WO2012023490A1 - Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method - Google Patents

Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method Download PDF

Info

Publication number
WO2012023490A1
WO2012023490A1 PCT/JP2011/068376 JP2011068376W WO2012023490A1 WO 2012023490 A1 WO2012023490 A1 WO 2012023490A1 JP 2011068376 W JP2011068376 W JP 2011068376W WO 2012023490 A1 WO2012023490 A1 WO 2012023490A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
speed
wavelength division
optical
signals
Prior art date
Application number
PCT/JP2011/068376
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 正規
知樹 吉原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2012023490A1 publication Critical patent/WO2012023490A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to a wavelength division multiplexing optical transmission system.
  • a 100 GbE optical transceiver requires a wavelength division multiplexed optical signal optical transceiver compatible with 100 GbE. Furthermore, an apparatus capable of performing ultra-high-speed processing is required to realize error correction code processing, photoelectric conversion processing, long-distance optical transmission, and the like. Such a wavelength division multiplexed optical signal optical transceiver and a device corresponding to 100 GbE are very expensive.
  • digital coherent reception technology is considered promising as a long-distance optical signal transmission method in a 100 GbE optical transmission system.
  • the digital coherent reception technique is applied to the wavelength division multiplexing optical signal optical transceiver of the 100 GbE optical transmission system, it is compared with the reception technique of the binary intensity modulation method used in the conventional 10 Gbps wavelength division multiplexing optical signal optical transceiver. Therefore, the configuration is complicated and the technical difficulty is high. Therefore, there are many problems to put it into practical use.
  • Patent Document 1 discloses a transmission system that distributes a high-speed data stream such as a 100 GbE optical signal to a plurality of low-speed transmission lines such as 10 GbE in units of Ethernet frames.
  • the transmission system of Patent Document 1 performs transmission by inserting a sequence number in any of a preamble area added to an Ethernet frame, an idle area immediately before or immediately after the Ethernet frame.
  • the receiving device performs reception processing based on this sequence number. According to the transmission system of Patent Document 1, since the sequence number is added outside the Ethernet frame, the transmission rate of the Ethernet frame is not reduced.
  • Patent Document 1 since the transmission system of Patent Document 1 is added with a sequence number, it does not transmit a 100 GbE signal transparently. Further, when wavelength division multiplexing optical transmission is performed by converting a high-speed optical signal into a plurality of low-speed optical signals, there is a delay difference between the low-speed optical signals when the high-speed optical signal is reproduced in the receiver. A problem arises, and a mechanism for absorbing this delay difference is required.
  • An object of the present invention is to provide a wavelength division multiplexing optical transmission system that can realize ultra-high-speed transmission transparently without using an apparatus for ultra-high-speed transmission.
  • a wavelength division multiplexing optical transmission system includes a transmission device and a reception device.
  • the transmission device generates a data block of a predetermined data amount unit in each of the plurality of low-speed electrical signals, and a high-speed signal transmission conversion unit that converts the high-speed optical signal into a plurality of low-speed electrical signals that are slower than the high-speed optical signal.
  • a transmission synchronization processing unit that synchronizes data blocks between low-speed electric signals and generates a plurality of synchronized low-speed electric signals by multiplexing the data blocks in each low-speed electric signal, and a plurality of synchronized low-speed electric signals
  • a low-speed signal transmission conversion unit configured to generate a plurality of wavelength division multiplexed optical signals by converting each of the signals into wavelength division multiplexed optical signals, and to transmit the plurality of wavelength division multiplexed optical signals to the plurality of optical transmission lines; .
  • the receiving device receives a plurality of wavelength division multiplexed optical signals from a plurality of optical transmission lines, and converts the plurality of wavelength division multiplexed optical signals into a plurality of synchronized low speed electric signals, and A reception synchronization processing unit that synchronizes data blocks included in each of the plurality of synchronized low-speed electrical signals between the plurality of synchronized low-speed electrical signals and generates a plurality of low-speed electrical signals by disassembling the data blocks And a high-speed signal reception conversion unit that converts a plurality of low-speed electrical signals into high-speed optical signals.
  • a transmission device is provided as another aspect of the present invention.
  • the transmission device is used in the above-described wavelength division multiplexing optical transmission system.
  • a receiving device is provided.
  • the receiving apparatus is used in the above-described wavelength division multiplexing optical transmission system.
  • a wavelength division multiplexing optical transmission method includes a step of converting a high-speed optical signal into a plurality of low-speed electrical signals slower than the high-speed optical signal, and a step of generating a data block of a predetermined data amount unit in each of the plurality of low-speed electrical signals; Synchronizing a data block between a plurality of low-speed electrical signals; generating a plurality of synchronized low-speed electrical signals by multiplexing the data blocks in each low-speed electrical signal; and a plurality of synchronized low-speed electrical signals Generating a plurality of wavelength division multiplexed optical signals by converting each of the signals into wavelength division multiplexed optical signals; transmitting a plurality of wavelength division multiplexed optical signals to a plurality of optical transmission lines; and a plurality of optical transmissions.
  • FIG. 1 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of the PCS transmission processing unit 2 in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of the PCS reception processing unit 3 in the first embodiment of the present invention.
  • FIG. 4A is a diagram showing ten low-speed electrical signals output from the high-speed signal optical transceiver 1 in the first embodiment of the present invention.
  • FIG. 4B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the first embodiment of the present invention.
  • FIG. 4C is a diagram illustrating a low-speed electrical signal generated by the block-based multiplexing process according to the first embodiment of the present invention.
  • FIG. 5A is a diagram showing ten low-speed electrical signals output from the low-speed signal optical transceivers 41-1 to 4-10 in the first embodiment of the present invention.
  • FIG. 5B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the first embodiment of the present invention.
  • FIG. 5C is a diagram showing a low-speed electrical signal generated by bit multiplexing of data in units of 1 bit decomposed from the data block in the present embodiment.
  • FIG. 6 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the second embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the third embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of the PCS transmission processing unit 2 in the third embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of the PCS reception processing unit 3 in the third embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of a wavelength division multiplexing optical transmission apparatus that constitutes a wavelength division multiplexing optical transmission system according to the present embodiment.
  • the wavelength division multiplexing optical transmission system of the present embodiment is configured by providing wavelength division multiplexing optical transmission apparatuses as shown in FIG. 1 so as to face each other via a wavelength division multiplexing optical transmission line.
  • the wavelength division multiplexing optical transmission apparatus of the present embodiment includes a high-speed signal optical transceiver 1, a PCS (Physical Coding Sub-layer) transmission processing unit 2, a PCS reception processing unit 3, a low-speed signal optical transmission / reception unit 4, and a wavelength division. And a multiplexed optical transceiver unit (hereinafter referred to as a WDM optical transceiver unit) 5.
  • a WDM optical transceiver unit multiplexed optical transceiver unit
  • the high-speed signal optical transceiver 1 is connected to an external device (not shown) through an optical transmission path, and transmits / receives a 100 gigabit Ethernet (hereinafter, GbE) optical signal to / from the external device.
  • GbE optical signal is an optical signal conforming to a standard exemplified by 100 GBASE-SR10, 100 GBASE-LR4, and 100 GBASE-ER4 defined in IEEE (Institut of Electrical and Electronics Engineers) 802.3ba. is there.
  • the high-speed signal optical transceiver 1 is connected to the PCS transmission processing unit 2 and the PCS reception processing unit 3 by 10 electric lines.
  • the high-speed signal optical transceiver 1 converts a 100 GbE optical signal into ten low-speed electric signals and outputs the converted signals to the PCS transmission processing unit 2 via the ten electric lines.
  • the low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to CAUI (100G Attachment Unit Interface) defined in IEEE 802.3ba.
  • CAUI 100G Attachment Unit Interface
  • the high-speed signal optical transceiver 1 inputs ten low-speed electric signals from the PCS reception processing unit 3 through ten electric lines.
  • the high-speed signal optical transceiver 1 converts ten low-speed electric signals into 100 GbE optical signals and transmits them to the optical transmission line.
  • the PCS transmission processing unit 2 distributes the ten low-speed electric signals input from the high-speed signal optical transceiver 1 to 20 PCS (Physical Coding Sub-layer) lanes defined in IEEE 802.3ba.
  • the PCS transmission processing unit 2 performs 64B / 66B encoding on the low-speed electric signal distributed to the PCS lanes, generates a 66-bit unit data block, and synchronizes the data blocks between the 20 PCS lanes. .
  • the PCS transmission processing unit 2 performs multiplexing for each data block to generate 10 low-speed electrical signals again, and outputs the low-speed electrical signals to the low-speed signal light transmission / reception unit 4.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
  • the PCS reception processing unit 3 inputs ten low-speed electric signals from the low-speed signal light transmission / reception unit 4.
  • the PCS reception processing unit 3 separates the data blocks included in the 10 low-speed electrical signals into 20 PCS lanes defined by IEEE 802.3ba, and synchronizes the data blocks between the 20 PCS lanes. .
  • the PCS reception processing unit 3 decomposes the data block into 1-bit units, generates 10 low-speed electrical signals by bit-multiplexing the decomposed 1-bit unit data, and converts the low-speed electrical signals into the high-speed signal optical transceiver. Output to 1.
  • the low-speed signal light transceiver 4 includes low-speed signal light transceivers 41-1 to 41-10.
  • the low-speed signal optical transceivers 41-1 to 4-10 are provided corresponding to ten low-speed electric signals.
  • the WDM optical transceiver 5 includes WDM optical transceivers 51-1 to 51-10.
  • the WDM optical transceivers 51-1 to 5-10 are provided corresponding to the low-speed signal optical transceivers 41-1 to 41-10.
  • the WDM optical transceivers 51-1 to 5-10 are connected to the corresponding low-speed signal optical transceivers 41-1 to 4-10 by optical lines.
  • the low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 receive low-speed electric signals of the corresponding electric lines from the PCS transmission processing unit 2, respectively, and modulate the low-speed electric signals into optical carriers. Conversion to a 10 GbE optical signal.
  • the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae.
  • the low-speed signal optical transceivers 41-1 to 4-10 output a 10 GbE optical signal to the WDM optical transmission / reception unit 5.
  • the WDM optical transceivers 51-1 to 5-10 of the WDM optical transmission / reception unit 5 receive 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, respectively.
  • the WDM optical transceivers 51-1 to 5-10 convert the 10 GbE optical signal into a wavelength division multiplexing optical signal and transmit it to the opposing wavelength division multiplexing optical transmission apparatus via the optical transmission line.
  • the WDM optical transceivers 51-1 to 5-10 of the WDM optical transmission / reception unit 5 receive the wavelength division multiplexed optical signals from the opposing wavelength division multiplexed optical transmission apparatuses via the optical transmission lines, respectively.
  • the WDM optical transceivers 51-1 to 5-10 convert the wavelength division multiplexed optical signal into a 10 GbE optical signal and output it to the low-speed signal optical transceiver 4.
  • the low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 5-10, respectively, and convert the 10GbE optical signals into low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
  • the low-speed signal optical transceivers 41-1 to 4-10 output low-speed electrical signals to the PCS reception processing unit 3.
  • FIG. 2 is a diagram showing a configuration of the PCS transmission processing unit 2 in the present embodiment.
  • the PCS transmission processing unit 2 of this embodiment includes block generation units 21-1 to 21-10, a transmission deskew processing unit 22, and block multiplexing units 23-1 to 23-10.
  • the block generators 21-1 to 21-10 are provided corresponding to 10 electric lines.
  • Each of the block generation units 21-1 to 21-10 inputs the low-speed electric signal output from the high-speed signal optical transceiver 1 through the corresponding electric line.
  • Each of the block generation units 21-1 to 21-10 performs one-to-two serial-parallel conversion on the low-speed electric signal, and distributes the low-speed electric signal to the 20 PCS lanes.
  • the transmission rate per one PCS lane is 5.15625 Gbps.
  • Each of the block generation units 21-1 to 21-10 performs 64B / 66B encoding on the low-speed electric signal distributed to each PCS lane to generate a 66-bit unit data block.
  • Each of the block generation units 21-1 to 21-10 outputs the generated data block to the transmission deskew processing unit 22 for each PCS lane.
  • the block generators 21-1 to 21-10 generate data blocks called alignment markers having unique values for each PCS lane.
  • Each of the block generation units 21-1 to 21-10 generates an alignment marker every time a predetermined number of data blocks are generated, and inserts them between data blocks. This alignment marker is used to identify each PCS lane.
  • the alignment markers are inserted at regular intervals in each PCS lane, they are used for skew adjustment between data blocks of 20 PCS lanes.
  • the transmission deskew processing unit 22 performs data block skew adjustment between the 20 PCS lanes.
  • the transmission deskew processing unit 22 inputs data blocks of 20 PCS lanes from the block generation units 21-1 to 21-10.
  • the transmission deskew processing unit 22 performs deskew processing on the data blocks in each PCS lane using alignment markers inserted in the respective PCS lanes, and adjusts the skew of the data blocks between the 20 PCS lanes.
  • the skew adjustment between PCS lanes is defined in IEEE 802.3ba.
  • the data blocks are synchronized between the 20 PCS lanes.
  • the transmission deskew processing unit 22 outputs the data block of each PCS lane subjected to the deskew processing to the block multiplexing units 23-1 to 23-10.
  • Block multiplexing units 23-1 to 23-10 multiplex the data blocks.
  • Block multiplexing units 23-1 to 23-10 are provided corresponding to block generation units 21-1 to 21-10.
  • the block multiplexing units 23-1 to 23-10 distribute the data blocks of the two PCS lanes distributed by the corresponding block generation units 21-1 to 21-10 and subjected to the deskew processing by the transmission deskew processing unit 22, respectively. Input from the processing unit 22.
  • the block multiplexing units 23-1 to 23-10 multiplex the data blocks of the two PCS lanes in units of blocks to generate a low speed electric signal.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba.
  • the block multiplexing units 23-1 to 23-10 are connected to the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 by 10 electric lines, respectively.
  • the block multiplexing units 23-1 to 23-10 output low-speed electrical signals to the corresponding low-speed signal optical transceivers 41-1 to 41-10 of the low-speed signal light transmission / reception unit 4, respectively.
  • the above is the description of the PCS transmission processing unit 2.
  • FIG. 3 is a diagram illustrating a configuration of the PCS reception processing unit 3 in the present embodiment.
  • the PCS reception processing unit 3 of this embodiment includes block separation units 31-1 to 31-10, a reception deskew processing unit 32, and block decomposition units 33-1 to 33-10.
  • the block separating units 31-1 to 31-10 are provided corresponding to the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmitting / receiving unit 4.
  • the block separation units 31-1 to 31-10 are respectively connected to the corresponding low-speed signal optical transceivers by 10 electric lines.
  • the block separation units 31-1 to 31-10 receive low-speed electrical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, respectively.
  • Each of the block separation units 31-1 to 31-10 distributes a 66-bit unit data block included in each low-speed electrical signal to two PCS lanes. As a result, 10 low-speed electrical signals are distributed to 20 PCS lanes.
  • the block separation units 31-1 to 31-10 output the data blocks of 20 PCS lanes to the reception deskew processing unit 32.
  • the reception deskew processing unit 32 inputs data blocks of 20 PCS lanes from the block separation units 31-1 to 31-10.
  • the reception deskew processing unit 32 performs the deskew processing of the data blocks in each PCS lane using the alignment marker inserted in each PCS lane, and adjusts the skew of the data blocks between the 20 PCS lanes.
  • the skew adjustment between PCS lanes is defined in IEEE 802.3ba.
  • the data blocks are synchronized between the 20 PCS lanes.
  • the reception deskew processing unit 32 outputs the data block of each PCS lane subjected to the deskew processing to the block decomposing units 33-1 to 33-10.
  • the block decomposing units 33-1 to 3-10 are provided corresponding to the block separating units 31-1 to 31-10.
  • the block decomposing units 33-1 to 33-1 are separated by the corresponding block demultiplexing units 31-1 to 31-10, respectively, and the data blocks of the two PCS lanes subjected to the deskew processing by the reception deskew processing unit 32 are subjected to reception deskew processing. Input from the unit 32.
  • the block decomposing units 33-1 to 3-10 each divide the data blocks of two PCS lanes into 1-bit units, and multiplex the decomposed 1-bit unit data so that the two PCS lanes alternate. Thus, a low-speed electric signal is generated. Thus, 20 PCS lanes become 10 low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba.
  • Each of the block decomposing units 33-1 to 3-10 outputs a low-speed electrical signal to the high-speed signal optical transceiver 1. The above is the description of the PCS reception processing unit 3.
  • 4A to 4C show signal states in the wavelength division multiplexing optical transmission apparatus on the transmission side in the present embodiment.
  • the high-speed signal optical transceiver 1 converts the 100 GbE optical signal received from the external device into ten low-speed electric signals, and outputs them to the PCS transmission processing unit 2 via the ten electric lines.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
  • FIG. 4A is a diagram illustrating ten low-speed electrical signals output from the high-speed signal optical transceiver 1 in the present embodiment. “10D0” to “10D9” in FIG. 4A correspond to 10 low-speed electrical signals, respectively. As shown in FIG. 4A, two PCS lanes are bit-multiplexed in one low-speed electric signal.
  • each of the block generators 21-1 to 21-10 inputs a low-speed electric signal from the corresponding electric line, performs one-to-two serial-parallel conversion on each low-speed electric signal, and converts the low-speed electric signal to Distribute to 20 PCS lanes.
  • the transmission rate per one PCS lane is 5.15625 Gbps.
  • Each of the block generation units 21-1 to 21-10 performs 64B / 66B encoding on the low-speed electric signal distributed to each PCS lane to generate a 66-bit unit data block.
  • the block generators 21-1 to 21-10 generate alignment markers at predetermined intervals and insert them between data blocks.
  • FIG. 4B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the present embodiment.
  • “VL0” to “VL19” indicate 20 PCS lanes.
  • each bit that is bit-multiplexed with the low-speed electrical signal “10D0” shown in FIG. 4A is distributed to the PCS lanes “VL0” and “VL1” to form a 66-bit unit data block.
  • the block multiplexing units 23-1 to 23-10 distribute the data blocks of the two PCS lanes distributed by the corresponding block generation units 21-1 to 21-10 and subjected to the deskew processing by the transmission deskew processing unit 22, respectively. , Input from the transmission deskew processing unit 22.
  • the block multiplexing units 23-1 to 23-10 multiplex the data blocks of the two PCS lanes so that the two PCS lanes alternate in units of blocks, and generate a low-speed electric signal.
  • the 20 PCS lanes are converted into 10 low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba.
  • FIG. 4C is a diagram illustrating a low-speed electric signal generated by the block-unit multiplexing process in the present embodiment.
  • “10D0” to “10D9” in FIG. 4C correspond to 10 low-speed electrical signals, respectively, as in FIG. 4A.
  • the low-speed electrical signal “10D0” is generated by multiplexing blocks of the PCS lanes “VL0” and “VL1” in units of blocks.
  • the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the low-speed electric signals from the corresponding block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2, respectively, Is converted into a 10 GbE optical signal.
  • the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae.
  • the WDM optical transceivers 51-1 to 5-10 of the WDM optical transceiver 5 respectively input 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, and convert the 10 GbE optical signals into wavelength division multiplexed optical signals.
  • the signal is transmitted to the opposing wavelength division multiplexing optical transmission apparatus via the optical transmission line.
  • the above is the description of the operation of the wavelength division multiplexing optical transmission apparatus on the transmission side.
  • 5A to 5C show signal states in the wavelength division multiplexing optical transmission apparatus on the receiving side in the present embodiment.
  • each of the WDM optical transceivers 51-1 to 5-10 of the WDM optical transceiver 5 receives the wavelength division multiplexed optical signal from the opposite wavelength division multiplexing optical transmission apparatus via the optical transmission line, and receives the wavelength division multiplexed optical signal. Is converted to a 10 GbE optical signal.
  • This 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae.
  • the low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 5-10, respectively, and convert the 10GbE optical signals into low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
  • FIG. 5A is a diagram showing ten low-speed electrical signals output from the low-speed signal optical transceivers 41-1 to 4-10 in the present embodiment. “10D0” to “10D9” in FIG. 5A correspond to 10 low-speed electrical signals, respectively.
  • a block of two PCS lanes is multiplexed on a block basis in one low-speed electric signal.
  • the data block of each PCS lane has a delay due to various factors between transmission and reception.
  • the block demultiplexing units 31-1 to 31-10 receive low-speed electric signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10 of the low-speed signal light transmission / reception unit 4, respectively, and 66 bits included in each low-speed electric signal
  • the unit data block is separated into two PCS lanes. As a result, 10 low-speed electrical signals are distributed to 20 PCS lanes.
  • FIG. 5B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the present embodiment.
  • “VL0” to “VL19” indicate 20 PCS lanes.
  • each block multiplexed in block units on the low-speed electrical signal “10D0” shown in FIG. 5A is distributed to the PCS lanes “VL0” and “VL1”.
  • the block decomposing units 33-1 to 3-10 separate the data blocks of the two PCS lanes, which are separated by the corresponding block demultiplexing units 31-1 to 31-10 and subjected to the deskew processing by the reception deskew processing unit 32, respectively. , Input from the reception deskew processing unit 32.
  • the block decomposing units 33-1 to 3-10 each divide the data blocks of two PCS lanes into 1-bit units, and multiplex the decomposed 1-bit unit data so that the two PCS lanes alternate. Thus, a low-speed electric signal is generated.
  • 20 PCS lanes become 10 low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba.
  • FIG. 5C is a diagram showing a low-speed electrical signal generated by bit multiplexing of 1-bit unit data decomposed from the data block in the present embodiment.
  • “10D0” to “10D9” in FIG. 5C correspond to 10 low-speed electrical signals, respectively, as in FIG. 5A.
  • the blocks of the PCS lanes “VL0” and “VL1” are decomposed into 1-bit units, and the decomposed data of 1-bit units are alternately displayed by the PCS lanes “VL0” and “VL1”. It is generated by bit multiplexing so that
  • the high-speed signal optical transceiver 1 receives ten low-speed electric signals from the PCS reception processing unit 3 and converts the ten low-speed electric signals into a 100 GbE optical signal, and the external device via the optical transmission line. Send to.
  • the above is the description of the operation of the wavelength division multiplexing optical transmission apparatus on the receiving side.
  • the wavelength division multiplexing optical transmission device on the transmission side converts the 100 GbE optical signal into ten low-speed electric signals and converts the wavelength division multiplexing optical signal into a 10 GbE optical signal. Send to transmission line. Then, the wavelength division multiplexing optical transmission device on the receiving side regenerates the 100 GbE optical signal from the ten low-speed electric signals received as ten 10 GbE optical signals.
  • the opposing wavelength division multiplexing optical transmission apparatus only needs to transmit and receive a 10 GbE optical signal as a wavelength division multiplexing optical signal using a conventionally used apparatus for 10 GbE, and therefore supports ultra high speed signals such as a 100 GbE optical signal.
  • a 100 GbE signal can be converted to the same distance as a 10 GbE signal by using a technique already in practical use without using a digital coherent reception technique that is regarded as a promising long-distance optical signal transmission system of 100 Gbps. Also, there is an effect that transmission can be performed by wavelength division multiplexing optical transmission.
  • the PCS transmission processing unit 2 and the PCS reception processing unit 3 of the wavelength culture multiplexed optical transmission system use the alignment markers in the 20 PCS lanes generated from the 10 low-speed electrical signals.
  • the data blocks are synchronized by performing the deskew process. Thereby, even if it is the structure which transmits using a some optical transmission line, the delay difference which generate
  • FIG. 6 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the present embodiment.
  • the wavelength division multiplexing optical transmission apparatus according to the present embodiment includes an OTN (Optical Transport Network) frame processing unit 6 and an optical transmission / reception unit 7 instead of the low-speed signal optical transmission / reception unit 4 and the WDM optical transmission / reception unit 5 in the first embodiment. .
  • OTN Optical Transport Network
  • the OTN frame processing unit 6 includes OTN framers 61-1 to 61-10.
  • the OTN framers 61-1 to 6-10 are connected to the block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2 and the block separation units 31-1 to 31-10 of the PCS reception processing unit 3, respectively.
  • the optical transceiver 7 includes optical transceivers 71-1 to 71-10.
  • the optical transceivers 71-1 to 7-10 are provided corresponding to the OTN framers 61-1 to 10-10.
  • the optical transceivers 71-1 to 7-10 are connected to the OTN framers 61-1 to 10-10.
  • the OTN framers 61-1 to 10-10 input low-speed electric signals from the corresponding block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2, respectively.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
  • Each of the OTN framers 61-1 to 6-10 converts the low-speed electric signal into an OTU2e electric signal stored in the OTU2e frame.
  • OTU2e is a G.264 standard defined by ITU-T (International Telecommunication Union Telecommunication Standardization Section). It is an electrical signal having a transmission rate of 11.7 Gbps conforming to the 709 recommendation.
  • the OTN framers 61-1 to 6-10 output OTU2e electrical signals to the corresponding optical transceivers 71-1 to 7-10, respectively.
  • the optical transceivers 71-1 to 7-10 receive the OTU2e electrical signals from the OTN framers 61-1 to 61-10, respectively, and wavelength division multiplexed light as wavelength division multiplexed optical signals obtained by modulating the OTU2e electrical signals into optical carriers having predetermined wavelengths. It transmits to the wavelength division multiplexing optical transmission apparatus which opposes via a transmission line.
  • the optical transceivers 71-1 to 7-10 input the wavelength division multiplexed optical signal from the wavelength division multiplexing optical transmission apparatus facing each other through the wavelength division multiplexing optical transmission line.
  • Each of the optical transceivers 71-1 to 7-10 converts the wavelength division multiplexed optical signal into an OTU2e electric signal and transmits it to the corresponding OTN framers 61-1 to 61-10.
  • the OTN framers 61-1 to 6-10 receive OTU2e electrical signals from the corresponding optical transceivers 71-1 to 7-10, respectively.
  • the OTN framers 61-1 to 6-10 decompose the OTU2e frame included in the OTU2e electric signal and convert it into a low-speed electric signal.
  • the OTN framers 61-1 to 6-10 output the corresponding block separation units 31-1 to 31-10 of the PCS reception processing unit 3, respectively.
  • the wavelength division multiplexing optical transmission apparatus of the present embodiment can directly convert a low-speed electrical signal into a wavelength division multiplexing optical signal. Therefore, wavelength division multiplexing optical transmission can be performed without using a 10 GbE optical transceiver or a WDM optical transceiver as in the first embodiment.
  • FIG. 7 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the present embodiment.
  • the wavelength division multiplexing optical transmission system according to the present embodiment converts a 40 GbE optical signal into four low-speed electric signals and transmits them as a 10 GbE optical signal to the wavelength division multiplexing optical transmission line. Then, the wavelength division multiplexing optical transmission device on the receiving side regenerates the 40 GbE optical signal from the four low-speed electric signals received as the four 10 GbE optical signals.
  • the wavelength division multiplexing optical transmission apparatus of this embodiment includes a high-speed signal optical transceiver 1, a PCS transmission processing unit 2, a PCS reception processing unit 3, a low-speed optical signal transmission / reception unit 4, and a WDM. And an optical transceiver 5.
  • the high-speed signal optical transceiver 1 is connected to an external device (not shown) through an optical transmission path, and transmits / receives a 40 GbE optical signal to / from the external device.
  • the 40 GbE optical signal is an optical signal conforming to a standard exemplified by 40 GBASE-LR4 or 40 GBASE-ER4 defined by IEEE 802.3ba.
  • the high-speed signal optical transceiver 1 is connected to the PCS transmission processing unit 2 and the PCS reception processing unit 3 through four electric lines.
  • the high-speed signal optical transceiver 1 converts the 40 GbE optical signal into four low-speed electric signals and outputs them to the PCS transmission processing unit 2 via the four electric lines.
  • the low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to XLAUI (40G Attachment Unit Interface) defined in IEEE 802.3ba.
  • the high-speed signal optical transceiver 1 inputs four low-speed electric signals from the PCS reception processing unit 3 through four electric lines.
  • the high-speed signal optical transceiver 1 converts the four low-speed electric signals into 40 GbE optical signals and transmits them to the optical transmission line.
  • FIG. 8 is a diagram showing a configuration of the PCS transmission processing unit 2 in the present embodiment.
  • the PCS transmission processing unit 2 includes block generation units 21-1 to 21-4, a transmission deskew processing unit 22, and block multiplexing units 23-1 to 23-4.
  • the PCS transmission processing unit 2 of the present embodiment is substantially the same in connection relations and operations performed, except that the number of block generation units 21 and block multiplexing units 23 is different from that in the first embodiment.
  • the block generators 21-1 to 21-4 generate four PCS lanes defined in IEEE 802.3ba from four low-speed electric signals input from the high-speed signal optical transceiver 1 through four electric lines. Generate.
  • the number of PCS lanes in 40 GbE transmission is four, the same as the number of low-speed electrical signals, and the transmission rate of each PCS lane is 10.3125 Gbps.
  • the block generation units 21-1 to 21-4 perform 64B / 66B encoding on the low-speed electrical signal in the four PCS lanes, and generate a 66-bit unit data block.
  • the transmission deskew processing unit 22 uses the alignment markers generated by the block generation units 21-1 to 21-4 to perform the deskew processing of the data blocks in each PCS lane, thereby adjusting the skew of the data blocks between the four PCS lanes. To synchronize the data blocks of the four PCS lanes. Then, the block multiplexing units 23-1 to 23-4 multiplex data blocks in each of the four PCS lanes to generate four low-speed electric signals, and output the low-speed electric signals to the low-speed optical signal transmission / reception unit 4. .
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba.
  • FIG. 9 is a diagram showing a configuration of the PCS reception processing unit 3 in the present embodiment.
  • the PCS reception processing unit 3 includes block separation units 31-1 to 31-4, a reception deskew processing unit 32, and block decomposition units 33-1 to 33-4.
  • the PCS reception processing unit 3 of the present embodiment is substantially the same in connection relations and operations performed, except that the number of block separation units 31 and block decomposition units 33 is different from that in the first embodiment.
  • the block demultiplexing units 31-1 to 31-4 receive four low-speed electric signals from the low-speed signal light transmission / reception unit 4, and the data blocks included in the four low-speed electric signals are defined in IEEE 802.3ba. Separate into PCS lanes.
  • the reception deskew processing unit 32 performs deskew processing of the data block of each PCS lane using the alignment marker, adjusts the skew of the data block between the four PCS lanes, and performs the data block skew between the four PCS lanes. Synchronize.
  • the block decomposing units 33-1 to 3-4 generate four low-speed electric signals from the data blocks of four PCS lanes, and output the four low-speed electric signals to the high-speed signal optical transceiver 1.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba.
  • the low-speed signal light transceiver 4 in this embodiment includes low-speed signal light transceivers 41-1 to 41-4.
  • the WDM optical transceiver 5 in this embodiment includes WDM optical transceivers 51-1 to 51-4.
  • the low-speed signal optical transceivers 41-1 to 4-4 are connected to the WDM optical transceivers 51-1 to 51-4, respectively.
  • the low-speed signal light transmission / reception unit 4 and the WDM optical transmission / reception unit 5 of the present embodiment are substantially the same as those in the first embodiment, except that the number of low-speed signal light transceivers 41 and WDM optical transceivers 51 is different from that in the first embodiment. It is.
  • the low-speed signal optical transceivers 41-1 to 4-4 of the low-speed signal light transmission / reception unit 4 are connected to the block multiplexing units 23-1 to 23-4 of the PCS transmission processing unit 2, and corresponding blocks of the PCS transmission processing unit 2, respectively.
  • Low-speed electrical signals are input from the multiplexing units 23-1 to 23-4, and the low-speed electrical signals are converted into 10 GbE optical signals by modulating them into optical carriers.
  • the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae.
  • the WDM optical transceivers 51-1 to 5-4 of the WDM optical transmission / reception unit 5 receive 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-4, respectively.
  • Each of the WDM optical transceivers 51-1 to 51-4 converts the 10 GbE optical signal into a wavelength division multiplexed optical signal, and transmits the wavelength division multiplexed optical signal to the opposing wavelength division multiplexed optical transmission apparatus via the optical transmission path.
  • the WDM optical transceivers 51-1 to 5-4 of the WDM optical transmission / reception unit 5 receive the wavelength division multiplexing optical signals from the opposing wavelength division multiplexing optical transmission apparatuses via the optical transmission lines, respectively.
  • the WDM optical transceivers 51-1 to 5-4 convert the wavelength division multiplexed optical signal into a 10 GbE optical signal and output it to the low-speed signal optical transceiver 4.
  • the low-speed signal light transceivers 41-1 to 4-4 of the low-speed signal light transmission / reception unit 4 input 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 51-4, respectively, and convert the 10 GbE optical signals into low-speed electrical signals.
  • This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba.
  • the low-speed signal optical transceivers 41-1 to 4-4 are connected to the block separation units 31-1 to 4 of the PCS reception processing unit 3, and output low-speed electrical signals to the corresponding block separation units 31-1 to 31-4.
  • the wavelength division multiplexing optical transmission system according to this embodiment can be applied to a case where a 40 GbE optical signal is transmitted instead of the 100 GbE optical signal described in the first embodiment.

Abstract

A wavelength division multiplex optical transmission system capable of realizing transparent ultrafast transmission without using a device for ultrafast transmission, is desired. Disclosed is a transmission device provided with a unit for converting a high-speed optical signal to a plurality of low-speed electric signals; a unit for generating a data block in each low-speed electric signal, synchronizes the data blocks, and multiplexes the data blocks to regenerate the plurality of low-speed electric signals; and a unit for generating a plurality of wavelength division multiplex optical signals from each low-speed electric signal and transmits the generated signals to a plurality of optical transmission paths. Also disclosed is a reception device provided with a unit for converting the plurality of wavelength division multiplex optical signals received from the plurality of optical transmission paths to a plurality of low-speed electric signals; a unit for synchronizing data blocks among the plurality of low-speed electric signals, and decomposing the data blocks to regenerate the plurality of low-speed electric signals; and a unit for converting the plurality of low-speed electric signals to a high-speed optical signal.

Description

波長分割多重光伝送システム、送信装置、受信装置、及び波長分割多重光伝送方法Wavelength division multiplexing optical transmission system, transmission apparatus, reception apparatus, and wavelength division multiplexing optical transmission method
 本発明は、波長分割多重光伝送システムに関する。 The present invention relates to a wavelength division multiplexing optical transmission system.
 近年、情報伝送の大容量化により、波長分割多重光伝送システムの高速化が求められている。これに伴い、100Gbpsといった超高速の伝送速度を実現可能な光伝送システムの研究開発が進められている。100Gbpsの伝送速度を実現可能な光伝送システムとして、IEEE(Institute of Electrical and Electronics Engineers)802.3baで検討されている100ギガビットイーサネット(登録商標)(以下、100GbE)が存在する。 In recent years, speeding up of wavelength division multiplexing optical transmission systems has been demanded due to an increase in information transmission capacity. Along with this, research and development of an optical transmission system capable of realizing an ultra-high transmission speed of 100 Gbps has been advanced. As an optical transmission system capable of realizing a transmission rate of 100 Gbps, there is 100 Gigabit Ethernet (registered trademark) (hereinafter, 100 GbE) studied in IEEE (Institut of Electrical and Electronics Engineers) 802.3ba.
 100GbE光伝送システムでは、100GbE光トランシーバを100GbE対応の波長分割多重光信号光トランシーバが必要となる。さらに、誤り訂正符号処理、光電変換処理、長距離光伝送等を実現するために超高速な処理を行うことが可能な装置も必要となる。このような、波長分割多重光信号光トランシーバや100GbEに対応する装置は、非常に高価である。 In a 100 GbE optical transmission system, a 100 GbE optical transceiver requires a wavelength division multiplexed optical signal optical transceiver compatible with 100 GbE. Furthermore, an apparatus capable of performing ultra-high-speed processing is required to realize error correction code processing, photoelectric conversion processing, long-distance optical transmission, and the like. Such a wavelength division multiplexed optical signal optical transceiver and a device corresponding to 100 GbE are very expensive.
 また、100GbE光伝送システムにおける長距離光信号伝送方式としてデジタルコヒーレント受信技術が有力視されている。しかし、100GbE光伝送システムの波長分割多重光信号光トランシーバにデジタルコヒーレント受信技術を適用する場合、従来の10Gbps波長分割多重光信号光トランシーバで使用されてきた2値の強度変調方式の受信技術と比較して、構成が複雑で技術的な難易度も高い。そのため、実用化するためには課題も多い。 Also, digital coherent reception technology is considered promising as a long-distance optical signal transmission method in a 100 GbE optical transmission system. However, when the digital coherent reception technique is applied to the wavelength division multiplexing optical signal optical transceiver of the 100 GbE optical transmission system, it is compared with the reception technique of the binary intensity modulation method used in the conventional 10 Gbps wavelength division multiplexing optical signal optical transceiver. Therefore, the configuration is complicated and the technical difficulty is high. Therefore, there are many problems to put it into practical use.
 さらに、デジタルコヒーレント受信技術を用いた場合においても、100GbE光信号は、従来の10GbE光信号と比較して信号劣化耐力が小さいため、10GbE光信号と同一の距離を伝送させることは難しい。 Furthermore, even when the digital coherent reception technique is used, it is difficult to transmit the same distance as the 10 GbE optical signal because the signal degradation resistance of the 100 GbE optical signal is smaller than that of the conventional 10 GbE optical signal.
 特許文献1は、100GbE光信号のような高速なデータストリームを、イーサネットフレームのフレーム単位で、複数の10GbEのような低速な伝送回線に振り分けて伝送する伝送システムを開示している。 Patent Document 1 discloses a transmission system that distributes a high-speed data stream such as a 100 GbE optical signal to a plurality of low-speed transmission lines such as 10 GbE in units of Ethernet frames.
 特許文献1の伝送システムは、イーサネットフレームに付加されるプリアンブル領域、イーサネットフレーム直前、あるいは直後のアイドル領域のいずれかにシーケンス番号を挿入して送信を行う。受信装置は、このシーケンス番号に基づいて受信処理を行う。特許文献1の伝送システムによれば、シーケンス番号をイーサネットフレーム外に付加するため、イーサネットフレームの伝送レートを低下させることが無い。 The transmission system of Patent Document 1 performs transmission by inserting a sequence number in any of a preamble area added to an Ethernet frame, an idle area immediately before or immediately after the Ethernet frame. The receiving device performs reception processing based on this sequence number. According to the transmission system of Patent Document 1, since the sequence number is added outside the Ethernet frame, the transmission rate of the Ethernet frame is not reduced.
 しかし、特許文献1の伝送システムは、シーケンス番号が付加されるため、100GbE信号をトランスペアレントに伝送することにならない。また、高速の光信号を複数の低速の光信号に変換して波長分割多重光伝送を行う場合には、受信装置において高速の光信号を再生する際に、低速の光信号間の遅延差が問題となり、この遅延差を吸収する仕組みが必要となる。 However, since the transmission system of Patent Document 1 is added with a sequence number, it does not transmit a 100 GbE signal transparently. Further, when wavelength division multiplexing optical transmission is performed by converting a high-speed optical signal into a plurality of low-speed optical signals, there is a delay difference between the low-speed optical signals when the high-speed optical signal is reproduced in the receiver. A problem arises, and a mechanism for absorbing this delay difference is required.
特開2009-206696号公報JP 2009-206696 A
 本発明の目的は、超高速伝送用の装置を用いることなくトランスペアレントに超高速伝送を実現可能な波長分割多重光伝送システムを提供することである。 An object of the present invention is to provide a wavelength division multiplexing optical transmission system that can realize ultra-high-speed transmission transparently without using an apparatus for ultra-high-speed transmission.
 本発明の一つの観点として、波長分割多重光伝送システムが提供される。波長分割多重光伝送システムは、送信装置と受信装置とを備える。送信装置は、高速光信号を高速光信号より低速な複数の低速電気信号へ変換する高速信号送信変換部と、複数の低速電気信号の各々において所定のデータ量単位のデータブロックを生成し、複数の低速電気信号間でデータブロックの同期をとって、各低速電気信号においてデータブロックを多重することにより複数の同期された低速電気信号を生成する送信同期処理部と、複数の同期された低速電気信号の各々を波長分割多重光信号へ変換することにより複数の波長分割多重光信号を生成して、複数の波長分割多重光信号を複数の光伝送路へ送信する低速信号送信変換部とを備える。また、受信装置は、複数の光伝送路から複数の波長分割多重光信号を受信して、複数の波長分割多重光信号を複数の同期された低速電気信号へ変換する低速信号受信変換部と、複数の同期された低速電気信号間において複数の同期された低速電気信号の各々に含まれるデータブロックの同期をとって、データブロックを分解することにより複数の低速電気信号を生成する受信同期処理部と、複数の低速電気信号を高速光信号へ変換する高速信号受信変換部とを備える。 As one aspect of the present invention, a wavelength division multiplexing optical transmission system is provided. The wavelength division multiplexing optical transmission system includes a transmission device and a reception device. The transmission device generates a data block of a predetermined data amount unit in each of the plurality of low-speed electrical signals, and a high-speed signal transmission conversion unit that converts the high-speed optical signal into a plurality of low-speed electrical signals that are slower than the high-speed optical signal. A transmission synchronization processing unit that synchronizes data blocks between low-speed electric signals and generates a plurality of synchronized low-speed electric signals by multiplexing the data blocks in each low-speed electric signal, and a plurality of synchronized low-speed electric signals A low-speed signal transmission conversion unit configured to generate a plurality of wavelength division multiplexed optical signals by converting each of the signals into wavelength division multiplexed optical signals, and to transmit the plurality of wavelength division multiplexed optical signals to the plurality of optical transmission lines; . Further, the receiving device receives a plurality of wavelength division multiplexed optical signals from a plurality of optical transmission lines, and converts the plurality of wavelength division multiplexed optical signals into a plurality of synchronized low speed electric signals, and A reception synchronization processing unit that synchronizes data blocks included in each of the plurality of synchronized low-speed electrical signals between the plurality of synchronized low-speed electrical signals and generates a plurality of low-speed electrical signals by disassembling the data blocks And a high-speed signal reception conversion unit that converts a plurality of low-speed electrical signals into high-speed optical signals.
 本発明の他の観点として送信装置が提供される。送信装置は、上述の波長分割多重光伝送システムで用いられる。 A transmission device is provided as another aspect of the present invention. The transmission device is used in the above-described wavelength division multiplexing optical transmission system.
 本発明のさらに他の観点として、受信装置が提供される。受信装置は、上述の波長分割多重光伝送システムで用いられる。 As yet another aspect of the present invention, a receiving device is provided. The receiving apparatus is used in the above-described wavelength division multiplexing optical transmission system.
 本発明のさらに他の観点として波長分割多重光伝送方法が提供される。波長分割多重光伝送方法は、高速光信号を高速光信号より低速な複数の低速電気信号へ変換するステップと、複数の低速電気信号の各々において所定のデータ量単位のデータブロックを生成するステップと、複数の低速電気信号間でデータブロックの同期をとるステップと、各低速電気信号においてデータブロックを多重することにより複数の同期された低速電気信号を生成するステップと、複数の同期された低速電気信号の各々を波長分割多重光信号へ変換することにより複数の波長分割多重光信号を生成するステップと、複数の波長分割多重光信号を複数の光伝送路へ送信するステップと、複数の光伝送路から複数の波長分割多重光信号を受信するステップと、複数の波長分割多重光信号を複数の同期された低速電気信号へ変換するステップと、複数の同期された低速電気信号間において複数の同期された低速電気信号の各々に含まれるデータブロックの同期をとるステップと、データブロックを分解することにより複数の低速電気信号を生成するするステップと、複数の低速電気信号を高速光信号へ変換するステップとを備える。 As yet another aspect of the present invention, a wavelength division multiplexing optical transmission method is provided. The wavelength division multiplexing optical transmission method includes a step of converting a high-speed optical signal into a plurality of low-speed electrical signals slower than the high-speed optical signal, and a step of generating a data block of a predetermined data amount unit in each of the plurality of low-speed electrical signals; Synchronizing a data block between a plurality of low-speed electrical signals; generating a plurality of synchronized low-speed electrical signals by multiplexing the data blocks in each low-speed electrical signal; and a plurality of synchronized low-speed electrical signals Generating a plurality of wavelength division multiplexed optical signals by converting each of the signals into wavelength division multiplexed optical signals; transmitting a plurality of wavelength division multiplexed optical signals to a plurality of optical transmission lines; and a plurality of optical transmissions. Receiving a plurality of wavelength division multiplexed optical signals from the channel, and converting the plurality of wavelength division multiplexed optical signals into a plurality of synchronized low-speed electrical signals. And synchronizing a data block included in each of the plurality of synchronized low-speed electrical signals between the plurality of synchronized low-speed electrical signals, and generating the plurality of low-speed electrical signals by decomposing the data blocks And converting a plurality of low-speed electrical signals into high-speed optical signals.
 本発明によれば、超高速伝送用の装置を用いることなくトランスペアレントに超高速伝送を実現可能な波長分割多重光伝送システムを提供することができる。 According to the present invention, it is possible to provide a wavelength division multiplexing optical transmission system that can realize ultra-high-speed transmission transparently without using an ultra-high-speed transmission device.
 本発明の上記目的、他の目的、効果、及び特徴は、添付される図面と連携して実施の形態の記述から、より明らかになる。
図1は、図1は、本発明の第1実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。 図2は、本発明の第1実施形態におけるPCS送信処理部2の構成を示す図である。 図3は、本発明の第1実施形態におけるPCS受信処理部3の構成を示す図である。 図4Aは、本発明の第1実施形態における高速信号光トランシーバ1から出力された10本の低速電気信号を示す図である。 図4Bは、本発明の第1実施形態におけるスキュー調整により同期された20本のPCSレーンのデータブロックを示す図である。 図4Cは、本発明の第1実施形態におけるブロック単位の多重処理により生成された低速電気信号を示す図である。 図5Aは、本発明の第1実施形態における低速信号光トランシーバ41-1~10から出力された10本の低速電気信号を示す図である。 図5Bは、本発明の第1実施形態におけるスキュー調整により同期された20本のPCSレーンのデータブロックを示す図である。 図5Cは、本実施形態におけるデータブロックから分解された1ビット単位のデータのビット多重により生成された低速電気信号を示す図である。 図6は、本発明の第2実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。 図7は、本発明の第3実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。 図8は、本発明の第3実施形態におけるPCS送信処理部2の構成を示す図である。 図9は、本発明の第3実施形態におけるPCS受信処理部3の構成を示す図である。
The above object, other objects, effects, and features of the present invention will become more apparent from the description of the embodiments in conjunction with the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system according to the first embodiment of the present invention. FIG. 2 is a diagram showing a configuration of the PCS transmission processing unit 2 in the first embodiment of the present invention. FIG. 3 is a diagram showing a configuration of the PCS reception processing unit 3 in the first embodiment of the present invention. FIG. 4A is a diagram showing ten low-speed electrical signals output from the high-speed signal optical transceiver 1 in the first embodiment of the present invention. FIG. 4B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the first embodiment of the present invention. FIG. 4C is a diagram illustrating a low-speed electrical signal generated by the block-based multiplexing process according to the first embodiment of the present invention. FIG. 5A is a diagram showing ten low-speed electrical signals output from the low-speed signal optical transceivers 41-1 to 4-10 in the first embodiment of the present invention. FIG. 5B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the first embodiment of the present invention. FIG. 5C is a diagram showing a low-speed electrical signal generated by bit multiplexing of data in units of 1 bit decomposed from the data block in the present embodiment. FIG. 6 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the second embodiment of the present invention. FIG. 7 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the third embodiment of the present invention. FIG. 8 is a diagram showing a configuration of the PCS transmission processing unit 2 in the third embodiment of the present invention. FIG. 9 is a diagram showing a configuration of the PCS reception processing unit 3 in the third embodiment of the present invention.
 添付図面を参照して、本発明の実施形態による波長分割多重光伝送システムを以下に説明する。 A wavelength division multiplexing optical transmission system according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
 (第1実施形態)
 はじめに、本発明の第1実施形態による波長分割多重光伝送システムの説明を行う。
(First embodiment)
First, the wavelength division multiplexing optical transmission system according to the first embodiment of the present invention will be described.
[構成の説明]
 まず、本実施形態における波長分割多重光伝送システムの構成の説明を行う。図1は、本実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。本実施形態の波長分割多重光伝送システムは、図1に示すような波長分割多重光伝送装置が波長分割多重光伝送路を介して対向するように設けられて構成される。
[Description of configuration]
First, the configuration of the wavelength division multiplexing optical transmission system in the present embodiment will be described. FIG. 1 is a diagram illustrating a configuration of a wavelength division multiplexing optical transmission apparatus that constitutes a wavelength division multiplexing optical transmission system according to the present embodiment. The wavelength division multiplexing optical transmission system of the present embodiment is configured by providing wavelength division multiplexing optical transmission apparatuses as shown in FIG. 1 so as to face each other via a wavelength division multiplexing optical transmission line.
 本実施形態の波長分割多重光伝送装置は、高速信号光トランシーバ1と、PCS(Physical Coding Sub-layer)送信処理部2と、PCS受信処理部3と、低速信号光送受信部4と、波長分割多重光送受信部(以下、WDM光送受信部)5とを備える。 The wavelength division multiplexing optical transmission apparatus of the present embodiment includes a high-speed signal optical transceiver 1, a PCS (Physical Coding Sub-layer) transmission processing unit 2, a PCS reception processing unit 3, a low-speed signal optical transmission / reception unit 4, and a wavelength division. And a multiplexed optical transceiver unit (hereinafter referred to as a WDM optical transceiver unit) 5.
 まず、高速信号光トランシーバ1は、図示されない外部装置と光伝送路で接続されており、外部装置との間で100ギガビットイーサネット(以下、GbE)光信号の送受信を行う。ここで、100GbE光信号は、IEEE(Institute of Electrical and Electronics Engineers)802.3baにて規定されている100GBASE-SR10や、100GBASE-LR4や、100GBASE-ER4に例示される規格に準拠した光信号である。 First, the high-speed signal optical transceiver 1 is connected to an external device (not shown) through an optical transmission path, and transmits / receives a 100 gigabit Ethernet (hereinafter, GbE) optical signal to / from the external device. Here, the 100 GbE optical signal is an optical signal conforming to a standard exemplified by 100 GBASE-SR10, 100 GBASE-LR4, and 100 GBASE-ER4 defined in IEEE (Institut of Electrical and Electronics Engineers) 802.3ba. is there.
 高速信号光トランシーバ1は、PCS送信処理部2及びPCS受信処理部3と、それぞれ10本の電気回線により接続されている。高速信号光トランシーバ1は、100GbE光信号を10本の低速電気信号へ変換して、10本の電気回線を介してPCS送信処理部2へ出力する。ここで、低速電気信号は、IEEE802.3baに規定されているCAUI(100G Attachment Unit Interface)に準拠した、10.3125bpsの伝送レートを有する電気信号である。また、高速信号光トランシーバ1は、PCS受信処理部3から10本の電気回線を介して10本の低速電気信号を入力する。高速信号光トランシーバ1は、10本の低速電気信号を100GbE光信号へ変換して光伝送路へ送信する。 The high-speed signal optical transceiver 1 is connected to the PCS transmission processing unit 2 and the PCS reception processing unit 3 by 10 electric lines. The high-speed signal optical transceiver 1 converts a 100 GbE optical signal into ten low-speed electric signals and outputs the converted signals to the PCS transmission processing unit 2 via the ten electric lines. Here, the low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to CAUI (100G Attachment Unit Interface) defined in IEEE 802.3ba. Further, the high-speed signal optical transceiver 1 inputs ten low-speed electric signals from the PCS reception processing unit 3 through ten electric lines. The high-speed signal optical transceiver 1 converts ten low-speed electric signals into 100 GbE optical signals and transmits them to the optical transmission line.
 次に、PCS送信処理部2は、高速信号光トランシーバ1から入力される10本の低速電気信号を、IEEE802.3baに規定される20本のPCS(Physical Coding Sub-layer)レーンへ分配する。PCS送信処理部2は、PCSレーンに分配された低速電気信号に64B/66B符号化を実行して、66ビット単位のデータブロックを生成し、20本のPCSレーン間でデータブロックの同期をとる。PCS送信処理部2は、データブロック単位の多重を行って再び10本の低速電気信号を生成し、低速電気信号を低速信号光送受信部4へ出力する。この低速電気信号は、IEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。 Next, the PCS transmission processing unit 2 distributes the ten low-speed electric signals input from the high-speed signal optical transceiver 1 to 20 PCS (Physical Coding Sub-layer) lanes defined in IEEE 802.3ba. The PCS transmission processing unit 2 performs 64B / 66B encoding on the low-speed electric signal distributed to the PCS lanes, generates a 66-bit unit data block, and synchronizes the data blocks between the 20 PCS lanes. . The PCS transmission processing unit 2 performs multiplexing for each data block to generate 10 low-speed electrical signals again, and outputs the low-speed electrical signals to the low-speed signal light transmission / reception unit 4. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba.
 次に、PCS受信処理部3は、低速信号光送受信部4から10本の低速電気信号を入力する。PCS受信処理部3は、10本の低速電気信号に含まれるデータブロックを、IEEE802.3baに規定される20本のPCSレーンへ分離して、20本のPCSレーン間でデータブロックの同期をとる。PCS受信処理部3は、データブロックを1ビット単位に分解して、分解された1ビット単位のデータをビット多重することにより10本の低速電気信号を生成し、低速電気信号を高速信号光トランシーバ1へ出力する。 Next, the PCS reception processing unit 3 inputs ten low-speed electric signals from the low-speed signal light transmission / reception unit 4. The PCS reception processing unit 3 separates the data blocks included in the 10 low-speed electrical signals into 20 PCS lanes defined by IEEE 802.3ba, and synchronizes the data blocks between the 20 PCS lanes. . The PCS reception processing unit 3 decomposes the data block into 1-bit units, generates 10 low-speed electrical signals by bit-multiplexing the decomposed 1-bit unit data, and converts the low-speed electrical signals into the high-speed signal optical transceiver. Output to 1.
 次に、低速信号光送受信部4は、低速信号光トランシーバ41-1~10を備える。低速信号光トランシーバ41-1~10は、10本の低速電気信号に対応して設けられる。また、WDM光送受信部5は、WDM光トランシーバ51-1~10を備える。WDM光トランシーバ51-1~10は、低速信号光トランシーバ41-1~10に対応して設けられる。WDM光トランシーバ51-1~10は、それぞれ対応する低速信号光トランシーバ41-1~10と光回線により接続されている。 Next, the low-speed signal light transceiver 4 includes low-speed signal light transceivers 41-1 to 41-10. The low-speed signal optical transceivers 41-1 to 4-10 are provided corresponding to ten low-speed electric signals. The WDM optical transceiver 5 includes WDM optical transceivers 51-1 to 51-10. The WDM optical transceivers 51-1 to 5-10 are provided corresponding to the low-speed signal optical transceivers 41-1 to 41-10. The WDM optical transceivers 51-1 to 5-10 are connected to the corresponding low-speed signal optical transceivers 41-1 to 4-10 by optical lines.
 低速信号光送受信部4の低速信号光トランシーバ41-1~10は、PCS送信処理部2からそれぞれ対応する電気回線の低速電気信号を入力して、低速電気信号を光の搬送波へ変調することにより10GbE光信号へ変換する。ここで、10GbE光信号は、IEEE802.3aeで規定されている10GBASE-SRや、10GBASE-LRや、10GBASE-ERに準拠した光信号である。低速信号光トランシーバ41-1~10は、10GbE光信号をWDM光送受信部5へ出力する。WDM光送受信部5のWDM光トランシーバ51-1~10は、それぞれ対応する低速信号光トランシーバ41-1~10から10GbE光信号を入力する。WDM光トランシーバ51-1~10は、10GbE光信号を波長分割多重光信号へ変換して、光伝送路を介して対向する波長分割多重光伝送装置へ送信する。 The low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 receive low-speed electric signals of the corresponding electric lines from the PCS transmission processing unit 2, respectively, and modulate the low-speed electric signals into optical carriers. Conversion to a 10 GbE optical signal. Here, the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae. The low-speed signal optical transceivers 41-1 to 4-10 output a 10 GbE optical signal to the WDM optical transmission / reception unit 5. The WDM optical transceivers 51-1 to 5-10 of the WDM optical transmission / reception unit 5 receive 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, respectively. The WDM optical transceivers 51-1 to 5-10 convert the 10 GbE optical signal into a wavelength division multiplexing optical signal and transmit it to the opposing wavelength division multiplexing optical transmission apparatus via the optical transmission line.
 また、WDM光送受信部5のWDM光トランシーバ51-1~10は、対向する波長分割多重光伝送装置から、それぞれ光伝送路を介して波長分割多重光信号を受信する。WDM光トランシーバ51-1~10は、波長分割多重光信号を10GbE光信号へ変換して、低速信号光送受信部4へ出力する。低速信号光送受信部4の低速信号光トランシーバ41-1~10は、それぞれ対応するWDM光トランシーバ51-1~10から10GbE光信号を入力して、10GbE光信号を低速電気信号へ変換する。この低速電気信号は、IEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。低速信号光トランシーバ41-1~10は、低速電気信号をPCS受信処理部3へ出力する。 Also, the WDM optical transceivers 51-1 to 5-10 of the WDM optical transmission / reception unit 5 receive the wavelength division multiplexed optical signals from the opposing wavelength division multiplexed optical transmission apparatuses via the optical transmission lines, respectively. The WDM optical transceivers 51-1 to 5-10 convert the wavelength division multiplexed optical signal into a 10 GbE optical signal and output it to the low-speed signal optical transceiver 4. The low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 5-10, respectively, and convert the 10GbE optical signals into low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba. The low-speed signal optical transceivers 41-1 to 4-10 output low-speed electrical signals to the PCS reception processing unit 3.
 次に、PCS送信処理部2の構成を説明する。図2は、本実施形態におけるPCS送信処理部2の構成を示す図である。本実施形態のPCS送信処理部2は、ブロック生成部21-1~10と、送信デスキュー処理部22と、ブロック多重部23-1~10とを備える。 Next, the configuration of the PCS transmission processing unit 2 will be described. FIG. 2 is a diagram showing a configuration of the PCS transmission processing unit 2 in the present embodiment. The PCS transmission processing unit 2 of this embodiment includes block generation units 21-1 to 21-10, a transmission deskew processing unit 22, and block multiplexing units 23-1 to 23-10.
 まず、ブロック生成部21-1~10は、10本の電気回線に対応して設けられている。ブロック生成部21-1~10は、それぞれ対応する電気回線を介して、高速信号光トランシーバ1から出力された低速電気信号を入力する。ブロック生成部21-1~10は、それぞれ低速電気信号に対して1対2のシリアル-パラレル変換を行って、低速電気信号を20本のPCSレーンに分配する。このPCSレーンの1本あたりの伝送レートは、5.15625Gbpsとなる。ブロック生成部21-1~10は、それぞれ各PCSレーンに分配された低速電気信号に対して64B/66B符号化を行って、66ビット単位のデータブロックを生成する。ブロック生成部21-1~10は、それぞれ、生成されたデータブロックをPCSレーン毎に送信デスキュー処理部22へ出力する。 First, the block generators 21-1 to 21-10 are provided corresponding to 10 electric lines. Each of the block generation units 21-1 to 21-10 inputs the low-speed electric signal output from the high-speed signal optical transceiver 1 through the corresponding electric line. Each of the block generation units 21-1 to 21-10 performs one-to-two serial-parallel conversion on the low-speed electric signal, and distributes the low-speed electric signal to the 20 PCS lanes. The transmission rate per one PCS lane is 5.15625 Gbps. Each of the block generation units 21-1 to 21-10 performs 64B / 66B encoding on the low-speed electric signal distributed to each PCS lane to generate a 66-bit unit data block. Each of the block generation units 21-1 to 21-10 outputs the generated data block to the transmission deskew processing unit 22 for each PCS lane.
 また、ブロック生成部21-1~10は、各PCSレーンに固有の値を有するアライメントマーカ呼ばれるデータブロックを生成する。ブロック生成部21-1~10は、データブロックが所定の数だけ生成される度にアライメントマーカを生成して、データブロック間に挿入する。このアライメントマーカは、各PCSレーンを識別するために用いられる。また、アライメントマーカは、各PCSレーンにおいて一定の間隔で挿入されるため、20本のPCSレーンのデータブロック間におけるスキュー調整に用いられる。 Also, the block generators 21-1 to 21-10 generate data blocks called alignment markers having unique values for each PCS lane. Each of the block generation units 21-1 to 21-10 generates an alignment marker every time a predetermined number of data blocks are generated, and inserts them between data blocks. This alignment marker is used to identify each PCS lane. In addition, since the alignment markers are inserted at regular intervals in each PCS lane, they are used for skew adjustment between data blocks of 20 PCS lanes.
 次に、送信デスキュー処理部22は、20本のPCSレーン間におけるデータブロックのスキュー調整を行う。送信デスキュー処理部22は、ブロック生成部21-1~10から20本のPCSレーンのデータブロックを入力する。送信デスキュー処理部22は、各PCSレーンに挿入されるアライメントマーカを用いて、各PCSレーンのデータブロックに対してデスキュー処理を行って、20本のPCSレーン間におけるデータブロックのスキュー調整を行う。PCSレーン間におけるスキュー調整については、IEEE802.3baに規定されている。これにより、20本のPCSレーン間において、データブロックの同期がとられる。送信デスキュー処理部22は、デスキュー処理の行われた各PCSレーンのデータブロックをブロック多重部23-1~10へ出力する。 Next, the transmission deskew processing unit 22 performs data block skew adjustment between the 20 PCS lanes. The transmission deskew processing unit 22 inputs data blocks of 20 PCS lanes from the block generation units 21-1 to 21-10. The transmission deskew processing unit 22 performs deskew processing on the data blocks in each PCS lane using alignment markers inserted in the respective PCS lanes, and adjusts the skew of the data blocks between the 20 PCS lanes. The skew adjustment between PCS lanes is defined in IEEE 802.3ba. As a result, the data blocks are synchronized between the 20 PCS lanes. The transmission deskew processing unit 22 outputs the data block of each PCS lane subjected to the deskew processing to the block multiplexing units 23-1 to 23-10.
 次に、ブロック多重部23-1~10は、データブロックを多重する。ブロック多重部23-1~10は、ブロック生成部21-1~10に対応して設けられている。ブロック多重部23-1~10は、それぞれ対応するブロック生成部21-1~10により分配されて、送信デスキュー処理部22によりデスキュー処理の行われた2本のPCSレーンのデータブロックを、送信デスキュー処理部22から入力する。ブロック多重部23-1~10は、2本のPCSレーンのデータブロックをブロック単位に多重して低速電気信号を生成する。この低速電気信号は、前述したIEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。これにより、20本のPCSレーンのデータブロックは、10本の電気信号となる。ブロック多重部23-1~10は、低速信号光送受信部4の低速信号光トランシーバ41-1~10とそれぞれ10本の電気回線で接続されている。ブロック多重部23-1~10は、低速信号光送受信部4のそれぞれ対応する低速信号光トランシーバ41-1~10へ低速電気信号を出力する。以上が、PCS送信処理部2の説明である。 Next, the block multiplexing units 23-1 to 23-10 multiplex the data blocks. Block multiplexing units 23-1 to 23-10 are provided corresponding to block generation units 21-1 to 21-10. The block multiplexing units 23-1 to 23-10 distribute the data blocks of the two PCS lanes distributed by the corresponding block generation units 21-1 to 21-10 and subjected to the deskew processing by the transmission deskew processing unit 22, respectively. Input from the processing unit 22. The block multiplexing units 23-1 to 23-10 multiplex the data blocks of the two PCS lanes in units of blocks to generate a low speed electric signal. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba. Thereby, the data block of 20 PCS lanes becomes 10 electrical signals. The block multiplexing units 23-1 to 23-10 are connected to the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 by 10 electric lines, respectively. The block multiplexing units 23-1 to 23-10 output low-speed electrical signals to the corresponding low-speed signal optical transceivers 41-1 to 41-10 of the low-speed signal light transmission / reception unit 4, respectively. The above is the description of the PCS transmission processing unit 2.
 続いて、PCS受信処理部3の構成を説明する。図3は、本実施形態におけるPCS受信処理部3の構成を示す図である。本実施形態のPCS受信処理部3は、ブロック分離部31-1~10と、受信デスキュー処理部32と、ブロック分解部33-1~10とを備える。 Subsequently, the configuration of the PCS reception processing unit 3 will be described. FIG. 3 is a diagram illustrating a configuration of the PCS reception processing unit 3 in the present embodiment. The PCS reception processing unit 3 of this embodiment includes block separation units 31-1 to 31-10, a reception deskew processing unit 32, and block decomposition units 33-1 to 33-10.
 まず、ブロック分離部31-1~10は、低速信号光送受信部4の低速信号光トランシーバ41-1~10に対応して設けられる。ブロック分離部31-1~10は、それぞれ対応する低速信号光トランシーバと、10本の電気回線で接続されている。ブロック分離部31-1~10は、それぞれ対応する低速信号光トランシーバ41-1~10から低速電気信号を入力する。ブロック分離部31-1~10は、それぞれ低速電気信号に含まれる66ビット単位のデータブロックを2本のPCSレーンへ分配する。これにより、10本の低速電気信号は、20本のPCSレーンへ分配される。ブロック分離部31-1~10は、20本のPCSレーンのデータブロックを受信デスキュー処理部32へ出力する。 First, the block separating units 31-1 to 31-10 are provided corresponding to the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmitting / receiving unit 4. The block separation units 31-1 to 31-10 are respectively connected to the corresponding low-speed signal optical transceivers by 10 electric lines. The block separation units 31-1 to 31-10 receive low-speed electrical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, respectively. Each of the block separation units 31-1 to 31-10 distributes a 66-bit unit data block included in each low-speed electrical signal to two PCS lanes. As a result, 10 low-speed electrical signals are distributed to 20 PCS lanes. The block separation units 31-1 to 31-10 output the data blocks of 20 PCS lanes to the reception deskew processing unit 32.
 次に、受信デスキュー処理部32は、ブロック分離部31-1~10から20本のPCSレーンのデータブロックを入力する。受信デスキュー処理部32は、各PCSレーンに挿入されたアライメントマーカを用いて、各PCSレーンのデータブロックのデスキュー処理を行って、20本のPCSレーン間でデータブロックのスキュー調整を行う。PCSレーン間におけるスキュー調整については、IEEE802.3baに規定されている。これにより、20本のPCSレーン間において、データブロックの同期がとられる。受信デスキュー処理部32は、デスキュー処理の行われた各PCSレーンのデータブロックを、ブロック分解部33-1~10へ出力する。 Next, the reception deskew processing unit 32 inputs data blocks of 20 PCS lanes from the block separation units 31-1 to 31-10. The reception deskew processing unit 32 performs the deskew processing of the data blocks in each PCS lane using the alignment marker inserted in each PCS lane, and adjusts the skew of the data blocks between the 20 PCS lanes. The skew adjustment between PCS lanes is defined in IEEE 802.3ba. As a result, the data blocks are synchronized between the 20 PCS lanes. The reception deskew processing unit 32 outputs the data block of each PCS lane subjected to the deskew processing to the block decomposing units 33-1 to 33-10.
 次に、ブロック分解部33-1~10は、ブロック分離部31-1~10に対応して設けられている。ブロック分解部33-1~10は、それぞれ対応するブロック分離部31-1~10により分離され、受信デスキュー処理部32によりデスキュー処理の行われた2本のPCSレーンのデータブロックを、受信デスキュー処理部32から入力する。ブロック分解部33-1~10は、2本のPCSレーンのデータブロックをそれぞれ1ビット単位に分解して、分解された1ビット単位のデータを2本のPCSレーンが交互になるようにビット多重して低速電気信号を生成する。これにより、20本のPCSレーンは、10本の低速電気信号となる。この低速電気信号は、前述したIEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。ブロック分解部33-1~10は、それぞれ低速電気信号を高速信号光トランシーバ1へ出力する。以上が、PCS受信処理部3の説明である。 Next, the block decomposing units 33-1 to 3-10 are provided corresponding to the block separating units 31-1 to 31-10. The block decomposing units 33-1 to 33-1 are separated by the corresponding block demultiplexing units 31-1 to 31-10, respectively, and the data blocks of the two PCS lanes subjected to the deskew processing by the reception deskew processing unit 32 are subjected to reception deskew processing. Input from the unit 32. The block decomposing units 33-1 to 3-10 each divide the data blocks of two PCS lanes into 1-bit units, and multiplex the decomposed 1-bit unit data so that the two PCS lanes alternate. Thus, a low-speed electric signal is generated. Thus, 20 PCS lanes become 10 low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba. Each of the block decomposing units 33-1 to 3-10 outputs a low-speed electrical signal to the high-speed signal optical transceiver 1. The above is the description of the PCS reception processing unit 3.
 以上が、本実施形態における波長分割多重光伝送システムの構成の説明である。 The above is the description of the configuration of the wavelength division multiplexing optical transmission system in the present embodiment.
[動作の説明]
 次に、本実施形態における波長分割多重光伝送システムの動作の説明を行う。
[Description of operation]
Next, the operation of the wavelength division multiplexing optical transmission system in this embodiment will be described.
 はじめに、送信側の波長分割多重光伝送装置の動作を説明する。図4A~図4Cは、本実施形態における送信側の波長分割多重光伝送装置内の信号状態を示している。 First, the operation of the wavelength division multiplexing optical transmission apparatus on the transmission side will be described. 4A to 4C show signal states in the wavelength division multiplexing optical transmission apparatus on the transmission side in the present embodiment.
 まず、高速信号光トランシーバ1は、外部装置から受信された100GbE光信号を10本の低速電気信号へ変換して、10本の電気回線を介してPCS送信処理部2へ出力する。この低速電気信号は、IEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。図4Aは、本実施形態における高速信号光トランシーバ1から出力された10本の低速電気信号を示す図である。図4Aの「10D0」~「10D9」は、それぞれ、10本の低速電気信号に対応している。図4Aに示すように、一本の低速電気信号には、2本のPCSレーンがビット多重されている。 First, the high-speed signal optical transceiver 1 converts the 100 GbE optical signal received from the external device into ten low-speed electric signals, and outputs them to the PCS transmission processing unit 2 via the ten electric lines. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba. FIG. 4A is a diagram illustrating ten low-speed electrical signals output from the high-speed signal optical transceiver 1 in the present embodiment. “10D0” to “10D9” in FIG. 4A correspond to 10 low-speed electrical signals, respectively. As shown in FIG. 4A, two PCS lanes are bit-multiplexed in one low-speed electric signal.
 続いて、ブロック生成部21-1~10は、それぞれ対応する電気回線から低速電気信号を入力して、それぞれ低速電気信号に対して1対2のシリアル-パラレル変換を行って、低速電気信号を20本のPCSレーンに分配する。このPCSレーンの1本あたりの伝送レートは、5.15625Gbpsとなる。ブロック生成部21-1~10は、それぞれ各PCSレーンに分配された低速電気信号に対して64B/66B符号化を行って、66ビット単位のデータブロックを生成する。また、ブロック生成部21-1~10は、所定の間隔毎にアライメントマーカを生成してデータブロック間に挿入する。 Subsequently, each of the block generators 21-1 to 21-10 inputs a low-speed electric signal from the corresponding electric line, performs one-to-two serial-parallel conversion on each low-speed electric signal, and converts the low-speed electric signal to Distribute to 20 PCS lanes. The transmission rate per one PCS lane is 5.15625 Gbps. Each of the block generation units 21-1 to 21-10 performs 64B / 66B encoding on the low-speed electric signal distributed to each PCS lane to generate a 66-bit unit data block. Also, the block generators 21-1 to 21-10 generate alignment markers at predetermined intervals and insert them between data blocks.
 続いて、送信デスキュー処理部22は、20本のPCSレーンからデータブロックを入力して、各PCSレーンに挿入されたアライメントマーカを用いて、各PCSレーンのデータブロックのデスキュー処理を行って、20本のPCSレーン間におけるデータブロックのスキュー調整を行う。これにより、20本のPCSレーン間において、データブロックの同期がとられる。図4Bは、本実施形態におけるスキュー調整により同期された20本のPCSレーンのデータブロックを示す図である。図4Bにおいて「VL0」~「VL19」は、20本のPCSレーンを示している。例えば、図4Aに示した低速電気信号「10D0」にビット多重されていた各ビットが、PCSレーン「VL0」及び「VL1」に分配されて66ビット単位のデータブロックを構成する。 Subsequently, the transmission deskew processing unit 22 inputs data blocks from the 20 PCS lanes, performs the deskew processing of the data blocks in each PCS lane using the alignment markers inserted in each PCS lane, Data block skew adjustment is performed between the PCS lanes. As a result, the data blocks are synchronized between the 20 PCS lanes. FIG. 4B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the present embodiment. In FIG. 4B, “VL0” to “VL19” indicate 20 PCS lanes. For example, each bit that is bit-multiplexed with the low-speed electrical signal “10D0” shown in FIG. 4A is distributed to the PCS lanes “VL0” and “VL1” to form a 66-bit unit data block.
 続いて、ブロック多重部23-1~10は、それぞれ対応するブロック生成部21-1~10により分配されて、送信デスキュー処理部22によりデスキュー処理の行われた2本のPCSレーンのデータブロックを、送信デスキュー処理部22から入力する。ブロック多重部23-1~10は、2本のPCSレーンのデータブロックをブロック単位で2本のPCSレーンが交互になるように多重して低速電気信号を生成する。これにより、20本のPCSレーンは、10本の低速電気信号に変換される。この低速電気信号は、前述したIEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。図4Cは、本実施形態におけるブロック単位の多重処理により生成された低速電気信号を示す図である。図4Cの「10D0」~「10D9」は、図4Aと同様に、それぞれ10本の低速電気信号に対応している。例えば、低速電気信号「10D0」は、PCSレーン「VL0」及び「VL1」のブロックをブロック単位に多重して生成される。 Subsequently, the block multiplexing units 23-1 to 23-10 distribute the data blocks of the two PCS lanes distributed by the corresponding block generation units 21-1 to 21-10 and subjected to the deskew processing by the transmission deskew processing unit 22, respectively. , Input from the transmission deskew processing unit 22. The block multiplexing units 23-1 to 23-10 multiplex the data blocks of the two PCS lanes so that the two PCS lanes alternate in units of blocks, and generate a low-speed electric signal. As a result, the 20 PCS lanes are converted into 10 low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba. FIG. 4C is a diagram illustrating a low-speed electric signal generated by the block-unit multiplexing process in the present embodiment. “10D0” to “10D9” in FIG. 4C correspond to 10 low-speed electrical signals, respectively, as in FIG. 4A. For example, the low-speed electrical signal “10D0” is generated by multiplexing blocks of the PCS lanes “VL0” and “VL1” in units of blocks.
 続いて、低速信号光送受信部4の低速信号光トランシーバ41-1~10は、PCS送信処理部2のそれぞれ対応するブロック多重部23-1~10から低速電気信号を入力して、低速電気信号を光の搬送波へ変調することにより10GbE光信号へ変換する。ここで、10GbE光信号は、IEEE802.3aeで規定されている10GBASE-SRや、10GBASE-LRや、10GBASE-ERに準拠した光信号である。WDM光送受信部5のWDM光トランシーバ51-1~10は、それぞれ対応する低速信号光トランシーバ41-1~10から10GbE光信号を入力して、10GbE光信号を波長分割多重光信号へ変換して、光伝送路を介して対向する波長分割多重光伝送装置へ送信する。以上が、送信側の波長分割多重光伝送装置の動作の説明である。 Subsequently, the low-speed signal optical transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the low-speed electric signals from the corresponding block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2, respectively, Is converted into a 10 GbE optical signal. Here, the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae. The WDM optical transceivers 51-1 to 5-10 of the WDM optical transceiver 5 respectively input 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10, and convert the 10 GbE optical signals into wavelength division multiplexed optical signals. Then, the signal is transmitted to the opposing wavelength division multiplexing optical transmission apparatus via the optical transmission line. The above is the description of the operation of the wavelength division multiplexing optical transmission apparatus on the transmission side.
 次に、受信側の波長分割多重光伝送装置の動作を説明する。図5A~図5Cは、本実施形態における受信側の波長分割多重光伝送装置内の信号状態を示している。 Next, the operation of the wavelength division multiplexing optical transmission apparatus on the receiving side will be described. 5A to 5C show signal states in the wavelength division multiplexing optical transmission apparatus on the receiving side in the present embodiment.
 まず、WDM光送受信部5のWDM光トランシーバ51-1~10は、それぞれ、対向する波長分割多重光伝送装置から光伝送路を介して波長分割多重光信号を受信して、波長分割多重光信号を10GbE光信号へ変換する。この10GbE光信号は、IEEE802.3aeで規定されている10GBASE-SRや、10GBASE-LRや、10GBASE-ERに準拠した光信号である。低速信号光送受信部4の低速信号光トランシーバ41-1~10は、それぞれ対応するWDM光トランシーバ51-1~10から10GbE光信号を入力して、10GbE光信号を低速電気信号へ変換する。この低速電気信号は、IEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。図5Aは、本実施形態における低速信号光トランシーバ41-1~10から出力された10本の低速電気信号を示す図である。図5Aの「10D0」~「10D9」は、それぞれ、10本の低速電気信号に対応している。図5Aに示すように、一本の低速電気信号には、2本のPCSレーンのブロックがブロック単位に多重されている。また、各PCSレーンのデータブロックは、送受信間の様々な要因により、それぞれに遅延が発生している。 First, each of the WDM optical transceivers 51-1 to 5-10 of the WDM optical transceiver 5 receives the wavelength division multiplexed optical signal from the opposite wavelength division multiplexing optical transmission apparatus via the optical transmission line, and receives the wavelength division multiplexed optical signal. Is converted to a 10 GbE optical signal. This 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae. The low-speed signal light transceivers 41-1 to 4-10 of the low-speed signal light transmission / reception unit 4 input the 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 5-10, respectively, and convert the 10GbE optical signals into low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba. FIG. 5A is a diagram showing ten low-speed electrical signals output from the low-speed signal optical transceivers 41-1 to 4-10 in the present embodiment. “10D0” to “10D9” in FIG. 5A correspond to 10 low-speed electrical signals, respectively. As shown in FIG. 5A, a block of two PCS lanes is multiplexed on a block basis in one low-speed electric signal. In addition, the data block of each PCS lane has a delay due to various factors between transmission and reception.
 続いて、ブロック分離部31-1~10は、低速信号光送受信部4のそれぞれ対応する低速信号光トランシーバ41-1~10から低速電気信号を入力して、それぞれ低速電気信号に含まれる66ビット単位のデータブロックを2本のPCSレーンへ分離する。これにより、10本の低速電気信号は、20本のPCSレーンへ分配される。 Subsequently, the block demultiplexing units 31-1 to 31-10 receive low-speed electric signals from the corresponding low-speed signal optical transceivers 41-1 to 41-10 of the low-speed signal light transmission / reception unit 4, respectively, and 66 bits included in each low-speed electric signal The unit data block is separated into two PCS lanes. As a result, 10 low-speed electrical signals are distributed to 20 PCS lanes.
 続いて、受信デスキュー処理部32は、ブロック分離部31-1~10から20本のPCSレーンのデータブロックを入力して、各PCSレーンに挿入されたアライメントマーカを用いて、各PCSレーンのデータブロックのデスキュー処理を行い、20本のPCSレーン間でデータブロックのスキュー調整を行う。これにより、20本のPCSレーン間において、データブロックの同期がとられる。図5Bは、本実施形態におけるスキュー調整により同期された20本のPCSレーンのデータブロックを示す図である。図5Bにおいて「VL0」~「VL19」は、20本のPCSレーンを示している。例えば、図5Aに示した低速電気信号「10D0」にブロック単位に多重されていた各ブロックが、PCSレーン「VL0」及び「VL1」に分配される。 Subsequently, the reception deskew processing unit 32 inputs the data blocks of 20 PCS lanes from the block separation units 31-1 to 31-10, and uses the alignment markers inserted in the PCS lanes, and the data of each PCS lane. A block deskew process is performed, and a data block skew adjustment is performed between the 20 PCS lanes. As a result, the data blocks are synchronized between the 20 PCS lanes. FIG. 5B is a diagram showing data blocks of 20 PCS lanes synchronized by skew adjustment in the present embodiment. In FIG. 5B, “VL0” to “VL19” indicate 20 PCS lanes. For example, each block multiplexed in block units on the low-speed electrical signal “10D0” shown in FIG. 5A is distributed to the PCS lanes “VL0” and “VL1”.
 続いて、ブロック分解部33-1~10は、それぞれ対応するブロック分離部31-1~10が分離して、受信デスキュー処理部32によりデスキュー処理の行われた2本のPCSレーンのデータブロックを、受信デスキュー処理部32から入力する。ブロック分解部33-1~10は、2本のPCSレーンのデータブロックをそれぞれ1ビット単位に分解して、分解された1ビット単位のデータを2本のPCSレーンが交互になるようにビット多重して低速電気信号を生成する。これにより、20本のPCSレーンは、10本の低速電気信号となる。この低速電気信号は、前述したIEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。 Subsequently, the block decomposing units 33-1 to 3-10 separate the data blocks of the two PCS lanes, which are separated by the corresponding block demultiplexing units 31-1 to 31-10 and subjected to the deskew processing by the reception deskew processing unit 32, respectively. , Input from the reception deskew processing unit 32. The block decomposing units 33-1 to 3-10 each divide the data blocks of two PCS lanes into 1-bit units, and multiplex the decomposed 1-bit unit data so that the two PCS lanes alternate. Thus, a low-speed electric signal is generated. Thus, 20 PCS lanes become 10 low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps conforming to the CAUI defined in the above-mentioned IEEE 802.3ba.
 図5Cは、本実施形態におけるデータブロックから分解された1ビット単位のデータのビット多重により生成された低速電気信号を示す図である。図5Cの「10D0」~「10D9」は、図5Aと同様に、それぞれ10本の低速電気信号に対応している。例えば、低速電気信号「10D0」は、PCSレーン「VL0」及び「VL1」のブロックを1ビット単位に分解して、分解された1ビット単位のデータをPCSレーン「VL0」及び「VL1」が交互になるようにビット多重して多重して生成される。 FIG. 5C is a diagram showing a low-speed electrical signal generated by bit multiplexing of 1-bit unit data decomposed from the data block in the present embodiment. “10D0” to “10D9” in FIG. 5C correspond to 10 low-speed electrical signals, respectively, as in FIG. 5A. For example, for the low-speed electrical signal “10D0”, the blocks of the PCS lanes “VL0” and “VL1” are decomposed into 1-bit units, and the decomposed data of 1-bit units are alternately displayed by the PCS lanes “VL0” and “VL1”. It is generated by bit multiplexing so that
 続いて、高速信号光トランシーバ1は、PCS受信処理部3から10本の低速電気信号を入力して、10本の低速電気信号を100GbE光信号へ変換して、光伝送路を介して外部装置へ送信する。以上が、受信側の波長分割多重光伝送装置の動作の説明である。 Subsequently, the high-speed signal optical transceiver 1 receives ten low-speed electric signals from the PCS reception processing unit 3 and converts the ten low-speed electric signals into a 100 GbE optical signal, and the external device via the optical transmission line. Send to. The above is the description of the operation of the wavelength division multiplexing optical transmission apparatus on the receiving side.
 このように、本実施形態の波長分割多重光伝送システムでは、送信側の波長分割多重光伝送装置が、100GbE光信号を10本の低速電気信号へ変換して、10GbE光信号として波長分割多重光伝送路へ送信する。そして、受信側の波長分割多重光伝送装置が、10本の10GbE光信号として受信された10本の低速電気信号から100GbE光信号を再生する。対向する波長分割多重光伝送装置は、従来用いられている10GbE用の装置を用いて10GbE光信号を波長分割多重光信号として送受信すればよいため、100GbE光信号のような超高速信号に対応した装置を用いなくともよい。このような構成には、さらに、100Gbpsの長距離光信号伝送方式として有力視されているデジタルコヒーレント受信技術を用いずに、既に実用化されている技術により、100GbE信号を10GbE信号と同一の距離、波長分割多重光伝送により伝送させることが可能になるという効果もある。 As described above, in the wavelength division multiplexing optical transmission system of the present embodiment, the wavelength division multiplexing optical transmission device on the transmission side converts the 100 GbE optical signal into ten low-speed electric signals and converts the wavelength division multiplexing optical signal into a 10 GbE optical signal. Send to transmission line. Then, the wavelength division multiplexing optical transmission device on the receiving side regenerates the 100 GbE optical signal from the ten low-speed electric signals received as ten 10 GbE optical signals. The opposing wavelength division multiplexing optical transmission apparatus only needs to transmit and receive a 10 GbE optical signal as a wavelength division multiplexing optical signal using a conventionally used apparatus for 10 GbE, and therefore supports ultra high speed signals such as a 100 GbE optical signal. It is not necessary to use an apparatus. In such a configuration, a 100 GbE signal can be converted to the same distance as a 10 GbE signal by using a technique already in practical use without using a digital coherent reception technique that is regarded as a promising long-distance optical signal transmission system of 100 Gbps. Also, there is an effect that transmission can be performed by wavelength division multiplexing optical transmission.
 ここで、100GbE信号を10本の低速電気信号へ変換して10本の10GbE光信号として伝送を行う場合における、送信側のPCS送信処理部2と受信側のPCS受信処理部3との間における送信データの遅延変動要因として、次のようなものが主因になると考えられる。まず、波長分割多重光伝送路及び分散補償光ファイバにおける波長分散による遅延差である。次に、低速信号光トランシーバやWDM光トランシーバの内部回路に起因する遅延差である。しかし、本実施形態の波長文化多重光伝送システムのPCS送信処理部2及びPCS受信処理部3は、10本の低速電気信号から生成される20本のPCSレーンにおいて、アライメントマーカを用いてデータブロックのデスキュー処理を行ってデータブロック間で同期をとる。これにより、複数の光伝送路を用いて伝送を行う構成であっても、送受信間の光伝送路等で発生した遅延差を吸収することができる。さらに、データブロック間のスキュー調整のために特別なデータの挿入は行われないため、送受信間でデータがトランスペアレントに伝送される。 Here, when a 100 GbE signal is converted into ten low-speed electrical signals and transmitted as ten 10 GbE optical signals, between the PCS transmission processing unit 2 on the transmission side and the PCS reception processing unit 3 on the reception side. The following factors are considered to be the main causes of delay variation of transmission data. First, there is a delay difference due to wavelength dispersion in the wavelength division multiplexing optical transmission line and the dispersion compensating optical fiber. Next, there is a delay difference caused by an internal circuit of the low-speed signal optical transceiver or the WDM optical transceiver. However, the PCS transmission processing unit 2 and the PCS reception processing unit 3 of the wavelength culture multiplexed optical transmission system according to the present embodiment use the alignment markers in the 20 PCS lanes generated from the 10 low-speed electrical signals. The data blocks are synchronized by performing the deskew process. Thereby, even if it is the structure which transmits using a some optical transmission line, the delay difference which generate | occur | produced in the optical transmission line etc. between transmission / reception can be absorbed. Further, since special data is not inserted for skew adjustment between data blocks, data is transmitted transparently between transmission and reception.
 以上が、本実施形態における波長分割多重光伝送システムの説明である。 The above is the description of the wavelength division multiplexing optical transmission system in the present embodiment.
(第2実施形態)
 次に本発明の第2実施形態による波長分割多重光伝送システムの説明を行う。本実施形態の波長分割多重光伝送システムは、第1実施形態と同様の構成を含むため、第1実施形態と異なる構成を中心に説明を行う。なお、第1実施形態と同様の構成については、第1実施形態と同様の符号を付して説明する。
(Second Embodiment)
Next, a wavelength division multiplexing optical transmission system according to the second embodiment of the present invention will be described. Since the wavelength division multiplexing optical transmission system of the present embodiment includes the same configuration as that of the first embodiment, the description will focus on the configuration different from that of the first embodiment. In addition, about the structure similar to 1st Embodiment, the code | symbol similar to 1st Embodiment is attached | subjected and demonstrated.
 図6は、本実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。本実施形態の波長分割多重光伝送装置は、第1実施形態における低速信号光送受信部4とWDM光送受信部5に変わり、OTN(Optical Transport Network)フレーム処理部6と光送受信部7とを備える。 FIG. 6 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the present embodiment. The wavelength division multiplexing optical transmission apparatus according to the present embodiment includes an OTN (Optical Transport Network) frame processing unit 6 and an optical transmission / reception unit 7 instead of the low-speed signal optical transmission / reception unit 4 and the WDM optical transmission / reception unit 5 in the first embodiment. .
 OTNフレーム処理部6は、OTNフレーマ61-1~10を備える。OTNフレーマ61-1~10は、PCS送信処理部2のブロック多重部23-1~10及びPCS受信処理部3のブロック分離部31-1~10とそれぞれ接続されている。 The OTN frame processing unit 6 includes OTN framers 61-1 to 61-10. The OTN framers 61-1 to 6-10 are connected to the block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2 and the block separation units 31-1 to 31-10 of the PCS reception processing unit 3, respectively.
 また、光送受信部7は、光送受信器71-1~10を備える。光送受信器71-1~10は、OTNフレーマ61-1~10に対応して設けられている。光送受信器71-1~10は、OTNフレーマ61-1~10と接続されている。 Also, the optical transceiver 7 includes optical transceivers 71-1 to 71-10. The optical transceivers 71-1 to 7-10 are provided corresponding to the OTN framers 61-1 to 10-10. The optical transceivers 71-1 to 7-10 are connected to the OTN framers 61-1 to 10-10.
 OTNフレーマ61-1~10は、PCS送信処理部2のそれぞれ対応するブロック多重部23-1~10から低速電気信号を入力する。この低速電気信号は、IEEE802.3baに規定されているCAUIに準拠した、10.3125bpsの伝送レートを有する電気信号である。OTNフレーマ61-1~10は、それぞれ低速電気信号をOTU2eフレームに格納したOTU2e電気信号へ変換する。なお、OTU2eは、ITU-T(International Telecommunication Union Telecommunication Standardization Section)で規定されるG.709勧告に準拠した11.7Gbpsの伝送レートを有する電気信号である。OTNフレーマ61-1~10は、それぞれ対応する光送受信器71-1~10へOTU2e電気信号を出力する。光送受信器71-1~10は、それぞれOTNフレーマ61-1~10からOTU2e電気信号を入力して、OTU2e電気信号を所定の波長の光搬送波へ変調した波長分割多重光信号として波長分割多重光伝送路を介して対向する波長分割多重光伝送装置へ送信する。 The OTN framers 61-1 to 10-10 input low-speed electric signals from the corresponding block multiplexing units 23-1 to 23-10 of the PCS transmission processing unit 2, respectively. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 bps in conformity with the CAUI defined in IEEE 802.3ba. Each of the OTN framers 61-1 to 6-10 converts the low-speed electric signal into an OTU2e electric signal stored in the OTU2e frame. Note that OTU2e is a G.264 standard defined by ITU-T (International Telecommunication Union Telecommunication Standardization Section). It is an electrical signal having a transmission rate of 11.7 Gbps conforming to the 709 recommendation. The OTN framers 61-1 to 6-10 output OTU2e electrical signals to the corresponding optical transceivers 71-1 to 7-10, respectively. The optical transceivers 71-1 to 7-10 receive the OTU2e electrical signals from the OTN framers 61-1 to 61-10, respectively, and wavelength division multiplexed light as wavelength division multiplexed optical signals obtained by modulating the OTU2e electrical signals into optical carriers having predetermined wavelengths. It transmits to the wavelength division multiplexing optical transmission apparatus which opposes via a transmission line.
 また、光送受信器71-1~10は、波長分割多重光伝送路を介して対向する波長分割多重光伝送装置からの波長分割多重光信号を入力する。光送受信器71-1~10は、それぞれ波長分割多重光信号をOTU2e電気信号へ変換して、それぞれ対応するOTNフレーマ61-1~10へ送信する。OTNフレーマ61-1~10は、それぞれ対応する光送受信器71-1~10からOTU2e電気信号を受信する。OTNフレーマ61-1~10は、OTU2e電気信号に含まれるOTU2eフレームを分解して低速電気信号へ変換する。OTNフレーマ61-1~10は、PCS受信処理部3のそれぞれ対応するブロック分離部31-1~10へ出力する。 Further, the optical transceivers 71-1 to 7-10 input the wavelength division multiplexed optical signal from the wavelength division multiplexing optical transmission apparatus facing each other through the wavelength division multiplexing optical transmission line. Each of the optical transceivers 71-1 to 7-10 converts the wavelength division multiplexed optical signal into an OTU2e electric signal and transmits it to the corresponding OTN framers 61-1 to 61-10. The OTN framers 61-1 to 6-10 receive OTU2e electrical signals from the corresponding optical transceivers 71-1 to 7-10, respectively. The OTN framers 61-1 to 6-10 decompose the OTU2e frame included in the OTU2e electric signal and convert it into a low-speed electric signal. The OTN framers 61-1 to 6-10 output the corresponding block separation units 31-1 to 31-10 of the PCS reception processing unit 3, respectively.
 以上が、本実施形態における波長分割多重光伝送システムの説明である。上述以外の構成は、第1実施形態と同様である。このような構成により、本実施形態の波長分割多重光伝送装置では、低速電気信号を直接波長分割多重光信号へ変換することができる。そのため、第1実施形態のように10GbE光トランシーバや、WDM光トランシーバを用いずに、波長分割多重光伝送を行うことが可能である。 The above is the description of the wavelength division multiplexing optical transmission system in the present embodiment. Configurations other than those described above are the same as in the first embodiment. With such a configuration, the wavelength division multiplexing optical transmission apparatus of the present embodiment can directly convert a low-speed electrical signal into a wavelength division multiplexing optical signal. Therefore, wavelength division multiplexing optical transmission can be performed without using a 10 GbE optical transceiver or a WDM optical transceiver as in the first embodiment.
(第3実施形態)
 次に、本発明の第3実施形態による波長分割多重光伝送システムの説明を行う。本実施形態の波長分割多重光伝送システムは、第1実施形態と同様の構成を含むため、第1実施形態と異なる構成を中心に説明を行う。なお、第1実施形態と同様の構成については、第1実施形態と同様の符号を付して説明する。
(Third embodiment)
Next, a wavelength division multiplexing optical transmission system according to the third embodiment of the present invention will be described. Since the wavelength division multiplexing optical transmission system of the present embodiment includes the same configuration as that of the first embodiment, the description will focus on the configuration different from that of the first embodiment. In addition, about the structure similar to 1st Embodiment, the code | symbol similar to 1st Embodiment is attached | subjected and demonstrated.
 図7は、本実施形態における波長分割多重光伝送システムを構成する波長分割多重光伝送装置の構成を示す図である。本実施形態の波長分割多重光伝送システムは、40GbE光信号を4本の低速電気信号へ変換して、10GbE光信号として波長分割多重光伝送路へ送信する。そして、受信側の波長分割多重光伝送装置が、4本の10GbE光信号として受信された4本の低速電気信号から40GbE光信号を再生する。本実施形態の波長分割多重光伝送装置は、第1実施形態と同様に、高速信号光トランシーバ1と、PCS送信処理部2と、PCS受信処理部3と、低速光信号送受信部4と、WDM光送受信部5とを備える。 FIG. 7 is a diagram showing a configuration of a wavelength division multiplexing optical transmission apparatus constituting the wavelength division multiplexing optical transmission system in the present embodiment. The wavelength division multiplexing optical transmission system according to the present embodiment converts a 40 GbE optical signal into four low-speed electric signals and transmits them as a 10 GbE optical signal to the wavelength division multiplexing optical transmission line. Then, the wavelength division multiplexing optical transmission device on the receiving side regenerates the 40 GbE optical signal from the four low-speed electric signals received as the four 10 GbE optical signals. As in the first embodiment, the wavelength division multiplexing optical transmission apparatus of this embodiment includes a high-speed signal optical transceiver 1, a PCS transmission processing unit 2, a PCS reception processing unit 3, a low-speed optical signal transmission / reception unit 4, and a WDM. And an optical transceiver 5.
 まず、高速信号光トランシーバ1は、図示されない外部装置と光伝送路で接続されており、外部装置との間で40GbE光信号の送受信を行う。ここで、40GbE光信号は、IEEE802.3baにて規定されている40GBASE-LR4や、40GBASE-ER4に例示される規格に準拠した光信号である。 First, the high-speed signal optical transceiver 1 is connected to an external device (not shown) through an optical transmission path, and transmits / receives a 40 GbE optical signal to / from the external device. Here, the 40 GbE optical signal is an optical signal conforming to a standard exemplified by 40 GBASE-LR4 or 40 GBASE-ER4 defined by IEEE 802.3ba.
 高速信号光トランシーバ1は、PCS送信処理部2及びPCS受信処理部3と、それぞれ4本の電気回線により接続されている。高速信号光トランシーバ1は、40GbE光信号を4本の低速電気信号へ変換して、4本の電気回線を介してPCS送信処理部2へ出力する。ここで、低速電気信号は、IEEE802.3baに規定されているXLAUI(40G Attachment Unit Interface)に準拠した10.3125Gbpsの伝送レートを有する電気信号である。また、高速信号光トランシーバ1は、PCS受信処理部3から4本の電気回線を介して4本の低速電気信号を入力する。高速信号光トランシーバ1は、4本の低速電気信号を40GbE光信号へ変換して光伝送路へ送信する。 The high-speed signal optical transceiver 1 is connected to the PCS transmission processing unit 2 and the PCS reception processing unit 3 through four electric lines. The high-speed signal optical transceiver 1 converts the 40 GbE optical signal into four low-speed electric signals and outputs them to the PCS transmission processing unit 2 via the four electric lines. Here, the low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to XLAUI (40G Attachment Unit Interface) defined in IEEE 802.3ba. Further, the high-speed signal optical transceiver 1 inputs four low-speed electric signals from the PCS reception processing unit 3 through four electric lines. The high-speed signal optical transceiver 1 converts the four low-speed electric signals into 40 GbE optical signals and transmits them to the optical transmission line.
 次に、図8は、本実施形態におけるPCS送信処理部2の構成を示す図である。PCS送信処理部2は、ブロック生成部21-1~4と、送信デスキュー処理部22と、ブロック多重部23-1~4を備える。本実施形態のPCS送信処理部2は、ブロック生成部21とブロック多重部23の数が第1実施形態と異なる以外、接続関係や行われる動作についてはほぼ同様である。 Next, FIG. 8 is a diagram showing a configuration of the PCS transmission processing unit 2 in the present embodiment. The PCS transmission processing unit 2 includes block generation units 21-1 to 21-4, a transmission deskew processing unit 22, and block multiplexing units 23-1 to 23-4. The PCS transmission processing unit 2 of the present embodiment is substantially the same in connection relations and operations performed, except that the number of block generation units 21 and block multiplexing units 23 is different from that in the first embodiment.
 すなわち、ブロック生成部21-1~4は、高速信号光トランシーバ1から4本の電気回線を介して入力される4本の低速電気信号から、IEEE802.3baに規定される4本のPCSレーンを生成する。40GbE伝送におけるPCSレーン数は、低速電気信号と同数の4本であり、各PCSレーンの伝送レートは、10.3125Gbpsである。ブロック生成部21-1~4は、4本のPCSレーンにおいて低速電気信号に64B/66B符号化を実行して、66ビット単位のデータブロックを生成する。送信デスキュー処理部22は、ブロック生成部21-1~4により生成されるアライメントマーカを用いて、各PCSレーンのデータブロックのデスキュー処理を行って、4本のPCSレーン間におけるデータブロックのスキュー調整を行い、4本のPCSレーンのデータブロック間の同期をとる。そして、ブロック多重部23-1~4は、4本のPCSレーンの各々においてデータブロックを多重して4本の低速電気信号を生成して、低速電気信号を低速信号光送受信部4へ出力する。この低速電気信号は、IEEE802.3baに規定されているXLAUIに準拠した10.3125Gbpsの伝送レートを有する電気信号である。 That is, the block generators 21-1 to 21-4 generate four PCS lanes defined in IEEE 802.3ba from four low-speed electric signals input from the high-speed signal optical transceiver 1 through four electric lines. Generate. The number of PCS lanes in 40 GbE transmission is four, the same as the number of low-speed electrical signals, and the transmission rate of each PCS lane is 10.3125 Gbps. The block generation units 21-1 to 21-4 perform 64B / 66B encoding on the low-speed electrical signal in the four PCS lanes, and generate a 66-bit unit data block. The transmission deskew processing unit 22 uses the alignment markers generated by the block generation units 21-1 to 21-4 to perform the deskew processing of the data blocks in each PCS lane, thereby adjusting the skew of the data blocks between the four PCS lanes. To synchronize the data blocks of the four PCS lanes. Then, the block multiplexing units 23-1 to 23-4 multiplex data blocks in each of the four PCS lanes to generate four low-speed electric signals, and output the low-speed electric signals to the low-speed optical signal transmission / reception unit 4. . This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba.
 次に、図9は、本実施形態におけるPCS受信処理部3の構成を示す図である。PCS受信処理部3は、ブロック分離部31-1~4と、受信デスキュー処理部32と、ブロック分解部33-1~4とを備える。本実施形態のPCS受信処理部3は、ブロック分離部31とブロック分解部33の数が第1実施形態と異なる以外、接続関係や行われる動作についてほぼ同様である。 Next, FIG. 9 is a diagram showing a configuration of the PCS reception processing unit 3 in the present embodiment. The PCS reception processing unit 3 includes block separation units 31-1 to 31-4, a reception deskew processing unit 32, and block decomposition units 33-1 to 33-4. The PCS reception processing unit 3 of the present embodiment is substantially the same in connection relations and operations performed, except that the number of block separation units 31 and block decomposition units 33 is different from that in the first embodiment.
 すなわち、ブロック分離部31-1~4は、低速信号光送受信部4から4本の低速電気信号を入力して、4本の低速電気信号に含まれるデータブロックをIEEE802.3baに規定される4本のPCSレーンへ分離する。受信デスキュー処理部32は、アライメントマーカを用いて各PCSレーンのデータブロックのデスキュー処理を行って、4本のPCSレーン間でデータブロックのスキュー調整を行い、4本のPCSレーン間でデータブロックの同期をとる。そして、ブロック分解部33-1~4は、4本のPCSレーンのデータブロックから4本の低速電気信号を生成して、4本の低速電気信号を高速信号光トランシーバ1へ出力する。この低速電気信号は、IEEE802.3baに規定されているXLAUIに準拠した10.3125Gbpsの伝送レートを有する電気信号である。 That is, the block demultiplexing units 31-1 to 31-4 receive four low-speed electric signals from the low-speed signal light transmission / reception unit 4, and the data blocks included in the four low-speed electric signals are defined in IEEE 802.3ba. Separate into PCS lanes. The reception deskew processing unit 32 performs deskew processing of the data block of each PCS lane using the alignment marker, adjusts the skew of the data block between the four PCS lanes, and performs the data block skew between the four PCS lanes. Synchronize. Then, the block decomposing units 33-1 to 3-4 generate four low-speed electric signals from the data blocks of four PCS lanes, and output the four low-speed electric signals to the high-speed signal optical transceiver 1. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba.
 次に、図7へ戻り、本実施形態における低速信号光送受信部4は、低速信号光トランシーバ41-1~4を備える。また、本実施形態におけるWDM光送受信部5は、WDM光トランシーバ51-1~4を備える。低速信号光トランシーバ41-1~4は、WDM光トランシーバ51-1~4とそれぞれ接続されている。本実施形態の低速信号光送受信部4及びWDM光送受信部5は、低速信号光トランシーバ41及びWDM光トランシーバ51の数が第1実施形態と異なる以外、行われる動作は第1実施形態とほぼ同様である。 Next, returning to FIG. 7, the low-speed signal light transceiver 4 in this embodiment includes low-speed signal light transceivers 41-1 to 41-4. The WDM optical transceiver 5 in this embodiment includes WDM optical transceivers 51-1 to 51-4. The low-speed signal optical transceivers 41-1 to 4-4 are connected to the WDM optical transceivers 51-1 to 51-4, respectively. The low-speed signal light transmission / reception unit 4 and the WDM optical transmission / reception unit 5 of the present embodiment are substantially the same as those in the first embodiment, except that the number of low-speed signal light transceivers 41 and WDM optical transceivers 51 is different from that in the first embodiment. It is.
 すなわち、低速信号光送受信部4の低速信号光トランシーバ41-1~4は、PCS送信処理部2のブロック多重部23-1~4と接続されており、PCS送信処理部2のそれぞれ対応するブロック多重部23-1~4から低速電気信号を入力して、低速電気信号を光の搬送波へ変調することにより10GbE光信号へ変換する。ここで、10GbE光信号は、IEEE802.3aeで規定されている10GBASE-SRや、10GBASE-LRや、10GBASE-ERに準拠した光信号である。WDM光送受信部5のWDM光トランシーバ51-1~4は、それぞれ対応する低速信号光トランシーバ41-1~4から10GbE光信号を入力する。WDM光トランシーバ51-1~4は、それぞれ10GbE光信号を波長分割多重光信号へ変換して、光伝送路を介して対向する波長分割多重光伝送装置へ波長分割多重光信号を送信する。 That is, the low-speed signal optical transceivers 41-1 to 4-4 of the low-speed signal light transmission / reception unit 4 are connected to the block multiplexing units 23-1 to 23-4 of the PCS transmission processing unit 2, and corresponding blocks of the PCS transmission processing unit 2, respectively. Low-speed electrical signals are input from the multiplexing units 23-1 to 23-4, and the low-speed electrical signals are converted into 10 GbE optical signals by modulating them into optical carriers. Here, the 10 GbE optical signal is an optical signal conforming to 10 GBASE-SR, 10 GBASE-LR, and 10 GBASE-ER defined by IEEE 802.3ae. The WDM optical transceivers 51-1 to 5-4 of the WDM optical transmission / reception unit 5 receive 10 GbE optical signals from the corresponding low-speed signal optical transceivers 41-1 to 41-4, respectively. Each of the WDM optical transceivers 51-1 to 51-4 converts the 10 GbE optical signal into a wavelength division multiplexed optical signal, and transmits the wavelength division multiplexed optical signal to the opposing wavelength division multiplexed optical transmission apparatus via the optical transmission path.
 また、WDM光送受信部5のWDM光トランシーバ51-1~4は、対向する波長分割多重光伝送装置から、それぞれ光伝送路を介して波長分割多重光信号を受信する。WDM光トランシーバ51-1~4は、波長分割多重光信号を10GbE光信号へ変換して、低速信号光送受信部4へ出力する。低速信号光送受信部4の低速信号光トランシーバ41-1~4は、それぞれ対応するWDM光トランシーバ51-1~4から10GbE光信号を入力して、10GbE光信号を低速電気信号へ変換する。この低速電気信号は、IEEE802.3baに規定されているXLAUIに準拠した10.3125Gbpsの伝送レートを有する電気信号である。低速信号光トランシーバ41-1~4は、PCS受信処理部3のブロック分離部31-1~4と接続されており、低速電気信号をそれぞれ対応するブロック分離部31-1~4へ出力する。 Also, the WDM optical transceivers 51-1 to 5-4 of the WDM optical transmission / reception unit 5 receive the wavelength division multiplexing optical signals from the opposing wavelength division multiplexing optical transmission apparatuses via the optical transmission lines, respectively. The WDM optical transceivers 51-1 to 5-4 convert the wavelength division multiplexed optical signal into a 10 GbE optical signal and output it to the low-speed signal optical transceiver 4. The low-speed signal light transceivers 41-1 to 4-4 of the low-speed signal light transmission / reception unit 4 input 10 GbE optical signals from the corresponding WDM optical transceivers 51-1 to 51-4, respectively, and convert the 10 GbE optical signals into low-speed electrical signals. This low-speed electric signal is an electric signal having a transmission rate of 10.3125 Gbps conforming to the XLAUI defined in IEEE 802.3ba. The low-speed signal optical transceivers 41-1 to 4-4 are connected to the block separation units 31-1 to 4 of the PCS reception processing unit 3, and output low-speed electrical signals to the corresponding block separation units 31-1 to 31-4.
 以上が、本実施形態における波長分割多重光伝送システムの説明である。このようにして、本実施形態の波長分割多重光伝送システムでは、第1実施形態で説明を行った100GbE光信号に変えて40GbE光信号を伝送する場合にも適用が可能である。 The above is the description of the wavelength division multiplexing optical transmission system in the present embodiment. As described above, the wavelength division multiplexing optical transmission system according to this embodiment can be applied to a case where a 40 GbE optical signal is transmitted instead of the 100 GbE optical signal described in the first embodiment.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態は、単独でも実現可能であるし、必要な構成を組み合わせて実現することも可能である。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, each embodiment can be realized alone, or can be realized by combining necessary configurations.
 この出願は、2010年8月17日に日本国特許庁に提出された特願2010-182418号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-182418 filed with the Japan Patent Office on August 17, 2010, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  高速光信号を前記高速光信号より低速な複数の低速電気信号へ変換する高速信号送信変換部と、
     前記複数の低速電気信号の各々において所定のデータ量単位のデータブロックを生成し、前記複数の低速電気信号間で前記データブロックの同期をとって、前記各低速電気信号において前記データブロックを多重することにより複数の同期された低速電気信号を生成する送信同期処理部と、
     前記複数の同期された低速電気信号の各々を波長分割多重光信号へ変換することにより複数の波長分割多重光信号を生成して、前記複数の波長分割多重光信号を複数の光伝送路へ送信する低速信号送信変換部と
     を備える送信装置と、
     前記複数の光伝送路から前記複数の波長分割多重光信号を受信して、前記複数の波長分割多重光信号を前記複数の同期された低速電気信号へ変換する低速信号受信変換部と、
     前記複数の同期された低速電気信号間において前記複数の同期された低速電気信号の各々に含まれる前記データブロックの同期をとって、前記データブロックを分解することにより前記複数の低速電気信号を生成する受信同期処理部と、
     前記複数の低速電気信号を前記高速光信号へ変換する高速信号受信変換部と
     を備える受信装置と
     を具備する波長分割多重光伝送システム。
    A high-speed signal transmission conversion unit that converts a high-speed optical signal into a plurality of low-speed electrical signals that are slower than the high-speed optical signal;
    A data block of a predetermined data amount unit is generated in each of the plurality of low-speed electric signals, the data block is synchronized between the plurality of low-speed electric signals, and the data block is multiplexed in each of the low-speed electric signals A transmission synchronization processing unit for generating a plurality of synchronized low-speed electrical signals,
    A plurality of wavelength division multiplexed optical signals are generated by converting each of the plurality of synchronized low-speed electrical signals into wavelength division multiplexed optical signals, and the plurality of wavelength division multiplexed optical signals are transmitted to a plurality of optical transmission lines. A transmission device comprising: a low-speed signal transmission conversion unit;
    A low-speed signal receiving conversion unit that receives the plurality of wavelength division multiplexed optical signals from the plurality of optical transmission lines and converts the plurality of wavelength division multiplexed optical signals into the plurality of synchronized low-speed electrical signals;
    The data blocks included in each of the plurality of synchronized low-speed electrical signals are synchronized between the plurality of synchronized low-speed electrical signals, and the plurality of low-speed electrical signals are generated by decomposing the data blocks Receiving synchronization processing unit,
    A wavelength division multiplexing optical transmission system comprising: a receiving device including: a high-speed signal reception conversion unit that converts the plurality of low-speed electrical signals into the high-speed optical signal.
  2.  請求項1に記載された波長分割多重光伝送システムであって、
     前記送信同期処理部は、
     前記複数の低速電気信号を複数のバーチャルレーンへ分配して、前記複数のバーチャルレーンの各々において前記分配された低速電気信号から所定のデータ量単位のデータブロックを生成するブロック生成部と、
     前記複数のバーチャルレーン間で前記データブロックの同期をとる送信デスキュー処理部と、
     前記複数の低速電気信号の各々に対応するバーチャルレーンにおいて前記データブロックを前記データブロック単位に多重して前記複数の同期された低速電気信号を生成するブロック多重部と
     を備え、
     前記受信同期処理部は、
     前記複数の同期された低速電気信号の各々に含まれる前記データブロックを前記複数のバーチャルレーンへ分離するブロック分離部と、
     前記複数のバーチャルレーン間において前記データブロックの同期をとる受信デスキュー処理部と、
     前記複数の低速電気信号の各々に対応するバーチャルレーンにおいて、記前記データブロックに含まれるデータのビット多重を行って前記複数の低速電気信号を生成するブロック分解部と
     を備える波長分割多重光伝送システム。
    The wavelength division multiplexing optical transmission system according to claim 1,
    The transmission synchronization processing unit
    A block generator that distributes the plurality of low-speed electrical signals to a plurality of virtual lanes, and generates a data block of a predetermined data amount unit from the distributed low-speed electrical signals in each of the plurality of virtual lanes;
    A transmission deskew processing unit that synchronizes the data blocks between the plurality of virtual lanes;
    A block multiplexing unit that multiplexes the data block in the data block unit in a virtual lane corresponding to each of the plurality of low-speed electrical signals to generate the plurality of synchronized low-speed electrical signals;
    The reception synchronization processing unit
    A block separator for separating the data blocks included in each of the plurality of synchronized low-speed electrical signals into the plurality of virtual lanes;
    A reception deskew processing unit that synchronizes the data blocks between the plurality of virtual lanes;
    A wavelength division multiplexing optical transmission system comprising: a block decomposing unit that performs bit multiplexing of data included in the data block to generate the plurality of low-speed electrical signals in a virtual lane corresponding to each of the plurality of low-speed electrical signals .
  3.  請求項2に記載された波長分割多重光伝送システムであって、
     前記ブロック生成部は、前記複数のバーチャルレーンの各々において所定の数の前記デ
    ータブロックを生成する度に、前記複数のバーチャルレーンを識別するためのデータブロックであるアライメントマーカを生成して前記データブロック間に挿入し、
     前記送信デスキュー処理部及び前記受信デスキュー処理部は、前記アライメントマーカを用いて前記複数のバーチャルレーン間において前記データブロックのスキュー調整を行って、前記複数のバーチャルレーン間で前記データブロックの同期をとる
     波長分割多重光伝送システム。
    The wavelength division multiplexing optical transmission system according to claim 2,
    The block generation unit generates an alignment marker that is a data block for identifying the plurality of virtual lanes each time a predetermined number of the data blocks are generated in each of the plurality of virtual lanes. Insert between
    The transmission deskew processing unit and the reception deskew processing unit perform skew adjustment of the data block between the plurality of virtual lanes using the alignment marker, and synchronize the data block between the plurality of virtual lanes. Wavelength division multiplexing optical transmission system.
  4.  請求項1から請求項3までのいずれかに記載された波長分割多重光伝送システムであって、
     前記高速光信号は、IEEE(Institute of Electrical and Electronics Engineers)802.3baに規定される100GbE(ギガビットイーサネット)光信号であり、
     前記複数の低速電気信号及び前記複数の同期された低速電気信号は、IEEE802.3baに規定されるCAUI(100G Attachment Unit Interface)に準拠した10本のCAUI電気信号であり、
     前記バーチャルレーンは、IEEE802.3baに規定された20本のPCS(Physical Coding Sub-layer)レーンである
     波長分割多重光伝送システム。
    A wavelength division multiplexing optical transmission system according to any one of claims 1 to 3,
    The high-speed optical signal is a 100 GbE (Gigabit Ethernet) optical signal defined in IEEE (Institut of Electrical and Electronics Engineers) 802.3ba,
    The plurality of low-speed electric signals and the plurality of synchronized low-speed electric signals are 10 CAUI electric signals compliant with CAUI (100G Attachment Unit Interface) defined in IEEE 802.3ba,
    The virtual lane is 20 PCS (Physical Coding Sub-layer) lanes defined in IEEE 802.3ba. A wavelength division multiplexing optical transmission system.
  5.  請求項1から請求項3までのいずれかに記載された波長分割多重光伝送システムであって、
     前記高速光信号は、IEEE802.3baに規定される40GbE光信号であり、
    前記複数の低速電気信号及び前記複数の同期された低速電気信号は、IEEE802.3baに規定されるCAUIに準拠した4本のCAUI電気信号であり、
     前記バーチャルレーンは、IEEE802.3baに規定された4本のPCSレーンである
     波長分割多重光伝送システム。
    A wavelength division multiplexing optical transmission system according to any one of claims 1 to 3,
    The high-speed optical signal is a 40 GbE optical signal defined in IEEE 802.3ba.
    The plurality of low-speed electric signals and the plurality of synchronized low-speed electric signals are four CAUI electric signals conforming to the CAUI defined in IEEE 802.3ba,
    The virtual lane is four PCS lanes defined in IEEE 802.3ba. A wavelength division multiplexing optical transmission system.
  6.  請求項1から請求項5までのいずれかに記載された波長分割多重光伝送システムであって、
     前記低速光信号送信部は、
     前記複数の同期された低速電気信号をIEEE802.3aeで規定される複数の10GbE光信号へ変換する低速信号光送信部と、
     前記複数の10GbE光信号の各々を波長分割多重光信号へ変換して複数の波長分割多重光信号として複数の光伝送路へ送信する波長分割多重光送信部と
     を備え、
     前記低速光信号受信部は、
     前記複数の光伝送路から受信される前記複数の波長分割多重光信号を前記複数の10GbE光信号へ変換する波長分割多重光受信部と
     前記複数の10GbE光信号を前記複数の同期された低速電気信号へ変換する低速信号光送信部と
     を備える波長分割多重光伝送システム。
    A wavelength division multiplexing optical transmission system according to any one of claims 1 to 5,
    The low-speed optical signal transmitter is
    A low-speed signal light transmission unit that converts the plurality of synchronized low-speed electrical signals into a plurality of 10 GbE optical signals defined by IEEE 802.3ae;
    A wavelength division multiplexing optical transmitter that converts each of the plurality of 10 GbE optical signals into a wavelength division multiplexed optical signal and transmits the wavelength division multiplexed optical signal to a plurality of optical transmission lines as a plurality of wavelength division multiplexed optical signals;
    The low-speed optical signal receiver is
    A wavelength division multiplexing optical receiver that converts the plurality of wavelength division multiplexed optical signals received from the plurality of optical transmission lines into the plurality of 10 GbE optical signals; and the plurality of 10 GbE optical signals that are synchronized with the plurality of synchronized low-speed electrical signals. A wavelength division multiplexing optical transmission system comprising: a low-speed signal light transmission unit that converts the signal into a signal.
  7.  請求項1から請求項5までのいずれかに記載された波長分割多重光伝送システムであって、
     前記低速光信号送信部は、
     前記複数の同期された低速電気信号を、ITU-T(International Telecommunication Union Telecommunication Standardization Section)のG.709勧告に規定される準拠したOTU2eフレームに格納して複数のOTU2e電気信号へ変換する送信OTN(Optical Transport Network)フレーム処理部と、
     前記複数のOTU2e電気信号の各々を波長分割多重光信号へ変換して複数の波長分割多重光信号として複数の光伝送路へ送信する波長分割多重光送信部と
     を備え、
     前記低速光信号受信部は、
     前記複数の光伝送路から受信される前記複数の波長分割多重光信号を前記複数のOTU2e電気信号へ変換する波長分割多重光受信部と、
     前記複数のOTU2e電気信号を前記複数の同期された低速電気信号へ変換する受信OTNフレーム処理部と
     を備える波長分割多重光伝送システム。
    A wavelength division multiplexing optical transmission system according to any one of claims 1 to 5,
    The low-speed optical signal transmitter is
    The plurality of synchronized low-speed electrical signals are transmitted to ITU-T (International Telecommunication Union Telecommunication Standardization Section). A transmission OTN (Optical Transport Network) frame processing unit that stores in a compliant OTU2e frame specified in the 709 recommendation and converts the frame into a plurality of OTU2e electrical signals;
    A wavelength division multiplexing optical transmitter that converts each of the plurality of OTU2e electrical signals into a wavelength division multiplexed optical signal and transmits the wavelength division multiplexed optical signal as a plurality of wavelength division multiplexed optical signals to a plurality of optical transmission lines;
    The low-speed optical signal receiver is
    A wavelength division multiplexing optical receiver that converts the plurality of wavelength division multiplexed optical signals received from the plurality of optical transmission paths into the plurality of OTU2e electrical signals;
    A wavelength division multiplexing optical transmission system comprising: a reception OTN frame processing unit that converts the plurality of OTU2e electrical signals into the plurality of synchronized low-speed electrical signals.
  8.  請求項1から請求項7までのいずれかに記載の波長分割多重光伝送システムで用いられる送信装置。 A transmitter used in the wavelength division multiplexing optical transmission system according to any one of claims 1 to 7.
  9.  請求項1から請求項7までのいずれかに記載の波長分割多重光伝送システムで用いられる受信装置。 A receiver used in the wavelength division multiplexing optical transmission system according to any one of claims 1 to 7.
  10.  高速光信号を前記高速光信号より低速な複数の低速電気信号へ変換するステップと、
     前記複数の低速電気信号の各々において所定のデータ量単位のデータブロックを生成するステップと、
     前記複数の低速電気信号間で前記データブロックの同期をとるステップと、
     前記各低速電気信号において前記データブロックを多重することにより複数の同期された低速電気信号を生成するステップと、
     前記複数の同期された低速電気信号の各々を波長分割多重光信号へ変換することにより複数の波長分割多重光信号を生成するステップと、
     前記複数の波長分割多重光信号を複数の光伝送路へ送信するステップと、
     前記複数の光伝送路から前記複数の波長分割多重光信号を受信するステップと、
     前記複数の波長分割多重光信号を前記複数の同期された低速電気信号へ変換するステップと、
     前記複数の同期された低速電気信号間において前記複数の同期された低速電気信号の各々に含まれる前記データブロックの同期をとるステップと、
     前記データブロックを分解することにより前記複数の低速電気信号を生成するするステップと、
     前記複数の低速電気信号を前記高速光信号へ変換するステップと
     を具備する波長分割多重光伝送方法。
    Converting a high-speed optical signal into a plurality of low-speed electrical signals slower than the high-speed optical signal;
    Generating a data block of a predetermined data amount unit in each of the plurality of low-speed electrical signals;
    Synchronizing the data block between the plurality of low-speed electrical signals;
    Generating a plurality of synchronized low speed electrical signals by multiplexing the data blocks in each low speed electrical signal;
    Generating a plurality of wavelength division multiplexed optical signals by converting each of the plurality of synchronized low speed electrical signals into wavelength division multiplexed optical signals;
    Transmitting the plurality of wavelength division multiplexed optical signals to a plurality of optical transmission lines;
    Receiving the plurality of wavelength division multiplexed optical signals from the plurality of optical transmission lines;
    Converting the plurality of wavelength division multiplexed optical signals into the plurality of synchronized low-speed electrical signals;
    Synchronizing the data blocks included in each of the plurality of synchronized low speed electrical signals between the plurality of synchronized low speed electrical signals;
    Generating the plurality of low-speed electrical signals by decomposing the data block;
    Converting the plurality of low-speed electrical signals into the high-speed optical signals.
PCT/JP2011/068376 2010-08-17 2011-08-11 Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method WO2012023490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010182418 2010-08-17
JP2010-182418 2010-08-17

Publications (1)

Publication Number Publication Date
WO2012023490A1 true WO2012023490A1 (en) 2012-02-23

Family

ID=45605144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068376 WO2012023490A1 (en) 2010-08-17 2011-08-11 Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method

Country Status (1)

Country Link
WO (1) WO2012023490A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114765A (en) * 2008-11-07 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical transmission apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114765A (en) * 2008-11-07 2010-05-20 Nippon Telegr & Teleph Corp <Ntt> Optical transmission apparatus

Similar Documents

Publication Publication Date Title
US7970008B2 (en) Multiplexing transmission system and multiplexing transmission method
JP4984797B2 (en) Optical network system
JP5375221B2 (en) Frame transfer apparatus and frame transfer method
US8705974B2 (en) Optical transmission system and optical transmission method
JP4878648B2 (en) Client signal accommodating multiplexing apparatus and method
US10122462B2 (en) Transport apparatus and transport method
CN101939929A (en) Migration on the polarization optics channel
JP4870742B2 (en) Optical transmission equipment
JP2010050803A (en) Light transmission system
EP2976845B1 (en) Pluggable optical host and network i/o optoelectronic module
US9755756B2 (en) Transmission device, transmission system, and transmission method
US8125979B2 (en) Multi-channel optical transport network training signal wrapper
JP6525004B2 (en) Multicarrier optical transmitter, multicarrier optical receiver, and multicarrier optical transmission method
US20160330014A1 (en) Using artificial justifications to apply noise shaping to actual justifications associated with mapping client data
US20090245793A1 (en) Mapping a Client Signal into Transport Frames
WO2012023490A1 (en) Wavelength division multiplex optical transmission system, transmission device, reception device, and wavelength division multiplex optical transmission method
KR20120132986A (en) Apparatus for interfacing between dual-carrier optical transceiver and WDM optical transmission line
JP5300956B2 (en) Client signal accommodating multiplexing apparatus and method
KR100927599B1 (en) How to integrate dependent signals and integrated connection board
JP5300955B2 (en) Client signal accommodating multiplexing apparatus and method
JP5300954B2 (en) Client signal accommodating multiplexing apparatus and method
JP5856660B1 (en) Frame data division method
JP5409253B2 (en) Differential decoding circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP