JP5943891B2 - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP5943891B2
JP5943891B2 JP2013197101A JP2013197101A JP5943891B2 JP 5943891 B2 JP5943891 B2 JP 5943891B2 JP 2013197101 A JP2013197101 A JP 2013197101A JP 2013197101 A JP2013197101 A JP 2013197101A JP 5943891 B2 JP5943891 B2 JP 5943891B2
Authority
JP
Japan
Prior art keywords
optical
signal
signals
transmission
transmission delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013197101A
Other languages
Japanese (ja)
Other versions
JP2015065516A (en
Inventor
福太郎 濱岡
福太郎 濱岡
松田 俊哉
俊哉 松田
明 那賀
明 那賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013197101A priority Critical patent/JP5943891B2/en
Publication of JP2015065516A publication Critical patent/JP2015065516A/en
Application granted granted Critical
Publication of JP5943891B2 publication Critical patent/JP5943891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、冗長光信号送信機から同一の光信号を異なる光伝送路を介して伝送し、冗長光信号受信機で一括受信し、冗長光信号の伝送遅延差補償、位相同期および波形等化を行って信号合成を行う光伝送システムに関する。   The present invention transmits the same optical signal from a redundant optical signal transmitter via different optical transmission lines, and collects and receives them at a redundant optical signal receiver, compensates for the transmission delay difference of the redundant optical signal, phase synchronization and waveform equalization The present invention relates to an optical transmission system that performs signal synthesis by performing.

1波長あたりの伝送速度が 100Gbit/s 以上の超高速伝送システムにおいて、コヒーレント光通信技術とデジタル信号処理技術を組み合わせたデジタルコヒーレント技術が広く用いられるようになってきた。 100Gbit/s 長距離光伝送システムにおける変復調方式として標準となっているDP−QPSK(Dual Polarization-Quadrature Phase Shift Keying )方式では、4値の位相変調を用いることで32Gbit/s の信号を2多重してコヒーレント光信号を生成し、さらに2つの偏波を用いることで2多重し、 128Gbit/s のコヒーレント光信号を生成する。受信側では、信号光と同じ波長のローカル光を用いてコヒーレント検波した信号を、A/Dコンバータを用いてデジタル化した後、DSPによるデジタル信号処理によって、クロック抽出、周波数オフセット補償、伝送路の波長分散補償、偏波分散補償、偏波信号の分離等を行うことで優れた伝送特性が実現されている。   In an ultra-high-speed transmission system with a transmission rate per wavelength of 100 Gbit / s or more, a digital coherent technology combining a coherent optical communication technology and a digital signal processing technology has been widely used. The DP-QPSK (Dual Polarization-Quadrature Phase Shift Keying) method, which is standard as a modulation / demodulation method in 100 Gbit / s long-distance optical transmission systems, multiplexes 32 Gbit / s signals by using four-level phase modulation. Thus, a coherent optical signal is generated and further multiplexed by using two polarizations to generate a 128 Gbit / s coherent optical signal. On the receiving side, the signal coherently detected using local light having the same wavelength as that of the signal light is digitized using an A / D converter, and then clock extraction, frequency offset compensation, and transmission path are performed by digital signal processing using a DSP. Excellent transmission characteristics are realized by performing chromatic dispersion compensation, polarization dispersion compensation, separation of polarization signals, and the like.

また、 100Gbit/s 信号を用いたネットワークとして、光送信機から出力される光信号を、1波長単位で任意の波長 (Colorless)で、任意の方路 (Directionless)に、他の波長と衝突することなく (Contentionless) 切り替えることができる、CDC機能を実現する光クロスコネクト(XC)装置を用いたCDC−ROADMネットワークが検討されている(非特許文献1)。CDC−ROADMネットワークでは、従来の2つのパスを用いたプロテクションに加えて、第3の予備ルートにCDC機能を用いて光信号を切り替えることで、激甚災害に対してもネットワークの信頼性を確保することが可能となる。   In addition, as a network using 100 Gbit / s signals, an optical signal output from an optical transmitter collides with other wavelengths in an arbitrary path (Directionless) at an arbitrary wavelength (Colorless) in one wavelength unit. A CDC-ROADM network using an optical cross-connect (XC) device that realizes a CDC function that can be switched without (Contentionless) has been studied (Non-Patent Document 1). In the CDC-ROADM network, in addition to the conventional protection using two paths, the optical signal is switched to the third backup route using the CDC function to ensure the reliability of the network even in the event of a catastrophic disaster. It becomes possible.

G. Prasanna, B. S. Kishore, G. K. Omprasad, K. S. Raju, R. Gowrishankar, K. Venkataramaniah, R. Johnson, and P. Voruganti,“Versatility of a colorless and directionless WSS based ROADM architecture,” Communication Systems and Networks and Workshops, Page(s):1-8, Jan, 2009.G. Prasanna, BS Kishore, GK Omprasad, KS Raju, R. Gowrishankar, K. Venkataramaniah, R. Johnson, and P. Voruganti, “Versatility of a colorless and directionless WSS based ROADM architecture,” Communication Systems and Networks and Workshops, Page (s): 1-8, Jan, 2009. H. Y. Choi, T. Tsuritani, and I. Morita,“BER-adaptive flexible format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012.H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012.

更なる大容量伝送方式として、16QAM(Quadratuere Amplitude Modulation)等、変調信号の多値化と複数波長を用いた多重化の併用が検討されている。しかし、変調信号の多値化により受信感度が低下するため、伝送距離に制限が生じてしまう(非特許文献2)。   As a further large-capacity transmission system, combined use of multi-value modulation signals and multiplexing using a plurality of wavelengths such as 16QAM (Quadratuere Amplitude Modulation) has been studied. However, since the reception sensitivity is lowered due to the multi-level modulation signal, the transmission distance is limited (Non-Patent Document 2).

また、CDC機能を用いた切替の場合、光XC装置を構成する光スイッチの物理的な切替に数秒程度の時間を要するため、その間は光信号断になってしまう。   Further, in the case of switching using the CDC function, it takes about several seconds to physically switch the optical switch constituting the optical XC apparatus, and the optical signal is interrupted during that time.

本発明は、同一のビットパターンで位相変調して送信された複数の光信号の光伝送路長の違いによる伝送遅延差を送信側で粗調整し、受信側でデジタル信号処理を用いて受信信号間の位相同期および波形等化を行って信号合成することができる光伝送システムを提供することを目的とする。   The present invention roughly adjusts a transmission delay difference due to a difference in optical transmission path lengths of a plurality of optical signals transmitted by phase modulation with the same bit pattern on a transmission side, and uses a digital signal processing on a reception side to receive a received signal. An object of the present invention is to provide an optical transmission system capable of synthesizing signals by performing phase synchronization and waveform equalization.

本発明は、冗長光信号送信機から送信される同一の光信号1〜N(Nは2以上の整数)をそれぞれ所定の伝送遅延を有する光伝送路を介して伝送し、冗長光信号受信機で一括受信して信号合成を行う光伝送システムにおいて、光信号1〜Nのうち光信号k(kは1〜Nの整数)の伝送遅延が最も大きいときに、冗長光信号受信機は、光伝送路を介して伝送された光信号1〜Nをそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力するN個の光信号受信機と、N個の光信号受信機からそれぞれ出力されるデジタル信号を入力し、光信号kに対応するデジタル信号を基準に、他のデジタル信号の位相同期および適応等化処理を行った信号を合成して出力するデジタル信号処理装置とを備え、冗長光信号送信機は、光信号1〜Nの伝送遅延を補償する伝送遅延補償器を備え、デジタル信号処理装置で光信号1〜Nの適応等化処理に用いたパラメータをモニタし、光信号kの適応等化処理に用いたパラメータを基準に他の光信号との伝送遅延差を推定し、当該伝送遅延差を光信号1〜Nに対応する伝送遅延補償器に設定し、光信号1〜Nの伝送遅延差を粗調整する制御手段を備える。   The present invention transmits the same optical signals 1 to N (N is an integer of 2 or more) transmitted from a redundant optical signal transmitter through optical transmission lines each having a predetermined transmission delay, and a redundant optical signal receiver. In the optical transmission system in which signals are received at once and signal synthesis is performed, when the transmission delay of the optical signal k (k is an integer of 1 to N) is the largest among the optical signals 1 to N, the redundant optical signal receiver The optical signals 1 to N transmitted through the transmission path are coherently detected, and further output from N optical signal receivers that output a digital signal after analog-digital conversion and N optical signal receivers, respectively. And a digital signal processing device that synthesizes and outputs a signal that has been subjected to phase synchronization and adaptive equalization processing of another digital signal based on the digital signal corresponding to the optical signal k. The optical signal transmitter A transmission delay compensator that compensates for the transmission delay of signals 1 to N is provided, the digital signal processing device monitors parameters used for adaptive equalization processing of optical signals 1 to N, and is used for adaptive equalization processing of optical signal k. The transmission delay difference with other optical signals is estimated based on the parameters, and the transmission delay difference is set in the transmission delay compensator corresponding to the optical signals 1 to N, and the transmission delay difference between the optical signals 1 to N is roughly calculated. Control means for adjusting is provided.

本発明の光伝送システムにおいて、制御手段は、光信号kに対応する伝送遅延補償器以外の伝送遅延補償器の遅延量を順次増加させながら、光信号1〜Nの適応等化処理に用いたパラメータをモニタし、光信号kの適応等化処理に用いたパラメータを基準に他の光信号との伝送遅延差を推定する構成である。   In the optical transmission system of the present invention, the control means is used for adaptive equalization processing of the optical signals 1 to N while sequentially increasing the delay amount of the transmission delay compensator other than the transmission delay compensator corresponding to the optical signal k. In this configuration, the parameter is monitored, and the transmission delay difference with other optical signals is estimated based on the parameters used in the adaptive equalization processing of the optical signal k.

本発明の光伝送システムにおいて、制御手段は、デジタル信号処理装置で光信号1〜Nの適応等化処理に用いたパラメータを所定の伝送手段を介して、冗長光信号受信機から冗長光信号送信機にフィードバック伝送する構成である。   In the optical transmission system of the present invention, the control means transmits the redundant optical signal from the redundant optical signal receiver to the parameters used for the adaptive equalization processing of the optical signals 1 to N by the digital signal processing apparatus via the predetermined transmission means. It is the structure which carries out feedback transmission to the machine.

本発明の光伝送システムにおいて、デジタル信号処理装置で光信号1〜Nの適応等化処理に用いたパラメータは、適応等化器のタップ係数であり、制御手段は、光信号kの適応等化処理に用いたタップ係数とその他の各光信号の適応等化処理に用いたタップ係数の各要素の絶対値からなる分布のピーク差分により、信号間の伝送遅延差を推定する。   In the optical transmission system of the present invention, the parameter used for the adaptive equalization processing of the optical signals 1 to N in the digital signal processing apparatus is the tap coefficient of the adaptive equalizer, and the control means is the adaptive equalization of the optical signal k. A transmission delay difference between signals is estimated based on a peak difference of a distribution made up of absolute values of elements of tap coefficients used for the process and adaptive equalization processing of other optical signals.

本発明は、同一のビットパターンで位相変調して送信された複数の光信号の光伝送路長の違いによる伝送遅延差を、受信側のデジタル信号処理における適応等化処理のパラメータをモニタしながら送信側で粗調整し、受信側でデジタル信号処理を用いて受信信号間の位相同期および適応等化処理を行って信号合成することができる。これにより、伝送品質を改善して大容量伝送を容易にし、さらに光ネットワーク障害発生時の光信号断を防止して安定性を向上させることができる。   The present invention monitors transmission delay differences due to differences in optical transmission path lengths of a plurality of optical signals transmitted by phase modulation with the same bit pattern while monitoring parameters of adaptive equalization processing in digital signal processing on the receiving side. Coarse adjustment can be performed on the transmission side, and signal synthesis can be performed by performing phase synchronization and adaptive equalization processing between reception signals using digital signal processing on the reception side. As a result, transmission quality can be improved to facilitate large-capacity transmission, and optical signal disconnection when an optical network failure occurs can be prevented to improve stability.

本発明の光伝送システムの実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the optical transmission system of this invention. 実施例1の適応等化器23−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23-i of Example 1. FIG. 本発明の光伝送システムの実施例2におけるデジタル信号処理装置22の構成例を示す図である。It is a figure which shows the structural example of the digital signal processing apparatus 22 in Example 2 of the optical transmission system of this invention. 実施例2の適応等化器23x−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23x-i of Example 2. FIG. 実施例2の適応等化器23y−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23y-i of Example 2. FIG. DP−16QAM信号のデジタル信号処理時タップ係数(伝送遅延補償前)を示す図である。It is a figure which shows the tap coefficient (before transmission delay compensation) at the time of digital signal processing of DP-16QAM signal. DP−16QAM信号のデジタル信号処理時タップ係数(伝送遅延補償後)を示す図である。It is a figure which shows the tap coefficient (after transmission delay compensation) at the time of the digital signal processing of DP-16QAM signal. DP−16QAM信号のデジタル信号処理後のコンスタレーションマップを示す図である。It is a figure which shows the constellation map after the digital signal processing of DP-16QAM signal.

図1は、本発明の光伝送システムの実施例1の構成を示す。
図1において、冗長光信号送信機10は、同一の電気信号を伝送遅延補償器12−1〜12−Nを介してそれぞれ光信号送信器11−1〜11−Nへ入力して同一の光信号1〜N(Nは2以上の整数)に変換し、光伝送路に並列出力する。光信号送信器11−1〜11−Nの前段に設置された伝送遅延補償器12−1〜12−Nは、制御器13を用いて制御される。
FIG. 1 shows a configuration of a first embodiment of an optical transmission system according to the present invention.
In FIG. 1, the redundant optical signal transmitter 10 inputs the same electrical signal to the optical signal transmitters 11-1 to 11-N via the transmission delay compensators 12-1 to 12-N, respectively. Signals 1 to N (N is an integer of 2 or more) are converted and output in parallel to the optical transmission line. Transmission delay compensators 12-1 to 12 -N installed in front of the optical signal transmitters 11-1 to 11 -N are controlled using the controller 13.

同一の光信号1〜Nを伝送する光伝送路は、例えば、1コアの光ファイバをN本用いた構成、あるいはコア数LのマルチコアファイバをK本用いてL×K(=N)の並列伝送を行う構成でもよい。   The optical transmission path for transmitting the same optical signals 1 to N is, for example, a configuration using N single-core optical fibers, or L × K (= N) parallel using K multi-core fibers with L cores. It may be configured to perform transmission.

冗長光信号受信機20は、光伝送路を介して伝送された光信号1〜Nをそれぞれコヒーレント検波し、AD変換してデジタル信号を出力する光信号受信器21−1〜21−Nと、光信号受信器21−1〜21−Nから出力されるデジタル信号を入力し、位相同期および適応等化処理を行って信号合成するデジタル信号処理装置22とにより構成される。   The redundant optical signal receiver 20 coherently detects the optical signals 1 to N transmitted through the optical transmission path, and performs AD conversion to output a digital signal, respectively. The digital signal processing device 22 is configured to receive digital signals output from the optical signal receivers 21-1 to 21-N and perform signal synchronization by performing phase synchronization and adaptive equalization processing.

デジタル信号処理装置22は、適応等化器23−1〜23−N、位相同期器24−1〜24−N、信号合成器25により構成される。適応等化器23−1〜23−Nは、光信号受信器21−1〜21−Nから出力されるn番目のデジタル信号xin,1(n) 〜xin,N(n) をそれぞれ入力し、適応等化信号xout,1(n)〜xout,N(n)を位相同期器24−1〜24−Nに出力する。位相同期器24−1〜24−Nは、適応等化器23−1〜23−Nから出力される適応等化信号xout,1(n)〜xout,N(n)をそれぞれ入力し、位相差φ1(n)〜φN(n)および位相同期信号x'out,1(n)〜x'out,N(n)を出力する。信号合成器25は、位相同期器24−1〜24−Nから出力される位相同期信号x'out,1(n)〜x'out,N(n)を入力し、等利得合成または最大比合成して合成信号Xout(n)を出力する。また、位相同期器24−1〜24−Nから出力される位相差φ1(n)〜φN(n)および位相同期信号x'out,1(n)〜x'out,N(n)と、基準とする任意の位相同期器24−k(k=1〜Nのいずれか)から出力される位相同期信号x'out,k(n) は、適応等化器23−1〜23−Nにそれぞれフィードバックされる。 The digital signal processing device 22 includes adaptive equalizers 23-1 to 23 -N, phase synchronizers 24-1 to 24 -N, and a signal synthesizer 25. The adaptive equalizers 23-1 to 23-N respectively receive the nth digital signals x in, 1 (n) to x in, N (n) output from the optical signal receivers 21-1 to 21-N. The adaptive equalization signals x out, 1 (n) to x out, N (n) are output to the phase synchronizers 24-1 to 24-N. The phase synchronizers 24-1 to 24-N receive the adaptive equalization signals x out, 1 (n) to x out, N (n) output from the adaptive equalizers 23-1 to 23-N, respectively. , Phase differences φ 1 (n) to φ N (n) and phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) are output. The signal synthesizer 25 inputs the phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) output from the phase synchronizers 24-1 to 24-N, and equal gain synthesis or maximum ratio The combined signal X out (n) is output. Further, the phase differences φ 1 (n) to φ N (n) output from the phase synchronizers 24-1 to 24-N and the phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) And a phase synchronization signal x ′ out, k (n) output from an arbitrary phase synchronizer 24-k (k = 1 to N) as a reference is an adaptive equalizer 23-1 to 23-. N is fed back to each.

位相同期器24−i(iは1〜Nの整数)では、光信号受信器21−iにおけるコヒーレント検波時の周波数オフセット等に起因する位相同期外れの成分を位相差φi(n)として推定して出力する。さらに推定した位相差φi(n)を用いて、適応等化信号xout,i(n)から位相差φi(n)を修正して、位相同期信号x'out,i(n) =xout,i(n)exp(-jφi(n))として出力する(jは虚数単位) 。そして、位相同期器24−iから出力される位相差φi(n)および位相同期信号x'out,i(n) を適応等化器23−iへ入力し、さらに任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を適応等化器23−iへ入力することにより、位相同期および適応等化処理が行われる。適応等化器23−iの構成および動作については後述する。 In the phase synchronizer 24-i (i is an integer of 1 to N), a component out of phase synchronization caused by a frequency offset at the time of coherent detection in the optical signal receiver 21-i is estimated as the phase difference φ i (n). And output. Further, using the estimated phase difference φ i (n), the phase difference φ i (n) is corrected from the adaptive equalization signal x out, i (n), and the phase synchronization signal x ′ out, i (n) = x out, i (n) exp (−jφ i (n)) is output (j is an imaginary unit). Then, the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) output from the phase synchronizer 24-i are input to the adaptive equalizer 23-i, and an arbitrary phase synchronizer 24 By inputting the phase synchronization signal x ′ out, k (n) output from −k to the adaptive equalizer 23-i, phase synchronization and adaptive equalization processing are performed. The configuration and operation of the adaptive equalizer 23-i will be described later.

適応等化器23−iのタップ係数hi の値は、冗長光信号送信機10の制御器13へフィードバックされる。ここで、タップ係数の値は監視制御網や対向装置等を介する等、任意の手段によりフィードバックされる。 The value of the tap coefficient h i of the adaptive equalizer 23-i is fed back to the controller 13 of the redundant optical signal transmitter 10. Here, the value of the tap coefficient is fed back by any means such as via a monitoring control network or a counter device.

冗長光信号送信機10の制御器13は、最も伝送遅延が大きい、例えば光伝送路長が最長のk番目の光伝送路kに対応する伝送遅延補償器12−k以外の伝送遅延補償器12−iの遅延量を順次増加させる。同時に、フィードバックされた適応等化器23−iのタップ係数hi(=[hi(1),hi(2),…, hi(M)])の絶対値を計算し、それをモニタする。Mは2以上の整数である。制御器13は、適応等化器23−iのM個のタップ係数で伝送遅延差を補償可能になるまで、伝送遅延補償器12−iの遅延量を増加させた後に、最も伝送遅延が大きいk番目の光伝送路kを伝送する信号の波形等化用のタップ係数hk を基準として、タップ係数hk およびタップ係数hi の各要素の絶対値からなる分布|hk(n)|と|hi(n)|のピーク差分により、信号間の伝送遅延差を推定する。nは1〜Mの整数である。制御器13は、推定した伝送遅延差に相当する遅延量を伝送遅延補償器12−iにそれぞれ設定することにより、冗長光信号間に生じる伝送遅延差を補償する。 The controller 13 of the redundant optical signal transmitter 10 has a transmission delay compensator 12 other than the transmission delay compensator 12-k corresponding to the kth optical transmission line k having the longest transmission delay, for example, the longest optical transmission line length. Increase the delay amount of -i sequentially. At the same time, the absolute value of the tap coefficient h i (= [h i (1), h i (2),..., H i (M)]) of the fed back adaptive equalizer 23-i is calculated, Monitor. M is an integer of 2 or more. The controller 13 increases the delay amount of the transmission delay compensator 12-i until the transmission delay difference can be compensated with the M tap coefficients of the adaptive equalizer 23-i, and then has the largest transmission delay. Distribution hk (n) | consisting of absolute values of tap coefficient h k and tap coefficient h i with reference to tap coefficient h k for waveform equalization of the signal transmitted through k-th optical transmission line k And | h i (n) | are used to estimate the transmission delay difference between signals. n is an integer of 1 to M. The controller 13 compensates the transmission delay difference generated between the redundant optical signals by setting the delay amount corresponding to the estimated transmission delay difference in the transmission delay compensator 12-i.

なお、制御器13でタップ係数hk およびタップ係数hi から信号間の伝送遅延差を推定する処理部を冗長光信号受信機20に備え、当該伝送遅延差の情報を冗長光信号送信機10の制御器13にフィードバックし、その伝送遅延差に相当する遅延量を伝送遅延補償器12−iにそれぞれ設定することにより、冗長光信号間に生じる伝送遅延差を補償する構成としてもよい。 The controller 13 includes a processing unit for estimating the transmission delay difference between the signals from the tap coefficient h k and the tap coefficient h i in the redundant optical signal receiver 20, and information on the transmission delay difference is stored in the redundant optical signal transmitter 10. The transmission delay difference generated between the redundant optical signals may be compensated by feeding back to the controller 13 and setting a delay amount corresponding to the transmission delay difference in each of the transmission delay compensators 12-i.

また、図1に示すデジタル信号処理装置22の構成において、光伝送路で生じた波長分散による信号劣化を補償するために、適応等化器23−1〜23−Nの前段に、波長分散補償器を配置し、デジタル信号xin,1(n) 〜xin,N(n) を波長分散補償したデジタル信号x'in,1(n) 〜x'in,N(n) に変換してそれぞれ適応等化器23−1〜23−Nへ入力する構成としてもよい。また、非線形光学効果による波形歪みの補償等、任意の補償器をデジタル信号処理装置22へ組み込むこともできる。 Further, in the configuration of the digital signal processing device 22 shown in FIG. 1, in order to compensate for signal degradation caused by chromatic dispersion occurring in the optical transmission line, chromatic dispersion compensation is provided before the adaptive equalizers 23-1 to 23-N. the vessel was placed, a digital signal x in, 1 (n) ~x in the digital signal x and n (n) is the chromatic dispersion compensation 'in, 1 (n) ~x ' in, converted to n (n) It is good also as a structure which each inputs into the adaptive equalizers 23-1 to 23-N. Further, an arbitrary compensator such as compensation for waveform distortion due to a nonlinear optical effect can be incorporated into the digital signal processing device 22.

図2は、実施例1の適応等化器23−iの構成例を示す(i=1〜N)。
図2において、適応等化器23−iは、(M−1)個の遅延器31と、M個のタップ係数hi(=[hi(1),hi(2),…, hi(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。
FIG. 2 shows a configuration example of the adaptive equalizer 23-i according to the first embodiment (i = 1 to N).
In FIG. 2, the adaptive equalizer 23-i includes (M−1) delay units 31 and M tap coefficients h i (= [h i (1), h i (2),. i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36.

加算器33は、デジタル信号xin,i(n) およびM−1個の遅延器31で遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) へ、M個のタップ係数hi 32をそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i(n) =hi T in,i(n) (xT in,i(n) はxin,i(n) 転置行列)
を出力する。
The adder 33 includes the digital signal x in, i (n) and the digital signals x in, i (n−1),..., X in, i (n−M + 1) delayed by the M−1 delay units 31. to) by adding the digital signals obtained by multiplying each of M tap coefficients h i 32, the adaptive equalization signal x out, i (n) = h i x T in, i (n) (x T in, i ( n) is x in, i (n) transpose matrix)
Is output.

参照信号生成部36は、基準となる任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を用いて、所定のタップ係数更新アルゴリズムに応じた参照信号dk(n)を出力する。 The reference signal generator 36 uses the phase synchronization signal x ′ out, k (n) output from the arbitrary arbitrary phase synchronizer 24-k as a reference signal d k according to a predetermined tap coefficient update algorithm. Output (n).

タップ係数計算部34は、加算器33から出力される適応等化信号xout,i(n)と、位相同期器24−iから出力される位相差φi(n)および位相同期信号x'out,i(n) と、参照信号生成部36から出力される参照信号dk(n)を用いてタップ係数hi を更新し、誤差信号εi(n)を出力する。 The tap coefficient calculation unit 34 includes the adaptive equalization signal x out, i (n) output from the adder 33, the phase difference φ i (n) output from the phase synchronizer 24-i, and the phase synchronization signal x ′. The tap coefficient h i is updated using out, i (n) and the reference signal d k (n) output from the reference signal generator 36, and the error signal ε i (n) is output.

収束判定部35は、タップ係数計算部34から出力される誤差信号εi(n)を用いて収束判定を行い、収束後に、タップ係数計算部34で、参照信号生成部36から出力される参照信号dk(n)を用いてタップ係数hi を更新する。 The convergence determination unit 35 performs convergence determination using the error signal ε i (n) output from the tap coefficient calculation unit 34, and after convergence, the tap coefficient calculation unit 34 outputs a reference output from the reference signal generation unit 36. The tap coefficient h i is updated using the signal d k (n).

タップ係数の更新方法について、QPSK信号を例として説明する。タップ係数計算部34において、収束前のタップ係数は、例えばブラインドアルゴリズムであるCMA(Constant Modulus Algorithm)を用いて、次式で更新することができる。   A tap coefficient updating method will be described by taking a QPSK signal as an example. In the tap coefficient calculation unit 34, the tap coefficient before convergence can be updated by the following equation using, for example, a CMA (Constant Modulus Algorithm) which is a blind algorithm.

Figure 0005943891
μはステップサイズパラメータ、x* in,i(n)はxin,i(n) の複素共役を示す。
Figure 0005943891
μ represents a step size parameter, and x * in, i (n) represents a complex conjugate of x in, i (n).

収束後は、例えば判定帰還型アルゴリズムであるDD−LMS(Decision Directed Least Mean Square )アルゴリズムを用いて、タップ係数を次式で更新することにより、信号間の位相を同期して波形等化することができる。   After convergence, for example, by using a decision-directed least mean square (DD-LMS) algorithm, which is a decision feedback algorithm, the tap coefficients are updated by the following equation to synchronize the phase between signals and perform waveform equalization. Can do.

Figure 0005943891
Figure 0005943891

この時、参照信号dk(n)は、参照信号生成部36において、任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を用いて生成する。QPSK信号の場合、参照信号dk(n)は次式で決定される。 At this time, the reference signal d k (n) is generated by the reference signal generation unit 36 using the phase synchronization signal x ′ out, k (n) output from the arbitrary phase synchronizer 24-k. In the case of a QPSK signal, the reference signal d k (n) is determined by the following equation.

Figure 0005943891
Figure 0005943891

また、収束後に、ブラインドアルゴリズムであるCMAを用いて、タップ係数を次式で更新することにより、適応等化信号xout,1(n)〜xout,N(n)の位相を同期して波形等化することもできる。 Further, after convergence, the phase of the adaptive equalization signal x out, 1 (n) to x out, N (n) is synchronized by updating the tap coefficient by the following formula using CMA which is a blind algorithm. Waveform equalization can also be performed.

Figure 0005943891
Figure 0005943891

この時、参照信号dk(n)として位相同期信号x'out,k(n) を用いるため、参照信号生成部36では、任意の位相同期器24−kから出力される位相同期信号x'out,k(n) をそのまま出力する。 At this time, since the phase synchronization signal x ′ out, k (n) is used as the reference signal d k (n), the reference signal generator 36 uses the phase synchronization signal x ′ output from the arbitrary phase synchronizer 24-k. out, k (n) is output as is.

以上、タップ係数の更新例としてQPSK信号の場合について説明したが、任意の変調方式で変調された信号へも本発明のデジタル信号処理装置を適用することができる。また、収束前にCMA、収束後にDD−LMSアルゴリズムもしくはCMAを用いているが、任意の適応等化アルゴリズムを用いることができる。   As described above, the case of the QPSK signal has been described as an example of updating the tap coefficient. However, the digital signal processing apparatus of the present invention can be applied to a signal modulated by an arbitrary modulation method. Further, although CMA is used before convergence and DD-LMS algorithm or CMA is used after convergence, any adaptive equalization algorithm can be used.

図3は、本発明の光伝送システムの実施例2におけるデジタル信号処理装置22の構成例を示す。   FIG. 3 shows a configuration example of the digital signal processing apparatus 22 in the second embodiment of the optical transmission system of the present invention.

本実施例の光伝送システムにおける冗長光信号送信機(図示せず)は、 256Gbit/s DP−16QAM方式で変調および偏波多重された同一の光信号を光伝送路1,2,3に出力する。各光伝送路は、光アンプ間を1区間として5区間で構成され、光伝送路1,2,3における1区間の光ファイバ長はそれぞれ80km、90km、 100kmとしている。なお、実施例1との関係では、N=3、k=3の場合に相当する構成例を示す。   The redundant optical signal transmitter (not shown) in the optical transmission system of this embodiment outputs the same optical signal modulated and polarization multiplexed by 256 Gbit / s DP-16QAM system to the optical transmission lines 1, 2, and 3. To do. Each optical transmission line is composed of five sections with one section between the optical amplifiers, and the optical fiber lengths of one section in the optical transmission paths 1, 2, and 3 are 80 km, 90 km, and 100 km, respectively. In relation to the first embodiment, a configuration example corresponding to the case where N = 3 and k = 3 is shown.

冗長光信号受信機の光信号受信器21−1〜21−3は、光伝送路1〜3を介して偏波多重伝送された光信号をそれぞれx偏波およびy偏波へ偏波分離してコヒーレント検波し、AD変換してn番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) およびy偏波のデジタル信号yin,1(n) 〜yin,3(n) を出力する。x偏波の信号を実線、y偏波の信号を破線で示す。デジタル信号処理装置22は、光信号受信器21−1〜21−3から出力されるn番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) 、およびy偏波のデジタル信号yin,1(n) 〜yin,3(n) をそれぞれ入力し、位相同期および適応等化処理を行って信号合成する構成である。なお、図3では、n番目のデジタル信号であることを示す(n) の表記は省略している。 The optical signal receivers 21-1 to 21-3 of the redundant optical signal receivers separate the polarization-multiplexed optical signals via the optical transmission lines 1 to 3 into x-polarized waves and y-polarized waves, respectively. Coherent detection, AD conversion, and the n-th x-polarized digital signal x in, 1 (n) to x in, 3 (n) and y-polarized digital signal y in, 1 (n) to y in , 3 (n) is output. An x-polarized signal is indicated by a solid line, and a y-polarized signal is indicated by a broken line. The digital signal processing device 22 includes n-th x-polarized digital signals x in, 1 (n) to x in, 3 (n) output from the optical signal receivers 21-1 to 21-3, and y-polarization. Wave digital signals y in, 1 (n) to y in, 3 (n) are input, and the signals are synthesized by performing phase synchronization and adaptive equalization processing. In FIG. 3, the notation (n) indicating the nth digital signal is omitted.

デジタル信号処理装置22は、x偏波に対応する波長分散補償器26x−1〜26x−3、適応等化器23x−1〜23x−3、位相同期器24x−1〜24x−3、信号合成器25xと、y偏波に対応する波長分散補償器26y−1〜26y−3、適応等化器23y−1〜23y−3、位相同期器24y−1〜24y−3、信号合成器25yにより構成される。   The digital signal processing device 22 includes chromatic dispersion compensators 26x-1 to 26x-3 corresponding to x polarization, adaptive equalizers 23x-1 to 23x-3, phase synchronizers 24x-1 to 24x-3, signal synthesis 25x, chromatic dispersion compensators 26y-1 to 26y-3 corresponding to y polarization, adaptive equalizers 23y-1 to 23y-3, phase synchronizers 24y-1 to 24y-3, and signal synthesizer 25y. Composed.

x偏波に対応する波長分散補償器26x−1〜26x−3は、n番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) を入力し、波長分散を補償した波長分散補償信号x' in,1(n) 〜x' in,3(n) を出力する。y偏波に対応する波長分散補償器26y−1〜26y−3は、n番目のy偏波のデジタル信号yin,1(n) 〜yin,3(n) を入力し、波長分散を補償した波長分散補償信号y'in,1(n)〜y'in,3(n)を出力する。 The chromatic dispersion compensators 26x-1 to 26x-3 corresponding to the x polarization input the digital signal xin , 1 (n) to xin , 3 (n) of the nth x polarization, and the chromatic dispersion is obtained. Compensated chromatic dispersion compensation signals x ′ in, 1 (n) to x ′ in, 3 (n) are output. The chromatic dispersion compensators 26y-1 to 26y-3 corresponding to the y polarization input digital signals y in, 1 (n) to y in, 3 (n) of the nth y polarization , and perform chromatic dispersion. Compensated chromatic dispersion compensation signals y ′ in, 1 (n) to y ′ in, 3 (n) are output.

x偏波に対応する適応等化器23x−1〜23x−3は、波長分散補償信号x'in,1(n)〜x'in,3(n)およびy'in,1(n)〜y'in,3(n)をそれぞれ入力し、適応等化信号xout,1(n)〜xout,3(n)を出力する。位相同期器24x−1〜24x−3は、適応等化信号xout,1(n)〜xout,3(n)をそれぞれ入力し、位相差φx1(n)〜φx3(n) および位相同期信号x'out,1(n)〜x'out,3(n) を出力する。信号合成器25xは、位相同期信号x'out,1(n) 〜x' out,3(n)を入力し、等利得合成または最大比合成して合成信号Xout(n)を出力する。また、位相同期器24x−1〜24x−3から出力される位相差φx1(n) 〜φx3(n) および位相同期信号x'out,1(n)〜x'out,3(n)と、基準とする位相同期器24−3から出力される位相同期信号x'out,3(n) は、適応等化器23x−1〜23x−3にそれぞれフィードバックされる。 The adaptive equalizers 23x-1 to 23x-3 corresponding to x-polarizations are chromatic dispersion compensation signals x'in , 1 (n) to x'in , 3 (n) and y'in , 1 (n) to y ′ in, 3 (n) is input, and adaptive equalization signals x out, 1 (n) to x out, 3 (n) are output. The phase synchronizers 24x-1 to 24x-3 receive the adaptive equalization signals xout , 1 (n) to xout , 3 (n), respectively, and the phase differences φ x1 (n) to φ x3 (n) and The phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n) are output. The signal synthesizer 25x receives the phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n), and outputs the synthesized signal X out (n) by performing equal gain synthesis or maximum ratio synthesis. Further, the phase differences φ x1 (n) to φ x3 (n) output from the phase synchronizers 24x-1 to 24x-3 and the phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n) The phase synchronization signal x ′ out, 3 (n) output from the reference phase synchronizer 24-3 is fed back to the adaptive equalizers 23x-1 to 23x-3, respectively.

y偏波に対応する適応等化器23y−1〜23y−3は、波長分散補償信号x'in,1(n)〜x'in,3(n)およびy'in,1(n)〜y'in,3(n)をそれぞれ入力し、適応等化信号yout,1(n)〜yout,3(n)を出力する。位相同期器24y−1〜24y−3は、適応等化信号yout,1(n)〜yout,3(n)をそれぞれ入力し、位相差φy1(n)〜φy3(n) および位相同期信号y'out,1(n)〜y'out,3(n) を出力する。信号合成器25yは、位相同期信号y'out,1(n) 〜y' out,3(n)を入力し、等利得合成または最大比合成して合成信号Yout(n)を出力する。また、位相同期器24y−1〜24y−3から出力される位相差φy1(n) 〜φy3(n) および位相同期信号y'out,1(n)〜y'out,3(n)と、基準とする位相同期器24−3から出力される位相同期信号y'out,3(n) は、適応等化器23y−1〜23y−3にそれぞれフィードバックされる。 The adaptive equalizers 23y-1 to 23y-3 corresponding to the y-polarizations are chromatic dispersion compensation signals x'in , 1 (n) to x'in , 3 (n) and y'in , 1 (n) to y ′ in, 3 (n) is input, and adaptive equalization signals y out, 1 (n) to y out, 3 (n) are output. The phase synchronizers 24y-1 to 24y-3 receive the adaptive equalization signals y out, 1 (n) to y out, 3 (n), respectively, and the phase differences φ y1 (n) to φ y3 (n) and The phase synchronization signal y ′ out, 1 (n) to y ′ out, 3 (n) is output. The signal synthesizer 25y receives the phase synchronization signals y ′ out, 1 (n) to y ′ out, 3 (n) , and performs equal gain synthesis or maximum ratio synthesis to output a synthesized signal Y out (n). Further, the phase differences φ y1 (n) to φ y3 (n) and the phase synchronization signals y ′ out, 1 (n) to y ′ out, 3 (n) output from the phase synchronizers 24y-1 to 24y-3. The phase synchronization signal y ′ out, 3 (n) output from the reference phase synchronizer 24-3 is fed back to the adaptive equalizers 23y-1 to 23y-3, respectively.

このように、実施例2のデジタル信号処理装置22では、光伝送路1〜3で生じた波長分散による信号劣化を補償するために、適応等化器23x−1〜23x−3、23y−1〜23y−3の前段に波長分散補償器26x−1〜26x−3および26y−1〜26y−3を配置する構成としているが、その他の位相同期器24x−1〜24x−3および24y−1〜24y−3と、信号合成器25xおよび25yは、実施例1と同様の機能を有している。   As described above, in the digital signal processing device 22 according to the second embodiment, adaptive equalizers 23x-1 to 23x-3 and 23y-1 are used to compensate for signal degradation caused by chromatic dispersion occurring in the optical transmission lines 1 to 3. To 23y-3, the chromatic dispersion compensators 26x-1 to 26x-3 and 26y-1 to 26y-3 are arranged, but the other phase synchronizers 24x-1 to 24x-3 and 24y-1 are arranged. To 24y-3 and the signal synthesizers 25x and 25y have the same functions as those in the first embodiment.

図4は、実施例2の適応等化器23x−iの構成例を示す(i=1,2,3)。
図4において、適応等化器23x−iは、2(M−1)個の遅延器31と、M個のタップ係数hxx,i(=[hxx,i(1),hxx,i(2),…, hxx,i(M)])およびM個のタップ係数hxy,i(=[hxy,i(1),hxy,i(2),…, hxy,i(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。
FIG. 4 illustrates a configuration example of the adaptive equalizer 23x-i according to the second embodiment (i = 1, 2, 3).
In FIG. 4, the adaptive equalizer 23x-i includes 2 (M-1) delay units 31 and M tap coefficients h xx, i (= [h xx, i (1), h xx, i (2), ..., h xx, i (M)]) and M tap coefficients h xy, i (= [h xy, i (1), h xy, i (2), ..., h xy, i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36.

加算器33は、波長分散補償信号x'in,i(n) およびy'in,i(n) と、それぞれM−1個の遅延器31で遅延した波長分散補償信号x'in,i(n-1) ,…,x'in,i(n-M+1) およびy'in,i(n-1) ,…,y'in,i(n-M+1) へ、それぞれM個のタップ係数hxx,iおよびhxy,i32をそれぞれ乗じた波長分散補償信号を加算し、適応等化信号
out,i(n) =hxx,ix'T in,i(n)+hxy,iy'T in,i(n)
を出力する。
The adder 33 receives the chromatic dispersion compensation signals x ′ in, i (n) and y ′ in, i (n) and the chromatic dispersion compensation signals x ′ in, i (delayed by M−1 delay units 31). n-1), ..., x'in , i (n-M + 1) and y'in , i (n-1), ..., y'in , i (n-M + 1), respectively. The chromatic dispersion compensation signals multiplied by the tap coefficients h xx, i and h xy, i 32 respectively are added, and the adaptive equalization signal x out, i (n) = h xx, i x ′ T in, i (n) + H xy, i y ' T in, i (n)
Is output.

参照信号生成部36は、最も伝送遅延が大きい光伝送路に対応する位相同期器24−3から出力される基準となる位相同期信号x'out,3(n) を用いて、上記のタップ係数更新アルゴリズムに応じた参照信号d3(n)を出力する。 The reference signal generation unit 36 uses the phase synchronization signal x ′ out, 3 (n) as a reference output from the phase synchronizer 24-3 corresponding to the optical transmission line with the longest transmission delay, and uses the tap coefficient described above. A reference signal d 3 (n) corresponding to the update algorithm is output.

タップ係数計算部34は、加算器33から出力される適応等化信号xout,i(n)と、位相同期器24−iから出力される位相差φxi(n) および位相同期信号x'out,i(n) と、参照信号生成部36から出力される参照信号dx3(n) を用いてタップ係数hxx,iおよびhxy,iを更新し、誤差信号εxi(n) を出力する。 The tap coefficient calculation unit 34 includes the adaptive equalization signal x out, i (n) output from the adder 33, the phase difference φ xi (n) output from the phase synchronizer 24-i, and the phase synchronization signal x ′. The tap coefficients h xx, i and h xy, i are updated using out, i (n) and the reference signal d x3 (n) output from the reference signal generator 36 , and the error signal ε xi (n) is updated. Output.

収束判定部35は、タップ係数計算部34から出力される誤差信号εxi(n) を用いて収束判定を行い、収束後に、タップ係数計算部34で、参照信号生成部36から出力される参照信号dxk(n) を用いてタップ係数hxx,iおよびhxy,iを更新する。 The convergence determination unit 35 performs convergence determination using the error signal ε xi (n) output from the tap coefficient calculation unit 34, and the reference is output from the reference signal generation unit 36 in the tap coefficient calculation unit 34 after the convergence. The tap coefficients h xx, i and h xy, i are updated using the signal d xk (n).

図5は、実施例2の適応等化器23y−iの構成例を示す(i=1,2,3)。
図5において、適応等化器23y−iは、2(M−1)個の遅延器31と、M個のタップ係数hyx,i(=[hyx,i(1),hyx,i(2),…, hyx,i(M)])およびM個のタップ係数hyy,i(=[hyy,i(1),hyy,i(2),…, hyy,i(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。各部は、図4に示す適応等化器23x−iの各部と同様の機能を有する。
FIG. 5 shows a configuration example of the adaptive equalizer 23y-i according to the second embodiment (i = 1, 2, 3).
In FIG. 5, the adaptive equalizer 23y-i includes 2 (M-1) delay units 31 and M tap coefficients h yx, i (= [h yx, i (1), h yx, i (2), ..., h yx, i (M)]) and M tap coefficients h yy, i (= [h yy, i (1), h yy, i (2), ..., h yy, i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36. Each unit has the same function as each unit of the adaptive equalizer 23x-i illustrated in FIG.

図4の適応等化器23x−iおよび図5の適応等化器23y−iのそれぞれのタップ係数計算部34で得られたタップ係数hxx,i、hxy,i、hyx,i、およびhyy,iは、実施例1と同様に、図1に示す冗長光信号送信機10の制御器13にフィードバックされる。また、実施例1と同様に、タップ係数の値は監視制御網や対向装置等を介する等、任意の手段によりフィードバックされる。 Tap coefficients h xx, i , h xy, i , h yx, i , obtained by the respective tap coefficient calculators 34 of the adaptive equalizer 23x-i in FIG. 4 and the adaptive equalizer 23y-i in FIG. And h yy, i are fed back to the controller 13 of the redundant optical signal transmitter 10 shown in FIG. Further, as in the first embodiment, the value of the tap coefficient is fed back by an arbitrary means such as via a monitoring control network or a counter device.

また、図4および図5のタップ係数計算部34では、例えば実施例1と同様に、収束前はCMAを、収束後は参照信号dx3(n) およびdy3(n) を用いたDD−LMSアルゴリズムへ切り替えて更新することにより、信号間の位相を同期して波形等化することができる。 4 and 5, for example, as in the first embodiment, DD− using CMA before convergence and reference signals d x3 (n) and d y3 (n) after convergence. By switching to the LMS algorithm and updating, it is possible to perform waveform equalization in synchronization with the phase between signals.

タップ係数計算部34において、収束前のCMAによるタップ係数更新式は、次のようになる。

Figure 0005943891
In the tap coefficient calculation unit 34, the tap coefficient update formula by the CMA before convergence is as follows.
Figure 0005943891

また、参照信号dx3(n) およびdy3(n) を用いた収束後のDD−LMSアルゴリズムによるタップ係数更新式は、次のようになる。

Figure 0005943891
Further, the tap coefficient updating formula by the DD-LMS algorithm after convergence using the reference signals d x3 (n) and d y3 (n) is as follows.
Figure 0005943891

ここで、参照信号dx3(n) およびdy3(n) は、参照信号生成部34において、位相同期器24x−3,24y−3から出力される位相同期信号x'out,3(n)およびy'out,3(n)を用いて実施例1,2と同様に生成する。 Here, the reference signals d x3 (n) and d y3 (n) are output from the phase synchronization signals x ′ out, 3 (n) output from the phase synchronizers 24x-3 and 24y-3 in the reference signal generator 34. And y ′ out, 3 (n) are generated in the same manner as in Examples 1 and 2.

また、実施例1と同様に、収束前後のタップ係数更新アルゴリズムは、任意の適応等化アルゴリズムを用いることもできる。   As in the first embodiment, any adaptive equalization algorithm can be used as the tap coefficient update algorithm before and after convergence.

図6は、伝送遅延補償前におけるDP−16QAM信号のデジタル信号処理時のタップ係数の各要素の絶対値分布|hxx,i(n) |を示す(実施例2においてnは1〜21の整数)。 FIG. 6 shows an absolute value distribution | h xx, i (n) | of each element of the tap coefficient at the time of digital signal processing of the DP-16QAM signal before transmission delay compensation (in the second embodiment, n is 1 to 21). integer).

デジタル信号処理装置22において、最も伝送遅延が大きい光伝送路3を伝送する3番目の受信信号を参照信号としているため、タップ係数の各要素の絶対値分布|hxx,3(n) |のみにピーク形状が見られる。伝送遅延補償器を用いた伝送遅延補償を開始していないため、|hxx,1(n) |および|hxx,2(n) |は、|hxx,3(n) |に見られるようなピーク形状となっていない。この場合は信号間に伝送遅延が生じているため、デジタル信号処理装置22において、受信信号間の位相同期および適応等化処理を行って信号合成することができない。 In the digital signal processing device 22, since the third received signal transmitted through the optical transmission line 3 having the longest transmission delay is used as the reference signal, only the absolute value distribution | h xx, 3 (n) | of each element of the tap coefficient A peak shape can be seen. | H xx, 1 (n) | and | h xx, 2 (n) | are found in | h xx, 3 (n) | because transmission delay compensation using the transmission delay compensator has not started. It does not have such a peak shape. In this case, since a transmission delay occurs between the signals, the digital signal processing device 22 cannot perform signal synthesis by performing phase synchronization and adaptive equalization processing between the received signals.

図7は、伝送遅延補償器を用いて伝送遅延補償を行った場合におけるDP−16QAM信号のデジタル信号処理時のタップ係数の各要素の絶対値分布|hxx,i(n) |を示す。 FIG. 7 shows the absolute value distribution | h xx, i (n) | of each element of the tap coefficient at the time of digital signal processing of the DP-16QAM signal when transmission delay compensation is performed using the transmission delay compensator.

実施例1と同様に、制御器13を用いて、最も伝送遅延が大きい光伝送路3に対応する伝送遅延補償器12−3以外の伝送遅延補償器12−1,12−2の遅延量を順次増加させていくと、図7に示すように、タップ係数の各要素の絶対値分布|hxx,1(n) |および|hxx,2(n) |は、|hxx,3(n) |と同様のピーク形状となる。このように、伝送遅延補償器を用いて信号間の伝送遅延を補償することにより、デジタル信号処理装置22において受信信号間の位相同期および適応等化処理を行って信号合成することができる。 Similarly to the first embodiment, the controller 13 is used to set the delay amounts of the transmission delay compensators 12-1 and 12-2 other than the transmission delay compensator 12-3 corresponding to the optical transmission line 3 having the largest transmission delay. As shown in FIG. 7, the absolute value distributions | h xx, 1 (n) | and | h xx, 2 (n) | of the tap coefficient elements are changed to | h xx, 3 ( n) The peak shape is the same as |. In this way, by compensating the transmission delay between signals using the transmission delay compensator, the digital signal processing device 22 can perform signal synchronization and adaptive equalization processing to synthesize signals.

ここで、図7では、タップ係数の絶対値のピーク差分により、伝送遅延補償器12−1の遅延量は3ビット分不足、および伝送遅延補償器12−2の遅延量は3ビット分過剰であることが分かる。制御器13が推定したこれらの伝送遅延量から、|hxx,3|のピークへ|hxx,1|および|hxx,2|のピークが一致するように、制御器13により伝送遅延補償器12−1および伝送遅延補償器12−2の遅延量を調整することにより、信号間の伝送遅延を完全に補償することができる。 In FIG. 7, the delay amount of the transmission delay compensator 12-1 is insufficient by 3 bits and the delay amount of the transmission delay compensator 12-2 is excessive by 3 bits due to the peak difference of the absolute value of the tap coefficient. I understand that there is. From the transmission delay of the controller 13 is estimated, | h xx, 3 | peak to the | h xx, 1 | and | h xx, 2 | as the peak of the match, transmission delay compensation by the controller 13 By adjusting the delay amounts of the counter 12-1 and the transmission delay compensator 12-2, the transmission delay between signals can be completely compensated.

本実施例では、制御器13においてタップ係数の絶対値|hxx,i|を用いて遅延量の推定を行ったが、|hxy,i|、|hyx,i|、あるいは|hyy,i|を用いて遅延量の推定を行ってもよい。 In this embodiment, the controller 13 estimates the delay amount using the absolute value of the tap coefficient | h xx, i |. However, | h xy, i |, | h yx, i |, or | h yy , i | may be used to estimate the delay amount.

図8は、DP−16QAM信号のデジタル信号処理後のコンスタレーションマップを示す。光伝送路1〜3を伝送後の信号を通常のデジタルコヒーレント受信した場合の伝送特性は、それぞれBER(Bit Error Rate)で、5.80×10-3、5.91×10-3、6.05×10-3であった。 FIG. 8 shows a constellation map after digital signal processing of the DP-16QAM signal. The transmission characteristics when signals after transmission through the optical transmission lines 1 to 3 are received by ordinary digital coherent are BER (Bit Error Rate), 5.80 × 10 −3 , 5.91 × 10 −3 , 6.05 × 10 −3, respectively. Met.

次に、実施例2に記載の構成により、送信側の伝送遅延差を制御器と伝送遅延補償器で補償した後に、デジタル信号処理で信号間の位相を同期して波形等化し合成することにより、波形合成後のBERは4.58×10-5となり、伝送特性改善が確認できた。 Next, according to the configuration described in the second embodiment, after the transmission delay difference on the transmission side is compensated by the controller and the transmission delay compensator, the waveforms are equalized and synthesized by synchronizing the phase between the signals by digital signal processing. The BER after waveform synthesis was 4.58 × 10 -5 , confirming improvement in transmission characteristics.

本実施例において、光伝送路に障害が発生した場合を想定して光伝送路1を切断した場合における光伝送路1〜3の合成信号の伝送特性はBERで4.37×10-4となった。本発明の光伝送システムにおけるデジタル信号処理では、参照信号を用いたタップ係数更新を行うため、光伝送路断時に生じるノイズ成分を抑制することができる。そのため光伝送路に障害が発生した場合においても、単独の伝送時に比べて伝送特性が改善しており、例えば、2つの光伝送路を合成した伝送特性で伝送距離を決定し、通常時に3伝送路で運用することで、いずれかの方路で障害が発生しても、信号断することなく伝送を継続することができる。 In this example, assuming that a failure occurs in the optical transmission line, the transmission characteristic of the combined signal of the optical transmission lines 1 to 3 when the optical transmission line 1 is disconnected is 4.37 × 10 −4 in BER. . In the digital signal processing in the optical transmission system of the present invention, since the tap coefficient is updated using the reference signal, it is possible to suppress noise components generated when the optical transmission path is interrupted. For this reason, even when a failure occurs in the optical transmission line, the transmission characteristics are improved compared to the case of single transmission. For example, the transmission distance is determined by the transmission characteristic obtained by combining two optical transmission lines, and three transmissions are normally performed. By operating on the road, transmission can be continued without interruption even if a failure occurs in any of the paths.

10 冗長光信号送信機
11−1〜11−N 光信号送信器
12−1〜12−N 伝送遅延補償器
13 制御器
20 冗長光信号受信機
21−1〜21−N 光信号受信器
22 デジタル信号処理装置
23−1〜23−N,23x−1〜23x−3,23y−1〜23y−3 適応等化器 24−1〜24−N,24x−1〜24x−3,24y−1〜24y−3 位相同期器 25,25x,25y 信号合成器
26x−1〜26x−3 波長分散補償器
26y−1〜26y−3 波長分散補償器
31 遅延器
32 タップ係数hi
33 加算器
34 タップ係数計算部
35 収束判定部
36 参照信号生成部
DESCRIPTION OF SYMBOLS 10 Redundant optical signal transmitter 11-1 to 11-N Optical signal transmitter 12-1 to 12-N Transmission delay compensator 13 Controller 20 Redundant optical signal receiver 21-1 to 21-N Optical signal receiver 22 Digital Signal processing devices 23-1 to 23-N, 23x-1 to 23x-3, 23y-1 to 23y-3 Adaptive equalizers 24-1 to 24-N, 24x-1 to 24x-3, 24y-1 24y-3 phase synchronizer 25,25x, 25y signal combiner 26x-1~26x-3 chromatic dispersion compensator 26y-1~26y-3 chromatic dispersion compensator 31 delayer 32 tap coefficients h i
33 Adder 34 Tap Coefficient Calculation Unit 35 Convergence Determination Unit 36 Reference Signal Generation Unit

Claims (4)

冗長光信号送信機から送信される同一の光信号1〜N(Nは2以上の整数)をそれぞれ所定の伝送遅延を有する光伝送路を介して伝送し、冗長光信号受信機で一括受信して信号合成を行う光伝送システムにおいて、
前記光信号1〜Nのうち光信号k(kは1〜Nの整数)の伝送遅延が最も大きいときに、
前記冗長光信号受信機は、
前記光伝送路を介して伝送された前記光信号1〜Nをそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力するN個の光信号受信機と、
前記N個の光信号受信機からそれぞれ出力される前記デジタル信号を入力し、前記光信号kに対応するデジタル信号を基準に、他のデジタル信号の位相同期および適応等化処理を行った信号を合成して出力するデジタル信号処理装置とを備え、
前記冗長光信号送信機は、前記光信号1〜Nの伝送遅延を補償する伝送遅延補償器を備え、
前記デジタル信号処理装置で前記光信号1〜Nの適応等化処理に用いたパラメータをモニタし、前記光信号kの適応等化処理に用いたパラメータを基準に他の光信号との伝送遅延差を推定し、当該伝送遅延差を前記光信号1〜Nに対応する前記伝送遅延補償器に設定し、前記光信号1〜Nの伝送遅延差を粗調整する制御手段を備えた
ことを特徴とする光伝送システム。
The same optical signals 1 to N (N is an integer of 2 or more) transmitted from the redundant optical signal transmitter are transmitted through optical transmission lines each having a predetermined transmission delay, and are collectively received by the redundant optical signal receiver. In an optical transmission system that combines signals,
When the transmission delay of the optical signal k (k is an integer of 1 to N) among the optical signals 1 to N is the largest,
The redundant optical signal receiver is:
N optical signal receivers that coherently detect the optical signals 1 to N transmitted through the optical transmission line, and further perform analog-digital conversion to output a digital signal;
The digital signal output from each of the N optical signal receivers is input, and a signal obtained by performing phase synchronization and adaptive equalization processing of another digital signal on the basis of the digital signal corresponding to the optical signal k. A digital signal processing device that synthesizes and outputs,
The redundant optical signal transmitter includes a transmission delay compensator that compensates for transmission delays of the optical signals 1 to N;
The digital signal processing device monitors the parameters used for the adaptive equalization processing of the optical signals 1 to N, and the transmission delay difference from other optical signals based on the parameters used for the adaptive equalization processing of the optical signal k And a control means for coarsely adjusting the transmission delay difference of the optical signals 1 to N, and setting the transmission delay difference in the transmission delay compensator corresponding to the optical signals 1 to N. Optical transmission system.
請求項1に記載の光伝送システムにおいて、
前記制御手段は、前記光信号kに対応する前記伝送遅延補償器以外の伝送遅延補償器の遅延量を順次増加させながら、前記光信号1〜Nの適応等化処理に用いたパラメータをモニタし、前記光信号kの適応等化処理に用いたパラメータを基準に他の光信号との伝送遅延差を推定する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 1,
The control means monitors the parameters used for the adaptive equalization processing of the optical signals 1 to N while sequentially increasing the delay amount of the transmission delay compensator other than the transmission delay compensator corresponding to the optical signal k. An optical transmission system characterized in that a transmission delay difference with another optical signal is estimated based on a parameter used for adaptive equalization processing of the optical signal k.
請求項1に記載の光伝送システムにおいて、
前記制御手段は、前記デジタル信号処理装置で前記光信号1〜Nの適応等化処理に用いたパラメータを所定の伝送手段を介して、前記冗長光信号受信機から前記冗長光信号送信機にフィードバック伝送する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 1,
The control means feeds back the parameters used for the adaptive equalization processing of the optical signals 1 to N by the digital signal processing device from the redundant optical signal receiver to the redundant optical signal transmitter via a predetermined transmission means. An optical transmission system characterized by being configured to transmit.
請求項1〜請求項3のいずれかに記載の光伝送システムにおいて、
前記デジタル信号処理装置で前記光信号1〜Nの適応等化処理に用いたパラメータは、適応等化器のタップ係数であり、
前記制御手段は、前記光信号kの適応等化処理に用いたタップ係数とその他の各光信号の適応等化処理に用いたタップ係数の各要素の絶対値からなる分布のピーク差分により、信号間の伝送遅延差を推定する
ことを特徴とする光伝送システム。
In the optical transmission system according to any one of claims 1 to 3,
The parameter used for the adaptive equalization processing of the optical signals 1 to N in the digital signal processing device is a tap coefficient of the adaptive equalizer,
The control means generates a signal based on a peak difference of a distribution composed of absolute values of tap coefficients used for adaptive equalization processing of the optical signal k and tap coefficients used for adaptive equalization processing of other optical signals. An optical transmission system characterized by estimating a transmission delay difference between the two.
JP2013197101A 2013-09-24 2013-09-24 Optical transmission system Expired - Fee Related JP5943891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013197101A JP5943891B2 (en) 2013-09-24 2013-09-24 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013197101A JP5943891B2 (en) 2013-09-24 2013-09-24 Optical transmission system

Publications (2)

Publication Number Publication Date
JP2015065516A JP2015065516A (en) 2015-04-09
JP5943891B2 true JP5943891B2 (en) 2016-07-05

Family

ID=52833059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197101A Expired - Fee Related JP5943891B2 (en) 2013-09-24 2013-09-24 Optical transmission system

Country Status (1)

Country Link
JP (1) JP5943891B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139896B2 (en) 2017-03-28 2021-10-05 Nec Corporation Signal processing device and signal processing method
CN116260521B (en) * 2023-05-16 2023-08-04 之江实验室 Optical domain signal equalization apparatus and method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153731A1 (en) * 2006-01-05 2007-07-05 Nadav Fine Varying size coefficients in a wireless local area network return channel

Also Published As

Publication number Publication date
JP2015065516A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6485095B2 (en) Optical transmission device, optical transmission system, and polarization dependent loss monitor
JP5545892B2 (en) Signal generation circuit and signal reception circuit, signal generation circuit, optical signal transmission device, signal reception circuit, optical signal synchronization establishment method, and optical signal synchronization system
US8707138B2 (en) Method and arrangement for blind demultiplexing a polarisation diversity multiplex signal
US8731411B2 (en) Polarization fluctuation compensation device and optical communication system
JP5850041B2 (en) Optical receiver, polarization separation device, and optical reception method
WO2011007803A1 (en) Wavelength dispersion amount calculation device, optical signal reception device, optical signal transmission device, and wavelength dispersion amount calculation method
WO2014112516A1 (en) Coherent communication system, communication method, and transmission method
JP6458733B2 (en) Optical receiver, optical transmission system and optical receiving method
US8805208B2 (en) System and method for polarization de-multiplexing in a coherent optical receiver
KR20140003646A (en) Optical receiver for multimode communications
CN102326343A (en) Method and arrangement for adaptive dispersion compensation
US9071354B2 (en) Optical receiving apparatus and characteristic compensation method
JP6030027B2 (en) Optical transmission system
JP2020017836A (en) Optical transmission device and optical transmission system
JP5968833B2 (en) Optical transmission system and digital signal processing apparatus
Bai et al. Experimental demonstration of adaptive frequency-domain equalization for mode-division multiplexed transmission
JP5943891B2 (en) Optical transmission system
US10819431B2 (en) Optical communication system and method
JP2014138316A (en) Optical transmission system and optical transmission method
WO2014196179A1 (en) Optical receiver, optical transmission system, optical reception method, and optical transmission method
JP6320953B2 (en) Optical transmission system and optical transmission method
Ranzini et al. Accurate blind chromatic dispersion estimation in long-haul 112Gbit/s PM-QPSK WDM Coherent Systems
Hamaoka et al. Optical multipath network system by using diversity reception for improving transmission performance
WO2023073927A1 (en) Digital signal processing circuit, method, receiver, and communication system
WO2023067641A1 (en) Digital signal processing circuit, method, receiver, and communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5943891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees