JP5931759B2 - Optical transmission system and optical transmission method - Google Patents

Optical transmission system and optical transmission method Download PDF

Info

Publication number
JP5931759B2
JP5931759B2 JP2013006562A JP2013006562A JP5931759B2 JP 5931759 B2 JP5931759 B2 JP 5931759B2 JP 2013006562 A JP2013006562 A JP 2013006562A JP 2013006562 A JP2013006562 A JP 2013006562A JP 5931759 B2 JP5931759 B2 JP 5931759B2
Authority
JP
Japan
Prior art keywords
signal
optical
signals
optical signal
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013006562A
Other languages
Japanese (ja)
Other versions
JP2014138316A (en
Inventor
福太郎 濱岡
福太郎 濱岡
剛志 関
剛志 関
松田 俊哉
俊哉 松田
明 那賀
明 那賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013006562A priority Critical patent/JP5931759B2/en
Publication of JP2014138316A publication Critical patent/JP2014138316A/en
Application granted granted Critical
Publication of JP5931759B2 publication Critical patent/JP5931759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光信号送信機から同一の光信号を複数の光伝送路または複数の波長を用いて伝送し、光信号受信機で一括受信して信号合成を行う光伝送システムおよび光伝送方法に関する。   The present invention relates to an optical transmission system and an optical transmission method for transmitting the same optical signal from an optical signal transmitter using a plurality of optical transmission paths or a plurality of wavelengths, and receiving the signals collectively by an optical signal receiver and combining the signals. .

光伝送における大容量・高速化の需要により、1波長あたり 100Gbps を超える光伝送システムの検討が進められている。   Due to the demand for higher capacity and higher speed in optical transmission, optical transmission systems exceeding 100 Gbps per wavelength are being studied.

この大容量・高速光伝送システムを実現するために、コヒーレント光通信技術とデジタル信号処理技術とを組み合わせたデジタルコヒーレント技術が用いられる。デジタルコヒーレント技術では、送信側で位相変調した光信号を送信し、受信側で光信号とローカル光源との干渉によるコヒーレント検波により電気信号として出力し、それをAD(Analog to Digital)コンバータでデジタル信号に変換した後に、デジタル信号処理部により伝送路で歪んだ受信波形をデジタル領域で補償する。このように、デジタルコヒーレント技術では、波形の歪みの補正が簡易な構成で行うことができる。また、デジタル信号処理部における波形等化処理により、波形歪みの補償と同時に光信号の偏波分離をすることが可能なため、デジタルコヒーレント伝送方式では、一般的に偏波多重された光信号を用いて大容量・高速化を実現している(非特許文献1)。   In order to realize this large-capacity and high-speed optical transmission system, a digital coherent technology combining a coherent optical communication technology and a digital signal processing technology is used. In digital coherent technology, a phase-modulated optical signal is transmitted on the transmission side, and an electrical signal is output on the reception side by coherent detection due to interference between the optical signal and the local light source. The digital signal is output by an AD (Analog to Digital) converter. After the conversion, the received waveform distorted in the transmission path is compensated in the digital domain by the digital signal processing unit. As described above, the digital coherent technology can correct the waveform distortion with a simple configuration. In addition, the waveform equalization processing in the digital signal processing unit enables the polarization separation of the optical signal at the same time as the compensation of the waveform distortion. Therefore, in the digital coherent transmission method, the polarization-multiplexed optical signal is generally used. It has been used to achieve large capacity and high speed (Non-patent Document 1).

S. J. Savory, “Digital filters for coherent optical receivers, ” Optics Express, vol.16, no.2, pp.804-814, 2008.S. J. Savory, “Digital filters for coherent optical receivers,” Optics Express, vol.16, no.2, pp.804-814, 2008. E. Yamazaki, et al.,“Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP, ” Optics Express, vol.19, no.14, pp.13179-13184, 2011.E. Yamazaki, et al., “Fast optical channel recovery in field demonstration of 100-Gbit / s Ethernet over OTN using real-time DSP,” Optics Express, vol.19, no.14, pp.13179-13184, 2011 . H. Y. Choi, T. Tsuritani, and I. Morita,“BER-adaptive flexible-format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012.H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012. T. Tsuboi, M. Natori, and S. Mitachi, “Single-fiber optical protection ring architecture suitable for asymmetric traffic,” Global Telecommunications Conference, vol.7, pp.4044-4048, 2003.T. Tsuboi, M. Natori, and S. Mitachi, “Single-fiber optical protection ring architecture suitable for asymmetric traffic,” Global Telecommunications Conference, vol.7, pp.4044-4048, 2003.

現在、1波長あたり 100Gpbs の光伝送を実現するための変調方式として、偏波多重QPSK(Quadrature Phase Shift Keying)方式が広く用いられている(非特許文献2)。さらに大容量・高速化伝送を実現するために、偏波多重16QAM(Quadratuere Amplitude Modulation)等、変調信号の多値化が検討されている。しかし、変調信号の多値化により受信感度が低下するため、伝送距離に制限が生じてしまう(非特許文献3)。   At present, a polarization multiplexing QPSK (Quadrature Phase Shift Keying) method is widely used as a modulation method for realizing optical transmission of 100 Gpbs per wavelength (Non-patent Document 2). Furthermore, in order to realize large capacity and high speed transmission, multi-level modulation signals such as polarization multiplexed 16QAM (Quadratuere Amplitude Modulation) are being studied. However, since the reception sensitivity is lowered due to the multi-level modulation signal, the transmission distance is limited (Non-Patent Document 3).

また、従来の光伝送システムでは、光ネットワークの信頼性を高めるために、予め伝送路の冗長をとり、光ネットワークの障害が発生した際に現用回線から予備回線へ切り替える構成を用いる場合があるが(非特許文献4)、障害発生時の物理的な切替に数十ms程度の時間を要するため、その間は光信号断になってしまう。   In addition, in a conventional optical transmission system, there is a case in which a transmission line is redundant in advance to switch from a working line to a protection line when a failure occurs in the optical network in order to improve the reliability of the optical network. (Non-Patent Document 4), since it takes about several tens of ms to physically switch when a failure occurs, the optical signal is interrupted during that time.

本発明は、受信感度の向上により伝送品質を改善して大容量・高速化伝送を容易にし、さらに光ネットワーク障害発生時の光信号断を防止して安定性を向上させる光伝送システムおよび光伝送方法を提供することを目的とする。   The present invention provides an optical transmission system and an optical transmission which improve transmission quality by improving reception sensitivity to facilitate large-capacity and high-speed transmission, and further improve stability by preventing optical signal interruption when an optical network failure occurs. It aims to provide a method.

第1の発明の光伝送システムは、タイミング同期用の信号が挿入された電気信号を光信号に変換し、この光信号を分岐して複数の光伝送路に送出する光信号送信機と、複数の光伝送路を介して伝送された光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらにタイミング同期用の信号を用いてタイミングを同期させて信号合成し、復調する光信号受信機とを備え、光信号受信機は、複数の光伝送路を介して伝送された光信号またはコヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成する構成である。 An optical transmission system according to a first aspect of the present invention includes an optical signal transmitter that converts an electrical signal into which a signal for timing synchronization is inserted into an optical signal, branches the optical signal, and transmits the optical signal to a plurality of optical transmission paths, Each optical signal transmitted through the optical transmission path is coherently detected and converted into a plurality of electrical signals, the plurality of electrical signals are converted into digital signals, waveform equalization is performed, and a signal for timing synchronization is further obtained. and synchronizes the signal synthesizing timing using, and an optical signal receiver for demodulating optical signals receiver, an average power of a plurality of optical signals or coherent detection after the signals transmitted via the optical transmission path Is a configuration in which signals are synthesized by excluding signals below the threshold.

第2の発明の光伝送システムにおいて、タイミング同期用の信号が挿入された電気信号を波長λ1,λ2(λ1≠λ2)の光信号に変換して波長多重し、この波長多重光信号を分岐して複数の光伝送路に送出する光信号送信機と、複数の光伝送路を介して伝送された波長多重光信号をそれぞれ分波し、波長λ1の光信号および波長λ2の光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらにタイミング同期用の信号を用いてタイミングを同期させて信号合成し、復調する光信号受信機とを備え、光信号受信機は、複数の光伝送路を介して伝送された波長多重光信号またはコヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成する構成である。 In the optical transmission system according to the second aspect of the present invention, the electrical signal into which the timing synchronization signal is inserted is converted into an optical signal having wavelengths λ1, λ2 (λ1 ≠ λ2) and wavelength-multiplexed, and the wavelength-multiplexed optical signal is branched. The optical signal transmitter for transmitting to a plurality of optical transmission lines and the wavelength multiplexed optical signal transmitted through the plurality of optical transmission lines are respectively demultiplexed, and the optical signal of wavelength λ1 and the optical signal of wavelength λ2 are respectively coherent. Light that is detected and converted into a plurality of electrical signals, the plurality of electrical signals are converted into digital signals, waveform equalization is performed, and timing is synchronized using a signal for timing synchronization, and the signal is synthesized and demodulated A signal receiver, and the optical signal receiver is configured to synthesize signals except for a wavelength multiplexed optical signal transmitted through a plurality of optical transmission paths or a signal whose average power after coherent detection is equal to or less than a threshold value. is there

第3の発明の光伝送方法は、光信号送信機で、タイミング同期用の信号が挿入された電気信号を光信号に変換し、この光信号を分岐して複数の光伝送路に送出し、光信号受信機で、複数の光伝送路を介して伝送された光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらにタイミング同期用の信号を用いてタイミングを同期させて信号合成する際に、複数の光伝送路を介して伝送された光信号またはコヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成し、復調する。 The optical transmission method of the third invention is an optical signal transmitter that converts an electrical signal into which a signal for timing synchronization is inserted into an optical signal, branches the optical signal, and sends it to a plurality of optical transmission lines. An optical signal receiver coherently detects optical signals transmitted through multiple optical transmission paths and converts them to multiple electrical signals, and converts these multiple electrical signals into digital signals for waveform equalization. In addition, when synthesizing signals with synchronized timing using signals for timing synchronization , except for signals whose average power of optical signals transmitted through multiple optical transmission paths or signals after coherent detection is below a threshold value and signal combining Te, demodulate.

第4の発明の光伝送方法は、光信号送信機で、タイミング同期用の信号が挿入された電気信号を波長λ1,λ2(λ1≠λ2)の光信号に変換して波長多重し、この波長多重光信号を分岐して複数の光伝送路に送出し、光信号受信機で、複数の光伝送路を介して伝送された波長多重光信号をそれぞれ分波し、波長λ1の光信号および波長λ2の光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、該複数の電気信号をデジタル信号に変換して波形等化を行い、さらにタイミング同期用の信号を用いてタイミングを同期させて信号合成する際に、複数の光伝送路を介して伝送された波長多重光信号またはコヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成し、復調する。 An optical transmission method according to a fourth aspect of the invention is an optical signal transmitter that converts an electrical signal into which a signal for timing synchronization is inserted into an optical signal having wavelengths λ1 and λ2 (λ1 ≠ λ2) and wavelength-multiplexes the optical signal. The multiplexed optical signal is branched and sent to a plurality of optical transmission lines, and the optical signal receiver demultiplexes the wavelength multiplexed optical signals transmitted through the plurality of optical transmission lines, respectively, and the optical signal having the wavelength λ1 and the wavelength Each optical signal of λ2 is coherently detected and converted into a plurality of electrical signals, the plurality of electrical signals are converted into digital signals, waveform equalization is performed, and timing is synchronized using a timing synchronization signal. At the time of signal synthesis, signal synthesis is performed except for a wavelength-multiplexed optical signal transmitted through a plurality of optical transmission paths or a signal whose average power after coherent detection is equal to or less than a threshold value , and demodulated.

本発明の光伝送システムおよび光伝送方法は、光信号送信機から同一の光信号を複数の光伝送路または複数の波長を用いて伝送し、光信号受信機で一括受信して信号合成を行うことにより、受信感度を向上させることができる。特に、平均パワーが閾値以下となっている信号を除いて信号合成することにより、ノイズ成分の合成による伝送品質の劣化を防止して大容量・高速化伝送を容易に実現することができる。   The optical transmission system and the optical transmission method of the present invention transmit the same optical signal from an optical signal transmitter using a plurality of optical transmission paths or wavelengths, and receive the signals collectively by an optical signal receiver to perform signal synthesis. As a result, the reception sensitivity can be improved. In particular, by synthesizing signals excluding signals whose average power is less than or equal to a threshold value, it is possible to easily realize large-capacity and high-speed transmission by preventing deterioration in transmission quality due to synthesis of noise components.

また、本発明の光伝送システムおよび光伝送方法は、複数の光伝送路を介して伝送された信号を合成して復調することにより、光ネットワークの障害発生時における光信号断を防止し、光伝送システムの安定性を高めることができる。   Also, the optical transmission system and optical transmission method of the present invention combine and demodulate signals transmitted through a plurality of optical transmission paths, thereby preventing optical signal interruption when an optical network failure occurs. The stability of the transmission system can be increased.

本発明の光伝送システムの実施例1の構成例を示す図である。It is a figure which shows the structural example of Example 1 of the optical transmission system of this invention. 本発明の光伝送システムの実施例2の構成例を示す図である。It is a figure which shows the structural example of Example 2 of the optical transmission system of this invention.

図1は、本発明の光伝送システムの実施例1の構成例を示す。
図1において、実施例1の光伝送システムにおける光信号送信機10は、 100Gbps の電気信号を出力する電気信号生成器11と、電気信号生成器11から入力する電気信号を偏波多重QPSK方式で変調した光信号に変換して出力する光信号生成器12と、光信号生成器12から入力する光信号を3方路へ分配する光スプリッタ13とにより構成される。
FIG. 1 shows a configuration example of Embodiment 1 of the optical transmission system of the present invention.
In FIG. 1, an optical signal transmitter 10 in the optical transmission system according to the first embodiment includes an electric signal generator 11 that outputs an electric signal of 100 Gbps, and an electric signal that is input from the electric signal generator 11 in a polarization multiplexing QPSK system. An optical signal generator 12 that converts and outputs a modulated optical signal and an optical splitter 13 that distributes the optical signal input from the optical signal generator 12 in three directions.

光信号送信機10と光信号受信機20は、ここでは3つの光伝送路31〜33を介して接続される。光伝送路31〜33はシングルコアの光ファイバであり、光伝送路31,32は光アンプ間を1区間として例えば4区間で構成され、光伝送路33は例えば6区間で構成されるものとする。   Here, the optical signal transmitter 10 and the optical signal receiver 20 are connected via three optical transmission lines 31 to 33. The optical transmission lines 31 to 33 are single-core optical fibers, and the optical transmission lines 31 and 32 are composed of, for example, four sections with one section between the optical amplifiers, and the optical transmission path 33 is configured of, for example, six sections. To do.

光信号受信機20は、光信号波長と等しい波長のローカル光を出力するローカル光源21−1〜21−3を備え、3つの光伝送路31〜33を介して伝送された光信号とローカル光とをコヒーレントレシーバ22−1〜22−3に入力し、コヒーレント検波を行ってそれぞれ電気信号に変換して出力する。この電気信号は、ADコンバータ23−1〜23−3でそれぞれデジタル信号に変換され、波形等化器24−1〜24−3で偏波分離および波形等化が行われ、タイミング同期器25−1〜25−3で互いのタイミング同期がとられ、信号合成器26でタイミング同期した3つのデジタル信号が合成される。この合成されたデジタル信号は、復調器27に入力してシンボル列として復調され、誤り訂正器28でビットエラー訂正が行われる。   The optical signal receiver 20 includes local light sources 21-1 to 21-3 that output local light having a wavelength equal to the optical signal wavelength, and an optical signal and local light transmitted via the three optical transmission paths 31 to 33. Are input to the coherent receivers 22-1 to 22-3, are subjected to coherent detection, converted into electrical signals, and output. The electrical signals are converted into digital signals by the AD converters 23-1 to 23-3, respectively, and polarization separation and waveform equalization are performed by the waveform equalizers 24-1 to 24-3, and the timing synchronizer 25- 1 to 25-3 synchronize timing with each other, and the signal synthesizer 26 synthesizes three digital signals whose timings are synchronized. The synthesized digital signal is input to the demodulator 27 and demodulated as a symbol string, and the error corrector 28 performs bit error correction.

表1は、実施例1の構成による光伝送路31〜33ごとの伝送品質を示す。ここでは、光伝送路31〜33ごとの光信号に対して、波形等化されたデジタル信号をシンボル列へ復調した後に、ビットエラーレートを計算し、ビットエラーレートから変換したQ値を伝送品質を示す値としている。   Table 1 shows transmission quality for each of the optical transmission lines 31 to 33 according to the configuration of the first embodiment. Here, after demodulating a waveform-equalized digital signal into a symbol string for the optical signals of the optical transmission lines 31 to 33, the bit error rate is calculated, and the Q value converted from the bit error rate is transmitted quality. It is a value indicating.

表2は、信号合成器26で信号合成後の伝送品質を示す。ここでは、光伝送路31〜33の組合せに応じて、表1と同様に方法により算出したQ値を示す。   Table 2 shows transmission quality after signal synthesis by the signal synthesizer 26. Here, the Q value calculated by the method in the same manner as in Table 1 according to the combination of the optical transmission lines 31 to 33 is shown.

Figure 0005931759
Figure 0005931759
Figure 0005931759
Figure 0005931759

表2に示す信号合成後のQ値は、光伝送路31〜33の組合せの全てにおいて、表1に示す光伝送路31〜33ごとのQ値よりも大きくなっており、信号合成により伝送品質が向上することが確認できる。すなわち、信号合成により受信感度が向上して伝送距離の長延化が可能となる。   The Q value after the signal combination shown in Table 2 is larger than the Q value for each of the optical transmission lines 31 to 33 shown in Table 1 in all the combinations of the optical transmission lines 31 to 33. Can be confirmed. That is, the reception sensitivity is improved by signal synthesis, and the transmission distance can be extended.

また、実施例1では、光信号送信機10から同一の光信号を3つの光伝送路31〜33に送出し、光信号受信機20で3つの光伝送路31〜33を介して伝送された光信号を検波、波形等化後に合成をして1つの信号として復調しているため、3つの光伝送路31〜33で同時に障害が発生しない限り、受信側で光信号断が発生することはなく、光伝送システムの安定性を高めることができる。   In the first embodiment, the same optical signal is transmitted from the optical signal transmitter 10 to the three optical transmission paths 31 to 33, and transmitted by the optical signal receiver 20 via the three optical transmission paths 31 to 33. Since the optical signals are detected and combined after waveform equalization and demodulated as one signal, an optical signal interruption at the receiving side will occur unless there are simultaneous failures in the three optical transmission lines 31-33. In addition, the stability of the optical transmission system can be improved.

ここで、光伝送路31〜33のいずれかで障害が発生した場合、障害が発生した光伝送路からの信号を信号合成器26で信号合成すると、ノイズ成分を信号合成することになり、伝送品質が劣化してしまう。そのため、例えば、ADコンバータ23−1〜23−3から出力されるデジタル信号の平均化したパワーを波形等化器24−1〜24−3の内部でモニタし、予め設定した閾値以下となった場合は、その光伝送路のデジタル信号を合成しない処理を行う。あるいは、平均化パワーが閾値以下となった光伝送路からのデジタル信号の値を全て0として合成する。これにより、ノイズ成分の合成による伝送品質の劣化を防止することができる。また、コヒーレントレシーバ22−1〜22−3に入力する光信号の平均化したパワーをモニタし、予め設定した閾値以下となった場合に、上記と同様の処理を行う構成としてもよい。   Here, when a failure occurs in any of the optical transmission lines 31 to 33, when the signal synthesizer 26 synthesizes the signal from the optical transmission line in which the failure has occurred, the noise component is signal-synthesized. Quality will deteriorate. Therefore, for example, the average power of the digital signals output from the AD converters 23-1 to 23-3 is monitored inside the waveform equalizers 24-1 to 24-3, and becomes equal to or less than a preset threshold value. In such a case, processing that does not synthesize the digital signal of the optical transmission line is performed. Alternatively, all the values of the digital signals from the optical transmission line whose average power is equal to or less than the threshold are combined as 0. Thereby, it is possible to prevent deterioration of transmission quality due to synthesis of noise components. Moreover, it is good also as a structure which monitors the average power of the optical signal input into coherent receiver 22-1 to 22-3, and performs the process similar to the above, when it becomes below a preset threshold value.

以下、実施例1の構成における変形例を示す。
光信号送信機10において、光スプリッタ13を用いる構成に代えて、電気信号生成器11から出力される電気信号を3分岐して3個の光信号生成器12にそれぞれ入力して光信号に変換し、各光伝送路31〜33に送出する構成としてもよい。
Hereinafter, modifications of the configuration of the first embodiment will be described.
In the optical signal transmitter 10, instead of the configuration using the optical splitter 13, the electric signal output from the electric signal generator 11 is branched into three and respectively input to the three optical signal generators 12 to be converted into optical signals. However, it may be configured to send out to each of the optical transmission lines 31 to 33.

光信号受信機20において、3個のローカル光源21を用いる構成に代えて、1個のローカル光源21から出力されるローカル光を3分岐してコヒーレントレシーバ22−1〜22−3に入力する構成としてよい。   In the optical signal receiver 20, instead of the configuration using three local light sources 21, the local light output from one local light source 21 is branched into three and input to the coherent receivers 22-1 to 22-3. As good as

3つの光伝送路31〜33を用いる構成に代えて、一般的に2以上の光伝送路を用い、光信号送信機10および光信号受信機20も光伝送路数に応じた構成であってもよい。   Instead of the configuration using three optical transmission paths 31 to 33, generally two or more optical transmission paths are used, and the optical signal transmitter 10 and the optical signal receiver 20 are also configured according to the number of optical transmission paths. Also good.

それぞれシングルコアの光ファイバで3つの光伝送路31〜33を用いる構成に代えて、1つの光伝送路で3つのコアをもつマルチコアファイバを用いる構成であってもよい。さらに、一般的に2以上の光伝送路を用いる構成に代えて、2以上のコアをもつマルチコアファイバを用いる構成であってもよい。さらに、コア数MのマルチコアファイバをN個用い、M×Nの並列伝送を行い、信号合成する構成であってもよい。   Instead of a configuration using three optical transmission lines 31 to 33 with single core optical fibers, a configuration using a multi-core fiber having three cores in one optical transmission path may be used. Further, a configuration using a multi-core fiber having two or more cores may be used instead of the configuration using two or more optical transmission lines. Furthermore, the configuration may be such that N multi-core fibers having the number of cores M are used, M × N parallel transmission is performed, and signal synthesis is performed.

光信号送信機10において、光信号生成器12で 100Gbps の偏波多重QPSK方式で変調された光信号を出力する構成に代えて、任意のビットレートおよび変調方式で変調した光信号を出力する構成であってもよい。以下に示す実施例2においても同様である。   In the optical signal transmitter 10, a configuration for outputting an optical signal modulated by an arbitrary bit rate and modulation method instead of a configuration for outputting the optical signal modulated by the polarization multiplexing QPSK method of 100 Gbps by the optical signal generator 12. It may be. The same applies to Example 2 described below.

光信号送信機10の電気信号生成器11で予めタイミング同期用の信号を挿入し、光信号受信機20のタイミング同期器25−1〜25−3でタイミング同期用の信号を検出して、波形等化された3つの信号のタイミング同期を行う構成としてもよい。あるいは、タイミング同期用の信号を挿入する以外にも、タイミング同期用のパイロット信号を光信号に重畳する等、任意のタイミング同期方法を適用してもよい。以下に示す実施例2においても同様である。   A signal for timing synchronization is inserted in advance by the electric signal generator 11 of the optical signal transmitter 10, and signals for timing synchronization are detected by the timing synchronizers 25-1 to 25-3 of the optical signal receiver 20. It may be configured to perform timing synchronization of three equalized signals. Alternatively, in addition to inserting a timing synchronization signal, any timing synchronization method such as superimposing a timing synchronization pilot signal on an optical signal may be applied. The same applies to Example 2 described below.

図2は、本発明の光伝送システムの実施例2の構成例を示す。
図2において、実施例2の光伝送システムにおける光信号送信機40は、 100Gbps の電気信号を例えば2分岐して出力する電気信号生成器41と、電気信号生成器41から入力する電気信号を偏波多重QPSK方式でそれぞれ変調した波長λ1 ,λ2の光信号に変換して出力する光信号生成器42−1,42−2と、各光信号生成器から入力する波長λ1,λ2の光信号を波長多重して出力する波長多重器43とにより構成されている。
FIG. 2 shows a configuration example of Embodiment 2 of the optical transmission system of the present invention.
In FIG. 2, the optical signal transmitter 40 in the optical transmission system according to the second embodiment includes an electric signal generator 41 that outputs an electric signal of 100 Gbps, for example, in two branches, and an electric signal input from the electric signal generator 41. Optical signal generators 42-1 and 42-2 that convert and output optical signals of wavelengths .lamda.1 and .lamda.2 respectively modulated by the wave multiplex QPSK system, and optical signals of wavelengths .lamda.1 and .lamda.2 that are input from each optical signal generator. It is constituted by a wavelength multiplexer 43 that multiplexes and outputs the wavelength.

光信号送信機40と光信号受信機50は、ここでは1つの光伝送路31を介して接続される。光伝送路31はシングルコアの光ファイバであり、光伝送路31は光アンプ間を1区間として例えば4区間で構成されるものとする。   Here, the optical signal transmitter 40 and the optical signal receiver 50 are connected via one optical transmission line 31. The optical transmission line 31 is a single-core optical fiber, and the optical transmission line 31 is composed of, for example, four sections with one section between the optical amplifiers.

光信号受信機50は、光伝送路31から入力する波長多重光信号を波長分波器51で各波長λ1,λ2の光信号に分波し、それぞれコヒーレントレシーバ52−1,52−2に入力する。ここで、波長多重器43および波長分波器51は、例えば、AWG(Arrayed Waveguide Grating )、光カプラとWSS(Wavelength Selective Switch )等を用いて構成することができる。   The optical signal receiver 50 demultiplexes the wavelength-multiplexed optical signal input from the optical transmission path 31 into optical signals of the wavelengths λ1 and λ2 by the wavelength demultiplexer 51, and inputs the optical signals to the coherent receivers 52-1 and 52-2, respectively. To do. Here, the wavelength multiplexer 43 and the wavelength demultiplexer 51 can be configured using, for example, an AWG (Arrayed Waveguide Grating), an optical coupler, and a WSS (Wavelength Selective Switch).

コヒーレントレシーバ52−1には、ローカル光源53−1から波長λ1のローカル光を入力して波長λ1の光信号をコヒーレント検波し、コヒーレントレシーバ52−2には、ローカル光源53−2から波長λ2のローカル光を入力して波長λ2の光信号をコヒーレント検波する。それ以降のADコンバータ54−1,54−2、波形等化器55−1,55−2、タイミング同期器56−1,56−2、信号合成器57、復調器58、誤り訂正器59は、実施例1における対応する各部と同様の機能を有し、複数の波長λ1,λ2で伝送された光信号を検波、波形等化して合成し、復調して誤り訂正する。   The coherent receiver 52-1 receives local light having a wavelength λ1 from the local light source 53-1 and coherently detects an optical signal having a wavelength λ1. Coherent detection is performed on an optical signal having a wavelength λ2 by inputting local light. Subsequent AD converters 54-1, 54-2, waveform equalizers 55-1, 55-2, timing synchronizers 56-1, 56-2, signal synthesizer 57, demodulator 58, and error corrector 59 The optical signals transmitted at a plurality of wavelengths λ1 and λ2 are combined by detection, waveform equalization, and demodulation and error correction.

実施例2において、波長λ1 ,λ2の光信号の伝送性能として、実施例1と同様に、光信号受信機50の波形等化器55−1,55−2から出力される波形等化されたデジタル信号のQ値を実施例1と同様に計算した。波長λ1 の光信号のQ値は8.93dB、波長λ2 の光信号のQ値は9.91dBとなった。信号合成後のデジタル信号のQ値は、 12.32dBとなり、信号合成により伝送品質が向上することが確認できる。すなわち、信号合成により受信感度が向上して伝送距離の長延化が可能となる。   In the second embodiment, as the transmission performance of the optical signals having the wavelengths λ1 and λ2, the waveforms output from the waveform equalizers 55-1 and 55-2 of the optical signal receiver 50 are equalized as in the first embodiment. The Q value of the digital signal was calculated in the same manner as in Example 1. The Q value of the optical signal having the wavelength λ1 was 8.93 dB, and the Q value of the optical signal having the wavelength λ2 was 9.91 dB. The Q value of the digital signal after signal synthesis is 12.32 dB, confirming that transmission quality is improved by signal synthesis. That is, the reception sensitivity is improved by signal synthesis, and the transmission distance can be extended.

実施例2では、1つの光伝送路31を用いる構成であり、光伝送路31に障害が発生すると信号断となる。そこで、光信号送信機40から出力される波長多重光信号を、実施例1と同様に複数の光伝送路を介して伝送し、光信号受信機50で波長多重伝送された光信号を分波し、各波長の光信号を受信処理して信号合成することにより、全ての光伝送路で同時に障害が発生しない限り、受信側で光信号断が発生することはなく、光伝送システムの安定性を高めることができる。   In the second embodiment, one optical transmission line 31 is used. When a failure occurs in the optical transmission line 31, the signal is interrupted. Therefore, the wavelength multiplexed optical signal output from the optical signal transmitter 40 is transmitted through a plurality of optical transmission lines as in the first embodiment, and the optical signal that has been wavelength multiplexed by the optical signal receiver 50 is demultiplexed. However, by receiving and synthesizing the optical signals of each wavelength, optical signal disconnection does not occur on the receiving side unless all optical transmission lines fail simultaneously, and the stability of the optical transmission system Can be increased.

ここで、複数の光伝送路を用いる構成では、実施例1と同様に、ADコンバータから出力されるデジタル信号の平均化したパワーを波形等化器の内部でモニタし、予め設定した閾値以下となった場合は、その光伝送路のデジタル信号を合成しない処理を行う。あるいは、平均化パワーが閾値以下となった光伝送路からのデジタル信号の値を全て0として合成するようにしてもよい。また、コヒーレントレシーバに入力する光信号の平均化したパワーをモニタし、予め設定した閾値以下となった場合に、上記と同様の処理を行う構成としてもよい。   Here, in the configuration using a plurality of optical transmission lines, the averaged power of the digital signal output from the AD converter is monitored inside the waveform equalizer as in the first embodiment, and is equal to or lower than a preset threshold value. In such a case, processing that does not synthesize the digital signal of the optical transmission path is performed. Alternatively, all the values of the digital signals from the optical transmission line whose average power is equal to or less than the threshold value may be combined. Moreover, it is good also as a structure which monitors the average power of the optical signal input into a coherent receiver, and performs a process similar to the above when it becomes below a preset threshold value.

また、同一の電気信号を変調した波長の異なる2つの光信号を波長多重伝送する構成に代えて、一般的に波長の異なる2以上の光信号を波長多重伝送する構成とし、光信号送信機40および光信号受信機50も波長多重数に応じた構成であってもよい。   Also, instead of a configuration in which two optical signals having different wavelengths obtained by modulating the same electrical signal are wavelength-multiplexed, two or more optical signals having different wavelengths are generally configured to be wavelength-multiplexed, and the optical signal transmitter 40 The optical signal receiver 50 may also be configured according to the number of wavelength multiplexing.

10 光信号送信機
11 電気信号生成器
12 光信号生成器
13 光スプリッタ
20 光信号受信機
21 ローカル光源
22 コヒーレントレシーバ
23 ADコンバータ
24 波形等化器
25 タイミング同期器
26 信号合成器
27 復調器
28 誤り訂正器
31,32,33 光伝送路
40 光信号送信機
41 電気信号生成器
42 光信号生成器
43 波長多重器
50 光信号受信機
51 波長分波器
52 コヒーレントレシーバ
53 ローカル光源
54 ADコンバータ
55 波形等化器
56 タイミング同期器
57 信号合成器
58 復調器
59 誤り訂正器
DESCRIPTION OF SYMBOLS 10 Optical signal transmitter 11 Electrical signal generator 12 Optical signal generator 13 Optical splitter 20 Optical signal receiver 21 Local light source 22 Coherent receiver 23 AD converter 24 Waveform equalizer 25 Timing synchronizer 26 Signal synthesizer 27 Demodulator 28 Error Corrector 31, 32, 33 Optical transmission line 40 Optical signal transmitter 41 Electrical signal generator 42 Optical signal generator 43 Wavelength multiplexer 50 Optical signal receiver 51 Wavelength demultiplexer 52 Coherent receiver 53 Local light source 54 AD converter 55 Waveform Equalizer 56 Timing synchronizer 57 Signal synthesizer 58 Demodulator 59 Error corrector

Claims (4)

タイミング同期用の信号が挿入された電気信号を光信号に変換し、この光信号を分岐して複数の光伝送路に送出する光信号送信機と、
前記複数の光伝送路を介して伝送された前記光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらに前記タイミング同期用の信号を用いてタイミングを同期させて信号合成し、復調する光信号受信機と
を備え
前記光信号受信機は、前記複数の光伝送路を介して伝送された前記光信号または前記コヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成する構成である ことを特徴とする光伝送システム。
An optical signal transmitter that converts an electrical signal into which a signal for timing synchronization is inserted into an optical signal, branches the optical signal, and sends it to a plurality of optical transmission lines;
The optical signals transmitted through the plurality of optical transmission paths are coherently detected and converted into a plurality of electrical signals, the plurality of electrical signals are converted into digital signals to perform waveform equalization, and the timing An optical signal receiver for synthesizing and demodulating signals with synchronized timing using a synchronization signal ,
The optical signal receiver is configured to synthesize signals except for signals whose average power of the optical signal transmitted through the plurality of optical transmission paths or the signal after coherent detection is equal to or less than a threshold value. Optical transmission system.
タイミング同期用の信号が挿入された電気信号を波長λ1,λ2(λ1≠λ2)の光信号に変換して波長多重し、この波長多重光信号を分岐して複数の光伝送路に送出する光信号送信機と、
前記複数の光伝送路を介して伝送された前記波長多重光信号をそれぞれ分波し、前記波長λ1の光信号および前記波長λ2の光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらに前記タイミング同期用の信号を用いてタイミングを同期させて信号合成し、復調する光信号受信機と
を備え
前記光信号受信機は、前記複数の光伝送路を介して伝送された前記波長多重光信号または前記コヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成する構成である
ことを特徴とする光伝送システム。
An optical signal into which a signal for timing synchronization is inserted is converted into an optical signal having wavelengths λ1 and λ2 (λ1 ≠ λ2), wavelength-multiplexed, and the wavelength-multiplexed optical signal is branched and transmitted to a plurality of optical transmission lines. A signal transmitter;
Demultiplexing each of the wavelength-multiplexed optical signals transmitted through the plurality of optical transmission lines, coherently detecting the optical signal of the wavelength λ1 and the optical signal of the wavelength λ2, respectively, to convert into a plurality of electrical signals, An optical signal receiver that converts the plurality of electric signals into digital signals to perform waveform equalization, further synchronizes timing using the timing synchronization signal, and synthesizes and demodulates the signal ,
The optical signal receiver is configured to synthesize signals except for a signal whose average power of the wavelength-multiplexed optical signal transmitted through the plurality of optical transmission lines or the signal after the coherent detection is equal to or less than a threshold value. A characteristic optical transmission system.
光信号送信機は、タイミング同期用の信号が挿入された電気信号を光信号に変換し、この光信号を分岐して複数の光伝送路に送出し、
光信号受信機、前記複数の光伝送路を介して伝送された前記光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、この複数の電気信号をデジタル信号に変換して波形等化を行い、さらに前記タイミング同期用の信号を用いてタイミングを同期させて信号合成するときに、前記複数の光伝送路を介して伝送された前記光信号または前記コヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成し、復調する
ことを特徴とする光伝送方法。
The optical signal transmitter converts an electrical signal into which a signal for timing synchronization is inserted into an optical signal, branches the optical signal, and sends it to a plurality of optical transmission lines.
The optical signal receiver performs coherent detection on each of the optical signals transmitted through the plurality of optical transmission paths to convert them into a plurality of electrical signals, and converts the plurality of electrical signals into digital signals for waveform equalization. Further, when synthesizing the signal by synchronizing the timing using the timing synchronization signal, the average power of the optical signal transmitted through the plurality of optical transmission lines or the signal after the coherent detection is An optical transmission method characterized in that signals are synthesized by removing signals below a threshold and demodulated.
光信号送信機は、タイミング同期用の信号が挿入された電気信号を波長λ1,λ2(λ1≠λ2)の光信号に変換して波長多重し、この波長多重光信号を分岐して複数の光伝送路に送出し、
光信号受信機、前記複数の光伝送路を介して伝送された前記波長多重光信号をそれぞれ分波し、前記波長λ1の光信号および前記波長λ2の光信号をそれぞれコヒーレント検波して複数の電気信号に変換し、該複数の電気信号をデジタル信号に変換して波形等化を行い、さらに前記タイミング同期用の信号を用いてタイミングを同期させて信号合成するときに、前記複数の光伝送路を介して伝送された前記波長多重光信号または前記コヒーレント検波後の信号の平均パワーが閾値以下の信号を除いて信号合成し、復調する
ことを特徴とする光伝送方法。
The optical signal transmitter converts the electrical signal into which the signal for timing synchronization is inserted into an optical signal having wavelengths λ1 and λ2 (λ1 ≠ λ2), and multiplexes the wavelength-multiplexed optical signal. Send it to the transmission line,
Optical signal receiver, the plurality of transmitted via the optical transmission path a said wavelength-multiplexed optical signals respectively demultiplexing the optical signal and the optical signal of the wavelength λ2 of the wavelength λ1 more and coherent detection respectively Converting the plurality of electrical signals into digital signals, performing waveform equalization, and further synthesizing the signals by synchronizing timing using the timing synchronization signals. An optical transmission method characterized in that signal synthesis is performed except for a signal whose average power of the wavelength-multiplexed optical signal or the signal after coherent detection transmitted through a path is not more than a threshold value , and demodulated.
JP2013006562A 2013-01-17 2013-01-17 Optical transmission system and optical transmission method Expired - Fee Related JP5931759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006562A JP5931759B2 (en) 2013-01-17 2013-01-17 Optical transmission system and optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006562A JP5931759B2 (en) 2013-01-17 2013-01-17 Optical transmission system and optical transmission method

Publications (2)

Publication Number Publication Date
JP2014138316A JP2014138316A (en) 2014-07-28
JP5931759B2 true JP5931759B2 (en) 2016-06-08

Family

ID=51415600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006562A Expired - Fee Related JP5931759B2 (en) 2013-01-17 2013-01-17 Optical transmission system and optical transmission method

Country Status (1)

Country Link
JP (1) JP5931759B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316761B2 (en) * 2015-01-28 2018-04-25 日本電信電話株式会社 Diversity combined optical transmission system
JP6320953B2 (en) * 2015-03-04 2018-05-09 日本電信電話株式会社 Optical transmission system and optical transmission method
US10361779B2 (en) 2015-03-25 2019-07-23 Nec Corporation Optical transmission system, optical receiver, and method for detecting optical signal information
JP6495785B2 (en) * 2015-08-31 2019-04-03 日本電信電話株式会社 Optical transmission system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642173B2 (en) * 1988-12-13 1997-08-20 日本電信電話株式会社 Optical heterodyne detection circuit
JPH10117172A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Optical transmission system
US7106971B1 (en) * 1999-06-30 2006-09-12 University Of Maryland System and method for optical wireless communication
JP2004064235A (en) * 2002-07-25 2004-02-26 Matsushita Electric Ind Co Ltd Cdma receiver and method for assigning finger
JP4087290B2 (en) * 2003-05-20 2008-05-21 日本電信電話株式会社 Receiver circuit and digital transmission system
US7860406B2 (en) * 2007-09-14 2010-12-28 Alcatel-Lucent Usa Inc. PMD insensitive direct-detection optical OFDM systems using self-polarization diversity
JP2010004347A (en) * 2008-06-20 2010-01-07 Panasonic Corp Multiantenna receiving circuit and multiantenna receiver and multiantenna receiving method
JP5261164B2 (en) * 2008-12-24 2013-08-14 日本電信電話株式会社 Optical transmission system
JP5444877B2 (en) * 2009-06-24 2014-03-19 富士通株式会社 Digital coherent receiver
JP5283592B2 (en) * 2009-09-04 2013-09-04 日本電信電話株式会社 Optical communication system, optical communication method, control device, program, and recording medium

Also Published As

Publication number Publication date
JP2014138316A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP6589276B2 (en) Optical transmission apparatus, optical transmission system, and transmission wavelength control method
JP5437858B2 (en) Optical transmission system
JP5707981B2 (en) Sampling clock synchronization apparatus, digital coherent reception apparatus, and sampling clock synchronization method
EP3471300B1 (en) Transport of multiple asynchronous data streams using higher order modulation
CN109428649B (en) Optical signal transmission system and optical signal transmission method
JP6036426B2 (en) Control timing synchronization method, optical transmission system, and optical transmission apparatus
JP2014103600A (en) Optical transmission device, node device, optical transmission method, and optical transmission system
JP5892299B1 (en) Optical transmission method and optical transmission system
JP5931759B2 (en) Optical transmission system and optical transmission method
WO2013085653A1 (en) Multiprotocol transport using polarization divison multiplexing
JP6030027B2 (en) Optical transmission system
US20120263468A1 (en) Generation of Optical Quadrature Duobinary Format Using Optical Delay
JP6123882B2 (en) Transmission apparatus, transmission system, and transmission method
JP5968833B2 (en) Optical transmission system and digital signal processing apparatus
US9391703B2 (en) Transmission of a data stream using enhancement layers of multiple hierarchically modulated optical waves
JP5940966B2 (en) Optical transmission system, optical transmitter, optical receiver, optical transmission method, optical reception method
Zhou et al. An ultradense wavelength switched network
CN108600127B (en) Pulse overlapping-based communication system and method for exceeding Nyquist
JP6297004B2 (en) Optical transmission apparatus and delay difference compensation method between adjacent channels applied to optical transmission apparatus
JP5492118B2 (en) WDM signal batch coherent receiver and method
JP2007201842A (en) Pon system
JP5269697B2 (en) Optical receiver and optical transmission system
JP2015162723A (en) Optical transmitter, optical receiver, optical transmission method, and optical reception method
Islam et al. 240 Gbit/s bit compressed hybrid OTDM-WDM fiber optic communication system
Zhang et al. High capacity optical transmission with Nyquist subcarrier modulation and direct detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees