JP5131429B2 - Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP5131429B2
JP5131429B2 JP2006338220A JP2006338220A JP5131429B2 JP 5131429 B2 JP5131429 B2 JP 5131429B2 JP 2006338220 A JP2006338220 A JP 2006338220A JP 2006338220 A JP2006338220 A JP 2006338220A JP 5131429 B2 JP5131429 B2 JP 5131429B2
Authority
JP
Japan
Prior art keywords
negative electrode
silicon
resin
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006338220A
Other languages
Japanese (ja)
Other versions
JP2008153006A (en
Inventor
悟 宮脇
幹夫 荒又
周 樫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006338220A priority Critical patent/JP5131429B2/en
Publication of JP2008153006A publication Critical patent/JP2008153006A/en
Application granted granted Critical
Publication of JP5131429B2 publication Critical patent/JP5131429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用負極及びその製造方法に関するものであり、特には、リチウムイオン二次電池用負極及びその製造方法に関するものである。   The present invention relates to a negative electrode for a nonaqueous electrolyte secondary battery and a method for producing the same, and more particularly to a negative electrode for a lithium ion secondary battery and a method for producing the same.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(特開平5−174818号公報、特開平6−60867号公報:特許文献1,2他)、溶湯急冷した金属酸化物を負極材として適用する方法(特開平10−294112号公報:特許文献3)、負極材料に酸化珪素を用いる方法(特許第2997741号公報:特許文献4)、負極材料にSi22O及びGe22Oを用いる方法(特許第2997741号公報:特許文献5)等が知られている。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, Sn, or a composite oxide thereof as a negative electrode material (JP-A-5-174818) JP-A-6-60867: Patent Documents 1 and 2), a method of applying a molten metal quenching metal oxide as a negative electrode material (JP-A-10-294112: Patent Document 3), silicon oxide as a negative electrode material A method of using (Patent No. 2999741: Patent Document 4), a method of using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (Patent No. 2999741: Patent Document 5), and the like are known.

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

その中でも、負極材料に酸化珪素を用いる方法(特許文献4)は、電池特性の良好なリチウムイオン二次電池は得られるものの、膨張収縮により負極膜が損傷する傾向があった。
なお、繊維状品や針状フィラーを添加した負極については、例えば特許文献6(特開2006−172901号公報)等が知られている。
Among them, the method using silicon oxide as the negative electrode material (Patent Document 4) tends to damage the negative electrode film due to expansion and contraction, although a lithium ion secondary battery with good battery characteristics can be obtained.
For example, Patent Document 6 (Japanese Patent Laid-Open No. 2006-172901) is known as a negative electrode to which a fibrous product or a needle-like filler is added.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特許第2997741号公報Japanese Patent No. 2999741 特開2006−172901号公報JP 2006-172901 A

本発明は、上記事情に鑑みなされたものであり、負極膜の損傷が少なく、容量維持率の高いリチウムイオン二次電池用負極として適した非水電解質二次電池用負極及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a negative electrode for a non-aqueous electrolyte secondary battery suitable as a negative electrode for a lithium ion secondary battery with little damage to the negative electrode film and a high capacity retention rate, and a method for producing the same The purpose is to do.

本発明者らは、上記目的を達成するため鋭意検討した結果、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質として、その粒度分布が、レーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であるように選定すると共に、この負極活物質に添加する繊維状高分子物質の繊維長が珪素を含有する負極活物質の粒子径D50以上であるように選定し、上記負極活物質に対して上記繊維状高分子物質を0.2〜30質量%添加したものを用いること、この場合、特には、これらを含む含む混合物を200℃以上で焼成して用いることが上記目的の達成にとって有効であることを知見し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have determined that the particle size distribution is a laser diffraction scattering type particle size distribution measuring method as a negative electrode active material containing silicon capable of occluding and releasing lithium ions. the particle diameter corresponding to cumulative 50% cumulative particle size from fine side when the D 50, with selected so D 50 is in the range of 0.1 to 30 [mu] m, is added to the negative active material according to fiber length of the fibrous polymeric material selected to be a negative electrode active material particle diameter D 50 or more containing silicon, the fibrous polymer material with respect to the negative electrode active material from 0.2 to 30 wt% In this case, it has been found that it is effective to achieve the above object by using an added material, in particular, by firing a mixture containing these at 200 ° C. or higher, and the present invention has been made.

従って、本発明は、下記非水電解質二次電池用負極及びその製造方法を提供する。
[1].下記(1)、(2)及び(3)
(1)金属不純物濃度が各々1ppm以下の高純度シリコン粉末、ケミカルグレードのシリコン粉末、冶金的に精製された金属珪素を粉末状に加工したもの、これらの合金、珪素の低級酸化物及び部分酸化物、珪素の窒化物及び部分窒化物、
(2)上記(1)をさらに、炭素材料と混合したもの、合金化したもの、導電材で被覆したもの、有機ガスでカーボンを析出させたもの、樹脂を炭化させたもの、樹脂にカーボンブラックを添加したのち炭化したもの、
(3)1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたもの
から選択される、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質と、この負極活物質に対して、繊維状高分子物質を0.2〜30質量%含有する負極材とを含む非水電解質二次電池用負極であって、珪素を含有する負極活物質の粒度分布がレーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であり、繊維状高分子物質の繊維長が珪素を含有する負極活物質の粒子径D50以上であり、珪素を含有する負極活物質と繊維状高分子物質を含む混合物を200℃以上で焼成することにより得られたことを特徴とする非水電解質二次電池用負極。
[2].繊維状高分子物質が、セルロース樹脂、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂及びアクリル樹脂から選択される高分子の繊維状品であることを特徴とする[1]記載の非水電解質二次電池用負極。
[3].リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質が、1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたものから選択されることを特徴とする[1]又は[2]記載の非水電解質二次電池用負極。
[4].空間を有することを特徴とする[1]、[2]又は[3]記載の非水電解質二次電池用負極。
[5].下記(1)、(2)及び(3)
(1)金属不純物濃度が各々1ppm以下の高純度シリコン粉末、ケミカルグレードのシリコン粉末、冶金的に精製された金属珪素を粉末状に加工したもの、これらの合金、珪素の低級酸化物及び部分酸化物、珪素の窒化物及び部分窒化物、
(2)上記(1)をさらに、炭素材料と混合したもの、合金化したもの、導電材で被覆したもの、有機ガスでカーボンを析出させたもの、樹脂を炭化させたもの、樹脂にカーボンブラックを添加したのち炭化したもの、
(3)1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたもの
から選択される、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質として、その粒度分布が、レーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であるように選定すると共に、この負極活物質に添加する繊維状高分子物質の繊維長が珪素を含有する負極活物質の粒子径D50以上であるように選定し、上記負極活物質に対して上記繊維状高分子物質を0.2〜30質量%添加したものを含む混合物を200℃以上で焼成することを特徴とする非水電解質二次電池用負極の製造方法。
[6].繊維状高分子物質が、セルロース樹脂、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂及びアクリル樹脂から選択される高分子の繊維状品であることを特徴とする[5]記載の非水電解質二次電池用負極の製造方法。
Accordingly, the present invention provides the following negative electrode for a non-aqueous electrolyte secondary battery and a method for producing the same.
[1]. (1), (2) and (3) below
(1) High-purity silicon powder having a metal impurity concentration of 1 ppm or less, chemical-grade silicon powder, metallurgically refined metal silicon processed into powder, alloys thereof, lower oxides of silicon and partial oxidation , Silicon nitride and partial nitride,
(2) The above (1) is further mixed with a carbon material, alloyed, coated with a conductive material, carbon precipitated with an organic gas, carbonized resin, carbon black on resin And carbonized after adding
(3) It is possible to occlude and release lithium ions selected from particles having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in a silicon-based compound and those coated with carbon. A negative electrode for a non-aqueous electrolyte secondary battery, comprising: a negative electrode active material containing silicon; and a negative electrode material containing 0.2 to 30% by mass of a fibrous polymer material with respect to the negative electrode active material, When the particle size distribution of the negative electrode active material containing a particle diameter corresponding to 50 mass% cumulative from the fine particle side is D 50 by the cumulative particle diameter measured by the laser diffraction scattering particle size distribution measurement method, D 50 is 0.1 to 30 μm. The mixture of the negative electrode active material containing silicon and the fibrous polymer material is 200 ° C., and the fiber length of the fibrous polymer material is not less than the particle diameter D 50 of the negative electrode active material containing silicon. Obtained by firing above Negative electrode for a nonaqueous electrolyte secondary battery characterized in that it.
[2]. The fibrous polymer substance is a polymer fibrous product selected from cellulose resin, phenol resin, polyvinyl alcohol resin, furan resin, polystyrene resin, polyimide resin, polyamide resin and acrylic resin [1. ] The negative electrode for nonaqueous electrolyte secondary batteries of description.
[3]. A negative electrode active material containing silicon capable of inserting and extracting lithium ions, particles having a structure in which microcrystals of silicon having a size of 1 to 500 nm are dispersed in a silicon-based compound, and this are coated with carbon The negative electrode for a nonaqueous electrolyte secondary battery according to [1] or [2], wherein the negative electrode is selected from those described above.
[4]. The negative electrode for a non-aqueous electrolyte secondary battery according to [1], [2] or [3], characterized by having a space.
[5]. (1), (2) and (3) below
(1) High-purity silicon powder having a metal impurity concentration of 1 ppm or less, chemical-grade silicon powder, metallurgically refined metal silicon processed into powder, alloys thereof, lower oxides of silicon and partial oxidation , Silicon nitride and partial nitride,
(2) The above (1) is further mixed with a carbon material, alloyed, coated with a conductive material, carbon precipitated with an organic gas, carbonized resin, carbon black on resin And carbonized after adding
(3) Particles having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in silicon-based compounds, and those coated with carbon
As a negative electrode active material containing silicon that can occlude / release lithium ions, the particle size distribution is 50 mass% cumulative from the fine particle side by the particle size distribution measured by the laser diffraction scattering particle size distribution measurement method. when the particle diameter corresponding to a D 50 to, together with selected so D 50 is in the range of 0.1 to 30 [mu] m, containing a fiber length of silicon fibrous polymer material to be added to the anode active material The negative electrode active material is selected so as to have a particle diameter D 50 or larger, and a mixture containing 0.2 to 30% by mass of the fibrous polymer material added to the negative electrode active material is fired at 200 ° C. or higher. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
[6]. The fibrous polymer substance is a polymeric fibrous product selected from cellulose resin, phenol resin, polyvinyl alcohol resin, furan resin, polystyrene resin, polyimide resin, polyamide resin and acrylic resin [5. ] The manufacturing method of the negative electrode for nonaqueous electrolyte secondary batteries of description.

本発明により、損傷が少なく、容量維持率が高く、サイクル特性に優れ、コスト的にも有利な非水電解質二次電池、特にリチウムイオン二次電池用負極を作製することが可能となる。   According to the present invention, it is possible to produce a nonaqueous electrolyte secondary battery, in particular, a negative electrode for a lithium ion secondary battery, which is less damaged, has a high capacity retention rate, is excellent in cycle characteristics, and is advantageous in terms of cost.

本発明に係る非水電解質二次電池用負極は、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質に対して繊維状高分子物質を0.2〜30質量%含有するものである。   The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention contains 0.2 to 30% by mass of a fibrous polymer material with respect to a negative electrode active material containing silicon capable of occluding and releasing lithium ions. Is.

ここで、負極活物質としては、リチウムイオンを吸蔵及び放出することが可能な珪素を含む活物質が挙げられる。具体的には、金属不純物濃度が各々1ppm以下の高純度シリコン粉末や塩酸で洗浄したのちフッ化水素酸及びフッ化水素酸と硝酸の混合物で処理することで金属不純物を取り除いたケミカルグレードのシリコン粉末及び冶金的に精製された金属珪素を粉末状に加工したもの、更にそれらの合金や珪素の低級酸化物や部分酸化物、珪素の窒化物や部分窒化物、更にそれらを導電化処理するため炭素材料と混合したり、メカニカルアロイング等により合金化したもの、スパッタリングやめっき法により金属等の導電材で被覆したもの、有機ガスでカーボンを析出させたもの、樹脂を炭化させたものや樹脂にカーボンブラックを添加したのち炭化したものを含む。この場合、負極活物質としては、特開2004−47404号公報に記載されているような、1〜500nmの大きさの珪素の微結晶が珪素系化合物、特に二酸化珪素に分散した構造を有する粒子の表面を炭素でコーティングしたものが好適である。これらの活物質は、従来より用いられていた黒鉛と比べ高い充放電容量を持つが、充放電を繰り返した際に生じる体積膨張と収縮により、電極が損傷する問題があった。特に珪素の低級酸化物は、充放電を繰り返した際に生じる体積膨張と収縮が珪素そのものを用いた場合に比べ非常に小さくなり、サイクル特性も良好な様子を示すが、なお改良の余地があった。   Here, examples of the negative electrode active material include an active material containing silicon capable of inserting and extracting lithium ions. Specifically, chemical-grade silicon from which metal impurities are removed by washing with high-purity silicon powder or hydrochloric acid with a metal impurity concentration of 1 ppm or less and then treating with hydrofluoric acid or a mixture of hydrofluoric acid and nitric acid. Powders and metallurgically refined metal silicon processed into powder, their alloys, lower oxides and partial oxides of silicon, silicon nitrides and partial nitrides, and further for conducting a conductive treatment Mixed with carbon materials, alloyed by mechanical alloying, etc., coated with a conductive material such as metal by sputtering or plating, deposited carbon with organic gas, carbonized resin or resin Including carbon black added and carbonized. In this case, the negative electrode active material is a particle having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in a silicon-based compound, particularly silicon dioxide, as described in JP-A-2004-47404. Those having a surface coated with carbon are preferred. These active materials have a charge / discharge capacity higher than that of conventionally used graphite, but there is a problem that the electrodes are damaged by volume expansion and contraction that occur when charge / discharge is repeated. In particular, lower oxides of silicon exhibit much smaller volume expansion and contraction when repeated charge / discharge than when silicon itself is used, and the cycle characteristics are good, but there is still room for improvement. It was.

かかる点から、本発明においては、珪素を含有する負極活物質として、その粒度分布が、レーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であるものを用いる。 From this point, in the present invention, as the negative electrode active material containing silicon, the particle size distribution is a particle size corresponding to a cumulative particle size by the laser diffraction scattering type particle size distribution measurement method of 50% by mass from the fine particle side. When 50 , D 50 is in the range of 0.1 to 30 μm.

リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質を用いた負極は、リチウムのドープ脱ドープに伴う膨張収縮が黒鉛に比べて大きく、電極の膨張収縮を均一とするためには、粒子一つ一つが均一であることが好ましい。即ち、珪素を含有する負極活物質がレーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であり、更に好ましくは0.5〜20μmである粒度分布を持つ珪素を含有する負極活物質とすることで均一な膨張収縮を伴う負極材が得られる。 A negative electrode using a negative electrode active material containing silicon capable of occluding and releasing lithium ions has a larger expansion / shrinkage due to lithium doping and dedoping compared to graphite, so that the expansion / shrinkage of the electrode is uniform. It is preferable that each particle is uniform. That is, when the negative electrode active material containing silicon has a cumulative particle diameter measured by the laser diffraction scattering particle size distribution measurement method as a particle diameter corresponding to a cumulative 50 mass% from the fine particle side as D 50 , D 50 is 0.1 to 30 μm. A negative electrode material with uniform expansion and contraction can be obtained by using a negative electrode active material containing silicon having a particle size distribution of 0.5 to 20 μm.

所定の粒子径とするためには、良く知られた粉砕機と良く知られた分級機が用いられる。粉砕機は、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などが用いられる。粉砕は、湿式、乾式ともに用いられる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級もしくはふるい分け分級が用いられる。乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の流れの乱れ、速度分布、静電気の影響などで分級効率を低下させない様、分級をする前に前処理(水分、分散性、湿度などの調整)を行ったり、使用される気流の水分や酸素濃度を調整して用いられる。また、ジェットミルに乾式分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。   In order to obtain a predetermined particle diameter, a well-known pulverizer and a well-known classifier are used. The crusher, for example, moves the grinding media such as balls and beads, and uses the impact force, friction force, and compression force due to the kinetic energy to crush the material to be crushed, the media agitation mill, and the compression force by the roller. Rolling mill that uses pulverization, jet mill that pulverizes the crushed material against the lining material at high speed, and pulverization using the impact force, and impact force caused by rotation of a rotor with a hammer, blade, pin, etc. A hammer mill, a pin mill, a disk mill, a colloid mill using a shearing force, a high-pressure wet opposed collision type disperser “Ultimizer”, or the like is used. For pulverization, both wet and dry processes are used. In order to adjust the particle size distribution after pulverization, dry classification, wet classification or sieving classification is used. In the dry classification, the process of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, mainly using air flow. Pre-classification (adjustment of moisture, dispersibility, humidity, etc.) is performed before classification so that the classification efficiency is not reduced due to the shape, air flow disturbance, velocity distribution, static electricity, etc. Used by adjusting moisture and oxygen concentration. In the type in which the dry classifier is integrated with the jet mill, pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.

更に、本発明においては、負極材を保持するために、その珪素を含有する負極活物質の粒子径D50の等倍以上の繊維長、更に好ましくは2倍以上10倍以下の繊維長を有する有機化合物重合体の繊維状品(繊維状高分子物質)を該負極活物質に対して負極材製造時の乾燥(焼成)工程後において0.2〜30質量%、好ましくは0.2〜20質量%、より好ましくは1〜20質量%、更に好ましくは2〜15質量%含有させる。繊維長が負極活物質の粒子径D50の10倍を超える繊維長の繊維状品を用いた場合、電極作製時に均一なペーストを作製することが困難となったり、均一に塗布することが困難となるおそれがある。また、その含有量が少なすぎると、繊維状品を添加した効果が認められず、多すぎると、活物質の含有量が減少して充放電容量が低下してしまう。 Furthermore, in the present invention, in order to hold the negative electrode material, it has a fiber length that is at least equal to the particle diameter D 50 of the negative electrode active material containing silicon, more preferably a fiber length that is not less than 2 times and not more than 10 times. The organic compound polymer fibrous product (fibrous polymer material) is 0.2 to 30% by mass, preferably 0.2 to 20% after the drying (firing) step in producing the negative electrode material with respect to the negative electrode active material. It is contained by mass%, more preferably 1 to 20 mass%, still more preferably 2 to 15 mass%. When a fibrous product having a fiber length exceeding 10 times the particle diameter D 50 of the negative electrode active material is used, it is difficult to produce a uniform paste during electrode production or to apply uniformly. There is a risk of becoming. On the other hand, if the content is too small, the effect of adding the fibrous product is not recognized. If the content is too large, the content of the active material is reduced and the charge / discharge capacity is lowered.

この場合、従来の繊維状品は、導電性があるカーボン繊維や単層及び多層カーボンナノチューブ、例えば、昭和電工(株)のVGCF(繊維径150nm、繊維長10μm)などが導電性カーボン繊維もしくは多層カーボンナノチューブとして挙げられるが、特許文献6にあるように微少短絡の問題、コストの問題もあり、カーボン繊維の使用には細心の注意が必要であった。   In this case, the conventional fibrous products include conductive carbon fibers, single-walled and multi-walled carbon nanotubes, such as VGCF (fiber diameter 150 nm, fiber length 10 μm) of Showa Denko KK or the like. Although it is mentioned as a carbon nanotube, there exist the problem of a micro short circuit and the problem of cost as it exists in patent document 6, and the careful attention was required for the use of carbon fiber.

これに対し、本発明において好適に用いられる繊維状高分子物質は、セルロース樹脂、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂及びアクリル樹脂の少なくとも一種から選択される高分子物質の繊維状品であり、特に好ましくはセルロース繊維であって、繊維状構造を有するものである限り、焼成工程において一部又は全部が炭化したものであってもよい。   On the other hand, the fibrous polymer material suitably used in the present invention is a high polymer selected from at least one of cellulose resin, phenol resin, polyvinyl alcohol resin, furan resin, polystyrene resin, polyimide resin, polyamide resin, and acrylic resin. It is a fibrous product of a molecular substance, particularly preferably a cellulose fiber, which may be partially or wholly carbonized in the firing step as long as it has a fibrous structure.

なお、セルロースは、特開平2−54866号公報の結晶セルロースの焼成品として負極活物質として用いられており、高温で炭化させたセルロースは特性に優れるリチウム二次電池用負極材としても使用可能である。電極作製の際、体積当たりの容量の向上ため電極を圧密する手法が一般的であるが、膨張収縮の大きな珪素を含有する負極活物質を用いる場合には、電極の圧密条件が難しい等の問題があった。これに対し、セルロース繊維を用いて圧密した電極を200℃以上(通常200〜500℃)、好ましくは200〜400℃、より好ましくは200〜350℃、更に好ましくは200〜300℃程度の温度で焼成することで適度な空間を作ることが可能となり、膨張収縮を緩和する効果や更に温度を上げてセルロースの繊維状構造を保持して炭化することで、導電経路の確保と膨張収縮時の緩和の役割として有効な負極の作製が可能となる。   Cellulose is used as a negative electrode active material as a baked product of crystalline cellulose in JP-A-2-54866, and cellulose carbonized at a high temperature can be used as a negative electrode material for lithium secondary batteries having excellent characteristics. is there. A method of consolidating the electrode in order to improve the capacity per volume at the time of electrode preparation is general, but when using a negative electrode active material containing silicon that has a large expansion and contraction, there are problems such as difficulty in consolidating the electrode was there. On the other hand, the electrode compacted using cellulose fibers is 200 ° C. or higher (usually 200 to 500 ° C.), preferably 200 to 400 ° C., more preferably 200 to 350 ° C., and even more preferably about 200 to 300 ° C. By firing, it becomes possible to create an appropriate space, and the effect of alleviating expansion and contraction, and further increasing the temperature to retain and carbonize the fibrous structure of cellulose, ensuring a conductive path and relaxation during expansion and contraction Thus, it is possible to produce a negative electrode that is effective as a role.

本発明にかかわる非水電解液二次電池用負極は、正極、負極、セパレータ、非水電解液を備えた二次電池、特にリチウムイオン二次電池の負極として使用することができる。   The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention can be used as a positive electrode, a negative electrode, a separator, a secondary battery provided with a non-aqueous electrolyte, particularly a negative electrode of a lithium ion secondary battery.

ここで、正極活物質としては、リチウムイオンを吸蔵及び放出することが可能な酸化物、硫化物又は有機高分子化合物が挙げられ、これらのいずれか1種又は2種以上が用いられる。具体的には、例えばTiS2、MoS2、NbS2、ZrS2、VS2、V25、MoO3、Mg(V382などのリチウムを含有しない金属硫化物、酸化物、又はリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe2などの複合金属も挙げられる。中でも、エネルギー密度を高くするためには、Li(Met)x2を主体とするリチウム複合酸化物が好ましい。なお、Metは具体的には、コバルト、ニッケル、鉄、及びマンガンのうち少なくとも1種が好ましく、xは、通常、0.05≦x≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造をもつLiCoO2、LiNiO2、LiFeO2、LixNiyCo1-y2(但し、0.05≦x≦1.10、0≦y≦1)、スピネル構造のLiMn24及び斜方晶のLiMnO2が挙げられる。更に高電圧対応型として置換スピネルマンガン化合物LiMetxMn1-x4(但し、0≦x≦1)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、銅及び亜鉛などが挙げられる。 Here, examples of the positive electrode active material include oxides, sulfides, and organic polymer compounds capable of occluding and releasing lithium ions, and any one or more of these are used. Specifically, for example, TiS 2 , MoS 2 , NbS 2 , ZrS 2 , VS 2 , V 2 O 5 , MoO 3 , Mg (V 3 O 8 ) 2 and other metal sulfides and oxides not containing lithium, or lithium composite oxide is exemplified containing lithium and a composite metal such as NbSe 2 can also be mentioned. Among these, in order to increase the energy density, a lithium composite oxide mainly composed of Li (Met) x O 2 is preferable. Specifically, Met is preferably at least one of cobalt, nickel, iron, and manganese, and x is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiFeO 2 , Li x Ni y Co 1-y O 2 having a layer structure (where 0.05 ≦ x ≦ 1.10, 0 ≦ y ≦ 1), spinel-structured LiMn 2 O 4 and orthorhombic LiMnO 2 . Furthermore, substituted spinel manganese compounds LiMet x Mn 1-x O 4 (where 0 ≦ x ≦ 1) are also used as high-voltage compatible types, where Met is titanium, chromium, iron, cobalt, copper, zinc, etc. Is mentioned.

なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、塩化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600〜1,000℃の範囲内の温度で焼成することにより調製される。   The lithium composite oxide is obtained by, for example, grinding lithium carbonate, nitrate, chloride or hydroxide and transition metal carbonate, nitrate, oxide or hydroxide according to a desired composition. It is prepared by mixing and baking at a temperature in the range of 600 to 1,000 ° C. in an oxygen atmosphere.

更に、正極活物質としては有機高分子化合物も使用することができる。例示するとポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物等の導電性ポリマーなどの高分子化合物である。   Furthermore, an organic polymer compound can also be used as the positive electrode active material. Illustrative examples include high molecular compounds such as conductive polymers such as polyacetylene, polypyrrole, polyparaphenylene, polyaniline, polythiophene, polyacene, and polysulfide compounds.

正極、負極の作製方法については特に制限はない。一般的には、溶媒に活物質、結着剤、導電剤等を加えてスラリー状とし、集電体シートに塗布し、乾燥、圧着して作製する。   There is no restriction | limiting in particular about the preparation methods of a positive electrode and a negative electrode. In general, an active material, a binder, a conductive agent or the like is added to a solvent to form a slurry, which is applied to a current collector sheet, dried and pressed.

結着剤としては、一般的にポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、各種ポリイミド、ポリアミド樹脂等が挙げられる。特に高温でセルロース繊維を収縮させて膨張収縮の緩和として用いるには、各種のポリイミド、ポリアミド樹脂が特に好ましい。その使用量は正極又は負極の全体に対して通常20質量%以下(0〜20質量%)、好ましくは2〜20質量%、より好ましくは5〜15質量%程度とすることができる。   Examples of the binder generally include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, various polyimides, and polyamide resins. In particular, various polyimides and polyamide resins are particularly preferable for shrinking cellulose fibers at high temperatures and using them as relaxation of expansion and contraction. The amount used thereof is usually 20% by mass or less (0 to 20% by mass), preferably 2 to 20% by mass, and more preferably about 5 to 15% by mass with respect to the entire positive electrode or negative electrode.

導電剤としては、一般的に黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル等の金属材料が挙げられる。その使用量は正極又は負極の全体に対して50質量%以下(0〜50質量%)程度とすることができる。   Examples of the conductive agent generally include carbon-based materials such as graphite and carbon black, and metal materials such as copper and nickel. The usage-amount can be made into about 50 mass% or less (0-50 mass%) with respect to the whole positive electrode or a negative electrode.

集電体としては、正極用にはアルミニウム又はその合金、負極用には銅、ステンレス、ニッケル等の金属又はそれらの合金等が挙げられる。   Examples of the current collector include aluminum or an alloy thereof for the positive electrode, and a metal such as copper, stainless steel, nickel, or an alloy thereof for the negative electrode.

なお、本発明において、負極の作製に対しては、集電体シートに、上記負極活物質、繊維状高分子物質、結着剤、及び必要に応じて導電剤を溶媒に添加してスラリーとしたものを塗布し、これを乾燥した後、圧力0〜5ton/cm2、特に0〜2ton/cm2で圧着し、200℃以上、好ましくは250〜500℃、更に好ましくは250〜450℃で、0.5〜20時間、特に1〜10時間焼成したものを用いることが好ましい。 In the present invention, for the production of the negative electrode, a slurry is prepared by adding the negative electrode active material, the fibrous polymer material, the binder, and, if necessary, a conductive agent to the current collector sheet. after the one was applied and dried, pressure 0~5ton / cm 2, in particular crimped in 0~2ton / cm 2, 200 ℃ or higher, preferably 250 to 500 ° C., more preferably at 250 to 450 ° C. , 0.5 to 20 hours, particularly 1 to 10 hours are preferably used.

また、正極と負極の間に用いられるセパレータは電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィンの多孔質シート、又は不織布が挙げられる。   In addition, the separator used between the positive electrode and the negative electrode is not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, but generally a porous sheet of polyolefin such as polyethylene and polypropylene, Or a nonwoven fabric is mentioned.

電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレータを積層したコインタイプ、電極シートとセパレータをスパイラル状にしたシリンダータイプ等が挙げられる。   The shape of the battery is arbitrary and is not particularly limited. In general, a coin type in which an electrode punched into a coin shape and a separator are stacked, a cylinder type in which an electrode sheet and a separator are spiraled, and the like can be given.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記例で%は質量%を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples,% indicates mass%.

[実施例1]
[負極活物質(導電性珪素複合体)の作製]
負極活物質である導電性珪素複合体は、特開2004−47404号公報に記載の方法に基づき作製した。以下にその作製方法を記す。
二酸化珪素粉末(BET比表面積=200m2/g)とケミカルグレード用金属珪素粉末(BET比表面積=4m2/g)を等モルの割合で混合した混合粉末を、1,350℃、0.1Torrの高温減圧雰囲気で熱処理し、発生したSiOxガスをSUS製基体に析出させた。次にこの析出物を回収した後、ジェットミル(ホソカワミクロン(株)製)にて粉砕し、D50=4.8μm、D10=2.5μm(D50/D10=1.9)の酸化珪素粉末(SiOx:x=1.02)を得た。ここで得られた粉末をCu−Kα線によるX線回折を行い、得られた粉末は無定形の酸化珪素(SiOx)粉末であることを確認した。
[Example 1]
[Preparation of negative electrode active material (conductive silicon composite)]
A conductive silicon composite as a negative electrode active material was produced based on the method described in JP-A-2004-47404. The production method is described below.
A mixed powder prepared by mixing silicon dioxide powder (BET specific surface area = 200 m 2 / g) and metal silicon powder for chemical grade (BET specific surface area = 4 m 2 / g) at an equimolar ratio was 1,350 ° C., 0.1 Torr. Then, the generated SiO x gas was deposited on a SUS substrate. Next, this precipitate was collected and then pulverized with a jet mill (manufactured by Hosokawa Micron Corporation), and oxidation of D 50 = 4.8 μm and D 10 = 2.5 μm (D 50 / D 10 = 1.9). Silicon powder (SiO x : x = 1.02) was obtained. The powder obtained here was subjected to X-ray diffraction using Cu-Kα rays, and it was confirmed that the obtained powder was amorphous silicon oxide (SiO x ) powder.

得られたD50=4.8μmの酸化珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1,150℃、平均滞留時間約2時間の条件で酸化珪素の不均化と同時に熱CVDを行った。運転終了後、降温し、黒色粉末を回収した。得られた黒色粉末の蒸着炭素量は5.2%であり、X線回折パタ−ンより、得られた黒色粉末は、酸化珪素粉末とは異なり、2θ=28.4°付近のSi(111)に帰属される回折線が存在し、この回折線の半価幅よりシェーラー法で結晶の大きさを求め、二酸化珪素中に分散した珪素の結晶の大きさは11nmであり、このことから微細な珪素(Si)の結晶が、二酸化珪素(SiO2)の中に分散しているD50=4.8μmの導電性珪素複合体粉末を作製した。 The obtained silicon oxide powder of D 50 = 4.8 μm was mixed with a non-uniform silicon oxide using a rotary kiln type reactor under conditions of 1,150 ° C. and average residence time of about 2 hours under a methane-argon mixed gas flow. At the same time, thermal CVD was performed. After the operation was completed, the temperature was lowered and black powder was recovered. The amount of deposited carbon of the obtained black powder is 5.2%. From the X-ray diffraction pattern, the obtained black powder is different from the silicon oxide powder in that Si (111) around 2θ = 28.4 °. ), And the crystal size is obtained from the half-value width of this diffraction line by the Scherrer method. The size of the silicon crystal dispersed in silicon dioxide is 11 nm. A conductive silicon composite powder having a D 50 = 4.8 μm in which fresh silicon (Si) crystals are dispersed in silicon dioxide (SiO 2 ) was prepared.

[負極の作製]
負極の作製は、以下の手順で行った。
50=4.8μmの導電性珪素複合体粉末にセルロース繊維(繊維径1μm、繊維直径5〜30μm、平均粒子径D50=6.0μm)の粉末を質量比95対5の割合で秤量し、これにポリイミドを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間真空乾燥後、ローラープレスにより電極を加圧成形し、400℃で1時間真空乾燥(焼成)し、2cm2に打ち抜き負極とした。
[Production of negative electrode]
The negative electrode was produced according to the following procedure.
Weigh the powder of cellulose fiber (fiber diameter 1 μm, fiber diameter 5-30 μm, average particle diameter D 50 = 6.0 μm) into the conductive silicon composite powder of D 50 = 4.8 μm at a mass ratio of 95: 5. Add 10% polyimide to this, add N-methylpyrrolidone to make a slurry, apply this slurry to a 20 μm thick copper foil, vacuum dry at 80 ° C. for 1 hour, then press-mold the electrode by roller press Then, it was vacuum-dried (fired) at 400 ° C. for 1 hour, punched out to 2 cm 2 and used as a negative electrode.

[電池の作製]
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
[Production of battery]
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が0.1mA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。以上の充放電試験を100回繰り返し、100サイクル後のサイクル保持率を求めた。結果を表1に示す。 The prepared lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. The charging was terminated when the current value fell below 0.1 mA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , and discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined. The above charge / discharge test was repeated 100 times, and the cycle retention after 100 cycles was determined. The results are shown in Table 1.

また、使用したセルロース繊維の示差熱分析(Tg−DTA)を100〜500℃、昇温速度5.0℃/min、大気圧下窒素雰囲気中で求めた。結果を図1に示す。
図1より、使用したセルロース繊維は、300℃前後より質量減少し、400℃では10%程度の質量になることが判る。
更に、使用したセルロース繊維を別途に400℃で熱処理したものを四端子法にて比抵抗を求めた。比抵抗は、0.1Ω・cmであった。
Moreover, the differential thermal analysis (Tg-DTA) of the used cellulose fiber was calculated | required in 100-500 degreeC, the temperature increase rate of 5.0 degree-C / min, and nitrogen atmosphere under atmospheric pressure. The results are shown in FIG.
It can be seen from FIG. 1 that the used cellulose fibers have a mass reduction from around 300 ° C. and a mass of about 10% at 400 ° C.
Furthermore, the specific resistance was calculated | required by the four-terminal method what used the cellulose fiber separately heat-processed at 400 degreeC. The specific resistance was 0.1 Ω · cm.

[実施例2]
[負極の作製]
実施例1の負極の乾燥(焼成)温度を250℃とした以外は、同様の手順で行った。結果を表1に示す。
また、使用したセルロース繊維を別途に250℃で熱処理したものを四端子法にて比抵抗を求めた。比抵抗は、107Ω・cm以上であった。
[Example 2]
[Production of negative electrode]
The same procedure was followed except that the drying (firing) temperature of the negative electrode of Example 1 was 250 ° C. The results are shown in Table 1.
Moreover, the specific resistance was calculated | required by the four-terminal method what used the cellulose fiber separately heat-processed at 250 degreeC. The specific resistance was 10 7 Ω · cm or more.

[比較例1]
実施例1で作製した負極活物質(導電性珪素複合体粉末)を用い、ポリイミドを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間真空乾燥後、ローラープレスにより電極を加圧成形し、400℃で1時間真空乾燥し、2cm2に打ち抜き負極とした。
実施例1と同様にしてリチウムイオン二次電池を作製し、サイクル特性を求めた。結果を表1に示す。
[Comparative Example 1]
Using the negative electrode active material (conductive silicon composite powder) prepared in Example 1, 10% of polyimide was added, N-methylpyrrolidone was further added to form a slurry, and this slurry was applied to a copper foil having a thickness of 20 μm. After vacuum drying at 80 ° C. for 1 hour, the electrode was press-molded with a roller press, vacuum dried at 400 ° C. for 1 hour, punched out to 2 cm 2 and used as a negative electrode.
A lithium ion secondary battery was produced in the same manner as in Example 1, and the cycle characteristics were determined. The results are shown in Table 1.

Figure 0005131429
Figure 0005131429

セルロース繊維の示差熱分析(Tg−DTA)を示す図である。It is a figure which shows the differential thermal analysis (Tg-DTA) of a cellulose fiber.

Claims (6)

下記(1)、(2)及び(3)
(1)金属不純物濃度が各々1ppm以下の高純度シリコン粉末、ケミカルグレードのシリコン粉末、冶金的に精製された金属珪素を粉末状に加工したもの、これらの合金、珪素の低級酸化物及び部分酸化物、珪素の窒化物及び部分窒化物、
(2)上記(1)をさらに、炭素材料と混合したもの、合金化したもの、導電材で被覆したもの、有機ガスでカーボンを析出させたもの、樹脂を炭化させたもの、樹脂にカーボンブラックを添加したのち炭化したもの、
(3)1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたもの
から選択される、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質と、この負極活物質に対して、繊維状高分子物質を0.2〜30質量%含有する負極材とを含む非水電解質二次電池用負極であって、珪素を含有する負極活物質の粒度分布がレーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であり、繊維状高分子物質の繊維長が珪素を含有する負極活物質の粒子径D50以上であり、珪素を含有する負極活物質と繊維状高分子物質を含む混合物を200℃以上で焼成することにより得られたことを特徴とする非水電解質二次電池用負極。
(1), (2) and (3) below
(1) High-purity silicon powder having a metal impurity concentration of 1 ppm or less, chemical-grade silicon powder, metallurgically refined metal silicon processed into powder, alloys thereof, lower oxides of silicon and partial oxidation , Silicon nitride and partial nitride,
(2) The above (1) is further mixed with a carbon material, alloyed, coated with a conductive material, carbon precipitated with an organic gas, carbonized resin, carbon black on resin And carbonized after adding
(3) It is possible to occlude and release lithium ions selected from particles having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in a silicon-based compound and those coated with carbon. A negative electrode for a non-aqueous electrolyte secondary battery, comprising: a negative electrode active material containing silicon; and a negative electrode material containing 0.2 to 30% by mass of a fibrous polymer material with respect to the negative electrode active material, When the particle size distribution of the negative electrode active material containing a particle diameter corresponding to 50 mass% cumulative from the fine particle side is D 50 by the cumulative particle diameter measured by the laser diffraction scattering particle size distribution measurement method, D 50 is 0.1 to 30 μm. The mixture of the negative electrode active material containing silicon and the fibrous polymer material is 200 ° C., and the fiber length of the fibrous polymer material is not less than the particle diameter D 50 of the negative electrode active material containing silicon. Obtained by firing above Negative electrode for a nonaqueous electrolyte secondary battery characterized in that it.
繊維状高分子物質が、セルロース樹脂、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂及びアクリル樹脂から選択される高分子の繊維状品であることを特徴とする請求項1記載の非水電解質二次電池用負極。   The fibrous polymer substance is a polymer fibrous product selected from cellulose resin, phenol resin, polyvinyl alcohol resin, furan resin, polystyrene resin, polyimide resin, polyamide resin and acrylic resin. 1. A negative electrode for a non-aqueous electrolyte secondary battery according to 1. リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質が、1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたものから選択されることを特徴とする請求項1又は2記載の非水電解質二次電池用負極。   A negative electrode active material containing silicon capable of inserting and extracting lithium ions, particles having a structure in which microcrystals of silicon having a size of 1 to 500 nm are dispersed in a silicon-based compound, and this are coated with carbon The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the negative electrode is selected from those described above. 空間を有することを特徴とする請求項1、2又は3記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode has a space. 下記(1)、(2)及び(3)
(1)金属不純物濃度が各々1ppm以下の高純度シリコン粉末、ケミカルグレードのシリコン粉末、冶金的に精製された金属珪素を粉末状に加工したもの、これらの合金、珪素の低級酸化物及び部分酸化物、珪素の窒化物及び部分窒化物、
(2)上記(1)をさらに、炭素材料と混合したもの、合金化したもの、導電材で被覆したもの、有機ガスでカーボンを析出させたもの、樹脂を炭化させたもの、樹脂にカーボンブラックを添加したのち炭化したもの、
(3)1〜500nmの大きさの珪素の微結晶が珪素系化合物に分散した構造を有する粒子、及びこれを炭素でコーティングしたもの
から選択される、リチウムイオンを吸蔵・放出することが可能な珪素を含有する負極活物質として、その粒度分布が、レーザー回折散乱式粒度分布測定法による累積粒径を微粒側から累積50質量%に相当する粒子径をD50としたとき、D50が0.1〜30μmの範囲内であるように選定すると共に、この負極活物質に添加する繊維状高分子物質の繊維長が珪素を含有する負極活物質の粒子径D50以上であるように選定し、上記負極活物質に対して上記繊維状高分子物質を0.2〜30質量%添加したものを含む混合物を200℃以上で焼成することを特徴とする非水電解質二次電池用負極の製造方法。
(1), (2) and (3) below
(1) High-purity silicon powder having a metal impurity concentration of 1 ppm or less, chemical-grade silicon powder, metallurgically refined metal silicon processed into powder, alloys thereof, lower oxides of silicon and partial oxidation , Silicon nitride and partial nitride,
(2) The above (1) is further mixed with a carbon material, alloyed, coated with a conductive material, carbon precipitated with an organic gas, carbonized resin, carbon black on resin And carbonized after adding
(3) Particles having a structure in which silicon microcrystals having a size of 1 to 500 nm are dispersed in silicon-based compounds, and those coated with carbon
As a negative electrode active material containing silicon that can occlude / release lithium ions, the particle size distribution is 50 mass% cumulative from the fine particle side by the particle size distribution measured by the laser diffraction scattering particle size distribution measurement method. when the particle diameter corresponding to a D 50 to, together with selected so D 50 is in the range of 0.1 to 30 [mu] m, containing a fiber length of silicon fibrous polymer material to be added to the anode active material The negative electrode active material is selected so as to have a particle diameter D 50 or larger, and a mixture containing 0.2 to 30% by mass of the fibrous polymer material added to the negative electrode active material is fired at 200 ° C. or higher. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
繊維状高分子物質が、セルロース樹脂、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂及びアクリル樹脂から選択される高分子の繊維状品であることを特徴とする請求項記載の非水電解質二次電池用負極の製造方法。 The fibrous polymer substance is a polymer fibrous product selected from cellulose resin, phenol resin, polyvinyl alcohol resin, furan resin, polystyrene resin, polyimide resin, polyamide resin and acrylic resin. 5. A method for producing a negative electrode for a nonaqueous electrolyte secondary battery according to 5 .
JP2006338220A 2006-12-15 2006-12-15 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same Active JP5131429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338220A JP5131429B2 (en) 2006-12-15 2006-12-15 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338220A JP5131429B2 (en) 2006-12-15 2006-12-15 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008153006A JP2008153006A (en) 2008-07-03
JP5131429B2 true JP5131429B2 (en) 2013-01-30

Family

ID=39654979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338220A Active JP5131429B2 (en) 2006-12-15 2006-12-15 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5131429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050264B2 (en) 2015-09-24 2018-08-14 Samsung Electronics Co., Ltd. Composite negative active material, negative electrode and lithium secondary battery including the composite negative active material, and method of preparing the composite negative active material

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE042715T2 (en) * 2010-01-18 2019-07-29 Enevate Corp Composite materials for electrochemical storage
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
JP5648070B2 (en) * 2010-12-07 2015-01-07 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
JP5675546B2 (en) 2011-10-14 2015-02-25 信越化学工業株式会社 Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2016207250A (en) * 2013-10-07 2016-12-08 日産自動車株式会社 Electrode active material layer for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
CN103682287B (en) * 2013-12-19 2016-09-14 深圳市贝特瑞新能源材料股份有限公司 A kind of silicon-based composite anode material for Li-ion battery, preparation method and battery
JP6854135B2 (en) 2017-01-17 2021-04-07 株式会社ダイセル Slurry for electrodes, electrodes and their manufacturing methods, and secondary batteries
JP6816280B2 (en) * 2017-05-15 2021-01-20 エルジー・ケム・リミテッド Electrodes for all-solid-state batteries and their manufacturing methods
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
EP3721489B1 (en) 2017-12-07 2024-05-29 Enevate Corporation Composite comprising silicon carbide and carbon particles
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
KR102325877B1 (en) * 2019-07-26 2021-11-12 도요타 지도샤(주) Anode active material, method for producing anode active material, and battery
EP4012803A4 (en) * 2019-11-14 2022-08-24 Ningde Amperex Technology Limited Negative electrode material, electrochemical device comprising same, and electronic device
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN114497558B (en) * 2021-12-27 2024-02-06 东莞新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2006244984A (en) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP4794972B2 (en) * 2004-11-15 2011-10-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same
JP2006222073A (en) * 2005-01-11 2006-08-24 Matsushita Electric Ind Co Ltd Nonaqueous secondary battery and method of manufacturing its anode
WO2006109948A1 (en) * 2005-04-12 2006-10-19 Lg Chem, Ltd. Lithium secondary battery containing silicon-based or tin-based anode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10050264B2 (en) 2015-09-24 2018-08-14 Samsung Electronics Co., Ltd. Composite negative active material, negative electrode and lithium secondary battery including the composite negative active material, and method of preparing the composite negative active material

Also Published As

Publication number Publication date
JP2008153006A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP5131429B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
JP5555978B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP6572551B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP4262475B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP6759527B2 (en) Negative electrode active material for lithium ion secondary batteries and its manufacturing method
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2015146864A1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
JP4375042B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP2018029049A (en) Composite active material for silicon based lithium secondary battery and method for manufacturing the same
JP6451071B2 (en) Carbon silicon negative electrode active material for lithium ion secondary battery and method for producing the same
JP6772435B2 (en) Negative electrode active material for lithium ion secondary batteries and its manufacturing method
JP6808959B2 (en) Composite active material for lithium-ion secondary battery and its manufacturing method
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP2015130324A (en) Nonaqueous electrolyte secondary battery
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP6746906B2 (en) Silicon-based particles, negative electrode active material for lithium-ion secondary battery containing the same, and methods for producing the same
JP2018170247A (en) Composite active material for lithium secondary battery and manufacturing method thereof
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6119796B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP4393712B2 (en) Carbon material for battery and battery using the carbon material
CN114902446A (en) Slurry containing low-oxygen-type nano-silicon particles, negative electrode active material, negative electrode, and lithium ion secondary battery
JP5907223B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode and method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5131429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150