example in which weather and weather are corrected as environmental factors and neutrons originating from solar activity are mainly described.
  • the environmental sensor 6 is attached to the apparatus. However, the environmental sensor 6 or a server storing environmental data may be connected via a network to receive the environmental data. Since it is assumed that the environmental data 8 changes with time, the latest environmental data is basically used in subsequent processing. In the following embodiment, a configuration using LIDAR data (for example, updated every 3 minutes) for correction will be described as an example.
  • Step 203 The corrected soft error rate is calculated by multiplying the soft error rate calculated in step 201 by the neutron increase / decrease rate in the current environment. If the neutron intensity at the measurement location is the same and the environmental conditions are the same, the soft error occurrence rate of the semiconductor memory 2 depends only on the characteristics of the device itself and does not change with time. Since the corrected soft error rate excludes differences in environmental conditions, the corrected soft error rate can be read as relative neutron intensity. In order to relatively evaluate the intensity, it is only necessary to display the relative neutron intensity as compared with the soft error occurrence rate under a reference condition (for example, measured in a neutron shielding environment) measured in advance.
  • a reference condition for example, measured in a neutron shielding environment
  • the display device 9 displays the calculation result of the soft error rate calculation unit 4.
  • the display screen 10 displays a graph 11 representing the correspondence between the time and the corrected soft error rate, that is, the relative neutron intensity.
  • the connection between the soft error rate calculation unit 4 and the display device 9 may be wired or wireless. In FIG. 1, the two are arranged close to each other, but the display screen 10 may be in a remote place connected by a network.
  • SRAM Static Random Access Memory
  • FROM Flash Memory: Flash Memory
  • MLC Multi-Level-Cell
  • the neutron dose is measured using a small neutron detector based on the reaction between Si and neutron, which is the main cause of the soft error. Obtain and correct with time-varying environmental sensor information. Accordingly, it is possible to provide an environmental neutron intensity monitoring system that eliminates temporal measurement variations due to environmental factors such as atmospheric pressure and improves the measurement accuracy of environmental neutrons.
  • FIG. 5 shows a second embodiment.
  • the soft error detection result data 7 is corrected using the environment data 8 instead of the soft error occurrence rate calculation unit 4, and the corrected soft error occurrence rate is predicted from the transition of the corrected soft error occurrence rate.
  • the error occurrence rate prediction unit 12 is provided. Therefore, the soft error occurrence rate prediction unit 12 has a function of predicting the corrected soft error occurrence rate in addition to the function of the soft error occurrence rate calculation unit 4.
  • FIG. 6 is a flowchart showing an example of processing of the soft error occurrence rate prediction unit 12.
  • symbol is attached
  • the operation based on the flowchart of FIG. 6 is as follows.
  • Step 204 Acquire the correction software error occurrence rate acquired in the past, and acquire time series data of the correction software error occurrence rate.
  • the past corrected soft error occurrence rate may be held inside the soft error occurrence rate prediction unit 12, or a database may be created and held outside the soft error occurrence rate prediction unit 12. .
  • Step 205 Apply time series data of the correction software error occurrence rate to the model.
  • the fluctuation of the soft error occurrence rate is a combination of the environmental factor represented by atmospheric pressure and the global fluctuation caused by the solar activity factor. Since environmental factors depend on atmospheric pressure fluctuations and weather fluctuations, they are fluctuations with a short period of several hours to several days. Since the solar activity factor mainly depends on the sunspot cycle of the sun, it is a fluctuation of a long cycle of about 10 years.
  • the corrected soft error rate excluding environmental factors is considered to include only fluctuations in solar activity factors.
  • the sunspot period of the sun is modeled in advance using, for example, a trigonometric function, and applied to the model.
  • Step 206 Use the model created in step 205 to predict the trend of the correction software error rate.
  • the prediction is performed by, for example, an extrapolation method using a model.
  • the display device 9 displays the prediction result of the soft error occurrence rate prediction unit 12.
  • the display screen 13 displays a graph 14 indicating the correspondence between the time and the correction software error occurrence rate and the prediction result, and a status area 15 indicating a specific correction software error value.
  • the graph 14 shows the predicted value in addition to the actually measured value.
  • a specific value of a specific correction software error occurrence rate is displayed, for example, the current correction soft error occurrence rate is displayed.
  • the correction soft error occurrence rate corrected by the environmental data 8 is used to model the correction soft error occurrence rate by using the dependence on the solar activity. Becomes predictable.
  • FIG. 7 shows a third embodiment.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted.
  • semiconductor memories 16, 17, and 18 having different susceptibility to soft errors due to neutrons (reaction cross section) are combined as the semiconductor memory 2, and the neutron energy dependence of the reaction cross section is used to obtain environmental neutrons.
  • the neutron energy distribution predicting unit 19 for predicting the energy distribution is mounted in place of the soft error occurrence rate calculating unit 4.
  • the reaction cross-sectional area of the semiconductor memory depends on the processing size (e.g., evaluated by the minimum line width and the minimum processing dimension of the device), the material constituting the semiconductor memory, and the data holding structure of the semiconductor memory. For example, as the processing size increases, the amount of charge stored in the semiconductor memory increases, and soft errors are less likely to occur with low energy neutrons. Further, in a FROM having a structure in which the retained charge is difficult to diffuse, a soft error does not occur unless the neutron has a high energy. Therefore, neutron energy distribution can be measured by using semiconductor memories having different reaction cross sections.
  • FIG. 8 is a flowchart showing an example of processing performed by the neutron energy distribution prediction unit 19. The operation based on the flowchart of FIG. 8 is as follows.
  • Step 207 SER 3 is derived from the corrected soft error rate SER 1 for each type of semiconductor memory, that is, for all three types of semiconductor memories 16, 17, and 18.
  • the derivation method is the same as in FIG.
  • Step 208 Obtain reaction cross sections ⁇ 1 , ⁇ 2 , and ⁇ 3 of the semiconductor memories 16, 17, and 18.
  • a method for obtaining the reaction cross section for example, a method of calculating in advance by simulation, holding it in a table format or a modeled mathematical formula, and reading it out can be considered.
  • Step 209 The neutron energy distribution is divided into a plurality of sections. This section function is the particle size in the neutron energy direction of the flux that is finally predicted. The predicted flux of each section and phi n from phi 1.
  • Step 210 For the three types of semiconductor memories 16, 17, and 18, simultaneous equations are constructed by creating equations representing the relationship between the soft error rate, the reaction cross section, and the neutron energy. If the reaction cross section of the neutron energy section i is ⁇ 1, i , ⁇ 2, i , ⁇ 3, i , the following simultaneous equations can be established.
  • Step 211 Solve the simultaneous equations established in Step 210 to derive the flux ⁇ i for each section. If the division function n of the neutron energy matches the number of types of semiconductor memory, it is solved analytically. If they do not match, an approximate solution is derived using, for example, a maximum likelihood estimation method.
  • the display device 9 displays the prediction result of the neutron energy distribution prediction unit 19.
  • the display screen 20 displays a graph 22 showing the relationship between the neutron energy and the neutron flux, in addition to the graph 21 showing the time change of the correction soft error occurrence rate of each semiconductor memory.
  • the prediction of the energy distribution of environmental neutrons using three types of semiconductor memories is shown, but two types or four or more types of semiconductor memories may be combined.
  • the number of types of semiconductor memory it is expected that the number of simultaneous equations will increase and the prediction accuracy of the environmental neutron energy distribution will be improved.
  • the present embodiment it is possible to predict the energy distribution of the environmental neutron flux by utilizing the fact that the dependence of the soft error rate on the neutron energy differs for each type of semiconductor memory.
  • FIG. 9 shows a fourth embodiment.
  • the semiconductor memory 2 is arranged in a plurality of directions.
  • the semiconductor memory 23 is arranged with the upper surface of the semiconductor memory facing in the vertical direction, the semiconductor memory 27 in the horizontal direction, and the semiconductor memory 25 in the depth direction.
  • the semiconductor memory is a device incorporating a semiconductor chip, it may be considered that the widest surface (main surface) of the semiconductor chip corresponds to the upper surface of the semiconductor memory.
  • the semiconductor memories 23, 25, and 27 are mounted on the memory mounting substrates 24, 26, and 28, respectively, and are connected to the soft error detection circuit 29 through the mother substrate 31.
  • the soft error detection circuit 29 outputs the soft error detection data from each board to the soft error occurrence rate calculation unit 30, and the soft error occurrence rate calculation unit 30 calculates the corrected soft error occurrence rate for each direction and displays it to the display unit. It is configured to output.
  • the soft error detection circuit 29 independently accesses the semiconductor memories 23, 25 and 27 arranged in a plurality of directions, and detects each soft error.
  • the soft error detection procedure is the same as that of the first embodiment, and is as shown in the flow of FIG. Therefore, the difference from the soft error detection circuit 3 shown in the first embodiment is that the soft error of the semiconductor memory arranged in a plurality of directions is detected independently.
  • the soft error occurrence rate calculation unit 30 independently processes the soft error detection data of a plurality of types of semiconductor memory detected by the soft error detection circuit 29, and derives the corrected soft error occurrence rate of the semiconductor memory for each direction.
  • the procedure for deriving the correction soft error occurrence rate is the same as that in the first embodiment, and is as shown in the flow of FIG. Therefore, the difference from the soft error occurrence rate calculation unit shown in the first embodiment is that the correction soft error occurrence rate of the semiconductor memory arranged in a plurality of directions is calculated independently.
  • the display device 9 displays the calculation result of the soft error occurrence rate calculation unit 30.
  • a graph 33 representing a change over time in the correction software error occurrence rate of the semiconductor memory for each direction is displayed. Since the semiconductor memories 23, 25, and 27 are of the same type, if the neutron intensity in each direction is the same, the solid line, broken line, and alternate long and short dash line in the graph 33 show the same value. Since the intensity is different, different values are shown. Therefore, the vertical axis correction soft error occurrence rate in the graph 33 can be read as the relative neutron intensity.
  • FIG. 9 shows an example in which semiconductor memories are arranged in three directions, they may be arranged in a spherical shape as long as they can be mounted. By increasing the arrangement direction, it is possible to obtain a neutron intensity distribution with better granularity.
  • FIG. 10 is a block diagram illustrating an example of a system configuration including a function of predicting a correction soft error occurrence rate, as in the second embodiment.
  • the system is housed in a single casing, and the calculation functions such as the soft error detection circuit 3 and the soft error occurrence rate prediction unit 12 are ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable). It was configured with hardware such as Gate Array, so that it could operate stand-alone.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable
  • a soft error occurrence predicting unit 12 that performs calculation and control by arranging a semiconductor memory 2 and a soft error detection circuit 3 as a sensor at a neutron beam measurement site.
  • the server includes a normal processor, a memory, an input interface, and an output interface, and various functions and calculations are realized by the processor executing programs stored in the memory in cooperation with various hardware.
  • Various programs executed by the processor or functions to be executed may be referred to as “parts”, “units”, “means”, “functions”, “modules”, and the like.
  • the soft error occurrence rate prediction unit 12 has a function of predicting a corrected soft error occurrence rate in addition to the function of the soft error occurrence rate calculation unit 4.
  • the soft error detection circuit 3 uses the sensor memory 2 installed at the measurement site, the soft error detection circuit 3 performs the processing described with reference to FIG. 2 and generates soft error detection result data 7.
  • the soft error detection result data 7 is transmitted to the soft error occurrence rate prediction unit 12 via the network 1000.
  • the environmental sensor 6 also transmits the environmental data 8 to the soft error occurrence rate prediction unit 12 via the network 1000.
  • the network 1000 may be wired or wireless.
  • the soft error detection result data 7 is processed by the soft error occurrence rate calculation unit 4 as in the first or second embodiment, and the soft error occurrence rate 1001 is calculated.
  • the soft error occurrence rate 1001 is corrected by the soft error occurrence rate correction unit 1002 using the environment data 8 corresponding to the detection time of the soft error, and the corrected soft error occurrence rate 1003 is calculated. Is done.
  • a correction table 400 (FIG. 4) stored in a storage device (not shown) is used.
  • the soft error occurrence rate 1001 and the environmental data 8 that change with time are used for the calculation of the latest data at that time.
  • the latest data possessed by the soft error rate correction unit 1002 is used.
  • the corrected soft error occurrence rate 1003 is stored in the memory 1004 in time series.
  • the memory 1004 may be a large-capacity storage device such as a magnetic disk device.
  • the soft error rate variable analysis unit 1005 generates a model by applying the time series data of the corrected soft error rate 1003 to, for example, a trigonometric function that models the sunspot period of the sun. As a result, the soft error occurrence rate variable analysis unit 1005 outputs data 1006 that models global fluctuations in the soft error occurrence rate due to solar activity or the like.
  • the soft error occurrence rate prediction unit 1007 predicts the future soft error occurrence rate by an extrapolation method using the modeled data 1006 with respect to the current soft error occurrence rate, for example.
  • soft error occurrence rate transition data 1008 is output, and the soft error occurrence rate prediction unit 1007 outputs soft error occurrence prediction data 1009. These are displayed on the display device 1010.
  • the neutron soft error rate is sequentially corrected with the environmental information, so that local measurement variations in time can be removed and the measurement accuracy of relative neutron intensity can be improved.
  • the relative environmental neutron intensity change is a combination of global global fluctuations and local fluctuations due to temporal changes in installation environment conditions such as weather and atmospheric pressure. In calibration using a constant value that does not change with time, only the sum of global fluctuations and local fluctuations can be measured. On the other hand, in the present embodiment, both fluctuations can be separated from each other based on the environmental information, and more accurate calibration is possible by utilizing the fact that the frequency of global fluctuations is low.
  • the present embodiment since it is composed of a semiconductor memory, an access circuit, a monitor circuit, and an environmental sensor, a high voltage device and an analog circuit are unnecessary, and the size is small.
  • the main cause of soft errors in semiconductor devices is Si spallation reaction by neutrons.
  • the frequency of occurrence of this reaction can be directly observed in principle. Therefore, in principle, all neutrons with energy that can cause a spallation reaction with Si can be detected.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention can be used for monitoring environmental neutrons.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention addresses the problem of providing a system for monitoring the intensity of neutrons in the environment, capable of improving neutron measuring accuracy by eliminating localized measuring variability resulting from the meteorological factors and the like. This neutron intensity monitoring system is provided with: a semiconductor memory; an input unit for inputting environmental sensor data from an environmental sensor; a soft error detecting unit which performs read access to the semiconductor memory to detect soft errors, and outputs soft error detection result data including time information relating to the detection time and a soft error detection number; and a calculating unit which calculates a soft error occurrence rate from the soft error detection result data, and corrects the environmental sensor data to obtain a corrected soft error occurrence rate.

Description

中性子強度モニタリングシステムおよび方法Neutron intensity monitoring system and method
 本発明は、環境中性子のモニタリング技術に関する。 The present invention relates to environmental neutron monitoring technology.
 背景技術として、特開2002-40147号公報(特許文献1)がある。この公報では、中性子の反応によりα線を放出する反応物質と、ソフトエラー現象によりα線を検出するα線検出部と、α線検出部からデータの読み出しを行なう制御回路と、を備え、制御回路から得られるα線の検出量により中性子の量を検出する中性子検出装置が記載されている。 As a background art, there is JP-A-2002-40147 (Patent Document 1). This publication includes a reactive substance that emits α-rays by neutron reaction, an α-ray detector that detects α-rays by a soft error phenomenon, and a control circuit that reads data from the α-ray detector. A neutron detector that detects the amount of neutrons from the detected amount of alpha rays obtained from a circuit is described.
 特開2001-215282号公報(特許文献2)には、ソフトエラーの発生頻度の比率から、実測定場所での高速中性子線の線量を求める工程を有する中性子線量の測定技術が開示されている。 Japanese Patent Application Laid-Open No. 2001-215282 (Patent Document 2) discloses a neutron dose measurement technique including a step of obtaining a fast neutron beam dose at an actual measurement location from a ratio of occurrence frequency of soft errors.
特開2002-40147号公報JP 2002-40147 A 特開2001-215282号公報JP 2001-215282 A
 情報通信機器などの高信頼機器においては、環境中性子起因によるソフトエラー対策・評価技術の重要性が増しており、実動作環境における中性子ソフトエラー障害の可視化ニーズも高まっている。実動作環境における機器の中性子ソフトエラーを評価するには、環境中性子量の変動を見積もる必要がある。 In high-reliability equipment such as information and communication equipment, the importance of countermeasures and evaluation techniques for soft errors caused by environmental neutrons is increasing, and the need for visualization of neutron soft error faults in actual operating environments is also increasing. In order to evaluate the neutron soft error of the equipment in the actual operating environment, it is necessary to estimate the fluctuation of the environmental neutron quantity.
 一般的に用いられる中性子検出器として、例えば、ボナーボール型中性子検出器がある。ボナーボール型中性子検出器は、球形の中性子減速材と、その中心に配置した3He比例計数管で構成されている。通常、3He比例計数管は低エネルギーの中性子の検出に用いられ高エネルギー中性子は検出できないが、周囲に中性子減速材を配置することで、高エネルギー中性子を検出可能としたものである。ボナーボール型検出器には、1kVを超える高電圧信号処理回路が必要であり、また、減速材が大きく、小型化ができないという課題がある。 A commonly used neutron detector is, for example, a Bonner ball type neutron detector. The Bonner ball type neutron detector is composed of a spherical neutron moderator and a 3He proportional counter arranged at the center thereof. Normally, the 3He proportional counter is used for detecting low-energy neutrons and cannot detect high-energy neutrons. However, a high-energy neutron can be detected by arranging a neutron moderator around it. The Bonner Ball type detector requires a high voltage signal processing circuit exceeding 1 kV, and has a problem that the moderator is large and cannot be miniaturized.
 人が生活する環境での中性子測定を目的とした中性子検出器としては、例えば、特許文献1の中性子検出器がある。特許文献1では、中性子コンバータ物質と半導体RAMを組み合わせた中性子検出器が示されている。中性子コンバータ物質により中性子をα線に変換し、そのα線により半導体RAMにソフトエラーを発生させ、ソフトエラー事象を観測することで中性子を間接的に検出するものである。一般に放射線検出器として用いられる半導体検出器と比較して低消費電力という利点があるが、検出可能な中性子は、コンバータ物質と中性子の反応のエネルギー特性に依存するという課題がある。 As a neutron detector for the purpose of neutron measurement in an environment where people live, for example, there is a neutron detector of Patent Document 1. Patent Document 1 discloses a neutron detector in which a neutron converter material and a semiconductor RAM are combined. Neutrons are indirectly detected by converting neutrons to α-rays using a neutron converter material, generating soft errors in the semiconductor RAM using the α-rays, and observing soft error events. Generally, there is an advantage of low power consumption as compared with a semiconductor detector used as a radiation detector, but there is a problem that detectable neutrons depend on the energy characteristics of the reaction between the converter material and the neutrons.
 特許文献2の技術では、半導体記憶装置に既知の線量の高エネルギ中性子線を照射しながら、半導体記憶装置へのデータの書き込みと読み出しを行うことにより第1のソフトエラーの発生頻度を測定する工程と、高速中性子線の線量が分かっていない実測定場所に高速中性子線量のセンサとして複数の半導体記憶装置を並べて該複数の半導体記憶装置へのデータの書き込みと読み出し処理を行うことにより高速中性子線による第2のソフトエラーの発生頻度を測定する工程と、第1のソフトエラーの発生頻度と第2のソフトエラーの発生頻度との比率から実測定場所での高速中性子線の線量を求める工程とを有する中性子線量の測定方法が示されている。しかしこの方式では、実測定場所での線量の時間的な変動を測定することができない。 In the technique of Patent Document 2, the process of measuring the frequency of occurrence of a first soft error by writing and reading data to and from a semiconductor memory device while irradiating the semiconductor memory device with a known dose of high-energy neutron radiation And by using a fast neutron beam by arranging a plurality of semiconductor memory devices as fast neutron dose sensors in an actual measurement location where the dose of fast neutron rays is not known, and performing data write and read processing on the plurality of semiconductor memory devices. A step of measuring the frequency of occurrence of the second soft error, and a step of determining the dose of fast neutrons at the actual measurement location from the ratio of the frequency of occurrence of the first soft error and the frequency of occurrence of the second soft error A method for measuring the neutron dose possessed is shown. However, this method cannot measure the temporal variation of the dose at the actual measurement location.
 また、中性子は一般に水素原子核と衝突して減速されるため、環境や気象条件により中性子遮蔽効果が変化することが考えられるが、従来の中性子検出器では環境・気象条件による中性子遮蔽効果が考慮されていないという課題がある。 In addition, neutrons generally collide with hydrogen nuclei and decelerate, so the neutron shielding effect may change depending on the environment and weather conditions. However, conventional neutron detectors consider the neutron shielding effect due to environmental and weather conditions. There is a problem that is not.
 そこで、本発明では、気象要因等による局所的な測定ばらつきを除去し、中性子測定精度を向上できる、環境中性子強度のモニタリングシステムを提供することを課題とする。 Therefore, an object of the present invention is to provide an environmental neutron intensity monitoring system that can remove local measurement variations due to weather factors and improve neutron measurement accuracy.
 本発明の一側面は、半導体メモリと、環境センサからの環境センサデータを入力する入力部と、半導体メモリに対してリードアクセスしてソフトエラーを検出し、検出時間に関する時間情報とソフトエラー検出数を含む、ソフトエラー検出結果データを出力するソフトエラー検出部と、ソフトエラー検出結果データからソフトエラー発生率を計算し、環境センサデータで補正し、補正ソフトエラー発生率を得る計算部と、を備える中性子強度モニタリングシステムである。 One aspect of the present invention includes a semiconductor memory, an input unit for inputting environmental sensor data from the environmental sensor, read access to the semiconductor memory to detect a soft error, time information regarding the detection time, and the number of detected soft errors. A soft error detection unit that outputs soft error detection result data, and a calculation unit that calculates a soft error occurrence rate from the soft error detection result data, corrects it with environmental sensor data, and obtains a corrected soft error occurrence rate. A neutron intensity monitoring system is provided.
 本発明の他の一側面は、半導体メモリに対してリードアクセスすることにより検出された、ソフトエラー検出結果データを入力とする第1の入力装置と、ソフトエラー検出結果データに基づいて、ソフトエラー発生率を計算するソフトエラー発生率計算部と、半導体メモリの環境に関するデータであって、時間的に変化する環境データを入力とする第2の入力装置と、ソフトエラー発生率に対して、環境データに基づいた補正を行い、補正ソフトエラー発生率を生成するソフトエラー発生率補正部と、補正ソフトエラー発生率を時系列データとして格納する記憶装置と、を備える中性子強度モニタリングシステムである。 Another aspect of the present invention provides a first input device that receives soft error detection result data detected by read access to a semiconductor memory, and a soft error based on the soft error detection result data. A software error rate calculation unit for calculating the rate of occurrence; a second input device that inputs data relating to the environment of the semiconductor memory and changes with time; and the environment for the soft error rate A neutron intensity monitoring system including a soft error occurrence rate correction unit that performs correction based on data and generates a corrected soft error occurrence rate, and a storage device that stores the corrected soft error occurrence rate as time-series data.
 本発明の一側面は、中性子強度のモニタリング方法であって、半導体メモリにデータの書き込みおよび読み出しを行ってソフトエラーを検出し、検出されたソフトエラーに基づいて、ソフトエラー発生率を計算する第1のステップと、情報処理装置が、ソフトエラーの検出時に対応する環境データに対応する補正係数を取得し、ソフトエラー発生率を補正係数で補正して、補正ソフトエラー発生率を生成する第2のステップと、補正ソフトエラー発生率を、時系列データとして記憶装置に記憶する第3のステップと、を備える中性子強度モニタリング方法である。 One aspect of the present invention is a method for monitoring neutron intensity, wherein data is written to and read from a semiconductor memory to detect a soft error, and a soft error occurrence rate is calculated based on the detected soft error. Step 1 and the information processing apparatus obtains a correction coefficient corresponding to the environmental data corresponding to the detection of the soft error, corrects the soft error occurrence rate with the correction coefficient, and generates a corrected soft error occurrence rate. And a third step of storing the corrected soft error rate as time series data in a storage device.
 本発明によれば、気象要因等による局所的な測定ばらつきを除去し、中性子測定精度を向上できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to remove local measurement variations due to weather factors and improve neutron measurement accuracy. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の第一の実施形態に係る中性子モニタリングシステムの構成の例である斜視図。The perspective view which is an example of a structure of the neutron monitoring system which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係るソフトエラー検出回路における処理のフローの例である流れ図。The flowchart which is an example of the flow of a process in the soft error detection circuit which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係るソフトエラー発生率計算部における処理のフローの例である流れ図。The flowchart which is an example of the flow of a process in the soft error incidence calculation part which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る中性子増減率の例である表図。The table which is an example of the neutron increase / decrease rate which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る中性子モニタリングシステムの構成の例である斜視図。The perspective view which is an example of a structure of the neutron monitoring system which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係るソフトエラー発生率予測部における処理のフローの例である流れ図。The flowchart which is an example of the flow of a process in the soft error incidence prediction part which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る中性子モニタリングシステムの構成の例である斜視図。The perspective view which is an example of a structure of the neutron monitoring system which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る中性子エネルギー分布予測部における処理のフローの例である流れ図。The flowchart which is an example of the flow of a process in the neutron energy distribution prediction part which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係る中性子モニタリングシステムの構成の例である斜視図。The perspective view which is an example of a structure of the neutron monitoring system which concerns on 4th embodiment of this invention. 本発明の第五の実施形態に係る中性子モニタリングシステムの構成の例であるブロック図。The block diagram which is an example of a structure of the neutron monitoring system which concerns on 5th embodiment of this invention.
 以下、図面を用いて実施例を説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Hereinafter, examples will be described with reference to the drawings. However, the present invention is not construed as being limited to the description of the embodiments below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or the spirit of the present invention.
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In the structure of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and redundant description may be omitted.
 同一あるいは同様な機能を有する要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、複数の要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are a plurality of elements having the same or similar functions, there may be cases where the same reference numerals are attached with different subscripts. However, when there is no need to distinguish between a plurality of elements, the description may be omitted.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数、順序、もしくはその内容を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 Notations such as “first”, “second”, and “third” in this specification and the like are attached to identify the constituent elements, and do not necessarily limit the number, order, or contents thereof. is not. In addition, a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings and the like may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For this reason, the present invention is not necessarily limited to the position, size, shape, range, and the like disclosed in the drawings and the like.
 以下で説明される実施例の代表的な環境中性子強度のモニタリングシステムは、半導体メモリと環境センサを備え、半導体メモリに対してリードアクセスしソフトエラー発生を検出し、少なくとも検出動作期間とソフトエラー検出数からなるソフトエラー検出データを出力するソフトエラー検出部と、ソフトエラー検出データからソフトエラー発生率を計算し環境センサデータで補正するソフトエラー発生率計算部と、を備えるものである。 A representative environmental neutron intensity monitoring system according to an embodiment described below includes a semiconductor memory and an environmental sensor, and performs read access to the semiconductor memory to detect occurrence of a soft error, and at least a detection operation period and a soft error detection. A soft error detection unit that outputs soft error detection data consisting of numbers, and a soft error occurrence rate calculation unit that calculates a soft error occurrence rate from the soft error detection data and corrects it with environmental sensor data.
 図1は、本発明の実施例による環境中性子モニタリングシステムの構成図である。本実施例による中性子モニタリングシステム1は、一つまたは複数の半導体メモリ2と、半導体メモリ2に対してリード・ライトアクセスしてソフトエラーを検出し、ソフトエラー検出結果データ7を出力するソフトエラー検出回路3と、気圧などの環境情報をセンシングして環境データ8を出力する環境センサ6と、ソフトエラー検出結果データ7を環境データ8で補正するソフトエラー発生率計算部4と、ソフトエラー発生率計算部4の計算結果を表示画面10として表示する表示装置9で構成される。 FIG. 1 is a configuration diagram of an environmental neutron monitoring system according to an embodiment of the present invention. The neutron monitoring system 1 according to this embodiment detects one or more semiconductor memories 2 and a soft error by performing read / write access to the semiconductor memory 2 and outputs soft error detection result data 7. A circuit 3, an environmental sensor 6 that senses environmental information such as atmospheric pressure and outputs environmental data 8, a soft error rate calculation unit 4 that corrects the soft error detection result data 7 with the environmental data 8, and a soft error rate The display unit 9 displays the calculation result of the calculation unit 4 as a display screen 10.
 図1の実施例では、半導体メモリ2とソフトエラー検出回路3とソフトエラー発生率計算部4とを同一の基板5に搭載した例を示しており、装置は独立して動作するように構成している。他の構成例としては、半導体メモリ2とソフトエラー検出回路3とソフトエラー発生率計算部4とを、別々の基板や筐体に格納することもできる。 The embodiment of FIG. 1 shows an example in which the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 are mounted on the same substrate 5, and the apparatus is configured to operate independently. ing. As another configuration example, the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 can be stored in separate substrates or cases.
 センサとなる半導体メモリ2以外の部分である、ソフトエラー検出回路3、ソフトエラー発生率計算部4などの部分は、中性子によるソフトエラーが生じないように、中性子耐性の高い電子部品を用いるのが良い。例えば、あえて微細化しない素子を用いる。あるいは、中性子線に対するシールドを追加する。また、半導体メモリ2とソフトエラー検出回路3とソフトエラー発生率計算部4とを、物理的に隔離した場所に設置し、ネットワークで接続してもよい。 The parts other than the semiconductor memory 2 serving as a sensor, such as the soft error detection circuit 3 and the soft error occurrence rate calculation unit 4, use electronic components with high neutron resistance so that soft errors due to neutrons do not occur. good. For example, an element that is not miniaturized is used. Alternatively, a shield against neutrons is added. Further, the semiconductor memory 2, the soft error detection circuit 3, and the soft error occurrence rate calculation unit 4 may be installed in a physically isolated place and connected via a network.
 環境中性子が中性子モニタリングシステム1の半導体メモリ2に衝突すると、半導体メモリ2のSi原子核と中性子で核破砕反応を起こす。核破砕反応時に、荷電粒子が発生し、半導体メモリ2が保持しているデータが反転し、ソフトエラーが発生することがある。ソフトエラー検出回路3では、半導体メモリ2に対してリード・ライトアクセスし、リードデータと、ライトデータとを比較することで、このソフトエラーを検出する。 When environmental neutrons collide with the semiconductor memory 2 of the neutron monitoring system 1, a nuclear spallation reaction is caused by the Si nuclei and neutrons of the semiconductor memory 2. During the nuclear spallation reaction, charged particles are generated, data stored in the semiconductor memory 2 is inverted, and a soft error may occur. The soft error detection circuit 3 detects the soft error by performing read / write access to the semiconductor memory 2 and comparing the read data with the write data.
 図2は、ソフトエラー検出回路3の処理の例をフローチャートで示したものである。図2のフローチャートに基づく動作は下記の通りである。 FIG. 2 is a flowchart showing an example of processing of the soft error detection circuit 3. The operation based on the flowchart of FIG. 2 is as follows.
 ステップ101:半導体メモリ2に初期値をライトする。初期値は任意であるので、例えばオール「0」等でもよい。データ自体に意味があるわけではないので、ランダムでも良いが、後にリファレンスとして用いるので、内容が分かる必要がある。 Step 101: Write an initial value to the semiconductor memory 2. Since the initial value is arbitrary, for example, all “0” may be used. Since the data itself is not meaningful, it may be random, but since it is used later as a reference, it is necessary to understand the contents.
 ステップ102:ライトデータをリファレンスデータとして保持する。リファレンスデータにソフトエラーが発生しないよう、リファレンスデータはソフトエラーに強いとされるメモリ素子、例えばMRAM(磁気抵抗メモリ: Magneto-resistive Random Access Memory)に格納する。あるいは、メモリ素子あるいはメモリ素子を含むソフトエラー検出回路3を、ホウ素入りポリエチレン等の中性子遮蔽材料でシールドする。あるいは、メモリ種類の選択とシールドを併用する。 Step 102: Hold the write data as reference data. In order not to cause a soft error in the reference data, the reference data is stored in a memory element that is strong against the soft error, for example, MRAM (magneto-resistive Random Access Memory). Alternatively, the memory element or the soft error detection circuit 3 including the memory element is shielded with a neutron shielding material such as boron-containing polyethylene. Alternatively, memory type selection and shielding are used in combination.
 ステップ103:半導体メモリ2の同アドレスからデータをリードする。すなわちステップ101でライトしたデータを読み出す。なお、メモリからデータを読み出す場合、ECC(Error Correction Code)等により、エラー訂正を行う場合があるが、ステップ103では、エラー訂正は行わない。 Step 103: Read data from the same address of the semiconductor memory 2. That is, the data written in step 101 is read. Note that when data is read from the memory, error correction may be performed by ECC (Error Correction Code) or the like, but error correction is not performed in Step 103.
 ステップ104:ステップ102で保持したリファレンスデータと、ステップ103で取得したリードデータを比較する。不一致である場合、ソフトエラーが発生したと判断する。 Step 104: The reference data held in step 102 is compared with the read data acquired in step 103. If they do not match, it is determined that a soft error has occurred.
 ステップ105:データ不一致のときソフトエラー検出と判断し、ソフトエラー検出数をカウントし加算する。ソフトエラーでは、一度に複数ビット(bit)が反転するというMBU(Multiple Bit Upset)という現象がある。この場合、反転するデータを保持しているメモリセルは、物理的に近い位置にあるという特徴が、一般的に知られている。そこで、ソフトエラー検出数のカウントでは、不一致となったビットのグループ(物理的に近いもの)の数をカウントする。どの範囲のビットをグループ化するかは、任意に設定しておくことができ、例えば10メモリセル四方のように設定する。ステップ105では、カウントしたソフトエラー検出数を、前のサイクルの結果に対して加算していく。 Step 105: When the data does not match, it is determined that a soft error is detected, and the number of detected soft errors is counted and added. A soft error has a phenomenon called MBU (MultipleMultiBit Upset) in which a plurality of bits are inverted at a time. In this case, it is generally known that the memory cell holding the data to be inverted is in a physically close position. Therefore, in counting the number of detected soft errors, the number of groups of bits that are inconsistent (physically close) is counted. The range of bits to be grouped can be arbitrarily set, for example, 10 memory cells squarely. In step 105, the counted number of detected soft errors is added to the result of the previous cycle.
 ステップ106:リファレンスデータを直前のリードデータで更新する。 Step 106: Update the reference data with the previous read data.
 ステップ107:測定開始もしくは、前回ソフトエラー検出結果データ7出力から、一定時間が経過したかを判断する。この一定時間が測定結果の時間粒度を表す。 Step 107: It is determined whether a certain time has elapsed from the start of measurement or from the previous output of the software error detection result data 7. This fixed time represents the time granularity of the measurement result.
 処理103から処理106は、一定時間が経過するまで所定周期(サイクル)で行われる。このとき、リファレンスデータは、処理106で前サイクルのリードデータにより更新されていくので、比較の処理104で検出される不一致は、前サイクルのリードデータからの差分である。この不一致に基づいたソフトエラー検出数は処理105で加算されるので、一定時間経過してソフトエラー検出データとして出力されるソフトエラー検出数は、当該一定時間の間の積算値となる。 Processing 103 to processing 106 are performed in a predetermined cycle (cycle) until a predetermined time elapses. At this time, since the reference data is updated by the read data of the previous cycle in the process 106, the mismatch detected in the comparison process 104 is a difference from the read data of the previous cycle. Since the number of soft error detections based on this mismatch is added in processing 105, the number of soft error detections output as soft error detection data after a lapse of a certain time is an integrated value for the certain time.
 ステップ108:一定時間経過後、ソフトエラー検出結果データ7をソフトエラー発生率計算部4へ出力する。ソフトエラー検出結果データ7は、測定開始もしくは前回ステップ108を実行してからの経過時間とソフトエラー検出数を含む。 Step 108: After a predetermined time has elapsed, the software error detection result data 7 is output to the software error occurrence rate calculation unit 4. The soft error detection result data 7 includes the elapsed time from the start of measurement or the previous execution of step 108 and the number of soft error detections.
 ステップ109:ソフトエラー検出数を0に初期化する。 Step 109: The number of detected soft errors is initialized to zero.
 ステップ110:測定を終了するか否かを判断する。判断には、例えば、外部端末からの測定終了信号の受信の有無や、測定開始から一定時間経過しているか否か、などが考えられる。 Step 110: It is determined whether or not to end the measurement. For example, whether or not a measurement end signal has been received from an external terminal, whether or not a certain time has elapsed since the start of measurement, and the like can be considered.
 なお、上記のフローで、単純に一定時間経過(107)の開始直前と直後でデータを比較しないのは、例えばメモリの10ビットが反転していた場合、それが1ビットずつ反転していったのか(10回のソフトエラー)、それとも、10ビットが同時に反転したのか(1回のソフトエラー)かを識別する必要があるからである。仮に、2回のソフトエラーが発生していた場合でも、1回目と2回目のソフトエラーが発生した場所が物理的に近い場合、これを1つのMBUと判断する虞がある。また、一定時間経過の間に、同じビットにソフトエラーが2回発生し元の値に戻ってしまっている可能性もある。従って、図2の処理103~106のように、一定時間を細分化した時間間隔で比較を繰り返すフローとしている。測定時間の時間的粒度である処理107の一定時間は、任意に定めることができる。処理103~106の周期は、ソフトエラーを時間的に分離できる程度の期間を任意に定めることができる。この場合、計数管等の他の検出器によって、中性子線発生の時間間隔を測定しておき、これを参考に周期を定めても良い。 In the above flow, the data is not compared immediately before and after the start of the fixed time (107), for example, when 10 bits of the memory are inverted, it is inverted bit by bit. This is because it is necessary to identify whether 10 bits have been inverted simultaneously (10 soft errors) or 10 bits have been inverted simultaneously (1 soft error). Even if two soft errors have occurred, if the locations where the first and second soft errors occur are physically close, this may be determined as one MBU. In addition, during the lapse of a certain time, there is a possibility that a soft error has occurred twice in the same bit and has returned to the original value. Therefore, as shown in the processes 103 to 106 in FIG. 2, the comparison is repeated at time intervals obtained by subdividing a certain time. The fixed time of the process 107 that is the time granularity of the measurement time can be arbitrarily determined. The period of the processes 103 to 106 can be arbitrarily determined as long as soft errors can be separated in time. In this case, the time interval of neutron beam generation may be measured with another detector such as a counter tube, and the period may be determined with reference to this.
 図3は、ソフトエラー発生率計算部4の計算の一例を示したものである。 FIG. 3 shows an example of calculation by the soft error rate calculation unit 4.
 ステップ201:ソフトエラー検出結果データ7の測定時間と測定中のソフトエラー検出数を用いて、ソフトエラー発生率を計算する。測定時間をT、測定中のソフトエラー検出数をN、ソフトエラー発生率をSER(Soft Error Rate)とした時の計算式を下記に示す。 Step 201: Calculate the soft error occurrence rate using the measurement time of the soft error detection result data 7 and the number of detected soft errors during measurement. The calculation formula when the measurement time is T, the number of detected soft errors during measurement is N, and the soft error occurrence rate is SER (Soft Error Rate) is shown below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、測定時間Tの単位は時間(hour)、ソフトエラー発生率SERの単位はFIT(Failures-In-Time)である。 Here, the unit of measurement time T is hour, and the unit of soft error occurrence rate SER is FIT (Failures-In-Time).
 ステップ202:ソフトエラー発生率の根拠となるソフトエラー検出時に対応した環境データ8を参照し、現在の環境における中性子の増減率を計算する。中性子の増減率は、基準環境条件(例えば、気温20度、湿度50%、降雨無、雲無、1atm、東経139度北緯35度など任意)を設定し、各環境要因による影響を中性子の増減率として表す。中性子の増減率は、例えば、予め表形式で保持しておく方法が考えられる。 Step 202: Referring to the environmental data 8 corresponding to the detection of the soft error, which is the basis of the soft error occurrence rate, the neutron increase / decrease rate in the current environment is calculated. The neutron increase / decrease rate is set by standard environmental conditions (for example, temperature 20 degrees, humidity 50%, no rain, no clouds, 1 atm, 139 longitude east latitude 35 degrees north latitude, etc.) Expressed as a rate. For example, a method of preliminarily holding the increase / decrease rate of neutrons in a table format is conceivable.
 図4は気圧に対する中性子増減率を表形式で格納した補正テーブル400の一例である。表中に記載のない気圧の場合は、例えば、前後のデータを用いて内挿して求めることができる。本例では、環境データ8として気圧のみを扱っているが、環境データが複数ある場合は、各々の環境条件における中性子増減率を上記の気圧の場合と同様に取得し、全ての中性子増減率を掛け合わせることで、現環境における中性子増減率を求めることができる。例えば、気圧による中性子増減率をap、雲による中性子増減率をac、現環境における中性子増減率をaeとすると、以下の式で求められる。 FIG. 4 is an example of a correction table 400 in which the neutron increase / decrease rate with respect to the atmospheric pressure is stored in a table format. In the case of atmospheric pressure not described in the table, for example, it can be obtained by interpolation using previous and subsequent data. In this example, only the atmospheric pressure is handled as the environmental data 8, but when there are a plurality of environmental data, the neutron increase / decrease rate under each environmental condition is acquired in the same manner as in the case of the above atmospheric pressure, and all the neutron increase / decrease rates are obtained. By multiplying, the neutron increase / decrease rate in the current environment can be obtained. For example, if the neutron increase / decrease rate due to atmospheric pressure is ap, the neutron increase / decrease rate due to clouds is ac, and the neutron increase / decrease rate in the current environment is ae, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 環境データ8として、気圧等を測定する場合、LIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)と呼ばれるシステムがある。LIDARは電波の代わりにレーザ光を用いたレーダーであり、パルス状のレーザ光を大気中に発射し、大気・雲・エーロゾルからの反射光を反射望遠鏡で集めて検出し、その強さやドップラー速度を測定することで、オゾン、メタン、窒素酸化物などの大気微量成分や水蒸気、風、気温、エーロゾル、雲の分布、雨量等のパラメタを測定できる。また、環境データとしては、温度、湿度、雨量、雲厚、気圧などの気象情報に限らず、緯度・経度等の位置情報や、太陽フレアなどの天文学的情報を含んでも良い。 When measuring atmospheric pressure or the like as environmental data 8, there is a system called LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging). LIDAR is a radar that uses laser light instead of radio waves. It emits pulsed laser light into the atmosphere and collects and detects reflected light from the atmosphere, clouds, and aerosols with a reflective telescope, and its strength and Doppler speed. By measuring, parameters such as atmospheric trace components such as ozone, methane, nitrogen oxides, water vapor, wind, temperature, aerosol, cloud distribution, rainfall, etc. can be measured. The environmental data is not limited to weather information such as temperature, humidity, rainfall, cloud thickness, and atmospheric pressure, but may include position information such as latitude and longitude and astronomical information such as solar flare.
 環境データを取得する時間的間隔は、LIDARのデータについては、リアルタイムで取得することができる。天候や気象は、数時間から数日程度の周期で変動するので、データの時間的粒度は1週間以下程度、好ましくは1日以下が望ましい。太陽フレアについては年周期でもよく、位置情報については位置に応じて固定的でよい。なお、環境中性子のモニタ対象として、太陽活動起源のものや地理的な差異をモニタしたい場合には、これらを補正しないことはいうまでもない。太陽活動起源のものや地理的な差異を環境要因として除去すると、例えば測定地付近に存在する放射性物質起源の中性子に注目してモニタすることもできる。本実施例では、天候や気象を環境要因として補正し、太陽活動起源の中性子をモニタする例を主にに説明している。 The time interval for acquiring environmental data can be acquired in real time for LIDAR data. Since the weather and the weather fluctuate in a cycle of several hours to several days, the time granularity of the data is about 1 week or less, preferably 1 day or less. The solar flare may be an annual cycle, and the position information may be fixed according to the position. Needless to say, if the environmental neutrons are monitored for solar activity or geographical differences, they are not corrected. If the solar activity origin and geographical differences are removed as environmental factors, it is possible to monitor by focusing on neutrons originating from radioactive materials existing near the measurement site. In the present embodiment, an example in which weather and weather are corrected as environmental factors and neutrons originating from solar activity are mainly described.
 図1では環境センサ6が装置に取り付けられているが、環境センサ6または、環境データを格納したサーバをネットワークを介して接続し、環境データを受信するように構成してもよい。環境データ8は時間的に変化することが前提であるため、後の処理では基本的に最新の環境データを使用することになる。以下の実施例では、LIDARのデータ(例えば3分間隔で更新)を補正に利用する構成を例に説明する。 In FIG. 1, the environmental sensor 6 is attached to the apparatus. However, the environmental sensor 6 or a server storing environmental data may be connected via a network to receive the environmental data. Since it is assumed that the environmental data 8 changes with time, the latest environmental data is basically used in subsequent processing. In the following embodiment, a configuration using LIDAR data (for example, updated every 3 minutes) for correction will be described as an example.
 ステップ203:ステップ201で計算したソフトエラー発生率に現環境における中性子増減率を掛け合わせて、補正ソフトエラー発生率を計算する。なお、測定場所における、中性子強度が同一かつ環境条件が同一であれば、半導体メモリ2のソフトエラー発生率はデバイス自身の特性にのみ依存するため時間変化しない。補正ソフトエラー発生率は、環境条件の違いを排除したものであるため、補正ソフトエラー発生率は、相対中性子強度と読み替えることができる。相対的に強度を評価するためには、予め計測した基準条件(例えば中性子遮蔽環境下で測定)におけるソフトエラー発生率と比較して、相対的な中性子強度を表示すればよい。 Step 203: The corrected soft error rate is calculated by multiplying the soft error rate calculated in step 201 by the neutron increase / decrease rate in the current environment. If the neutron intensity at the measurement location is the same and the environmental conditions are the same, the soft error occurrence rate of the semiconductor memory 2 depends only on the characteristics of the device itself and does not change with time. Since the corrected soft error rate excludes differences in environmental conditions, the corrected soft error rate can be read as relative neutron intensity. In order to relatively evaluate the intensity, it is only necessary to display the relative neutron intensity as compared with the soft error occurrence rate under a reference condition (for example, measured in a neutron shielding environment) measured in advance.
 図1に示すように、表示装置9は、ソフトエラー発生率計算部4の計算結果を表示する。表示画面10では、時刻と補正ソフトエラー発生率即ち相対中性子強度の対応を表すグラフ11を表示する。なお、ソフトエラー発生率計算部4と表示装置9間の接続は、有線か無線を問わない。図1では両者を接近して配置しているが、表示画面10はネットワークで接続された遠隔地にあってもよい。 As shown in FIG. 1, the display device 9 displays the calculation result of the soft error rate calculation unit 4. The display screen 10 displays a graph 11 representing the correspondence between the time and the corrected soft error rate, that is, the relative neutron intensity. The connection between the soft error rate calculation unit 4 and the display device 9 may be wired or wireless. In FIG. 1, the two are arranged close to each other, but the display screen 10 may be in a remote place connected by a network.
 なお、半導体メモリ2として具体的にはSRAM(Static Random Access Memory)やFROM(フラッシュメモリ: Flash Memory)などが考えられる。一般的に、SRAMは他の半導体メモリと比較して、ソフトエラーが発生しやすいことが知られており、本実施例の環境中性子モニタリングシステムへの適用が可能である。それに対して、FROMは、一般的にソフトエラーに強いとされてきた。しかし、微細化や1つのセルへ2ビット以上のデータを記憶させるMLC(Multi-Level-Cell)技術により、1ビットデータを保持するのに用いる電荷量が減少し、SRAMと同等レベルのソフトエラー耐性となる可能性がある。半導体メモリとして、FROMを使用することで、アクセスしていない間、電源を遮断することができるため、低消費電力化が見込める。従って、本実施例では半導体メモリ2としてFROMを用いることともできる。また、一般的に半導体メモリは、微細化が進むに従ってソフトエラーが発生しやすくなるので、微細化された他の種類のメモリの使用も可能である。 In addition, as the semiconductor memory 2, specifically, SRAM (Static Random Access Memory), FROM (Flash Memory: Flash Memory), etc. can be considered. In general, it is known that SRAMs are more susceptible to soft errors than other semiconductor memories, and can be applied to the environmental neutron monitoring system of this embodiment. On the other hand, FROM has been generally regarded as resistant to soft errors. However, due to miniaturization and MLC (Multi-Level-Cell) technology that stores data of 2 bits or more in one cell, the amount of charge used to hold 1-bit data is reduced, and a soft error equivalent to that of SRAM It can be resistant. By using the FROM as the semiconductor memory, the power can be shut off while not being accessed, so that low power consumption can be expected. Therefore, in this embodiment, FROM can be used as the semiconductor memory 2. In general, a soft error is likely to occur in a semiconductor memory as the miniaturization progresses, so that other types of miniaturized memories can be used.
 以上から、本実施例によれば、電子機器の実動作環境における中性子ソフトエラーを評価するために、ソフトエラーの主要因である、Siと中性子の反応による小型中性子検出器を用いて中性子線量を取得し、時間変化する環境センサ情報で補正する。これにより、気圧などの環境要因による時間的に局所的な測定ばらつきを除去し、環境中性子の測定精度を向上した、環境中性子強度のモニタリングシステムを提供することができる。 From the above, according to the present embodiment, in order to evaluate the neutron soft error in the actual operating environment of the electronic device, the neutron dose is measured using a small neutron detector based on the reaction between Si and neutron, which is the main cause of the soft error. Obtain and correct with time-varying environmental sensor information. Accordingly, it is possible to provide an environmental neutron intensity monitoring system that eliminates temporal measurement variations due to environmental factors such as atmospheric pressure and improves the measurement accuracy of environmental neutrons.
 図5は、第二の実施形態である。図1と同じ部分には同じ符号を付してあり、構成、動作が同じであるので、説明を省略する。本実施例は、ソフトエラー発生率計算部4の代わりに、環境データ8を用いてソフトエラー検出結果データ7を補正し、補正ソフトエラー発生率の推移から補正ソフトエラー発生率を予測する、ソフトエラー発生率予測部12を持つものである。従って、ソフトエラー発生率予測部12は、ソフトエラー発生率計算部4の機能に加え、補正ソフトエラー発生率の予測機能を持つものである。 FIG. 5 shows a second embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted. In this embodiment, the soft error detection result data 7 is corrected using the environment data 8 instead of the soft error occurrence rate calculation unit 4, and the corrected soft error occurrence rate is predicted from the transition of the corrected soft error occurrence rate. The error occurrence rate prediction unit 12 is provided. Therefore, the soft error occurrence rate prediction unit 12 has a function of predicting the corrected soft error occurrence rate in addition to the function of the soft error occurrence rate calculation unit 4.
 図6は、ソフトエラー発生率予測部12の処理の例をフローチャートで示したものである。なお、図3と同じ部分には同じ符号を付してある。図6のフローチャートに基づく動作は下記の通りである。 FIG. 6 is a flowchart showing an example of processing of the soft error occurrence rate prediction unit 12. In addition, the same code | symbol is attached | subjected to the same part as FIG. The operation based on the flowchart of FIG. 6 is as follows.
 ステップ204:過去に取得した補正ソフトエラー発生率を取得し、補正ソフトエラー発生率の時系列データを取得する。過去の補正ソフトエラー発生率は、ソフトエラー発生率予測部12の内部で保持しておいても良いし、ソフトエラー発生率予測部12の外部にデータベースを作成して保持しておいても良い。 Step 204: Acquire the correction software error occurrence rate acquired in the past, and acquire time series data of the correction software error occurrence rate. The past corrected soft error occurrence rate may be held inside the soft error occurrence rate prediction unit 12, or a database may be created and held outside the soft error occurrence rate prediction unit 12. .
 ステップ205:補正ソフトエラー発生率の時系列データをモデルに当てはめる。ソフトエラー発生率の変動は、気圧に代表される環境要因と、太陽活動要因による地球規模の変動の2つの組合せである。環境要因は、気圧変動や天候変動に依存するため、数時間から数日程度の短い周期のゆらぎである。太陽活動要因は、主に太陽の黒点周期に依存するため、10年程度の長い周期のゆらぎである。環境要因を排除した補正ソフトエラー発生率には、太陽活動要因の揺らぎのみが含まれると考えられる。太陽の黒点周期を例えば、三角関数などで予めモデル化しておき、そのモデルに当てはめる。 Step 205: Apply time series data of the correction software error occurrence rate to the model. The fluctuation of the soft error occurrence rate is a combination of the environmental factor represented by atmospheric pressure and the global fluctuation caused by the solar activity factor. Since environmental factors depend on atmospheric pressure fluctuations and weather fluctuations, they are fluctuations with a short period of several hours to several days. Since the solar activity factor mainly depends on the sunspot cycle of the sun, it is a fluctuation of a long cycle of about 10 years. The corrected soft error rate excluding environmental factors is considered to include only fluctuations in solar activity factors. The sunspot period of the sun is modeled in advance using, for example, a trigonometric function, and applied to the model.
 ステップ206:ステップ205で作成したモデルを用いて、補正ソフトエラー発生率の動向を予測する。予測は、例えば、モデルを用いた外挿法で行う。 Step 206: Use the model created in step 205 to predict the trend of the correction software error rate. The prediction is performed by, for example, an extrapolation method using a model.
 図5に示すように、表示装置9は、ソフトエラー発生率予測部12の予測結果を表示する。表示画面13では、時刻と補正ソフトエラー発生率の対応と予測結果を表すグラフ14と、具体的な補正ソフトエラー値を示すステータス領域15を表示する。グラフ14は、実測値に加えて予測値を示す。ステータス領域15には、具体的な補正ソフトエラー発生率の具体的な値を表示し、例えば、現在の補正ソフトエラー発生率を表示する。 As shown in FIG. 5, the display device 9 displays the prediction result of the soft error occurrence rate prediction unit 12. The display screen 13 displays a graph 14 indicating the correspondence between the time and the correction software error occurrence rate and the prediction result, and a status area 15 indicating a specific correction software error value. The graph 14 shows the predicted value in addition to the actually measured value. In the status area 15, a specific value of a specific correction software error occurrence rate is displayed, for example, the current correction soft error occurrence rate is displayed.
 本実施例によれば、環境データ8により補正した補正ソフトエラー発生率が、太陽活動に依存することを利用して、補正ソフトエラー発生率をモデル化することで、補正ソフトエラー発生率の動向が予測可能となる。 According to the present embodiment, the correction soft error occurrence rate corrected by the environmental data 8 is used to model the correction soft error occurrence rate by using the dependence on the solar activity. Becomes predictable.
 図7は、第三の実施形態である。図1と同じ部分には同じ符号を付してあり、構成、動作が同じであるので、説明を省略する。本実施例は、半導体メモリ2として、中性子によるソフトエラーの起こりやすさ(反応断面積)の異なる半導体メモリ16、17、18を組合せ、反応断面積の中性子エネルギー依存性を利用して、環境中性子のエネルギー分布を予測する、中性子エネルギー分布予測部19をソフトエラー発生率計算部4の代わりに搭載したものである。 FIG. 7 shows a third embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted. In this embodiment, semiconductor memories 16, 17, and 18 having different susceptibility to soft errors due to neutrons (reaction cross section) are combined as the semiconductor memory 2, and the neutron energy dependence of the reaction cross section is used to obtain environmental neutrons. The neutron energy distribution predicting unit 19 for predicting the energy distribution is mounted in place of the soft error occurrence rate calculating unit 4.
 半導体メモリの反応断面積は、加工サイズ(例えば、デバイスの最小線幅や最小加工寸法で評価される)や、半導体メモリを構成する物質、半導体メモリのデータ保持構造など依存する。例えば、加工サイズが大きくなると、半導体メモリに蓄える電荷量が多くなり、低いエネルギーの中性子ではソフトエラーが発生しづらくなる。また、保持電荷が拡散しづらい構造であるFROMでは、高いエネルギーの中性子でないとソフトエラーが発生しない。したがって、異なる反応断面積を持つ半導体メモリを利用すると、中性子のエネルギー分布の測定ができる。 The reaction cross-sectional area of the semiconductor memory depends on the processing size (e.g., evaluated by the minimum line width and the minimum processing dimension of the device), the material constituting the semiconductor memory, and the data holding structure of the semiconductor memory. For example, as the processing size increases, the amount of charge stored in the semiconductor memory increases, and soft errors are less likely to occur with low energy neutrons. Further, in a FROM having a structure in which the retained charge is difficult to diffuse, a soft error does not occur unless the neutron has a high energy. Therefore, neutron energy distribution can be measured by using semiconductor memories having different reaction cross sections.
 図8は、中性子エネルギー分布予測部19の処理の例をフローチャートで示したものである。図8のフローチャートに基づく動作は下記の通りである。 FIG. 8 is a flowchart showing an example of processing performed by the neutron energy distribution prediction unit 19. The operation based on the flowchart of FIG. 8 is as follows.
 ステップ207:半導体メモリの種別毎に、即ち3種類の半導体メモリ16,17、18の全てについて、補正ソフトエラー発生率SERからSERを導出する。導出方法は、図3と同一であるため、説明を省略する。 Step 207: SER 3 is derived from the corrected soft error rate SER 1 for each type of semiconductor memory, that is, for all three types of semiconductor memories 16, 17, and 18. The derivation method is the same as in FIG.
 ステップ208:半導体メモリ16,17、18の反応断面積σ、σ、σを得る。反応断面積の取得方法は、例えば、予めシミュレーションで計算しておき、テーブル形式またはモデル化した数式で保持しておき、それを読み出す方法が考えられる。 Step 208: Obtain reaction cross sections σ 1 , σ 2 , and σ 3 of the semiconductor memories 16, 17, and 18. As a method for obtaining the reaction cross section, for example, a method of calculating in advance by simulation, holding it in a table format or a modeled mathematical formula, and reading it out can be considered.
 ステップ209:中性子エネルギー分布を複数の区間に分割する。この区関数が最終的に予測するフラックスの中性子エネルギー方向の粒度となる。各区間の予測フラックスをφからφとする。 Step 209: The neutron energy distribution is divided into a plurality of sections. This section function is the particle size in the neutron energy direction of the flux that is finally predicted. The predicted flux of each section and phi n from phi 1.
 ステップ210:3種類の半導体メモリ16、17、18に対して、ソフトエラー発生率と反応断面積、中性子エネルギーの関係を表す等式をたて連立方程式をたてる。中性子エネルギー区間iの反応断面積をσ1,i、σ2,i、σ3,iとおくと、下記の連立方程式をたてられる。 Step 210: For the three types of semiconductor memories 16, 17, and 18, simultaneous equations are constructed by creating equations representing the relationship between the soft error rate, the reaction cross section, and the neutron energy. If the reaction cross section of the neutron energy section i is σ 1, i , σ 2, i , σ 3, i , the following simultaneous equations can be established.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ステップ211:ステップ210でたてた連立方程式を解き、各区間のフラックスφを導出する。中性子エネルギーの分割区関数nと半導体メモリの種類数が一致する場合は解析的に解く。一致しない場合は、例えば最尤推定法等を用いて、近似解を導出する。 Step 211: Solve the simultaneous equations established in Step 210 to derive the flux φ i for each section. If the division function n of the neutron energy matches the number of types of semiconductor memory, it is solved analytically. If they do not match, an approximate solution is derived using, for example, a maximum likelihood estimation method.
 図7に示すように、表示装置9は、中性子エネルギー分布予測部19の予測結果を表示する。表示画面20では、各半導体メモリの補正ソフトエラー発生率の時間変化を表すグラフ21に加え、中性子エネルギーと中性子フラックスとの関係を示すグラフ22を表示する。 As shown in FIG. 7, the display device 9 displays the prediction result of the neutron energy distribution prediction unit 19. The display screen 20 displays a graph 22 showing the relationship between the neutron energy and the neutron flux, in addition to the graph 21 showing the time change of the correction soft error occurrence rate of each semiconductor memory.
 本実施例では、3種類の半導体メモリを用いた環境中性子のエネルギー分布の予測を示したが、2種類や4種類以上の半導体メモリを組合せても良い。半導体メモリの種類を増やすことで、連立方程式の式の数が増え、環境中性子のエネルギー分布の予測精度が向上することが見込まれる。 In this embodiment, the prediction of the energy distribution of environmental neutrons using three types of semiconductor memories is shown, but two types or four or more types of semiconductor memories may be combined. By increasing the number of types of semiconductor memory, it is expected that the number of simultaneous equations will increase and the prediction accuracy of the environmental neutron energy distribution will be improved.
 本実施例によれば、ソフトエラー発生率の中性子エネルギー依存性が半導体メモリ種類毎に異なることを利用して、環境中性子フラックスのエネルギー分布を予測することが可能となる。 According to the present embodiment, it is possible to predict the energy distribution of the environmental neutron flux by utilizing the fact that the dependence of the soft error rate on the neutron energy differs for each type of semiconductor memory.
 図9は第四の実施形態である。図1と同じ部分には同じ符号を付してあり、構成、動作が同じであるので、説明を省略する。本実施例は、半導体メモリ2を複数の方向に向けて配置する。半導体メモリ23は本図の上下方向、半導体メモリ27は左右方向、半導体メモリ25は奥行き方向に対して、半導体メモリの上面を向けた配置となっている。半導体メモリが、半導体チップを内蔵したデバイスの場合、半導体チップの最も広い面(主面)が半導体メモリの上面に対応すると考えてよい。各半導体メモリ23、25、27は、それぞれメモリ搭載基板24、26、28に搭載されており、マザー基板31を介して、ソフトエラー検出回路29と接続されている。ソフトエラー検出回路29は、各基板からのソフトエラー検出データをソフトエラー発生率計算部30に出力し、ソフトエラー発生率計算部30が方向毎の補正ソフトエラー発生率を計算し、表示部へ出力する構成となっている。 FIG. 9 shows a fourth embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the configuration and operation are the same, and thus description thereof is omitted. In this embodiment, the semiconductor memory 2 is arranged in a plurality of directions. The semiconductor memory 23 is arranged with the upper surface of the semiconductor memory facing in the vertical direction, the semiconductor memory 27 in the horizontal direction, and the semiconductor memory 25 in the depth direction. When the semiconductor memory is a device incorporating a semiconductor chip, it may be considered that the widest surface (main surface) of the semiconductor chip corresponds to the upper surface of the semiconductor memory. The semiconductor memories 23, 25, and 27 are mounted on the memory mounting substrates 24, 26, and 28, respectively, and are connected to the soft error detection circuit 29 through the mother substrate 31. The soft error detection circuit 29 outputs the soft error detection data from each board to the soft error occurrence rate calculation unit 30, and the soft error occurrence rate calculation unit 30 calculates the corrected soft error occurrence rate for each direction and displays it to the display unit. It is configured to output.
 これまで、一般的には、中性子起因のソフトエラーは、中性子の飛来方向に依存しないとされてきたが、sub-threshold領域で動作するSRAMなどでは、中性子の入射角度によりソフトエラーの発生具合が変化することが近年知られてきている。そこで、複数方向に向けて同一種類の半導体メモリを配置することで、飛来方向毎の補正ソフトエラー発生率即ち、相対的な中性子強度を取得するものである。 Until now, neutron-induced soft errors have generally been considered to be independent of the neutron flight direction. However, in SRAMs operating in the sub-threshold region, the soft error is generated depending on the incident angle of neutrons. It has been known in recent years to change. Therefore, by arranging the same type of semiconductor memories in a plurality of directions, a corrected soft error rate for each flight direction, that is, a relative neutron intensity is obtained.
 ソフトエラー検出回路29は、複数方向に配置した半導体メモリ23、25、27に独立にアクセスし、各々のソフトエラーを検出する。ソフトエラーの検出手順は、実施例1と同様であり、図2のフローに示したとおりである。従って、実施例1で示したソフトエラー検出回路3との違いは、複数方向に配置した半導体メモリのソフトエラーを独立に検出する点である。 The soft error detection circuit 29 independently accesses the semiconductor memories 23, 25 and 27 arranged in a plurality of directions, and detects each soft error. The soft error detection procedure is the same as that of the first embodiment, and is as shown in the flow of FIG. Therefore, the difference from the soft error detection circuit 3 shown in the first embodiment is that the soft error of the semiconductor memory arranged in a plurality of directions is detected independently.
 ソフトエラー発生率計算部30は、ソフトエラー検出回路29が検出した、複数種類の半導体メモリのソフトエラー検出データを独立に処理し、方向毎の半導体メモリの補正ソフトエラー発生率を導出する。補正ソフトエラー発生率の導出手順は、実施例1と同様であり、図3のフローに示したとおりである。従って、実施例1で示したソフトエラー発生率計算部との違いは、複数方向に配置した半導体メモリの補正ソフトエラー発生率を独立に計算する点である。 The soft error occurrence rate calculation unit 30 independently processes the soft error detection data of a plurality of types of semiconductor memory detected by the soft error detection circuit 29, and derives the corrected soft error occurrence rate of the semiconductor memory for each direction. The procedure for deriving the correction soft error occurrence rate is the same as that in the first embodiment, and is as shown in the flow of FIG. Therefore, the difference from the soft error occurrence rate calculation unit shown in the first embodiment is that the correction soft error occurrence rate of the semiconductor memory arranged in a plurality of directions is calculated independently.
 図9に示すように、表示装置9は、ソフトエラー発生率計算部30の計算結果を表示する。表示画面32では、方向毎の半導体メモリの補正ソフトエラー発生率の時間変化を表すグラフ33を表示する。半導体メモリ23、25、27を同一種類としているため、方向毎の中性子強度が同一であれば、グラフ33中の実線、破線、一点鎖線は、同じ値を示すが、実際には方向毎に中性子強度が異なるため、異なる値を示す。従って、グラフ33の縦軸補正ソフトエラー発生率は、相対中性子強度と読み代えることができる。 As shown in FIG. 9, the display device 9 displays the calculation result of the soft error occurrence rate calculation unit 30. On the display screen 32, a graph 33 representing a change over time in the correction software error occurrence rate of the semiconductor memory for each direction is displayed. Since the semiconductor memories 23, 25, and 27 are of the same type, if the neutron intensity in each direction is the same, the solid line, broken line, and alternate long and short dash line in the graph 33 show the same value. Since the intensity is different, different values are shown. Therefore, the vertical axis correction soft error occurrence rate in the graph 33 can be read as the relative neutron intensity.
 本実施例によれば、同一種類の半導体メモリを複数方向に向けて配置して補正中性子ソフトラー率を計測することで、中性子飛来方向毎の相対中性子強度を取得可能となる。 According to this embodiment, it is possible to obtain the relative neutron intensity in each neutron flight direction by arranging the same type of semiconductor memory in a plurality of directions and measuring the corrected neutron softler rate.
 なお、図9では、3方向に向けて半導体メモリを配置した例を示しているが、実装可能である限り、球状に配置するなどしても良い。配置方向を増やすことで、より粒度良く中性子強度分布を取得可能である。 Although FIG. 9 shows an example in which semiconductor memories are arranged in three directions, they may be arranged in a spherical shape as long as they can be mounted. By increasing the arrangement direction, it is possible to obtain a neutron intensity distribution with better granularity.
 図10は、実施例2と同様に、補正ソフトエラー発生率を予測する機能を備えるシステム構成の一例を示すブロック図である。図5の実施例2では、システムを一つの筐体に収めており、ソフトエラー検出回路3やソフトエラー発生率予測部12等の演算機能は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成し、スタンドアロンで動作できるようにしていた。 FIG. 10 is a block diagram illustrating an example of a system configuration including a function of predicting a correction soft error occurrence rate, as in the second embodiment. In the second embodiment shown in FIG. 5, the system is housed in a single casing, and the calculation functions such as the soft error detection circuit 3 and the soft error occurrence rate prediction unit 12 are ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable). It was configured with hardware such as Gate Array, so that it could operate stand-alone.
 図10の実施例では、実施例2と同様の機能を、中性子線の測定地にセンサとなる半導体メモリ2とソフトエラー検出回路3を配置し、計算や制御を行うソフトエラー発生率予測部12は遠隔地のサーバで行う例を示す。サーバは通常のプロセッサ、メモリ、入力インタフェースおよび出力インタフェースを備えるものとし、各種の機能や計算は、メモリに格納されたプログラムを、プロセッサが各種ハードウェアと連携して実行することにより実現される。プロセッサで実行される各種のプログラム、または実行される機能を、「部」「ユニット」「手段」「機能」「モジュール」等と呼称する場合がある。 In the embodiment shown in FIG. 10, the same function as that of the second embodiment is provided. A soft error occurrence predicting unit 12 that performs calculation and control by arranging a semiconductor memory 2 and a soft error detection circuit 3 as a sensor at a neutron beam measurement site. Shows an example of using a remote server. The server includes a normal processor, a memory, an input interface, and an output interface, and various functions and calculations are realized by the processor executing programs stored in the memory in cooperation with various hardware. Various programs executed by the processor or functions to be executed may be referred to as “parts”, “units”, “means”, “functions”, “modules”, and the like.
 実施例2で説明したように、ソフトエラー発生率予測部12は、ソフトエラー発生率計算部4の機能に加え、補正ソフトエラー発生率の予測機能を持つ。測定地に設置されたセンサ用のメモリ2を用いて、ソフトエラー検出回路3は、図2で説明した処理を行い、ソフトエラー検出結果データ7を生成する。 As described in the second embodiment, the soft error occurrence rate prediction unit 12 has a function of predicting a corrected soft error occurrence rate in addition to the function of the soft error occurrence rate calculation unit 4. Using the sensor memory 2 installed at the measurement site, the soft error detection circuit 3 performs the processing described with reference to FIG. 2 and generates soft error detection result data 7.
 ソフトエラー検出結果データ7は、ネットワーク1000経由でソフトエラー発生率予測部12に送信される。環境センサ6も、環境データ8をネットワーク1000経由でソフトエラー発生率予測部12に送信する。ネットワーク1000は有線でも無線でもよい。 The soft error detection result data 7 is transmitted to the soft error occurrence rate prediction unit 12 via the network 1000. The environmental sensor 6 also transmits the environmental data 8 to the soft error occurrence rate prediction unit 12 via the network 1000. The network 1000 may be wired or wireless.
 ソフトエラー検出結果データ7は、実施例1または2と同様にソフトエラー発生率計算部4で処理され、ソフトエラー発生率1001が計算される。ソフトエラー発生率1001は、図3で説明したように、ソフトエラーの検出時刻に対応した環境データ8を用いて、ソフトエラー発生率補正部1002で補正処理され、補正ソフトエラー発生率1003が計算される。補正処理に置いては、図示しない記憶装置に格納された補正テーブル400(図4)が使用される。 The soft error detection result data 7 is processed by the soft error occurrence rate calculation unit 4 as in the first or second embodiment, and the soft error occurrence rate 1001 is calculated. As described with reference to FIG. 3, the soft error occurrence rate 1001 is corrected by the soft error occurrence rate correction unit 1002 using the environment data 8 corresponding to the detection time of the soft error, and the corrected soft error occurrence rate 1003 is calculated. Is done. In the correction process, a correction table 400 (FIG. 4) stored in a storage device (not shown) is used.
 一般的には、データの送受信に大きな遅延はないので、時間的に変化するソフトエラー発生率1001と環境データ8は、その時点で最新のデータを計算に用いれば問題はない。具体的には、ソフトエラー発生率補正部1002が持つ最新のデータを用いる。補正ソフトエラー発生率1003は、メモリ1004に時系列に格納される。メモリ1004は、例えば磁気ディスク装置のような大容量の記憶装置でもよい。 Generally, since there is no large delay in data transmission / reception, there is no problem if the soft error occurrence rate 1001 and the environmental data 8 that change with time are used for the calculation of the latest data at that time. Specifically, the latest data possessed by the soft error rate correction unit 1002 is used. The corrected soft error occurrence rate 1003 is stored in the memory 1004 in time series. The memory 1004 may be a large-capacity storage device such as a magnetic disk device.
 ソフトエラー発生率変量解析部1005では、補正ソフトエラー発生率1003の時系列データを、例えば、太陽の黒点周期をモデル化した三角関数に当てはめてモデルを生成する。これにより、ソフトエラー発生率変量解析部1005からは、太陽活動などによる、ソフトエラー発生率の大域的ゆらぎをモデル化したデータ1006が出力される。ソフトエラー発生率予測部1007は、例えば、現在のソフトエラー発生率に対して、モデル化したデータ1006を用いた外挿法で、将来のソフトエラー発生率の予測を行う。 The soft error rate variable analysis unit 1005 generates a model by applying the time series data of the corrected soft error rate 1003 to, for example, a trigonometric function that models the sunspot period of the sun. As a result, the soft error occurrence rate variable analysis unit 1005 outputs data 1006 that models global fluctuations in the soft error occurrence rate due to solar activity or the like. The soft error occurrence rate prediction unit 1007 predicts the future soft error occurrence rate by an extrapolation method using the modeled data 1006 with respect to the current soft error occurrence rate, for example.
 メモリ1004に格納されたデータから、ソフトエラー発生率の推移データ1008を出力し、ソフトエラー発生率予測部1007は、ソフトエラー発生予測データ1009を出力する。これらは、表示装置1010に表示される。 From the data stored in the memory 1004, soft error occurrence rate transition data 1008 is output, and the soft error occurrence rate prediction unit 1007 outputs soft error occurrence prediction data 1009. These are displayed on the display device 1010.
 以上詳細に説明した本発明の実施例では、環境情報で中性子ソフトエラー率を逐次補正することで、時間的に局所的な測定ばらつきを除去し、相対中性子強度の測定精度を向上できる。相対的な環境中性子強度の変化は、地球規模の大局的なゆらぎと、天気や気圧等の設置環境条件の時間的変化による局所的なゆらぎの組合せである。時間変化のない一定値を用いた較正では、大局的なゆらぎと局所的なゆらぎの合算値しか測定できない。一方、本実施例では、環境情報により、両ゆらぎを分離することができ、大局的なゆらぎの周波数が低いことを利用するなどして、より精度の高い較正が可能である。 In the embodiment of the present invention described in detail above, the neutron soft error rate is sequentially corrected with the environmental information, so that local measurement variations in time can be removed and the measurement accuracy of relative neutron intensity can be improved. The relative environmental neutron intensity change is a combination of global global fluctuations and local fluctuations due to temporal changes in installation environment conditions such as weather and atmospheric pressure. In calibration using a constant value that does not change with time, only the sum of global fluctuations and local fluctuations can be measured. On the other hand, in the present embodiment, both fluctuations can be separated from each other based on the environmental information, and more accurate calibration is possible by utilizing the fact that the frequency of global fluctuations is low.
 また、本実施例の構成によれば、半導体メモリとアクセス回路、モニタ回路、環境センサからなるため、高電圧機器やアナログ回路が不要であり、小型である。 Further, according to the configuration of the present embodiment, since it is composed of a semiconductor memory, an access circuit, a monitor circuit, and an environmental sensor, a high voltage device and an analog circuit are unnecessary, and the size is small.
 半導体デバイスにおけるソフトエラーの主原因は中性子によるSiの核破砕反応であり、本実施例では、原理的にこの反応の発生頻度を直接観測できる。そのため、Siと核破砕反応を起こす可能性のあるエネルギーの中性子は原理的に全て検出できる。 The main cause of soft errors in semiconductor devices is Si spallation reaction by neutrons. In this example, the frequency of occurrence of this reaction can be directly observed in principle. Therefore, in principle, all neutrons with energy that can cause a spallation reaction with Si can be detected.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 本発明は、環境中性子のモニタリングに利用可能である。 The present invention can be used for monitoring environmental neutrons.
1…中性子モニタリングシステム、2…半導体メモリ、3…ソフトエラー検出回路、4…ソフトエラー発生率計算部、7…ソフトエラー検出結果データ、8…環境データ、9…表示装置 DESCRIPTION OF SYMBOLS 1 ... Neutron monitoring system, 2 ... Semiconductor memory, 3 ... Soft error detection circuit, 4 ... Soft error generation rate calculation part, 7 ... Soft error detection result data, 8 ... Environmental data, 9 ... Display apparatus

Claims (15)

  1.  半導体メモリと、
     環境センサからの環境センサデータを入力する入力部と、
     前記半導体メモリに対してリードアクセスしてソフトエラーを検出し、検出時間に関する時間情報とソフトエラー検出数を含む、ソフトエラー検出結果データを出力するソフトエラー検出部と、
     前記ソフトエラー検出結果データからソフトエラー発生率を計算し、前記環境センサデータで補正し、補正ソフトエラー発生率を得る計算部と、
     を備える中性子強度モニタリングシステム。
    Semiconductor memory,
    An input unit for inputting environmental sensor data from the environmental sensor;
    A soft error detection unit that performs a read access to the semiconductor memory to detect a soft error, and outputs a soft error detection result data including time information on the detection time and the number of soft error detections;
    Calculating a soft error occurrence rate from the soft error detection result data, correcting with the environmental sensor data, and obtaining a corrected soft error occurrence rate;
    A neutron intensity monitoring system.
  2.  前記環境センサデータは、気圧、大気微量成分、水蒸気、風、気温、エーロゾル、雲の分布、雨量の少なくとも一つに関するデータを含む、
     請求項1記載の中性子強度モニタリングシステム。
    The environmental sensor data includes data on at least one of atmospheric pressure, atmospheric minor components, water vapor, wind, temperature, aerosol, cloud distribution, and rainfall,
    The neutron intensity monitoring system according to claim 1.
  3.  前記時間情報は、モニタリング開始からの経過時間、および、前回の前記ソフトエラー検出結果データの出力からの経過時間の少なくとも一つである、
     請求項1記載の中性子強度モニタリングシステム。
    The time information is at least one of an elapsed time from the start of monitoring and an elapsed time from the previous output of the soft error detection result data.
    The neutron intensity monitoring system according to claim 1.
  4.  前記計算部は、さらに前記補正ソフトエラー発生率の推移から補正ソフトエラー発生率の動向を予測するソフトエラー率予測機能を備える、
     請求項1記載の中性子強度モニタリングシステム。
    The calculation unit further includes a soft error rate prediction function for predicting a trend of the correction soft error occurrence rate from the transition of the correction soft error occurrence rate,
    The neutron intensity monitoring system according to claim 1.
  5.  前記半導体メモリは、ソフトエラーの反応断面積の異なる複数の半導体メモリを含み、
     前記ソフトエラー検出部は、前記複数の半導体メモリのそれぞれについて、前記ソフトエラー検出結果データを出力し、
     前記計算部は、前記複数の半導体メモリのそれぞれについて、前記補正ソフトエラー発生率を計算する、
     請求項1記載の中性子強度モニタリングシステム。
    The semiconductor memory includes a plurality of semiconductor memories having different reaction cross sections of soft errors,
    The soft error detection unit outputs the soft error detection result data for each of the plurality of semiconductor memories,
    The calculation unit calculates the correction soft error occurrence rate for each of the plurality of semiconductor memories.
    The neutron intensity monitoring system according to claim 1.
  6.  前記半導体メモリは、複数の方向に向けて配置された複数の半導体メモリを含み、
     前記ソフトエラー検出部は、前記複数の半導体メモリのそれぞれについて、前記ソフトエラー検出結果データを出力し、
     前記計算部は、前記複数の半導体メモリのそれぞれについて、前記ソフトエラー発生率を計算する、
     請求項1記載の中性子強度モニタリングシステム。
    The semiconductor memory includes a plurality of semiconductor memories arranged in a plurality of directions,
    The soft error detection unit outputs the soft error detection result data for each of the plurality of semiconductor memories,
    The calculation unit calculates the soft error occurrence rate for each of the plurality of semiconductor memories.
    The neutron intensity monitoring system according to claim 1.
  7.  半導体メモリに対してリードアクセスすることにより検出された、ソフトエラー検出結果データを入力とする第1の入力装置と、
     前記ソフトエラー検出結果データに基づいて、ソフトエラー発生率を計算するソフトエラー発生率計算部と、
     前記半導体メモリの環境に関するデータであって、時間的に変化する環境データを入力とする第2の入力装置と、
     前記ソフトエラー発生率に対して、前記環境データに基づいた補正を行い、補正ソフトエラー発生率を生成するソフトエラー発生率補正部と、
     前記補正ソフトエラー発生率を時系列データとして格納する記憶装置と、
     を備える中性子強度モニタリングシステム。
    A first input device that receives soft error detection result data detected by read access to the semiconductor memory;
    Based on the soft error detection result data, a soft error occurrence rate calculation unit for calculating a soft error occurrence rate,
    A second input device that inputs data related to the environment of the semiconductor memory, the environment data changing over time;
    A soft error occurrence rate correction unit that performs correction based on the environmental data with respect to the soft error occurrence rate and generates a corrected soft error occurrence rate;
    A storage device for storing the corrected soft error rate as time-series data;
    A neutron intensity monitoring system.
  8.  前記環境データは、気圧、大気微量成分、水蒸気、風、気温、エーロゾル、雲の分布、雨量の少なくとも一つに関するデータであって、時間的に変化するデータを含む、
     請求項7記載の中性子強度モニタリングシステム。
    The environmental data is data related to at least one of atmospheric pressure, atmospheric minor components, water vapor, wind, temperature, aerosol, cloud distribution, rainfall, and includes data that changes with time.
    The neutron intensity monitoring system according to claim 7.
  9.  前記環境データに対応付けて前記補正のための補正係数を格納した補正情報を記憶し、
     前記ソフトエラー発生率補正部は、前記環境データに基づいて前記補正係数を呼び出し、前記補正係数に基づいて前記補正ソフトエラー発生率を得る、
     請求項7記載の中性子強度モニタリングシステム。
    Storing correction information in which correction coefficients for correction are stored in association with the environmental data;
    The soft error occurrence rate correction unit calls the correction coefficient based on the environment data, and obtains the correction soft error occurrence rate based on the correction coefficient,
    The neutron intensity monitoring system according to claim 7.
  10.  前記記憶装置から前記時系列データを取得して、前記時系列データに基づいたモデルを生成するソフトエラー発生率変量解析部と、
     前記モデルに基づいて、将来のソフトエラー発生率の予測を行う、ソフトエラー発生率予測部と、を備える、
     請求項7記載の中性子強度モニタリングシステム。
    A soft error rate variable analysis unit that acquires the time series data from the storage device and generates a model based on the time series data;
    Based on the model, a prediction of the future soft error occurrence rate, comprising a soft error occurrence rate prediction unit,
    The neutron intensity monitoring system according to claim 7.
  11.  中性子強度のモニタリング方法であって、
     半導体メモリにデータの書き込みおよび読み出しを行ってソフトエラーを検出し、検出された前記ソフトエラーに基づいて、ソフトエラー発生率を計算する第1のステップと、
     情報処理装置が、前記ソフトエラーの検出時に対応する環境データに対応する補正係数を取得し、前記ソフトエラー発生率を前記補正係数で補正して、補正ソフトエラー発生率を生成する第2のステップと、
     前記補正ソフトエラー発生率を、時系列データとして記憶装置に記憶する第3のステップと、
     を備える中性子強度モニタリング方法。
    A method for monitoring neutron intensity,
    A first step of detecting a soft error by writing and reading data to and from a semiconductor memory, and calculating a soft error rate based on the detected soft error;
    A second step in which the information processing apparatus acquires a correction coefficient corresponding to the environmental data corresponding to the detection of the soft error, corrects the soft error occurrence rate with the correction coefficient, and generates a corrected soft error occurrence rate; When,
    A third step of storing the corrected soft error occurrence rate in a storage device as time-series data;
    A neutron intensity monitoring method comprising:
  12.  前記第1のステップは、
     前記半導体メモリにデータを書き込む書き込みステップと、
     書き込んだ前記データをリファレンスデータとして保持する保持ステップと、
     前記半導体メモリから書き込んだ前記データを読み出す読み出しステップと、
     読み出した前記データを前記リファレンスデータと比較する比較ステップと、
     前記比較により、前記ソフトエラーの発生数を計数する検出ステップと、
     を備える請求項11記載の中性子強度モニタリング方法。
    The first step includes
    A writing step of writing data to the semiconductor memory;
    Holding step for holding the written data as reference data;
    A reading step of reading the data written from the semiconductor memory;
    A comparison step of comparing the read data with the reference data;
    A detection step of counting the number of occurrences of the soft error by the comparison;
    The neutron intensity monitoring method according to claim 11.
  13.  前記第1のステップは、
     前記読み出しステップ、比較ステップ、および検出ステップを周期的に繰り返し行い、
     前記検出ステップの後に、前記検出ステップで検出された発生数を過去の発生数に積算し、
     前記積算の後に、その時点での読み出した前記データを新たな前記リファレンスデータとして保持し、
     前記読み出しステップに戻る、
     請求項12記載の中性子強度モニタリング方法。
    The first step includes
    Periodically performing the reading step, the comparing step, and the detecting step;
    After the detection step, the number of occurrences detected in the detection step is added to the number of occurrences in the past,
    After the integration, the data read at that time is held as new reference data,
    Return to the reading step,
    The neutron intensity monitoring method according to claim 12.
  14.  前記第1のステップは、
     前記読み出しステップ、比較ステップ、および検出ステップの繰り返しを、所定の時間行って終了し、
     前記所定の時間の長さと、前記繰り返しの終了時点における前記ソフトエラーの発生数に基づいて、前記ソフトエラー発生率を計算する、
     請求項13記載の中性子強度モニタリング方法。
    The first step includes
    Repeating the readout step, the comparison step, and the detection step for a predetermined time and ends,
    Calculating the soft error rate based on the length of the predetermined time and the number of occurrences of the soft error at the end of the repetition;
    The neutron intensity monitoring method according to claim 13.
  15.  前記環境データは、気圧、大気微量成分、水蒸気、風、気温、エーロゾル、雲の分布、雨量の少なくとも一つに関するデータを含み、1週間以下の時間的粒度で取得される、
     請求項11記載の中性子強度モニタリング方法。
    The environmental data includes data on at least one of atmospheric pressure, atmospheric minor components, water vapor, wind, temperature, aerosol, cloud distribution, and rainfall, and is acquired with a temporal granularity of one week or less.
    The neutron intensity monitoring method according to claim 11.
PCT/JP2018/010675 2017-04-05 2018-03-19 Neutron intensity monitoring system and method WO2018186155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075161A JP6873794B2 (en) 2017-04-05 2017-04-05 Neutron intensity monitoring system and method
JP2017-075161 2017-04-05

Publications (1)

Publication Number Publication Date
WO2018186155A1 true WO2018186155A1 (en) 2018-10-11

Family

ID=63712549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010675 WO2018186155A1 (en) 2017-04-05 2018-03-19 Neutron intensity monitoring system and method

Country Status (2)

Country Link
JP (1) JP6873794B2 (en)
WO (1) WO2018186155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046809A (en) * 2023-02-07 2023-05-02 中国科学院西北生态环境资源研究院 Mountain soil water information acquisition method and device, storage medium and electronic equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306945B2 (en) * 2019-10-03 2023-07-11 ファナック株式会社 MEMORY ERROR DETERMINATION DEVICE AND COMPUTER PROGRAM FOR MEMORY ERROR DETERMINATION
US20230204800A1 (en) * 2020-05-12 2023-06-29 Nippon Telegraph And Telephone Corporation Nuclear reaction detection device, method and program
CN114859397B (en) * 2022-03-17 2022-11-22 合肥金星智控科技股份有限公司 Neutron activation energy spectrum processing method, device, equipment and medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158209A (en) * 1990-10-22 1992-06-01 Fuji Electric Co Ltd Radiation thickness meter and measuring method of thickness by using radiation
JP2002040147A (en) * 2000-07-28 2002-02-06 Matsushita Electric Ind Co Ltd Neutron detector
JP2013120426A (en) * 2011-12-06 2013-06-17 Hitachi Ltd Electronic system device having soft error tolerance adjustment function and soft error tolerance adjustment method
JP2014126555A (en) * 2012-12-27 2014-07-07 Canon Electronics Inc Radiation dosimetry device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210276A (en) * 2012-03-30 2013-10-10 Toshiba Corp Radiation detector calibration system and radiation detector calibration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04158209A (en) * 1990-10-22 1992-06-01 Fuji Electric Co Ltd Radiation thickness meter and measuring method of thickness by using radiation
JP2002040147A (en) * 2000-07-28 2002-02-06 Matsushita Electric Ind Co Ltd Neutron detector
JP2013120426A (en) * 2011-12-06 2013-06-17 Hitachi Ltd Electronic system device having soft error tolerance adjustment function and soft error tolerance adjustment method
JP2014126555A (en) * 2012-12-27 2014-07-07 Canon Electronics Inc Radiation dosimetry device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046809A (en) * 2023-02-07 2023-05-02 中国科学院西北生态环境资源研究院 Mountain soil water information acquisition method and device, storage medium and electronic equipment
CN116046809B (en) * 2023-02-07 2023-09-05 中国科学院西北生态环境资源研究院 Mountain soil water information acquisition method and device, storage medium and electronic equipment

Also Published As

Publication number Publication date
JP6873794B2 (en) 2021-05-19
JP2018179580A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018186155A1 (en) Neutron intensity monitoring system and method
Kostylev et al. Solar power forecasting performance–towards industry standards
Killinger et al. Projection of power generation between differently-oriented PV systems
Da Silva et al. Validation of GPM IMERG extreme precipitation in the Maritime Continent by station and radar data
Basarab et al. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud‐resolving chemical transport models
Chambon et al. Assessing the impact of pre‐GPM microwave precipitation observations in the Goddard WRF ensemble data assimilation system
Zhou et al. Trends in downward surface shortwave radiation from multi‐source data over China during 1984–2015
Sommer et al. Observation impact in a convective‐scale localized ensemble transform Kalman filter
Bütikofer Ground-based measurements of energetic particles by neutron monitors
Hosseini et al. Extreme Atlantic hurricane probability of occurrence through the Metastatistical Extreme Value Distribution
Anagnostou et al. Rainfall estimation from TOGA radar observations during LBA field campaign
Muneer et al. Models for estimating solar radiation and illuminance from meteorological parameters
Aghakouchak et al. A comparison of three remotely sensed rainfall ensemble generators
Löhnert et al. Accuracy assessment of an integrated profiling technique for operationally deriving profiles of temperature, humidity, and cloud liquid water
Kramer et al. Optimal localized observations for advancing beyond the ENSO predictability barrier
Zhang et al. The geometric factor of high energy protons detector on FY-3 satellite
Zick et al. Illustration of an object‐based approach to identify structural differences in tropical cyclone wind fields
Finn et al. Towards assimilation of wind profile observations in the atmospheric boundary layer with a sub-kilometre-scale ensemble data assimilation system
Šmídl et al. Efficient sequential Monte Carlo sampling for continuous monitoring of a radiation situation
Mohammednour et al. GNSS positioning accuracy improvement based on surface meteorological parameters using artificial neural networks
VanDerwerken et al. Meteorologically driven neutron background prediction for homeland security
Shi et al. Techniques and methods used to determine the best estimate of radiation fluxes at SGP central facility
He et al. Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model
Nielsen et al. Excerpts from the report:“BeyondTMY-Meteorological data sets for CSP/STE performance simulations”
Maity et al. Alternative approach for estimation of precipitation using Doppler weather radar data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781526

Country of ref document: EP

Kind code of ref document: A1