JP6029200B2 - Method for producing negative electrode active material for lithium ion secondary battery - Google Patents
Method for producing negative electrode active material for lithium ion secondary battery Download PDFInfo
- Publication number
- JP6029200B2 JP6029200B2 JP2008259394A JP2008259394A JP6029200B2 JP 6029200 B2 JP6029200 B2 JP 6029200B2 JP 2008259394 A JP2008259394 A JP 2008259394A JP 2008259394 A JP2008259394 A JP 2008259394A JP 6029200 B2 JP6029200 B2 JP 6029200B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite powder
- graphite
- electrode
- density
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、ノートブック型パソコン、携帯電話等に使用するリチウムイオン二次電池用のカーボン系負極活物質に関し、高容量で容量ロスが少なく、急速充放電が可能な負極及び負極活物質に関する。 The present invention relates to a carbon-based negative electrode active material for a lithium ion secondary battery used for a notebook computer, a mobile phone, etc., and relates to a negative electrode and a negative electrode active material that have a high capacity, have a small capacity loss, and can be rapidly charged and discharged.
リチウムイオン二次電池は高容量、高電圧、小型軽量の二次電池としてノートブック型パソコン、携帯電話、ビデオカメラ等の可搬型機器類に多く使用されている。
リチウムイオン二次電池の各パーツや材料の高性能化が図られているが、中でも電池の性能を左右するものとして、負極材の高密度化が要請されている。
Lithium ion secondary batteries are often used in portable devices such as notebook computers, mobile phones, and video cameras as high-capacity, high-voltage, small and lightweight secondary batteries.
High performance of each part and material of the lithium ion secondary battery has been attempted, but in particular, the density of the negative electrode material has been demanded as one that affects the performance of the battery.
リチウムイオン二次電池の負極材として炭素または黒鉛が使用されているが、炭素質材料は一般に硬く、電池の高性能化に対して必須である高密度化が困難であり、一方、黒鉛質材料は軟らかく、高密度化し易い。また、電池の電解液の電極材への浸透を速くするためには空隙が確保されていることが必要であるが、高密度化と空隙の確保は相反する要求であり、両者を満足させて高性能の負極材を得ることは非常に困難であった。
本発明は、高い電極密度とすることができ、かつ、電解液の浸透性に優れ、充放電による容量損失が少なく、かつサイクル性能の良いリチウムイオン二次電池用の負極活物質及びこれを使用した高性能の負極を提供することを課題とするものである。
Carbon or graphite is used as a negative electrode material for lithium ion secondary batteries, but carbonaceous materials are generally hard and difficult to increase in density, which is essential for improving the performance of batteries. Is soft and easily densified. Moreover, in order to accelerate the penetration of the battery electrolyte into the electrode material, it is necessary to ensure voids. However, increasing the density and ensuring the voids are contradictory requirements, satisfying both. It was very difficult to obtain a high performance negative electrode material.
INDUSTRIAL APPLICABILITY The present invention provides a negative electrode active material for a lithium ion secondary battery that can have a high electrode density, is excellent in electrolyte permeability, has little capacity loss due to charge / discharge, and has good cycle performance, and uses the same It is an object of the present invention to provide a high performance negative electrode.
つぶれ易さ(圧縮性)が等しく、粉体の吸油量及び円形度の異なるA、B2種類の黒鉛粉末を混合するもので、黒鉛粉末Aが20〜80重量%、黒鉛粉末Bが20〜80重量%であり、黒鉛A+黒鉛B=100%とすることにより、課題を解決したリチウムイオン電池用負極及び負極活物質である。 A mixture of two types of A and B graphite powders having equal ease of crushing (compressibility), powder oil absorption and circularity, graphite powder A being 20 to 80% by weight, graphite powder B being 20 to 80% The negative electrode for a lithium ion battery and the negative electrode active material solve the problem by setting the weight% to be graphite A + graphite B = 100%.
黒鉛粉末A及び黒鉛粉末Bの詳細は以下である。
黒鉛粉末A:
黒鉛粉末Aは、鱗片状天然黒鉛粉末とバインダーピッチを混捏後、公知の成型法により成形体を得、焼成して黒鉛化したブロックを粉砕した黒鉛粉末である。あるいは黒鉛粉末Aは、コークスとバインダーピッチからなる公知のフィラー/バインダ系の材料からなる黒鉛ブロックを粉砕した黒鉛粉末であり、例えば、特許文献1(特許第2983003号公報)、特許文献2(特許第3588354号公報)に開示された方法によって製造することができる。
具体的には、例えば新日本テクノカーボン株式会社製の等方性人造黒鉛ブロック、型込成形人造黒鉛ブロック、更には、押し出し成形による人造黒鉛ブロックを粉砕して得ることができる。
黒鉛粉末Aにバインダーを加え金属製集電体に塗布・乾燥した電極において加圧したときのプレス圧P(MPa)と電極密度D(g/cm3)の関係が、プレス圧が30〜150MPaの範囲内においてD=0.003〜0.007Pであり、黒鉛粉末Aのタップ密度が0.4〜0.9(g/cm3)、吸油量が50〜90ml/100g、円形度が0.91未満、粒度分布のD90/D10比が3.5〜7.0である。
Details of the graphite powder A and the graphite powder B are as follows.
Graphite powder A:
The graphite powder A is a graphite powder obtained by pulverizing a block obtained by mixing a flaky natural graphite powder and a binder pitch, obtaining a molded body by a known molding method, and firing and graphitizing the block. Alternatively, the graphite powder A is a graphite powder obtained by pulverizing a graphite block made of a known filler / binder material made of coke and binder pitch. For example, Patent Document 1 (Patent No. 2983003), Patent Document 2 (Patent No. 2) No. 3588354 gazette).
Specifically, for example, an isotropic artificial graphite block manufactured by Shin Nippon Techno Carbon Co., Ltd., a molded artificial graphite block, or an artificial graphite block by extrusion molding can be pulverized.
The relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) when a pressure is applied to an electrode coated with graphite powder A and coated on a metal current collector and dried is as follows. D = 0.003 to 0.007P, graphite powder A has a tap density of 0.4 to 0.9 (g / cm 3 ), an oil absorption of 50 to 90 ml / 100 g, and a circularity of 0. Less than .91, and the D90 / D10 ratio of the particle size distribution is 3.5 to 7.0.
黒鉛粉末Aは、必要に応じてエアーセパレータや振動篩、超音波篩等による整粒や、メカノケミカル処理による表面改質、形状制御あるいは再焼成、再黒鉛化等による処理を施す。 The graphite powder A is subjected to a treatment such as sizing by an air separator, a vibration sieve, an ultrasonic sieve, or the like, surface modification by mechanochemical treatment, shape control, refiring, regraphitization, or the like as necessary.
黒鉛粉末Aは、高度に黒鉛化されているため、結晶性が非常に高く、この粉末100重量部に対して有機バインダーSBR(Styrene Butadiene Rubber)とCMC( Carboxy Methyl Cellulose) を各々2重量部使用して、電極密度1.6g/cm3、厚さ60μmの電極を銅箔上に形成し、対極としてLi金属を用い、セパレーターを介し対向させ1M LiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成して充放電試験をおこなった場合、約350〜360mAh/gの放電容量、効率93〜95%を示す。 Since graphite powder A is highly graphitized, it has very high crystallinity, and 2 parts by weight of organic binder SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose) are used for 100 parts by weight of this powder. Then, an electrode having an electrode density of 1.6 g / cm 3 and a thickness of 60 μm is formed on the copper foil, Li metal is used as a counter electrode, and the electrodes are opposed to each other through a separator, and 1M LiPF 6 / EC: MEC (1: 2) electrolysis When a liquid is added to form a coin cell and a charge / discharge test is performed, a discharge capacity of about 350 to 360 mAh / g and an efficiency of 93 to 95% are shown.
黒鉛粉末Aは、高度に黒鉛化されているため非常に軟らかく、プレス圧を上昇させて成型すると、電極密度は高い値を示す。しかし、電極密度が1.7g/cm3を超えると電解液が入るべき空隙を潰してしまうため、電解液の浸透速度が遅くなり、電極内で部分的に充放電に寄与しない部分の発生があり、実質的に電極として機能せず電極として使用できない。したがって、この黒鉛粉末A単独では、電極密度を1.7g/cm3を超えて使用することは実用上不可能である。 Graphite powder A is very soft because it is highly graphitized, and when it is molded by increasing the press pressure, the electrode density shows a high value. However, if the electrode density exceeds 1.7 g / cm 3 , the gap into which the electrolytic solution should enter is crushed, so that the penetration rate of the electrolytic solution is slowed down, and a portion that does not partially contribute to charging / discharging occurs in the electrode. Yes, it does not substantially function as an electrode and cannot be used as an electrode. Therefore, with this graphite powder A alone, it is practically impossible to use an electrode density exceeding 1.7 g / cm 3 .
黒鉛粉末B:
黒鉛粉末Bは、球状天然黒鉛をピッチで被覆後焼成し、さらに黒鉛化した黒鉛粉末であり、例えば特許文献3(特許第3716830号公報)に記載の方法によって製造することができる。あるいは、鱗片状天然黒鉛を機械的に概略球形に賦形し、石炭系または石油系ピッチを被覆処理後、700〜1300℃に焼成し、更に黒鉛化処理して製造できる。
黒鉛粉末Bにバインダーを加え、金属製集電体に塗布・乾燥した電極は、加圧したときのプレス圧P(MPa)と電極密度D(g/cm3)の関係が、プレス圧が30〜150MPaの範囲内においてD=0.003〜0.007Pの関係であり、黒鉛粉末Bのタップ密度は0.9〜1.4g/cm3、吸油量は30〜45ml/100g、円形度は0.91以上、粒度分布のD90/D10比は2.0〜3.5である。この黒鉛粉末B100重量部に対して有機バインダーPVdF(Poly Vinylidene di-Fluoride)5重量部使用し、電極密度1.6g/cm3、厚さ60μmの電極を銅箔上に形成してLi金属を用い、セパレーターを介し対向させ1M LiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成し、充放電試験を行った場合、約345〜355mAh/gの放電容量、効率90〜95%を示す。
Graphite powder B:
The graphite powder B is a graphite powder obtained by coating spherical natural graphite with a pitch, firing, and further graphitizing, and can be manufactured by, for example, a method described in Patent Document 3 (Japanese Patent No. 3716830). Alternatively, scale-like natural graphite can be mechanically shaped into a roughly spherical shape, coated with a coal-based or petroleum-based pitch, fired at 700 to 1300 ° C., and further graphitized.
An electrode obtained by adding a binder to graphite powder B and applying and drying it on a metal current collector has a relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) when pressed, and the press pressure is 30. In the range of ~ 150 MPa, D = 0.003 to 0.007 P, the graphite powder B has a tap density of 0.9 to 1.4 g / cm 3 , an oil absorption of 30 to 45 ml / 100 g, and a circularity of 0.91 or more, and the D90 / D10 ratio of the particle size distribution is 2.0 to 3.5. Using 5 parts by weight of an organic binder PVdF (Poly Vinylidene di-Fluoride) with respect to 100 parts by weight of this graphite powder B, an electrode having an electrode density of 1.6 g / cm 3 and a thickness of 60 μm is formed on a copper foil to form Li metal. When a charge / discharge test was conducted by adding a 1M LiPF6 / EC: MEC (1: 2) electrolyte solution facing each other through a separator to perform a charge / discharge test, a discharge capacity of about 345 to 355 mAh / g, an efficiency of 90 to 95% is indicated.
黒鉛粉末Bは粒度分布、即ちD90/D10比が2.0〜3.5程度と狭いため、低い電極密度(1.6g/cm3程度まで)では、電解液が流入する空隙は十分確保されている。しかし、全体が黒鉛質のため粒子が軟らかく、プレス圧を強くして電極密度を大きくすると粒子は変形するので電極密度が上昇し易い。低電極密度では粒子同士は点接触が主であるが、圧密するに従い粒子の変形により点接触に加え、線接触、面接触の状態も含めた形で導電性のネットワークを形成すると考えられる。
プレス成型圧を更に高め、電極密度が1.7g/cm3を超えると黒鉛粒子の変形が大きくなり、電解液が入るべき空隙を潰してしまうため、電解液の浸透速度が遅くなり、電極内で部分的に充放電に寄与しない部分の発生もあり、実質的に電極として機能せず、実用に供することができない。即ち、黒鉛粉末B単独では電極密度1.7g/cm3を超える高密度の実用的な電極は作ることができない。
Since graphite powder B has a narrow particle size distribution, that is, a D90 / D10 ratio of about 2.0 to 3.5, at low electrode density (up to about 1.6 g / cm 3 ), a sufficient space for the electrolyte to flow in is ensured. ing. However, since the whole is graphite, the particles are soft, and when the press pressure is increased to increase the electrode density, the particles are deformed and the electrode density is likely to increase. At a low electrode density, the particles are mainly in point contact with each other. However, as the particles are consolidated, it is considered that a conductive network is formed in a form including line contact and surface contact in addition to point contact due to deformation of the particles.
When the press molding pressure is further increased and the electrode density exceeds 1.7 g / cm 3 , the deformation of the graphite particles increases, and the voids into which the electrolyte solution should enter are crushed. Therefore, there is a portion that does not partially contribute to charging / discharging, and it does not substantially function as an electrode and cannot be put to practical use. That is, the graphite powder B alone cannot produce a practical electrode having a high density exceeding an electrode density of 1.7 g / cm 3 .
黒鉛粉末Aは、必要に応じてメカノケミカル処理による表面改質、形状制御を行うことができるが、これは粒子表面の結晶構造を乱雑にして電解液との反応を抑制したり、球形度を上昇させてタップ密度の上昇を図ったり、更には空隙率即ち吸油量の調整を行え得るものである。
一方黒鉛粉末Bは、まず鱗片状天然黒鉛を機械的に概略球形に賦形するが、これもメカノケミカル処理の一形態である。
これらの処理に使用する装置は、強力に機械的外力を付与できることが必要で、例えば、メカノフュージョンシステム(ホソカワミクロン(株)製)、ハイブリタイゼーションシステム((株)奈良機械製作所製)、ニューグラマシン((株)セイシン企業製)、クリプトロン((株)アーステクニカ)、ヘンシェルミキサー(三井鉱山(株))などを使用することができる。
Graphite powder A can be subjected to surface modification and shape control by mechanochemical treatment as necessary, but this can disturb the crystal structure of the particle surface to suppress reaction with the electrolyte, It is possible to increase the tap density and increase the porosity, that is, the oil absorption amount.
On the other hand, graphite powder B first mechanically shapes scaly natural graphite into a substantially spherical shape, which is also a form of mechanochemical treatment.
The equipment used for these processes needs to be able to apply a strong mechanical external force. For example, a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.), a hybridization system (manufactured by Nara Machinery Co., Ltd.), Newgra Machine (Manufactured by Seishin Co., Ltd.), kryptron (Earth Technica Co., Ltd.), Henschel mixer (Mitsui Mine Co., Ltd.), etc. can be used.
吸油量は、カーボンブラック、顔料、その他粉末の性能を表す特性因子の一つである。粉末に亜麻仁油を少しずつ加え、練り合わせながら粉末の状態を確認し、ばらばらな分散した状態から一つの固まりをなす点を見いだし、そのときの油の体積(ml)を吸油量とするものである。吸油量は、粉末の性質により大きく変化するが、特に粒子の大きさと形の影響が大きく、粒径が小さいほど、不規則な形であるほど、また、空隙率が多いほど吸油量が大きい。 Oil absorption is one of the characteristic factors representing the performance of carbon black, pigments and other powders. Linseed oil is added to the powder little by little, and the state of the powder is confirmed while kneading, finding a point that forms a lump from the dispersed state, and the oil volume (ml) at that time is the oil absorption. . The amount of oil absorption varies greatly depending on the properties of the powder, but the influence of the size and shape of the particles is particularly great. The smaller the particle size, the more irregular the shape, and the greater the porosity, the greater the amount of oil absorption.
とりわけカーボンブラックでは、個々のアグリゲート(凝集体)間の空隙率がストラクチャー(ぶどうの房のように粒子が繋がった形)と正の相関があるので、DBP(可塑剤の一種でDi-butyl phthalateの略)吸収量(cm3/100g)としてストラクチャーを間接的に定量していてJIS K 6217に定義されている。 例えば、一般のカーボンブラックにおいては粒子径が小さく、比表面積が大きくなるほど吸油量(DBP吸収量)が大きくなるが、アセチレンブラックの場合は、同程度の比表面積を持つ他のカーボンブラックからかけ離れて大きな吸油量を持つ。これはアセチレンブラックのストラクチャーの発達が非常に大きいため、粒子表面だけでなく網目構造の内部の空隙にも油を吸収していることを示唆すると言われている。つまり粒子の空隙率の大小によって吸油量が変化することを示すと言える。 In particular, in carbon black, the porosity between individual aggregates (aggregates) has a positive correlation with the structure (the form in which particles are connected like a bunch of grapes), so DBP (Di-butyl is a kind of plasticizer). substantially) absorption of phthalate (cm 3 / 100g) defined in JIS K 6217 indirectly have quantified the structure as. For example, in general carbon black, the oil absorption (DBP absorption) increases as the particle size decreases and the specific surface area increases. In the case of acetylene black, it is far from other carbon blacks having the same specific surface area. Has a large oil absorption. This is said to suggest that the development of the structure of acetylene black is so large that oil is absorbed not only in the particle surface but also in the voids in the network structure. In other words, it can be said that the oil absorption changes depending on the porosity of the particles.
本発明における吸油量測定法は、JIS K 6217に準拠した株式会社あさひ総研製の吸収量測定器S−410型により亜麻仁油を用いておこなった。 The oil absorption amount measuring method in the present invention was performed using linseed oil by an absorption amount measuring device S-410 type manufactured by Asahi Research Institute in accordance with JIS K 6217.
円形度は、シスメックス株式会社製のフロー式粒子像分析装置FPA−3000Sを用い、液体中に分散した粒子の画像を一個一個撮影し(解析数:1800〜8000点)、粒子面積と等しい円の周囲長を粒子周囲長で割った値を円形度とした。 The degree of circularity is obtained by using a flow type particle image analyzer FPA-3000S manufactured by Sysmex Corporation, and taking images of particles dispersed in a liquid one by one (number of analysis: 1800 to 8000 points). The value obtained by dividing the perimeter by the perimeter of the particle was taken as the circularity.
タップ密度(嵩密度)は、100mlのメスシリンダーに試料を60g投入し、内部にカムを備えた自製のタップ密度測定器にセットし、ストローク17mmにて700回タッピング後の試料の体積から算出した。 The tap density (bulk density) was calculated from the volume of the sample after tapping 700 times at a stroke of 17 mm by putting 60 g of the sample into a 100 ml measuring cylinder, setting it in a self-made tap density measuring instrument equipped with a cam inside. .
比表面積は、窒素ガスの吸脱着により測定し、測定装置、Micromeritics社製の自動比表面積/細孔分布測定装置ASAP2405を使用した。
比表面積は、吸着等温線から得られた吸着ガス量を、単分子層として評価して表面積を計算するBETの多点法によって求めた。
The specific surface area was measured by adsorption / desorption of nitrogen gas, and a measuring device, an automatic specific surface area / pore distribution measuring device ASAP2405 manufactured by Micromeritics was used.
The specific surface area was determined by the BET multipoint method in which the amount of adsorbed gas obtained from the adsorption isotherm was evaluated as a monomolecular layer and the surface area was calculated.
平均粒子径や粒度分布の測定は、株式会社セイシン企業製のLMS−30システムを用いて、水を分散媒として微量の界面活性剤を分散剤にして、超音波分散をさせた状態で測定した。 The average particle size and particle size distribution were measured using an LMS-30 system manufactured by Seishin Co., Ltd., in a state where ultrasonic dispersion was performed using water as a dispersion medium and a small amount of surfactant as a dispersant. .
電気化学的な充放電試験は、負極活物質100重量部に対して結着剤としてSBRとCMCをそれぞれ2重量部ずつあわせて水系スラリーを調整し、銅箔上にドクターブレードを用いて厚さ160μmに塗布し、120℃で乾燥し、ロールプレスを掛けた後、φ12に打ち抜き電極とした。プレス後の負極は、厚さが60μmであった。
これに対極としてリチウム金属を用い、セパレーターを介し対向させ電極群とした後、1MLiPF6/EC:MEC(1:2)の電解液を加えてコインセルを形成し、充放電試験に供した。
充放電条件は、まず電流値0.5mA/cm2で定電流充電を行い、電圧値が0.01Vになった後定電圧充電に切り替え、電流値が0.01mA/cm2に下がるまで充電を行った。充電終了後、電流値0.5mA/cm2で定電流放電を行い、電圧値が1.5Vとなったところで放電終了した。
In the electrochemical charge / discharge test, 100 parts by weight of the negative electrode active material was prepared by adjusting 2 parts by weight of each of SBR and CMC as binders to prepare an aqueous slurry, and using a doctor blade on the copper foil to obtain a thickness. After applying to 160 μm, drying at 120 ° C. and applying a roll press, a punched electrode was formed at φ12. The negative electrode after pressing had a thickness of 60 μm.
Lithium metal was used as a counter electrode, and the electrodes were made to face each other through a separator, and then an electrolyte solution of 1M LiPF 6 / EC: MEC (1: 2) was added to form a coin cell, which was subjected to a charge / discharge test.
Charging / discharging conditions are as follows. First, constant current charging is performed at a current value of 0.5 mA / cm 2 , then switching to constant voltage charging after the voltage value reaches 0.01 V, and charging is performed until the current value decreases to 0.01 mA / cm 2. Went. After completion of charging, constant current discharging was performed at a current value of 0.5 mA / cm 2 , and discharging was terminated when the voltage value reached 1.5V.
塗膜の細孔分布測定は島津オートポア9520形を用いて水銀圧入法にて行った。銅箔両側に負極材を塗布した電極を短冊状約125×25mmに裁断した後、6〜7枚を標準セルに採り、初期圧約20kPa(約25psia、細孔直径約70μm相当の条件で測定した。 The pore distribution of the coating film was measured by mercury porosimetry using Shimadzu Autopore Model 9520. After the electrode coated with the negative electrode material on both sides of the copper foil was cut into strips of about 125 x 25 mm, 6-7 sheets were taken in a standard cell and measured under conditions of an initial pressure of about 20 kPa (about 25 psia, pore diameter of about 70 μm) .
つぶれ易さが同等で形状の異なる黒鉛粉末A及びBを混合することによって、1.7g/cm3以上の高い電極密度であっても、電解液の浸透性に優れた負極活物質が得られるので、充放電による容量損失が少なく、かつサイクル性能が良いリチウムイオン二次電池用の負極を低コストで製造することができる。 By mixing graphite powders A and B having the same shape and different shapes, a negative electrode active material having excellent electrolyte permeability can be obtained even at a high electrode density of 1.7 g / cm 3 or more. Therefore, a negative electrode for a lithium ion secondary battery with low capacity loss due to charging and discharging and good cycle performance can be produced at low cost.
次に本発明の実施形態について以下の実施例で述べるが、本発明はこの実施例に限定されるものではない。 Next, embodiments of the present invention will be described in the following examples, but the present invention is not limited to these examples.
実施例
〈黒鉛粉末(A)〉
A1:熱膨張係数5.3×10-6(1/℃)のコークスを平均粒径(D50)=10μmに粉砕したコークス粉とバインダーピッチを加熱混合・成型し、成型体のまま焼成・黒鉛化した。これを粉砕し、更にヘンシェルミキサー周速20m/sで機械処理して黒鉛粉末(A1)を得た。
得られた粉体はD50=17.1μm、Dtop=91.1μm、BET比表面積=3.89m2/g、タップ密度=0.81g/cm3及び吸油量=78.8ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0051P+1.41であった。
Example
<Graphite powder (A)>
A1: Coke powder obtained by pulverizing coke having a thermal expansion coefficient of 5.3 × 10 −6 (1 / ° C.) to an average particle size (D50) = 10 μm and a binder pitch were heated and mixed and molded, and the molded body was fired and graphitized. . This was pulverized and further mechanically processed at a Henschel mixer peripheral speed of 20 m / s to obtain graphite powder (A1).
The obtained powder had D50 = 17.1 μm, Dtop = 91.1 μm, BET specific surface area = 3.89 m 2 / g, tap density = 0.81 g / cm 3, and oil absorption = 78.8 ml / 100 g.
Further, the relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.0001P + 1.41.
A2:熱膨張係数1.08×10-6(1/℃)のコークスを平均粒径(D50)=13μmに粉砕したコークス粉とバインダーピッチを加熱混合・成型し、成型体のまま焼成・黒鉛化した。これを粉砕し、更にヘンシェルミキサー周速40m/sで機械処理し黒鉛粉末(A2)を得た。
得られた黒鉛粉末は、D50=15.3μm、Dtop=76.8μm、BET比表面積=3.63m2/g、タップ密度=0.82g/cm3及び吸油量=61.8ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0065P+1.33であった。
A2: Coke powder obtained by pulverizing coke with a coefficient of thermal expansion of 1.08 × 10 -6 (1 / ° C) to an average particle size (D50) = 13 µm and binder pitch were heated and mixed and molded, and the molded product was fired and graphitized. . This was pulverized and further mechanically processed at a Henschel mixer peripheral speed of 40 m / s to obtain graphite powder (A2).
The obtained graphite powder had D50 = 15.3 μm, Dtop = 76.8 μm, BET specific surface area = 3.63 m 2 / g, tap density = 0.82 g / cm 3, and oil absorption = 61.8 ml / 100 g.
The relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.655P + 1.33.
A3:熱膨張係数5.3×10-6(1/℃)のコークスを平均粒径(D50)=10μmに粉砕したコークス粉と平均粒径(D50)=16μmの鱗片状天然黒鉛粉末の1:1混合粉及びバインダーピッチを加熱混合・成型し、成型体のまま焼成・黒鉛化した。これを粉砕し、更にヘンシェルミキサー周速40m/sで機械処理して黒鉛粉末(A3)を得た。
得られた黒鉛粉末は、D50=21.7μm、Dtop=91.1μm、BET比表面積=3.57m2/g、タップ密度=0.81g/cm3及び吸油量=59.7ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0058P+1.38であった。
A3: Coke powder obtained by pulverizing coke having a thermal expansion coefficient of 5.3 × 10 −6 (1 / ° C.) to an average particle size (D50) = 10 μm and a flake-like natural graphite powder having an average particle size (D50) = 16 μm The mixed powder and binder pitch were heated and mixed and molded, and the molded body was fired and graphitized. This was pulverized and further mechanically processed at a Henschel mixer peripheral speed of 40 m / s to obtain graphite powder (A3).
The obtained graphite powder had D50 = 21.7 μm, Dtop = 91.1 μm, BET specific surface area = 3.57 m 2 / g, tap density = 0.81 g / cm 3, and oil absorption = 59.7 ml / 100 g.
The relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.588P + 1.38.
A4:平均粒径(D50)=16μmに粉砕した鱗片状天然黒鉛粉末とバインダーピッチを加熱混合・成型し、成型体のまま焼成・黒鉛化した。これを粉砕し、更にヘンシェルミキサー周速40m/sで機械処理し黒鉛粉末(A4)を得た。
得られた黒鉛粉末は、D50=19.4μm、Dtop=64.8μm、BET比表面積=0.80m2/g、タップ密度=0.80g/cm3及び吸油量=58.2ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0068P+1.45であった。
A4: Average particle diameter (D50) = scale-like natural graphite powder pulverized to 16 μm and binder pitch were heated and mixed and molded, and the molded body was fired and graphitized. This was pulverized and further mechanically processed at a Henschel mixer peripheral speed of 40 m / s to obtain graphite powder (A4).
The obtained graphite powder had D50 = 19.4 μm, Dtop = 64.8 μm, BET specific surface area = 0.80 m 2 / g, tap density = 0.80 g / cm 3, and oil absorption = 58.2 ml / 100 g.
The relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.068P + 1.45.
〈黒鉛粉末(B)〉
B1:平均粒径(D50)=11μmの球状天然黒鉛とバインダーピッチを加熱混合し、これを焼成・黒鉛化し、黒鉛粉末(B1)を得た。
得られた黒鉛粉末は、D50=12.7μm、Dtop=38.9μm、BET比表面積=1.36m2/g、タップ密度=1.18g/cm3及び吸油量=35.6ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0036P+1.40であった。
<Graphite powder (B)>
B1: Spherical natural graphite having an average particle size (D50) = 11 μm and binder pitch were mixed by heating, and this was fired and graphitized to obtain graphite powder (B1).
The obtained graphite powder had D50 = 12.7 μm, Dtop = 38.9 μm, BET specific surface area = 1.36 m 2 / g, tap density = 1.18 g / cm 3, and oil absorption = 35.6 ml / 100 g.
Further, the relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.636P + 1.40.
B2:平均粒径(D50)=15μmの球状天然黒鉛とバインダーピッチを加熱混合し、これを焼成・黒鉛化し、黒鉛粉末(B2)を得た。
得られた黒鉛粉末は、D50=17.5μm、Dtop=54.6μm、BET比表面積=1.20m2/g、タップ密度=1.20g/cm3及び吸油量=38.3ml/100gであった。
また、プレス圧P(kN)と電極密度D(g/cm3)の関係が、D=0.0047P+1.36であった。
B2: Spherical natural graphite having an average particle diameter (D50) = 15 μm and a binder pitch were mixed by heating, and this was fired and graphitized to obtain graphite powder (B2).
The obtained graphite powder had D50 = 17.5 μm, Dtop = 54.6 μm, BET specific surface area = 1.20 m 2 / g, tap density = 1.20 g / cm 3, and oil absorption = 38.3 ml / 100 g.
The relationship between the press pressure P (kN) and the electrode density D (g / cm 3 ) was D = 0.007P + 1.36.
B3:平均粒径(D50)=22μmの球状天然黒鉛とバインダーピッチを加熱混合し、これを焼成・黒鉛化し、黒鉛粉末(B3)を得た。
得られた黒鉛粉末は、D50=24.3μm、Dtop=64.8μm、BET比表面積=0.81m2/g、タップ密度=1.13g/cm3及び吸油量=38.6ml/100gであった。
また、プレス圧P(MPa)と電極密度D(g/cm3)の関係が、D=0.0057P+1.40であった。
B3: Spherical natural graphite having an average particle size (D50) = 22 μm and a binder pitch were mixed by heating, and this was fired and graphitized to obtain graphite powder (B3).
The obtained graphite powder had D50 = 24.3 μm, Dtop = 64.8 μm, BET specific surface area = 0.81 m 2 / g, tap density = 1.13 g / cm 3, and oil absorption = 38.6 ml / 100 g.
Further, the relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) was D = 0.0005P + 1.40.
実施例1
黒鉛粉末(A1)と黒鉛粉末(B2)を重量比でA1:B2=3:7の割合で混合した。
得られた粉体は、D50=17.1μm、Dtop=64.8μm、BET比表面積=1.85m2/g、タップ密度=1.07g/cm3及び吸油量=46.6ml/100gであった。
Example 1
Graphite powder (A1) and graphite powder (B2) were mixed at a weight ratio of A1: B2 = 3: 7.
The obtained powder had D50 = 17.1 μm, Dtop = 64.8 μm, BET specific surface area = 1.85 m 2 / g, tap density = 1.07 g / cm 3, and oil absorption = 46.6 ml / 100 g.
実施例2
黒鉛粉末(A1)、黒鉛粉末(A2)及び黒鉛粉末(B2)を重量比でA1:A2:B2=3:2:5の割合で混合した。
得られた粉体は、D50=17.1μm、Dtop=64.8μm、BET比表面積=2.55m2/g、タップ密度=0.96g/cm3及び吸油量=55.2ml/100gであった。
Example 2
Graphite powder (A1), graphite powder (A2) and graphite powder (B2) were mixed at a weight ratio of A1: A2: B2 = 3: 2: 5.
The obtained powder had D50 = 17.1 μm, Dtop = 64.8 μm, BET specific surface area = 2.55 m 2 / g, tap density = 0.96 g / cm 3, and oil absorption = 55.2 ml / 100 g.
実施例3
黒鉛粉末(A1)、黒鉛粉末(A2)及び黒鉛粉末(B2)をA1:A2:B2=3:4:3の割合で混合した。
得られた粉体は、D50=17.7μm、Dtop=76.8μm、BET比表面積=2.76m2/g、タップ密度=0.93g/cm3及び吸油量=58.3ml/100gであった。
Example 3
Graphite powder (A1), graphite powder (A2), and graphite powder (B2) were mixed at a ratio of A1: A2: B2 = 3: 4: 3.
The obtained powder had D50 = 17.7 μm, Dtop = 76.8 μm, BET specific surface area = 2.76 m 2 / g, tap density = 0.93 g / cm 3 and oil absorption = 58.3 ml / 100 g.
実施例4
黒鉛粉末(A1)、黒鉛粉末(A2)、黒鉛粉末(B2)及び黒鉛粉末(B3)を重量比でA1:A2:B1:B2:B3=3:4:1:1:1の割合で混合した。
得られた粉体は、D50=17.4μm、Dtop=76.8μm、BET比表面積=2.79m2/g、タップ密度=0.94g/cm3及び吸油量=57.2ml/100gであった。
Example 4
Graphite powder (A1), graphite powder (A2), graphite powder (B2) and graphite powder (B3) are mixed at a weight ratio of A1: A2: B1: B2: B3 = 3: 4: 1: 1: 1. did.
The obtained powder had D50 = 17.4 μm, Dtop = 76.8 μm, BET specific surface area = 2.79 m 2 / g, tap density = 0.94 g / cm 3, and oil absorption = 57.2 ml / 100 g.
実施例5
黒鉛粉末(A1)、黒鉛粉末(A2)、及び黒鉛粉末(B1)を重量比でA1:A2:B1=3:4:3の割合で混合した。
得られた粉体は、D50=15.8μm、Dtop=76.8μm、BET比表面積=2.93m2/g、タップ密度=0.94g/cm3及び吸油量=55.9ml/100gであった。
Example 5
Graphite powder (A1), graphite powder (A2), and graphite powder (B1) were mixed at a weight ratio of A1: A2: B1 = 3: 4: 3.
The obtained powder had D50 = 15.8 μm, Dtop = 76.8 μm, BET specific surface area = 2.93 m 2 / g, tap density = 0.94 g / cm 3 and oil absorption = 55.9 ml / 100 g.
実施例6
黒鉛粉末(A1)、黒鉛粉末(B1)、及び黒鉛粉末(B2)を重量比でA1:B1:B2=3:3.5:3.5の割合で混合した。
得られた粉体は、D50=15.6μm、Dtop=64.8μm、BET比表面積=2.03m2/g、タップ密度=1.05g/cm3及び吸油量=49.5ml/100gであった。
Example 6
Graphite powder (A1), graphite powder (B1), and graphite powder (B2) were mixed at a weight ratio of A1: B1: B2 = 3: 3.5: 3.5.
The obtained powder had D50 = 15.6 μm, Dtop = 64.8 μm, BET specific surface area = 2.03 m 2 / g, tap density = 1.05 g / cm 3, and oil absorption = 49.5 ml / 100 g.
実施例7
黒鉛粉末(A2)及び黒鉛粉末(B1)を重量比でA2:B1=6:4の割合で混合し目的物を得た。
得られた粉体は、D50=14.2μm、Dtop=54.6μm、BET比表面積=2.80m2/g、タップ密度=1.01g/cm3及び吸油量=52.4ml/100gであった。
Example 7
Graphite powder (A2) and graphite powder (B1) were mixed at a weight ratio of A2: B1 = 6: 4 to obtain the desired product.
The obtained powder had D50 = 14.2 μm, Dtop = 54.6 μm, BET specific surface area = 2.80 m 2 / g, tap density = 1.01 g / cm 3, and oil absorption = 52.4 ml / 100 g.
実施例8
黒鉛粉末(A2)、黒鉛粉末(B1)及び黒鉛粉末(B2)を重量比でA2:B1:B2=5:3:2の割合で混合した。
得られた粉体は、D50=14.9μm、Dtop=54.6μm、BET比表面積=2.67m2/g、タップ密度=1.03g/cm3及び吸油量=50.1ml/100gであった。
Example 8
Graphite powder (A2), graphite powder (B1), and graphite powder (B2) were mixed at a weight ratio of A2: B1: B2 = 5: 3: 2.
The obtained powder had D50 = 14.9 μm, Dtop = 54.6 μm, BET specific surface area = 2.67 m 2 / g, tap density = 1.03 g / cm 3, and oil absorption = 50.1 ml / 100 g.
実施例9
黒鉛粉末(A2)、黒鉛粉末(B1)及び黒鉛粉末(B2)を重量比でA2:B1:B2=4:3:3の割合で混合した。
得られた粉体は、D50=15.1μm、Dtop=54.6μm、BET比表面積=2.33m2/g、タップ密度=1.06 g/cm3及び吸油量=47.8ml/100gであった。
Example 9
Graphite powder (A2), graphite powder (B1), and graphite powder (B2) were mixed at a weight ratio of A2: B1: B2 = 4: 3: 3.
The obtained powder had D50 = 15.1 μm, Dtop = 54.6 μm, BET specific surface area = 2.33 m 2 / g, tap density = 1.06 g / cm 3, and oil absorption = 47.8 ml / 100 g.
実施例10
黒鉛粉末(A3)と黒鉛粉末(B2)を重量比でA3:B2=3:7の割合で混合した。
得られた粉体は、D50=17.3μm、Dtop=76.8μm、BET比表面積=1.94m2/g、タップ密度=1.02g/cm3及び吸油量=44.7ml/100gであった。
Example 10
Graphite powder (A3) and graphite powder (B2) were mixed at a weight ratio of A3: B2 = 3: 7.
The obtained powder had D50 = 17.3 μm, Dtop = 76.8 μm, BET specific surface area = 1.94 m 2 / g, tap density = 1.02 g / cm 3 and oil absorption = 44.7 ml / 100 g.
実施例11
黒鉛粉末(A4)と黒鉛粉末(B2)を重量比でA4:B2=3:7の割合で混合した。
得られた粉体は、D50=18.1μm、Dtop=64.8μm、BET比表面積=1.88m2/g、タップ密度=1.03g/cm3及び吸油量=44.3ml/100gであった。
Example 11
Graphite powder (A4) and graphite powder (B2) were mixed at a weight ratio of A4: B2 = 3: 7.
The obtained powder had D50 = 18.1 μm, Dtop = 64.8 μm, BET specific surface area = 1.88 m 2 / g, tap density = 1.03 g / cm 3, and oil absorption = 44.3 ml / 100 g.
表1に黒鉛粒子A、表2に黒鉛粒子Bの粉体特性一覧を示す。
表1によれば、黒鉛粒子Aは、黒鉛粒子Bと比較して粒度分布の広がり(D90/D10)が大きく、吸油量が大きく、円形度が小さいという違いがあることが判る。
Table 1 shows a list of powder characteristics of graphite particles A, and Table 2 shows the characteristics of graphite particles B.
According to Table 1, it can be seen that the graphite particles A have a larger particle size distribution spread (D90 / D10), a larger oil absorption, and a lower circularity than the graphite particles B.
表3に実施例の粉体物性及び電極密度1.8g/cm3のときの細孔体積、気孔率の一覧を示す。実施例は、いずれも1.8g/cm3の高密度電極においても15%以上の気孔率を保持している。 Table 3 shows a list of the powder physical properties and the pore volume and porosity when the electrode density is 1.8 g / cm 3 . In all the examples, a porosity of 15% or more was maintained even in a high-density electrode of 1.8 g / cm 3 .
表4に、実施例及び比較例として単独の黒鉛粉(A1〜B3)を使用した時の、
電極密度1.7g/cm3以上での初回充放電特性とサイクル特性を示す。なおサイクル特性は、初回サイクルに対する30サイクル後の容量維持率で示した。
実施例ではいずれも1.7g/cm3以上の高密度電極においてもサイクル劣化することなく、97〜99%の高い容量維持率を示した。一方A1〜B3の単独の黒鉛粉は80%未満の低いサイクル容量維持率しか得られなかった。
In Table 4, when a single graphite powder (A1 to B3) is used as an example and a comparative example,
The initial charge / discharge characteristics and cycle characteristics at an electrode density of 1.7 g / cm 3 or more are shown. The cycle characteristics are indicated by the capacity retention rate after 30 cycles with respect to the initial cycle.
In each of the examples, a high capacity retention rate of 97 to 99% was exhibited without cycle deterioration even in a high-density electrode of 1.7 g / cm 3 or more. On the other hand, the single graphite powder of A1 to B3 was able to obtain only a low cycle capacity maintenance rate of less than 80%.
図1に1.8g/cm3の電極密度におけるサイクル特性の測定結果を示す。
実施例1は、1.8g/cm3の電極密度において充放電サイクルを繰り返しても容量の低下はなく、良好なサイクル特性を示している。
一方、混合していない黒鉛粉末A及び黒鉛粉末B単体では充放電を繰り返した後の容量低下が大きく、本発明の黒鉛粉末Aと黒鉛粉末Bの混合物のサイクル特性の向上が確認された。
FIG. 1 shows the measurement results of cycle characteristics at an electrode density of 1.8 g / cm 3 .
Example 1 shows good cycle characteristics with no reduction in capacity even when the charge / discharge cycle is repeated at an electrode density of 1.8 g / cm 3 .
On the other hand, the graphite powder A and the graphite powder B which were not mixed had a large capacity drop after repeated charge and discharge, and it was confirmed that the cycle characteristics of the mixture of the graphite powder A and the graphite powder B of the present invention were improved.
特性の異なる黒鉛粉末を混合することで電極密度が1.7g/cm3以上の高密度とした電極のリチウムイオン二次電池は、容量、効率、サイクル特性に優れたものとなる。 An electrode lithium ion secondary battery having a high electrode density of 1.7 g / cm 3 or more by mixing graphite powders having different characteristics is excellent in capacity, efficiency, and cycle characteristics.
Claims (1)
この黒鉛粉砕物とバインダーの混合物を金属製集電体に塗布した電極において
プレス圧P(MPa)と電極密度D(g/cm3)の関係が、プレス圧が30〜150MPaの範囲内において
D=0.003P〜0.007P+K1(K1は定数)となる黒鉛粉末Aと
黒鉛化したピッチで被覆してなる球状天然黒鉛からなるタップ密度が0.9〜1.4g/cm3、吸油量が30〜45ml/100g、粒度分布のD90/D10比が2.0〜3.5であり、
バインダーを加え金属製集電体に塗布・乾燥した電極において
プレス圧P(MPa)と電極密度D(g/cm3)の関係が、プレス圧が30〜150MPaの範囲内において
D=0.003P〜0.007P+K2(K2は定数)となる黒鉛粉末Bを
重量比で黒鉛粉末Aが20〜80%、黒鉛粉末Bが20〜80%、かつ、黒鉛粉末A+黒鉛粉末B=100%となるように混合するリチウムイオン二次電池用負極活物質の製造方法。 Tap density obtained by mixing scale-shaped natural graphite and binder pitch or coke and binder pitch, firing and graphitized graphite block is 0.4 to 0.9 g / cm 3 , and oil absorption is 50. ~ 90ml / 100g, D90 / D10 ratio of particle size distribution is 3.5-7.0,
The relationship between the press pressure P (MPa) and the electrode density D (g / cm 3 ) in the electrode in which the mixture of the pulverized graphite and the binder was applied to the metal current collector was as follows. = 0.003P to 0.007P + K1 (K1 is a constant) Graphite powder A and tap natural density made of spherical natural graphite coated with graphitized pitch is 0.9 to 1.4 g / cm 3 , and the oil absorption is 30-45 ml / 100 g, the D90 / D10 ratio of the particle size distribution is 2.0-3.5,
In an electrode coated with a binder and dried on a metal current collector
Graphite powder B in which the relationship between the pressing pressure P (MPa) and the electrode density D (g / cm 3 ) is D = 0.003P to 0.007P + K2 (K2 is a constant) when the pressing pressure is in the range of 30 to 150 MPa. A method for producing a negative electrode active material for a lithium ion secondary battery, in which graphite powder A is mixed in a weight ratio of 20 to 80%, graphite powder B is 20 to 80%, and graphite powder A + graphite powder B = 100%. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008259394A JP6029200B2 (en) | 2008-10-06 | 2008-10-06 | Method for producing negative electrode active material for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008259394A JP6029200B2 (en) | 2008-10-06 | 2008-10-06 | Method for producing negative electrode active material for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010092649A JP2010092649A (en) | 2010-04-22 |
JP6029200B2 true JP6029200B2 (en) | 2016-11-24 |
Family
ID=42255190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008259394A Active JP6029200B2 (en) | 2008-10-06 | 2008-10-06 | Method for producing negative electrode active material for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6029200B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022163867A1 (en) * | 2021-02-01 | 2022-08-04 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium-ion secondary battery, evaluation method therefor, manufacturing method therefor, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2634847B1 (en) * | 2010-10-29 | 2018-12-12 | Mitsubishi Chemical Corporation | Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery |
JP5601186B2 (en) * | 2010-12-15 | 2014-10-08 | 日産自動車株式会社 | Method for manufacturing bipolar electrode |
JP5644022B2 (en) * | 2010-12-17 | 2014-12-24 | エリーパワー株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
EP2654107B1 (en) * | 2010-12-17 | 2019-12-04 | Eliiy Power Co., Ltd. | Negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and production method for negative electrode for non-aqueous electrolyte secondary battery |
JP5685794B2 (en) * | 2010-12-17 | 2015-03-18 | エリーパワー株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5685792B2 (en) * | 2010-12-17 | 2015-03-18 | エリーパワー株式会社 | Non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing negative electrode for non-aqueous electrolyte secondary battery |
WO2012133788A1 (en) * | 2011-03-30 | 2012-10-04 | 三菱化学株式会社 | Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery |
WO2012133700A1 (en) * | 2011-03-30 | 2012-10-04 | 三菱化学株式会社 | Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery |
JPWO2013018181A1 (en) * | 2011-07-29 | 2015-03-02 | トヨタ自動車株式会社 | Lithium ion secondary battery |
JP5783432B2 (en) | 2011-07-29 | 2015-09-24 | トヨタ自動車株式会社 | Lithium ion secondary battery and manufacturing method thereof |
WO2013018181A1 (en) * | 2011-07-29 | 2013-02-07 | トヨタ自動車株式会社 | Lithium ion secondary battery |
JP5725351B2 (en) * | 2011-07-29 | 2015-05-27 | トヨタ自動車株式会社 | Lithium ion secondary battery |
US9219278B2 (en) | 2011-10-20 | 2015-12-22 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery and use thereof |
JP5854267B2 (en) * | 2012-01-06 | 2016-02-09 | トヨタ自動車株式会社 | Non-aqueous secondary battery |
JP6188158B2 (en) | 2012-06-04 | 2017-08-30 | Necエナジーデバイス株式会社 | Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery |
JP5937438B2 (en) | 2012-06-29 | 2016-06-22 | トヨタ自動車株式会社 | Method for producing non-aqueous electrolyte secondary battery |
JP5630669B2 (en) * | 2012-06-29 | 2014-11-26 | トヨタ自動車株式会社 | Lithium secondary battery |
JP2014011076A (en) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
JP5939438B2 (en) * | 2012-08-01 | 2016-06-22 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP2014032922A (en) * | 2012-08-06 | 2014-02-20 | Toyota Motor Corp | Nonaqueous electrolyte secondary battery negative electrode, nonaqueous electrolyte secondary battery, and method for manufacturing them |
JP6201294B2 (en) * | 2012-11-01 | 2017-09-27 | トヨタ自動車株式会社 | Negative electrode of non-aqueous electrolyte secondary battery |
KR101560471B1 (en) * | 2013-01-25 | 2015-10-15 | 주식회사 엘지화학 | Anode for lithium secondary battery and lithium secondary battery comprising the same |
PL2797142T3 (en) | 2013-01-25 | 2019-07-31 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium secondary battery including same |
JP2014165156A (en) * | 2013-02-28 | 2014-09-08 | Panasonic Corp | Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery |
JP6119547B2 (en) * | 2013-10-09 | 2017-04-26 | 株式会社豊田自動織機 | Electrode slurry manufacturing equipment |
KR20160090338A (en) * | 2013-11-27 | 2016-07-29 | 미쓰비시 가가꾸 가부시키가이샤 | Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery |
JP6281278B2 (en) * | 2013-12-19 | 2018-02-21 | 日本ゼオン株式会社 | Slurry composition for composite particle for electrochemical element negative electrode, composite particle for electrochemical element negative electrode, and method for producing composite particle for electrochemical element negative electrode |
EP3128586B1 (en) * | 2014-03-31 | 2019-01-23 | NEC Energy Devices, Ltd. | Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery |
JP6915975B2 (en) * | 2016-09-30 | 2021-08-11 | 日東富士製粉株式会社 | Meat products, methods for reducing the odor of meat products, and agents for reducing the odor of meat products |
KR102053843B1 (en) | 2016-11-08 | 2019-12-09 | 주식회사 엘지화학 | Anode and method for preparing the same |
CN108821275B (en) * | 2018-07-03 | 2021-11-26 | 贵州格瑞特新材料有限公司 | High-capacity and high-rate graphite negative electrode material for lithium ion battery and preparation method thereof |
CN108840331B (en) * | 2018-07-03 | 2021-11-26 | 贵州格瑞特新材料有限公司 | High-layer-spacing artificial graphite material and preparation method thereof |
CN112670461B (en) * | 2019-12-31 | 2022-11-29 | 宁波杉杉新材料科技有限公司 | Natural graphite carbon coated negative electrode material, preparation method thereof and lithium ion battery |
JP7513652B2 (en) | 2022-04-12 | 2024-07-09 | プライムプラネットエナジー&ソリューションズ株式会社 | Method for manufacturing a negative electrode and a negative electrode |
JP7444322B1 (en) | 2023-07-12 | 2024-03-06 | 株式会社レゾナック | Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3718072B2 (en) * | 1999-02-04 | 2005-11-16 | 関西熱化学株式会社 | Secondary battery electrode material and method for producing coated body using the same |
JP2001135356A (en) * | 1999-11-05 | 2001-05-18 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2005044775A (en) * | 2003-01-22 | 2005-02-17 | Hitachi Maxell Ltd | Negative electrode for lithium secondary battery, manufacturing method of the same, and lithium secondary battery using the same |
JP4989114B2 (en) * | 2006-06-02 | 2012-08-01 | 日本カーボン株式会社 | Negative electrode and negative electrode active material for lithium secondary battery |
KR100817977B1 (en) * | 2007-05-03 | 2008-03-31 | 엘에스전선 주식회사 | Anode material of secondary battery and secondary battery using the same |
-
2008
- 2008-10-06 JP JP2008259394A patent/JP6029200B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022163867A1 (en) * | 2021-02-01 | 2022-08-04 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium-ion secondary battery, evaluation method therefor, manufacturing method therefor, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
WO2022162950A1 (en) * | 2021-02-01 | 2022-08-04 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium-ion secondary battery, method for evaluating negative electrode material, method for manufacturing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP2010092649A (en) | 2010-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029200B2 (en) | Method for producing negative electrode active material for lithium ion secondary battery | |
JP5864687B2 (en) | Method for producing graphene-based composite negative electrode material, and manufactured negative electrode material and lithium ion secondary battery | |
JP2022506881A (en) | Electrically active material for metal ion batteries | |
KR101342601B1 (en) | Negative active material, manufacturing method thereof, and lithium battery containing the material | |
JP6123839B2 (en) | Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP4989114B2 (en) | Negative electrode and negative electrode active material for lithium secondary battery | |
JP5673545B2 (en) | Lithium ion secondary battery negative electrode and lithium ion secondary battery | |
JP5131429B2 (en) | Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same | |
US10476078B2 (en) | Positive electrode for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode | |
JP2008186732A (en) | Negative electrode active material for lithium secondary battery, negative electrode using the same, and manufacturing method | |
EP2280437A1 (en) | Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor | |
JP2015232996A (en) | Positive electrode active material, method for manufacturing the same, positive electrode and lithium ion secondary battery | |
US20240120482A1 (en) | Negative electrode material for lithium-ion secondary battery, method of evaluating same, and method of producing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
WO2022131262A1 (en) | Lithium-ion secondary-battery negative electrode material and method for manufacturing same, lithium-ion secondary-battery negative electrode, and lithium ion secondary battery | |
CN113745452B (en) | Electrochemical device and electronic device | |
JP2009283353A (en) | Electrode for battery, manufacturing method thereof, and battery | |
JP5320645B2 (en) | Negative electrode active material for lithium ion secondary battery and negative electrode | |
WO2021152778A1 (en) | Negative-electrode material for lithium-ion secondary cell, method for manufacturing same, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell | |
JP7226431B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7238884B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
TW201943130A (en) | Negative electrode material for lithium ion secondary battery, slurry for negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
TW202343856A (en) | Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4267885B2 (en) | Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery | |
JP2000323142A (en) | Positive electrode active material for non-aqueous secondary battery, positive electrode and secondary battery | |
JP2003123754A (en) | Graphite particles for negative electrode of nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6029200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |