JP6030027B2 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP6030027B2
JP6030027B2 JP2013131910A JP2013131910A JP6030027B2 JP 6030027 B2 JP6030027 B2 JP 6030027B2 JP 2013131910 A JP2013131910 A JP 2013131910A JP 2013131910 A JP2013131910 A JP 2013131910A JP 6030027 B2 JP6030027 B2 JP 6030027B2
Authority
JP
Japan
Prior art keywords
optical
signal
signals
wavelength
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013131910A
Other languages
Japanese (ja)
Other versions
JP2015008349A (en
Inventor
松田 俊哉
俊哉 松田
福太郎 濱岡
福太郎 濱岡
明 那賀
明 那賀
崇文 深谷
崇文 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013131910A priority Critical patent/JP6030027B2/en
Publication of JP2015008349A publication Critical patent/JP2015008349A/en
Application granted granted Critical
Publication of JP6030027B2 publication Critical patent/JP6030027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、デジタル信号処理を行うデジタルコヒーレント方式を用いた光ネットワークシステムに関する。特に、同一信号を複数の光信号に分岐して送信し、受信後に合成し、送信信号を復元する光伝送システムに関する。   The present invention relates to an optical network system using a digital coherent system that performs digital signal processing. In particular, the present invention relates to an optical transmission system that branches and transmits the same signal into a plurality of optical signals, combines them after reception, and restores the transmitted signals.

1波長あたりの伝送速度が 100Gbit/s 以上の超高速伝送システムにおいて、コヒーレント光通信技術とデジタル信号処理技術を組み合わせたデジタルコヒーレント技術が広く用いられるようになってきた。 100Gbit/s 長距離光伝送システムにおける変復調方式として標準となっているDP−QPSK(Dual Polarization-Quadrature Phase Shift Keying )方式では、4値の位相変調を用いることで32Gbit/s の信号を2多重してコヒーレント光信号を生成し、さらに2つの偏波を用いることで2多重し、 128Gbit/s のコヒーレント光信号を生成する。受信側では、信号光と同じ波長のローカル光を用いてコヒーレント検波した信号を、A/Dコンバータを用いてデジタル化した後、DSPによるデジタル信号処理によって、クロック抽出、周波数オフセット補償、伝送路の波長分散補償、偏波分散補償、偏波信号の分離等を行うことで優れた伝送特性が実現されている。   In an ultra-high-speed transmission system with a transmission rate per wavelength of 100 Gbit / s or more, a digital coherent technology combining a coherent optical communication technology and a digital signal processing technology has been widely used. The DP-QPSK (Dual Polarization-Quadrature Phase Shift Keying) method, which is standard as a modulation / demodulation method in 100 Gbit / s long-distance optical transmission systems, multiplexes 32 Gbit / s signals by using four-level phase modulation. Thus, a coherent optical signal is generated and further multiplexed by using two polarizations to generate a 128 Gbit / s coherent optical signal. On the receiving side, the signal coherently detected using local light having the same wavelength as that of the signal light is digitized using an A / D converter, and then clock extraction, frequency offset compensation, and transmission path are performed by digital signal processing using a DSP. Excellent transmission characteristics are realized by performing chromatic dispersion compensation, polarization dispersion compensation, separation of polarization signals, and the like.

また、 100Gbit/s 信号を用いたネットワークとして、光送信機から出力される光信号を、1波長単位で任意の波長 (Colorless)で、任意の方路 (Directionless)に、他の波長と衝突することなく (Contentionless) 切り替えることができる、CDC機能を実現する光クロスコネクト(XC)装置を用いたCDC−ROADMネットワークが検討されている(非特許文献1)。CDC−ROADMネットワークでは、従来の2つのパスを用いたプロテクションに加えて、第3の予備ルートにCDC機能を用いて光信号を切り替えることで、激甚災害に対してもネットワークの信頼性を確保することが可能となる。   In addition, as a network using 100 Gbit / s signals, an optical signal output from an optical transmitter collides with other wavelengths in an arbitrary path (Directionless) at an arbitrary wavelength (Colorless) in one wavelength unit. A CDC-ROADM network using an optical cross-connect (XC) device that realizes a CDC function that can be switched without (Contentionless) has been studied (Non-Patent Document 1). In the CDC-ROADM network, in addition to the conventional protection using two paths, the optical signal is switched to the third backup route using the CDC function to ensure the reliability of the network even in the event of a catastrophic disaster. It becomes possible.

Prasanna,G.; Kishore,B.S.; Omprasad,G.K.; Raju,K.S.; Gowrishankar, R.; Venkataramaniah, K.; Johnson, R.; Voruganti, P., “Versatility of a colorless and directionless WSS based ROADM architecture ”, Communication Systems and Networks and Workshops, Jan.2009 Page(s):1-8, (2009).Prasanna, G .; Kishore, BS; Omprasad, GK; Raju, KS; Gowrishankar, R .; Venkataramaniah, K .; Johnson, R .; Voruganti, P., “Versatility of a colorless and directionless WSS based ROADM architecture”, Communication Systems and Networks and Workshops, Jan. 2009 Page (s): 1-8, (2009). H.Y.Choi, T.Tsuritani, and I.Morita,“BER-adaptive flexible-format transmitter for elastic optical networks,”Optics Express, vol.20, no.17, pp.18652-18658, 2012.H.Y.Choi, T.Tsuritani, and I.Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012.

更なる大容量伝送方式として、16QAM(Quadratuere Amplitude Modulation)等、変調信号の多値化と複数波長を用いた多重化の併用が検討されている。しかし、変調信号の多値化により受信感度が低下するため、伝送距離に制限が生じてしまう(非特許文献2)。   As a further large-capacity transmission system, combined use of multi-value modulation signals and multiplexing using a plurality of wavelengths such as 16QAM (Quadratuere Amplitude Modulation) has been studied. However, since the reception sensitivity is lowered due to the multi-level modulation signal, the transmission distance is limited (Non-Patent Document 2).

また、CDC機能を用いた切替の場合、光XC装置を構成する光スイッチの物理的な切替に数秒程度の時間を要するため、その間は光信号断になってしまう。   Further, in the case of switching using the CDC function, it takes about several seconds to physically switch the optical switch constituting the optical XC apparatus, and the optical signal is interrupted during that time.

本発明は、デジタル信号処理を用いて伝送特性を向上させると共に、光ネットワーク障害発生時に光信号断が生じない安定した光伝送システムを提供することを目的とする。   It is an object of the present invention to provide a stable optical transmission system that improves transmission characteristics using digital signal processing and that does not cause an optical signal interruption when an optical network failure occurs.

第1の発明の光伝送システムは、データ信号dを波長数m×光伝送路数nだけ複製し(mは2以上の整数、nは2以上の整数)、それぞれ遅延器で所定の遅延を設定し、波長ごとにn本の光信号に変換する光信号送信装置と、m波の光信号を波長多重してn本の波長多重光信号を生成し、n本の光伝送路にそれぞれ出力する光XC装置1と、n本の光伝送路を伝送されたn本の波長多重光信号を入力し、それぞれm波の光信号に分波する光XC装置2と、光XC装置2で分波されたm×n波の光信号を受信して電気信号に変換し、(m×n)×mのMIMO処理を行うMIMO処理回路を含む光信号受信装置とを備え、複製されたデータ信号dのn本の光伝送路における伝送遅延差を、遅延器で粗調整し、MIMO処理回路における信号処理で微調整してデータ信号dを合成する構成である。 The optical transmission system of the first invention replicates the data signal d by the number of wavelengths m × the number of optical transmission lines n (m is an integer greater than or equal to 2, n is an integer greater than or equal to 2), and each delay unit gives a predetermined delay. An optical signal transmitter that sets and converts n optical signals for each wavelength, and wavelength-multiplexes m-wave optical signals to generate n wavelength-multiplexed optical signals, which are output to n optical transmission lines, respectively. The optical XC device 1 and the optical XC device 2 that receives n wavelength-multiplexed optical signals transmitted through the n optical transmission lines and demultiplexes them into m-wave optical signals are separated by the optical XC device 2. An optical signal receiving device including a MIMO processing circuit that receives a waved m × n wave optical signal, converts it into an electrical signal, and performs (m × n) × m MIMO processing, and replicated data signal The transmission delay difference in n optical transmission lines of d is roughly adjusted by a delay device, and the signal processing in the MIMO processing circuit Adjustment to a structure for combining a data signal d.

第2の発明の光伝送システムは、s個のデータ信号d1〜dsを入力し(sは2以上の整数)、さらにデータ信号d1〜dsごとに互いに異なる波長で、それぞれ波長数m×光伝送路数nだけ複製し(mは1以上の整数、nは2以上の整数)、それぞれ遅延器で所定の遅延を設定し、波長ごとにn本の光信号に変換する光信号送信装置と、m×s波の光信号を波長多重してn本の波長多重光信号を生成し、n本の光伝送路にそれぞれ出力する光XC装置1と、n本の光伝送路を伝送されたn本の波長多重光信号を入力し、それぞれm×s波の光信号に分波する光XC装置2と、光XC装置2で分波されたm×s波の光信号を受信して電気信号に変換し、同一のデータ信号d1〜dsごとに(m×n)×mのMIMO処理を行うMIMO処理回路を含む光信号受信装置とを備え、データ信号d1〜dsごとに複製されたデータ信号のn本の光伝送路における伝送遅延差を、遅延器で粗調整し、MIMO処理回路における信号処理で微調整してデータ信号d1〜dsを合成する構成である。
The optical transmission system according to the second aspect of the invention receives s data signals d1 to ds (s is an integer of 2 or more), and each data signal d1 to ds has a wavelength different from each other, the number of wavelengths m × optical transmission. An optical signal transmitting device that replicates the number of paths n (m is an integer of 1 or more, n is an integer of 2 or more), sets a predetermined delay in each delay unit, and converts it into n optical signals for each wavelength; An optical XC device 1 that multiplexes m × s-wave optical signals to generate n wavelength-multiplexed optical signals and outputs them to the n optical transmission lines, and n transmitted through the n optical transmission lines. An optical XC device 2 that receives a wavelength-division multiplexed optical signal and demultiplexes the optical signal into an m × s optical signal, and receives an m × s optical signal that is demultiplexed by the optical XC device 2 and receives an electrical signal. And a MIMO processing circuit that performs (m × n) × m MIMO processing for each of the same data signals d1 to ds. An optical signal receiving device, and the transmission delay difference in the n optical transmission lines of the data signal replicated for each of the data signals d1 to ds is coarsely adjusted by a delay device and finely adjusted by signal processing in the MIMO processing circuit Thus, the data signals d1 to ds are combined.

第1の発明または第2の発明の光伝送システムにおいて、光信号受信装置で、光伝送路を伝送された各波長の光信号から変換および合成されたデータ信号の遅延量に応じて、光信号送信装置の遅延器に設定する遅延量を制御する構成である。   In the optical transmission system of the first invention or the second invention, the optical signal is received by the optical signal receiving device according to the delay amount of the data signal converted and synthesized from the optical signal of each wavelength transmitted through the optical transmission line. In this configuration, the delay amount set in the delay unit of the transmission apparatus is controlled.

第2の発明の光伝送システムにおいて、データ信号d1〜dsに優先度を設定し、n本の光伝送路のいずれかに障害が発生して光信号受信装置に当該光伝送路からの波長多重光信号が入力しないときに、光信号送信装置および光信号受信装置は、優先度の低いデータ信号に割り当てていた波長を優先度の高いデータ信号に割り当てて伝送し、(m×n)×mのMIMO処理を行って優先度の高いデータ信号を合成する構成である。   In the optical transmission system of the second invention, priorities are set for the data signals d1 to ds, and a failure occurs in any of the n optical transmission lines, and wavelength division multiplexing from the optical transmission line is performed in the optical signal receiving apparatus. When no optical signal is input, the optical signal transmitting device and the optical signal receiving device allocate the wavelength assigned to the low priority data signal to the high priority data signal, and transmit (m × n) × m. In this configuration, a high-priority data signal is synthesized by performing the MIMO process.

本発明は、光信号送信機において、複製された複数本の光信号の遅延量を粗調整して送信し、これら複数本の光信号を光信号受信機でそれぞれ受信した後に、MIMO処理により受信信号間の遅延量を微調整し信号合成することにより、伝送特性を向上させることができる。また、光伝送路の障害発生時に光信号断が生じない安定した光伝送システムを実現することができる。   In the optical signal transmitter, the optical signal transmitter roughly adjusts the delay amount of the duplicated optical signals, transmits the optical signals by the optical signal receiver, and then receives them by the MIMO processing. Transmission characteristics can be improved by finely adjusting the delay amount between signals and synthesizing the signals. Further, it is possible to realize a stable optical transmission system in which an optical signal is not interrupted when an optical transmission path failure occurs.

本発明の光伝送システムの実施例1を示す図である。It is a figure which shows Example 1 of the optical transmission system of this invention. 本発明の光伝送システムの実施例2を示す図である。It is a figure which shows Example 2 of the optical transmission system of this invention. 本発明の光伝送システムの実施例3を示す図である。It is a figure which shows Example 3 of the optical transmission system of this invention. 本発明の光伝送システムの実施例5を示す図である。It is a figure which shows Example 5 of the optical transmission system of this invention. 本発明の光伝送システムの実施例6を示す図である。It is a figure which shows Example 6 of the optical transmission system of this invention. 光送信機15の構成例を示す図である。2 is a diagram illustrating a configuration example of an optical transmitter 15. FIG. 光受信機25の構成例を示す図である。3 is a diagram illustrating a configuration example of an optical receiver 25. FIG. 実施例1の光伝送システムの実験に用いた構成例を示す図である。1 is a diagram illustrating a configuration example used in an experiment of an optical transmission system of Example 1. FIG. DP−QPSK信号のデジタル信号処理後のコンスタレーションを示す図である。It is a figure which shows the constellation after the digital signal processing of DP-QPSK signal.

図1は、本発明の光伝送システムの実施例1を示す。
図1おいて、光信号送信装置10は、受信したクライアント信号をデータ信号dとして出力するクライアント信号受信機11と、データ信号dを3波長(m=3)で伝送するために3分配して出力するODU−XC12と、3本の同一のデータ信号dをそれぞれ誤り訂正符号化し、さらに2方路(n=2)で伝送するために2分配して出力する誤り訂正符号器13と、合計6本の同一のデータ信号の遅延調整を行う遅延器14と、遅延調整された6本の同一のデータ信号をそれぞれ2本ずつ波長λ1〜λ3の光信号として出力する光送信機15により構成される。なお、遅延器14と誤り訂正符号器13の順番を入れ替え、誤り訂正符号器13の機能を光送信機15に含める構成としてもよい。その場合、ODU−XC12で、データ信号dを6分配してそれぞれの遅延器14に入力する構成となる。以下に示す実施例の構成においても同様である。
FIG. 1 shows a first embodiment of the optical transmission system of the present invention.
In FIG. 1, an optical signal transmission apparatus 10 distributes a client signal receiver 11 that outputs a received client signal as a data signal d, and distributes the data signal d in three to transmit at three wavelengths (m = 3). The ODU-XC 12 to be output, the error correction encoder 13 for performing error correction encoding on each of the three identical data signals d and further distributing and outputting them in two directions (n = 2), and the total The delay unit 14 adjusts the delay of six identical data signals, and the optical transmitter 15 outputs two identical six delay-adjusted data signals as optical signals having wavelengths λ1 to λ3. The Note that the order of the delay unit 14 and the error correction encoder 13 may be switched, and the function of the error correction encoder 13 may be included in the optical transmitter 15. In this case, the ODU-XC 12 is configured to distribute the data signal d into six and input to each delay unit 14. The same applies to the configuration of the embodiment described below.

光信号送信装置10から出力される波長λ1〜λ3の光信号は、光XC装置17で2組−3波長の波長多重光信号に合波されて光伝送路51,52に送出される。光伝送路51,52を伝送された波長多重光信号は、光XC装置27でそれぞれ波長λ1〜λ3の光信号に分波されて光信号受信装置20に入力する。   The optical signals having the wavelengths λ1 to λ3 output from the optical signal transmission device 10 are combined by the optical XC device 17 with the wavelength-multiplexed optical signals of 2 sets to 3 wavelengths and transmitted to the optical transmission lines 51 and 52. The wavelength multiplexed optical signals transmitted through the optical transmission lines 51 and 52 are demultiplexed into optical signals having wavelengths λ1 to λ3 by the optical XC device 27 and input to the optical signal receiving device 20, respectively.

光信号受信装置20は、光伝送路51,52で伝送された波長λ1〜λ3の光信号をそれぞれコヒーレント検波し、3波長2経路で伝送されたデータ信号を出力する光受信機25と、この3×2本の同一データ信号について(3×2)×3MIMO処理を行い、3本のデータ信号を出力するMIMO処理器24と、3本のデータ信号をそれぞれ誤り訂正復号化してデータ信号dとして出力する誤り訂正復号器23と、誤り訂正復号化された3本のデータ信号dのいずれか1つを出力するODU−XC22と、データ信号dをクライアント信号として送信するクライアント信号送信機21により構成される。   The optical signal receiver 20 coherently detects the optical signals of wavelengths λ1 to λ3 transmitted through the optical transmission paths 51 and 52, and outputs the data signal transmitted through the three wavelengths of two paths. The (3 × 2) × 3 MIMO processing is performed on the 3 × 2 identical data signals, the MIMO processor 24 that outputs the three data signals, and the three data signals are each subjected to error correction decoding to obtain the data signal d. An error correction decoder 23 for outputting, an ODU-XC 22 for outputting any one of the three data signals d subjected to error correction decoding, and a client signal transmitter 21 for transmitting the data signal d as a client signal. Is done.

実施例1では、1つのデータ信号dを3波長2経路で伝送する構成であり、各光伝送路51,52ごとの伝送遅延を、光信号送信装置10の遅延器14で粗調整し、光信号受信装置20のMIMO処理器24で(3×2)×3MIMO処理により微調整してデータ信号dを合成する構成である。この合成では、光信号の電界情報を保持したまま合成するため、光雑音が平均化される効果により、受信感度の向上が可能となる。   In the first embodiment, one data signal d is transmitted through two paths of three wavelengths, and the transmission delay for each of the optical transmission paths 51 and 52 is coarsely adjusted by the delay device 14 of the optical signal transmission apparatus 10, and the optical signal is transmitted. In this configuration, the MIMO processor 24 of the signal receiving device 20 synthesizes the data signal d with fine adjustment by (3 × 2) × 3 MIMO processing. In this combining, since the combining is performed while maintaining the electric field information of the optical signal, the reception sensitivity can be improved by the effect of averaging the optical noise.

ここで、光送信機15は、図6に示すように、デジタル信号処理により波形等化を行う波形等化器151、波形等化されたデジタル信号をアナログ信号に変換するD/Aコンバータ152、アナログ信号を波長λiの光信号に変換するコヒーレント光送信器153により構成される。   Here, as shown in FIG. 6, the optical transmitter 15 includes a waveform equalizer 151 that performs waveform equalization by digital signal processing, a D / A converter 152 that converts the waveform-equalized digital signal into an analog signal, The coherent optical transmitter 153 converts an analog signal into an optical signal having a wavelength λi.

光受信機25は、図7に示すように、波長λiの光信号をコヒーレント検波するコヒーレント光受信器251、そのアナログ信号をデジタル信号に変換するA/Dコンバータ252、デジタル信号をデジタル信号処理により波形等化して出力する波形等化器253により構成される。   As shown in FIG. 7, the optical receiver 25 includes a coherent optical receiver 251 that coherently detects an optical signal having a wavelength λi, an A / D converter 252 that converts the analog signal into a digital signal, and digital signal processing through digital signal processing. The waveform equalizer 253 outputs the waveform after equalization.

なお、光送信機15および光受信機25の構成は、変復調方式や信号処理の並列化によって適宜並列化される。例えば、変復調方式が偏波多重の多値位相変調方式の場合、各D/Aコンバータ152およびA/Dコンバータ252は、位相変調のI−Q成分用とx−Y偏波用の計4つのD/AコンバータおよびA/Dコンバータを含むDP−QPSK送信器およびDP−QPSK受信器が用いられる。   Note that the configurations of the optical transmitter 15 and the optical receiver 25 are appropriately parallelized by modulation / demodulation methods and parallelization of signal processing. For example, when the modulation / demodulation method is a polarization multiplexing multi-level phase modulation method, each of the D / A converters 152 and the A / D converters 252 has a total of four for the IQ component of the phase modulation and for the x-Y polarization. A DP-QPSK transmitter and a DP-QPSK receiver including a D / A converter and an A / D converter are used.

図2は、本発明の光伝送システムの実施例2を示す。
図2において、光信号送信装置10は、受信したクライアント信号をデータ信号dとして出力するクライアント信号受信機11と、データ信号dをOTN信号にマッピングした後に、3つのデータ信号d1〜d3に分割(s=3)するOTNフレーマ16と、データ信号d1〜d3をスルーするODU−XC12と、データ信号d1〜d3をそれぞれ誤り訂正符号化し、さらに2方路(n=2)で伝送するために2分配して出力する誤り訂正符号器13と、誤り訂正符号化された各2本のデータ信号d1〜d3の遅延調整を行う遅延器14と、遅延調整された各2本のデータ信号d1〜d3をそれぞれ波長λ1〜λ3の光信号(m=1)として出力する光送信機15により構成される。本構成では、ODU−XC12は省略してもよい。
FIG. 2 shows a second embodiment of the optical transmission system of the present invention.
In FIG. 2, the optical signal transmission device 10 divides the data signal d into three data signals d1 to d3 after mapping the client signal receiver 11 that outputs the received client signal as the data signal d and the data signal d to the OTN signal ( s = 3) OTN framer 16, ODU-XC 12 through data signals d 1 to d 3, and data signals d 1 to d 3 are each subjected to error correction coding and further transmitted in two directions (n = 2). An error correction encoder 13 for distributing and outputting, a delay unit 14 for adjusting the delay of each of the two data signals d1 to d3 subjected to error correction encoding, and each of the two data signals d1 to d3 subjected to the delay adjustment Are transmitted as optical signals (m = 1) having wavelengths λ1 to λ3, respectively. In this configuration, the ODU-XC 12 may be omitted.

光信号送信装置10から出力される波長λ1〜λ3の光信号は、光XC装置17で2組−3波長の波長多重光信号に合波されて光伝送路51,52に送出される。光伝送路51,52を伝送された波長多重光信号は、光XC装置27でそれぞれ波長λ1〜λ3の光信号に分波されて光信号受信装置20に入力する。   The optical signals having the wavelengths λ1 to λ3 output from the optical signal transmission device 10 are combined by the optical XC device 17 with the wavelength-multiplexed optical signals of 2 sets to 3 wavelengths and transmitted to the optical transmission lines 51 and 52. The wavelength multiplexed optical signals transmitted through the optical transmission lines 51 and 52 are demultiplexed into optical signals having wavelengths λ1 to λ3 by the optical XC device 27 and input to the optical signal receiving device 20, respectively.

光信号受信装置20は、光伝送路51,52で伝送された波長λ1〜λ3の光信号をそれぞれコヒーレント検波し、1波長2経路で伝送された同一データ信号をそれぞれ出力する光受信機25と、この1×2本の同一データ信号ごとに(1×2)×1MIMO処理を行い、データ信号d1〜d3を出力するMIMO処理器24と、データ信号d1〜d3をそれぞれ誤り訂正復号化して出力する誤り訂正復号器23と、誤り訂正復号化されたデータ信号d1〜d3をスルーするODU−XC22と、データ信号d1〜d3をデータ信号dとして結合するOTNフレーマ26と、結合されたデータ信号dをクライアント信号として送信するクライアント信号送信機21により構成される。本構成では、ODU−XC22は省略してもよい。   The optical signal receiving apparatus 20 coherently detects optical signals of wavelengths λ1 to λ3 transmitted through the optical transmission paths 51 and 52, and outputs the same data signal transmitted through one wavelength and two paths, respectively. The 1 × 2 identical data signals are subjected to (1 × 2) × 1 MIMO processing, the MIMO processor 24 for outputting the data signals d1 to d3, and the data signals d1 to d3 are each subjected to error correction decoding and output. Error correction decoder 23, ODU-XC 22 through which error corrected and decoded data signals d1 to d3 pass, OTN framer 26 which combines data signals d1 to d3 as data signal d, and combined data signal d Is transmitted as a client signal. In this configuration, the ODU-XC 22 may be omitted.

実施例2では、1つのデータ信号dをデータ信号d1〜d3に分割し、それぞれ1波長2経路(合計3波長2経路)で伝送する構成であり、各光伝送路51,52ごとの伝送遅延を、光信号送信装置10の遅延器14で粗調整し、光信号受信装置20のMIMO処理器24で同一データ信号ごとに(1×2)×1MIMO処理により微調整し、データ信号d1〜d3を合成する構成である。この合成では、光信号の電界情報を保持したまま合成するため、光雑音が平均化される効果により、受信感度の向上が可能となる。   In the second embodiment, one data signal d is divided into data signals d1 to d3 and transmitted through one wavelength and two paths (total of three wavelengths and two paths), and transmission delay for each of the optical transmission lines 51 and 52 is performed. Are coarsely adjusted by the delay unit 14 of the optical signal transmitting apparatus 10, and finely adjusted by the (1 × 2) × 1 MIMO processing for each identical data signal by the MIMO processor 24 of the optical signal receiving apparatus 20, and the data signals d1 to d3 It is the composition which synthesizes. In this combining, since the combining is performed while maintaining the electric field information of the optical signal, the reception sensitivity can be improved by the effect of averaging the optical noise.

図3は、本発明の光伝送システムの実施例3を示す。
図3において、光信号送信装置10は、受信したクライアント信号をデータ信号D1,D2として出力するクライアント信号受信機11と、データ信号D1,D2をOTN信号にマッピングした後に、2つのデータ信号d1〜d2(s=2)として出力するOTNフレーマ16と、データ信号d1〜d2をそれぞれ2波長(m=2)で伝送するためにそれぞれ2分配して出力するODU−XC12と、それぞれ2分配されたデータ信号d1〜d2をそれぞれ誤り訂正符号化し、さらに2方路(n=2)で伝送するために2分配して出力する誤り訂正符号器13と、誤り訂正符号化された各2本のデータ信号d1〜d2の遅延調整を行う遅延器14と、遅延調整された2本のデータ信号d1をそれぞれ波長λ1〜λ2の光信号として出力し、2本のデータ信号d2をそれぞれ波長λ3〜λ4の光信号として出力する光送信機15により構成される。
FIG. 3 shows Embodiment 3 of the optical transmission system of the present invention.
In FIG. 3, the optical signal transmission apparatus 10 includes a client signal receiver 11 that outputs received client signals as data signals D1 and D2, and two data signals d1 to d1 after mapping the data signals D1 and D2 to OTN signals. The OTN framer 16 that outputs as d2 (s = 2) and the ODU-XC12 that distributes and outputs the data signals d1 to d2 in two wavelengths (m = 2), respectively, are output in two. Each of the data signals d1 to d2 is subjected to error correction coding, and further divided into two for transmission in two directions (n = 2), and the error correction encoder 13 for outputting the data, and each of the two pieces of error correction coded data The delay device 14 that performs delay adjustment of the signals d1 to d2 and the two data signals d1 that have been subjected to delay adjustment are output as optical signals having wavelengths λ1 to λ2, respectively. The optical transmitter 15 outputs the data signal d2 as optical signals having wavelengths λ3 to λ4, respectively.

光信号送信装置10から出力される波長λ1〜λ4の光信号は、光XC装置17で2組−4波長の波長多重光信号に合波されて光伝送路51,52に送出される。光伝送路51,52を伝送された波長多重光信号は、光XC装置27でそれぞれ波長λ1〜λ4の光信号に分波されて光信号受信装置20に入力する。   The optical signals having the wavelengths λ1 to λ4 output from the optical signal transmitter 10 are combined by the optical XC device 17 into the wavelength-division multiplexed optical signals of two sets and four wavelengths and transmitted to the optical transmission lines 51 and 52. The wavelength multiplexed optical signals transmitted through the optical transmission lines 51 and 52 are demultiplexed into optical signals having wavelengths λ1 to λ4 by the optical XC device 27 and input to the optical signal receiving device 20, respectively.

光信号受信装置20は、光伝送路51,52で伝送された波長λ1〜λ4の光信号をそれぞれコヒーレント検波し、2波長2経路で伝送された同一データ信号をそれぞれ出力する光受信機25と、この2×2本の同一データ信号ごとに(2×2)×2MIMO処理を行い、データ信号d1〜d2を出力するMIMO処理器24と、データ信号d1〜d2をそれぞれ誤り訂正復号化して出力する誤り訂正復号器23と、誤り訂正復号化されたデータ信号d1〜d2のそれぞれ1つを出力するODU−XC22と、データ信号d1〜d2をデータ信号D1,D2に変換するOTNフレーマ26と、データ信号D1,D2をクライアント信号として送信するクライアント信号送信機21により構成される。   The optical signal receiver 20 coherently detects the optical signals of wavelengths λ1 to λ4 transmitted through the optical transmission paths 51 and 52, and outputs the same data signal transmitted through two paths of two wavelengths, respectively. The 2 × 2 identical data signals are subjected to (2 × 2) × 2 MIMO processing, the MIMO processor 24 for outputting the data signals d1 to d2, and the error correction decoding of the data signals d1 to d2, respectively. An error correction decoder 23, an ODU-XC 22 that outputs one of the data signals d1 to d2 subjected to error correction decoding, an OTN framer 26 that converts the data signals d1 to d2 into data signals D1 and D2, and The client signal transmitter 21 transmits the data signals D1 and D2 as client signals.

実施例3では、1つのデータ信号dをデータ信号d1〜d2に分割し、それぞれ2波長2経路(合計4波長2経路)で伝送する構成であり、各光伝送路51,52ごとの伝送遅延を、光信号送信装置10の遅延器14で粗調整し、光信号受信装置20のMIMO処理器24で同一データ信号ごとに(2×2)×2MIMO処理により微調整してデータ信号d1〜d2を合成する構成である。この合成では、光信号の電界情報を保持したまま合成するため、光雑音が平均化される効果により、受信感度の向上が可能となる。   In the third embodiment, one data signal d is divided into data signals d1 to d2 and transmitted through two paths with two wavelengths (a total of four paths with two paths), and transmission delay for each of the optical transmission paths 51 and 52 is performed. Are roughly adjusted by the delay unit 14 of the optical signal transmitting apparatus 10, and finely adjusted by the (2 × 2) × 2 MIMO processing for each identical data signal by the MIMO processor 24 of the optical signal receiving apparatus 20, and the data signals d1 to d2 It is the composition which synthesizes. In this combining, since the combining is performed while maintaining the electric field information of the optical signal, the reception sensitivity can be improved by the effect of averaging the optical noise.

実施例1〜実施例3の構成において、光信号送信装置10および光信号受信装置20を双方向に配置したときに、一方の光信号受信装置20で、光伝送路51,52を伝送された各波長の光信号から変換および合成されたデータ信号の遅延量に応じて、一方の光信号送信装置10の遅延器14に設定する遅延量を制御する構成としてもよい。   In the configurations of the first to third embodiments, when the optical signal transmission device 10 and the optical signal reception device 20 are arranged in both directions, the optical transmission lines 51 and 52 are transmitted by one optical signal reception device 20. The delay amount set in the delay device 14 of one optical signal transmission device 10 may be controlled according to the delay amount of the data signal converted and combined from the optical signal of each wavelength.

実施例5は、図3に示す実施例3の構成において、光伝送路51,52のうち一方の光伝送路52に障害が発生しても、MIMO処理部24の機能により他方の光伝送路51を介して伝送される波長多重光信号からデータ信号d1〜d2を合成する例を示す。   In the fifth embodiment, in the configuration of the third embodiment shown in FIG. 3, even if one of the optical transmission paths 51 and 52 fails, the other optical transmission path is functioned by the function of the MIMO processing unit 24. An example in which the data signals d1 to d2 are synthesized from the wavelength multiplexed optical signal transmitted via the line 51 is shown.

図4は、本発明の光伝送システムの実施例5を示す。
図4において、図3の実施例3と同様に生成されたデータ信号d1〜d2をそれぞれ2波長1経路(合計4波長1経路)で伝送する構成であり、各光伝送路51,52ごとの伝送遅延を、光信号送信装置10の遅延器14で粗調整し、光信号受信装置20のMIMO処理器24で同一データ信号ごとに(2×1)×2MIMO処理により微調整してデータ信号d1〜d2を合成する構成である。ここでは、光伝送路52の障害により、1データ信号当たり、実施例3の2波長2経路から2波長1経路に減少するので、MIMO処理部24における受信感度が低下するが、許容範囲であればデータ信号d1〜d2の伝送が可能である。
FIG. 4 shows Embodiment 5 of the optical transmission system of the present invention.
4, each of the data signals d1 to d2 generated in the same manner as in the third embodiment of FIG. 3 is transmitted through two wavelengths and one path (a total of four wavelengths and one path). The transmission delay is coarsely adjusted by the delay unit 14 of the optical signal transmitting apparatus 10, and the data signal d1 is finely adjusted by the (2 × 1) × 2 MIMO processing for each identical data signal by the MIMO processor 24 of the optical signal receiving apparatus 20. It is the structure which synthesize | combines -d2. Here, because of the failure of the optical transmission line 52, the data sensitivity decreases in the MIMO processing unit 24 from the two wavelength two paths in the third embodiment to the two wavelength one path per data signal. For example, the data signals d1 to d2 can be transmitted.

実施例6は、1データ信号当たり、実施例3の2波長2経路と同等の受信感度を維持するために、データ信号d1〜d2の優先度に応じてここではデータ信号d1に絞り、4波長1経路の伝送形態をとる例を示す。   In the sixth embodiment, in order to maintain the reception sensitivity equivalent to the two-wavelength two-path of the third embodiment per data signal, the data signal d1 is limited to four wavelengths according to the priority of the data signals d1 to d2. An example in which the transmission form of one route is taken is shown.

図5は、本発明の光伝送システムの実施例6を示す。
図5において、光信号送信装置10は、受信したクライアント信号をデータ信号D1,D2として出力するクライアント信号受信機11と、データ信号D1,D2をOTN信号にマッピングした後に、2つのデータ信号d1〜d2(s=2)として出力するOTNフレーマ16と、データ信号d1〜d2のうち優先度の高いデータ信号d1のみを4波長で伝送するために4分配して出力するODU−XC12と、4分配されたデータ信号d1をそれぞれ誤り訂正符号化して出力する誤り訂正符号器13と、誤り訂正符号化されたデータ信号d1の遅延調整を行う遅延器14と、遅延調整されたデータ信号d1をそれぞれ波長λ1〜λ4の光信号として出力する光送信機15により構成される。
FIG. 5 shows Embodiment 6 of the optical transmission system of the present invention.
In FIG. 5, the optical signal transmitting apparatus 10 includes a client signal receiver 11 that outputs received client signals as data signals D1 and D2, and two data signals d1 to d1 after mapping the data signals D1 and D2 to OTN signals. OTN framer 16 that outputs as d2 (s = 2), ODU-XC12 that distributes and outputs four data signals d1 to d2 in order to transmit only the data signal d1 having a higher priority among four wavelengths, and four distributions The error correction encoder 13 that outputs the error-corrected encoded data signal d1 after error correction, the delay 14 that adjusts the delay of the error-corrected encoded data signal d1, and the wavelength of the delay-adjusted data signal d1. It comprises an optical transmitter 15 that outputs optical signals of λ1 to λ4.

光信号送信装置10から出力される波長λ1〜λ4の光信号は、光XC装置17で2組−4波長の波長多重光信号に合波されて光伝送路51,52に送出されるが、ここでは光伝送路52に障害が発生している。光伝送路51を伝送された波長多重光信号は、光XC装置27で波長λ1〜λ4の光信号に分波されて光信号受信装置20に入力する。   The optical signals having wavelengths λ1 to λ4 output from the optical signal transmitter 10 are combined by the optical XC device 17 into two sets and four wavelengths of wavelength multiplexed optical signals and transmitted to the optical transmission lines 51 and 52. Here, a failure has occurred in the optical transmission line 52. The wavelength multiplexed optical signal transmitted through the optical transmission path 51 is demultiplexed into optical signals having wavelengths λ1 to λ4 by the optical XC device 27 and input to the optical signal receiving device 20.

光信号受信装置20は、光伝送路51で伝送された波長λ1〜λ4の光信号をそれぞれコヒーレント検波し、4波長1経路で伝送された同一データ信号をそれぞれ出力する光受信機25と、この4×1本の同一データ信号ごとに(4×1)×4MIMO処理を行い、データ信号d1を出力するMIMO処理器24と、データ信号d1をそれぞれ誤り訂正復号化して出力する誤り訂正復号器23と、誤り訂正復号化された4本のデータ信号d1のいずれか1つを出力するODU−XC22と、データ信号d1をデータ信号D1として出力するOTNフレーマ26と、データ信号D1をクライアント信号として送信するクライアント信号送信機21により構成される。   The optical signal receiver 20 coherently detects the optical signals having wavelengths λ1 to λ4 transmitted through the optical transmission path 51, and outputs the same data signal transmitted through the four wavelengths and one path. A MIMO processor 24 that performs (4 × 1) × 4 MIMO processing for each 4 × 1 identical data signal and outputs the data signal d 1, and an error correction decoder 23 that performs error correction decoding and output of the data signal d 1, respectively. ODU-XC 22 that outputs any one of the four data signals d1 that have been subjected to error correction decoding, the OTN framer 26 that outputs the data signal d1 as the data signal D1, and the data signal D1 transmitted as a client signal The client signal transmitter 21 is configured.

なお、光伝送路52の障害は、光XC装置26で検出されて制御装置31に通知され、光信号送信装置10のODU−XC12および光信号受信装置20のODU−XC22に対応する経路設定が行われる。実施例5の場合は、MIMO処理部24の機能により光伝送路の障害を吸収する構成のため特になにもしないが、実施例6の場合は、データ信号d1のみの伝送に限定するため、図5に示すようにデータ信号d2の伝送を停止してデータ信号d1の経路設定を行う。   The failure of the optical transmission path 52 is detected by the optical XC device 26 and notified to the control device 31, and path settings corresponding to the ODU-XC 12 of the optical signal transmission device 10 and the ODU-XC 22 of the optical signal reception device 20 are set. Done. In the case of the fifth embodiment, nothing is done because the configuration of the MIMO processing unit 24 absorbs the failure of the optical transmission path, but in the case of the sixth embodiment, the transmission is limited to the data signal d1 only. As shown in FIG. 5, the transmission of the data signal d2 is stopped and the path of the data signal d1 is set.

このように光伝送路の障害発生により、実施例5のように当初の伝送特性が維持できなくなった場合には、実施例6のように優先度の高いデータに対して、生存している方路および波長を優先的に割り当てることにより、伝送特性を維持することができる。   Thus, when the initial transmission characteristics cannot be maintained as in the fifth embodiment due to the occurrence of a failure in the optical transmission line, the surviving data with high priority as in the sixth embodiment Transmission characteristics can be maintained by preferentially assigning paths and wavelengths.

(実験例)
図8は、実施例1の光伝送システムの実験に用いた構成例を示す。
図8において、光信号送信装置60は、3本の同一のデータ信号(擬似ランダムパターン 128Gbit/s 信号)を出力する信号発生器61、3本の同一のデータ信号の遅延調整を行う遅延器62、遅延調整された3本の同一のデータ信号を波長λ1のDP−QPSK光信号として出力するDP−QPSK送信機63により構成される。すなわち、波長数m=1、光伝送路数n=3となる。
(Experimental example)
FIG. 8 illustrates a configuration example used in the experiment of the optical transmission system according to the first embodiment.
In FIG. 8, an optical signal transmission device 60 includes a signal generator 61 that outputs three identical data signals (pseudorandom pattern 128 Gbit / s signal), and a delayer 62 that performs delay adjustment of the three identical data signals. The DP-QPSK transmitter 63 outputs the three delay-adjusted identical data signals as the DP-QPSK optical signal having the wavelength λ1. That is, the number of wavelengths m = 1 and the number of optical transmission lines n = 3.

光信号送信装置60から出力される3本の波長λ1のDP−QPSK光信号は、光伝送路1〜3にそれぞれ送出される。光伝送路1〜3を伝送された波長多重光信号は、光信号受信装置70に入力する。ここで、光伝送路1,2は、28dB×4スパンの光ファイバと光増幅中継器で構成され、光伝送路3は28dB×6スパンの光ファイバと光増幅中継器で構成される。各光伝送路を伝送後の光信号を通常のデジタルコヒーレント受信した場合の伝送特性は、それぞれQ値で、9.47 dB 、9.58 dB 、7.55 dB であった。   The three DP-QPSK optical signals of wavelength λ1 output from the optical signal transmission device 60 are sent to the optical transmission lines 1 to 3, respectively. The wavelength multiplexed optical signal transmitted through the optical transmission lines 1 to 3 is input to the optical signal receiving device 70. Here, the optical transmission lines 1 and 2 are configured by a 28 dB × 4 span optical fiber and an optical amplification repeater, and the optical transmission path 3 is configured by a 28 dB × 6 span optical fiber and an optical amplification repeater. The transmission characteristics when the optical signal transmitted through each optical transmission line is received by ordinary digital coherent reception were 9.47 dB, 9.58 dB, and 7.55 dB in terms of Q value, respectively.

光信号受信装置70は、光伝送路1〜3で伝送された波長λ1の光信号をそれぞれコヒーレント検波して出力するDP−QPSK受信機71と、3経路で伝送された3本のデータ信号について3×1MIMO処理を行いデータ信号として出力するMIMO処理器72と、データ信号の信号識別を行う信号識別器73により構成される。   The optical signal receiving device 70 includes a DP-QPSK receiver 71 that outputs coherently detected optical signals of wavelength λ1 transmitted through the optical transmission paths 1 to 3 and three data signals transmitted through the three paths. It comprises a MIMO processor 72 that performs 3 × 1 MIMO processing and outputs it as a data signal, and a signal identifier 73 that performs signal identification of the data signal.

ここで、遅延器62に66ビット分、67ビット分の遅延を与え、各光伝送路1〜3に送信した。各光伝送路を伝送後、DP−QPSK受信機71で受信し、各々デジタル信号処理で波形等化を行った後、CMAアルゴリズムを用いたMIMO処理で遅延補償および信号合成を行った。全ての光伝送路からの信号を合成した場合の伝送特性は、Q値で12.72 dBであり、3.14 dB の伝送特性改善が確認できた。   Here, a delay of 66 bits and 67 bits was given to the delay unit 62 and transmitted to each of the optical transmission lines 1 to 3. After transmission through each optical transmission line, the signal was received by the DP-QPSK receiver 71, and after waveform equalization was performed by digital signal processing, delay compensation and signal synthesis were performed by MIMO processing using the CMA algorithm. The transmission characteristics when signals from all optical transmission lines were combined was 12.72 dB in terms of Q value, confirming an improvement in transmission characteristics of 3.14 dB.

また、伝送路に障害が発生したと想定して、いずれかの光伝送路を切断した場合、光伝送路1,2を合成時の伝送特性は12.7 dB 、光伝送路1,3を合成時の伝送特性は11.51 dB、光伝送路2,3を合成時の伝送特性は11.62 dBと、単独の伝送時に比べて、いずれも伝送特性の改善を確認できた、この場合、2つの光伝送路を合成した伝送特性で伝送距離を決定し、通常時に3方路で運用することで、いずれかの方路で障害が発生しても、信号断することなく伝送を継続することができる。   Also, assuming that a failure has occurred in the transmission line, if one of the optical transmission lines is disconnected, the transmission characteristics when the optical transmission lines 1 and 2 are combined are 12.7 dB, and the optical transmission lines 1 and 3 are combined. The transmission characteristic was 11.51 dB, and the transmission characteristic when combining optical transmission lines 2 and 3 was 11.62 dB, both of which confirmed improved transmission characteristics compared to the single transmission. In this case, two optical transmission lines By determining the transmission distance based on the transmission characteristics obtained by combining and operating in three directions at normal times, transmission can be continued without interruption even if a failure occurs in any of the directions.

上記の各伝送特性に対するDP−QPSK信号のデジタル信号処理後のコンスタレーションを図9に示す。   FIG. 9 shows a constellation after digital signal processing of the DP-QPSK signal for each of the above transmission characteristics.

10 光信号送信装置
11 クライアント信号受信機
12 ODU−XC
13 誤り訂正符号器
14 遅延器
15 光送信機
16 OTNフレーマ
17 光XC装置
20 光信号受信装置
21 クライアント信号送信機
22 ODU−XC
23 誤り訂正復号器
24 MIMO処理部
25 光受信機
26 OTNフレーマ
27 光XC装置
31 制御装置
51,52 光伝送路
151 波形等化器
152 D/Aコンバータ
153 コヒーレント光送信器
251 コヒーレント光受信器
252 A/Dコンバータ
253 波形等化器
DESCRIPTION OF SYMBOLS 10 Optical signal transmitter 11 Client signal receiver 12 ODU-XC
13 Error correction encoder 14 Delay device 15 Optical transmitter 16 OTN framer 17 Optical XC device 20 Optical signal receiver 21 Client signal transmitter 22 ODU-XC
23 Error Correction Decoder 24 MIMO Processing Unit 25 Optical Receiver 26 OTN Framer 27 Optical XC Device 31 Controller 51, 52 Optical Transmission Line 151 Waveform Equalizer 152 D / A Converter 153 Coherent Optical Transmitter 251 Coherent Optical Receiver 252 A / D converter 253 Waveform equalizer

Claims (4)

データ信号dを波長数m×光伝送路数nだけ複製し(mは2以上の整数、nは2以上の整数)、それぞれ遅延器で所定の遅延を設定し、波長ごとにn本の光信号に変換する光信号送信装置と、
m波の光信号を波長多重してn本の波長多重光信号を生成し、n本の光伝送路にそれぞれ出力する光XC装置1と、
前記n本の光伝送路を伝送された前記n本の波長多重光信号を入力し、それぞれm波の光信号に分波する光XC装置2と、
前記光XC装置2で分波されたm×n波の光信号を受信して電気信号に変換し、(m×n)×mのMIMO処理を行うMIMO処理回路を含む光信号受信装置と
を備え、前記複製されたデータ信号dの前記n本の光伝送路における伝送遅延差を、前記遅延器で粗調整し、前記MIMO処理回路における信号処理で微調整して前記データ信号dを合成する構成である
ことを特徴とする光伝送システム。
Replicating data signal d by the number of wavelengths m × optical transmission line number n (m is an integer of 2 or more, n is an integer of 2 or more) sets a predetermined delay in each delay device, of the n for each wavelength of light An optical signal transmission device for converting into a signal;
an optical XC device 1 that wavelength-multiplexes m-wave optical signals to generate n wavelength-multiplexed optical signals and outputs them to n optical transmission lines;
An optical XC device 2 for inputting the n wavelength-multiplexed optical signals transmitted through the n optical transmission lines and demultiplexing them into m-wave optical signals;
An optical signal receiving device including a MIMO processing circuit that receives an optical signal of m × n waves demultiplexed by the optical XC device 2 and converts the optical signal into an electrical signal and performs (m × n) × m MIMO processing; And the transmission delay difference of the replicated data signal d in the n optical transmission lines is coarsely adjusted by the delay unit and finely adjusted by signal processing in the MIMO processing circuit to synthesize the data signal d. An optical transmission system characterized by having a configuration.
s個のデータ信号d1〜dsを入力し(sは2以上の整数)、さらにデータ信号d1〜dsごとに互いに異なる波長で、それぞれ波長数m×光伝送路数nだけ複製し(mは1以上の整数、nは2以上の整数)、それぞれ遅延器で所定の遅延を設定し、波長ごとにn本の光信号に変換する光信号送信装置と、
m×s波の光信号を波長多重してn本の波長多重光信号を生成し、n本の光伝送路にそれぞれ出力する光XC装置1と、
前記n本の光伝送路を伝送された前記n本の波長多重光信号を入力し、それぞれm×s波の光信号に分波する光XC装置2と、
前記光XC装置2で分波されたm×s波の光信号を受信して電気信号に変換し、前記同一のデータ信号d1〜dsごとに(m×n)×mのMIMO処理を行うMIMO処理回路を含む光信号受信装置と
を備え、前記データ信号d1〜dsごとに複製されたデータ信号の前記n本の光伝送路における伝送遅延差を、前記遅延器で粗調整し、前記MIMO処理回路における信号処理で微調整して前記データ信号d1〜dsを合成する構成である
ことを特徴とする光伝送システム。
s data signals d1 to ds are input (s is an integer of 2 or more), and each of the data signals d1 to ds is duplicated at a wavelength different from each other by the number of wavelengths m × the number of optical transmission lines n (m is 1). An optical signal transmission device that sets a predetermined delay by each delay device and converts the optical signal into n optical signals for each wavelength,
an optical XC apparatus 1 that wavelength-multiplexes m × s-wave optical signals to generate n wavelength-multiplexed optical signals and outputs them to n optical transmission lines;
An optical XC device 2 for inputting the n wavelength-multiplexed optical signals transmitted through the n optical transmission lines and demultiplexing them into m × s optical signals;
MIMO that receives an m × s optical signal demultiplexed by the optical XC device 2 and converts it into an electrical signal, and performs (m × n) × m MIMO processing for each of the same data signals d1 to ds An optical signal receiving device including a processing circuit, wherein a transmission delay difference in the n optical transmission lines of the data signal replicated for each of the data signals d1 to ds is coarsely adjusted by the delay unit, and the MIMO processing is performed An optical transmission system characterized in that the data signals d1 to ds are synthesized by fine adjustment by signal processing in a circuit.
請求項1または請求項2に記載の光伝送システムにおいて、
前記光信号受信装置で、前記光伝送路を伝送された各波長の光信号から変換および合成されたデータ信号の遅延量に応じて、前記光信号送信装置の前記遅延器に設定する遅延量を制御する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 1 or 2,
In the optical signal receiving device, a delay amount to be set in the delay unit of the optical signal transmitting device according to the delay amount of the data signal converted and combined from the optical signal of each wavelength transmitted through the optical transmission path. An optical transmission system characterized by being configured to control.
請求項2に記載の光伝送システムにおいて、
前記データ信号d1〜dsに優先度を設定し、
前記n本の光伝送路のいずれかに障害が発生して前記光信号受信装置に当該光伝送路からの前記波長多重光信号が入力しないときに、前記光信号送信装置および前記光信号受信装置は、前記優先度の低いデータ信号に割り当てていた波長を前記優先度の高いデータ信号に割り当てて伝送し、前記(m×n)×mのMIMO処理を行って前記優先度の高いデータ信号を合成する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 2,
Priorities are set for the data signals d1 to ds,
The optical signal transmitting apparatus and the optical signal receiving apparatus when a failure occurs in any of the n optical transmission paths and the wavelength multiplexed optical signal from the optical transmission path is not input to the optical signal receiving apparatus. Transmits the wavelength assigned to the low-priority data signal to the high-priority data signal and performs the (m × n) × m MIMO processing to transmit the high-priority data signal. An optical transmission system characterized in that it is configured to synthesize.
JP2013131910A 2013-06-24 2013-06-24 Optical transmission system Active JP6030027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131910A JP6030027B2 (en) 2013-06-24 2013-06-24 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131910A JP6030027B2 (en) 2013-06-24 2013-06-24 Optical transmission system

Publications (2)

Publication Number Publication Date
JP2015008349A JP2015008349A (en) 2015-01-15
JP6030027B2 true JP6030027B2 (en) 2016-11-24

Family

ID=52338384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131910A Active JP6030027B2 (en) 2013-06-24 2013-06-24 Optical transmission system

Country Status (1)

Country Link
JP (1) JP6030027B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5795669B1 (en) * 2014-07-28 2015-10-14 日本電信電話株式会社 Spatial multiplexing optical transmission system
JP6316761B2 (en) * 2015-01-28 2018-04-25 日本電信電話株式会社 Diversity combined optical transmission system
JP6512660B2 (en) * 2015-08-24 2019-05-15 国立大学法人 大分大学 WDM diversity transmission system and method
JP2017085355A (en) * 2015-10-28 2017-05-18 日本電信電話株式会社 Transmission line fault detection method and optical communication system
KR101825727B1 (en) * 2016-06-14 2018-03-22 주식회사 케이티 Method and apparatus for setting of transmitting mode in copper wire based network
WO2022003814A1 (en) * 2020-06-30 2022-01-06 日本電信電話株式会社 Optical transmission device, optical transmission system, optical transmission method, and optical transmission program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117172A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Optical transmission system
JP5261164B2 (en) * 2008-12-24 2013-08-14 日本電信電話株式会社 Optical transmission system
JP5804365B2 (en) * 2011-08-24 2015-11-04 国立大学法人 大分大学 Diversity optical transmission apparatus and method

Also Published As

Publication number Publication date
JP2015008349A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP6030027B2 (en) Optical transmission system
JP6745797B2 (en) Hitless, multirate optical transmission and reception
JP6257866B2 (en) Optical repeater
JP6272501B2 (en) Method, transmitter and system for transmitting data over an optical superchannel
JP5892299B1 (en) Optical transmission method and optical transmission system
CN107645337B (en) Method and apparatus for transmitting and receiving data
US9882671B2 (en) Optical reception apparatus, optical transmission apparatus, optical communication system, optical communication method, and storage medium storing program
JP5940966B2 (en) Optical transmission system, optical transmitter, optical receiver, optical transmission method, optical reception method
JP5931759B2 (en) Optical transmission system and optical transmission method
JP6403867B2 (en) Signal transmission apparatus and signal transmission method
US9391703B2 (en) Transmission of a data stream using enhancement layers of multiple hierarchically modulated optical waves
JP5968833B2 (en) Optical transmission system and digital signal processing apparatus
JP6635117B2 (en) Optical transmitter, optical transmitting device, optical transmitting / receiving system, and optical transmitting method
JP6386397B2 (en) Optical transmission system and signal transmission method
JP6387832B2 (en) Polarization demultiplexing optical communication receiver, polarization demultiplexing optical communication system, and polarization demultiplexing optical communication method
US10841035B2 (en) Transmission device, control device, and transmission method
WO2014196179A1 (en) Optical receiver, optical transmission system, optical reception method, and optical transmission method
JP5943891B2 (en) Optical transmission system
JP6400444B2 (en) Multi-carrier optical transmission system
JP7066653B2 (en) Terminal equipment of optical fiber transmission system
JP5632805B2 (en) Optical transmission / reception system and optical transmission / reception method
JP2015162723A (en) Optical transmitter, optical receiver, optical transmission method, and optical reception method
JP5917629B2 (en) Optical transmission system integrated circuit and optical transmission system
US9124372B2 (en) Optical transmission system and optical transmission method
WO2012023490A1 (en) Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R150 Certificate of patent or registration of utility model

Ref document number: 6030027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150